10d0d9cf47
specific privilege names to a broad range of privileges. These may require some future tweaking. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
1105 lines
30 KiB
C
1105 lines
30 KiB
C
/* $FreeBSD$ */
|
|
/* $KAME: in6_src.c,v 1.132 2003/08/26 04:42:27 keiichi Exp $ */
|
|
|
|
/*-
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)in_pcb.c 8.2 (Berkeley) 1/4/94
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sx.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet6/in6_var.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/in6_pcb.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/scope6_var.h>
|
|
#include <netinet6/nd6.h>
|
|
|
|
static struct mtx addrsel_lock;
|
|
#define ADDRSEL_LOCK_INIT() mtx_init(&addrsel_lock, "addrsel_lock", NULL, MTX_DEF)
|
|
#define ADDRSEL_LOCK() mtx_lock(&addrsel_lock)
|
|
#define ADDRSEL_UNLOCK() mtx_unlock(&addrsel_lock)
|
|
#define ADDRSEL_LOCK_ASSERT() mtx_assert(&addrsel_lock, MA_OWNED)
|
|
|
|
static struct sx addrsel_sxlock;
|
|
#define ADDRSEL_SXLOCK_INIT() sx_init(&addrsel_sxlock, "addrsel_sxlock")
|
|
#define ADDRSEL_SLOCK() sx_slock(&addrsel_sxlock)
|
|
#define ADDRSEL_SUNLOCK() sx_sunlock(&addrsel_sxlock)
|
|
#define ADDRSEL_XLOCK() sx_xlock(&addrsel_sxlock)
|
|
#define ADDRSEL_XUNLOCK() sx_xunlock(&addrsel_sxlock)
|
|
|
|
#define ADDR_LABEL_NOTAPP (-1)
|
|
struct in6_addrpolicy defaultaddrpolicy;
|
|
|
|
int ip6_prefer_tempaddr = 0;
|
|
|
|
static int selectroute __P((struct sockaddr_in6 *, struct ip6_pktopts *,
|
|
struct ip6_moptions *, struct route_in6 *, struct ifnet **,
|
|
struct rtentry **, int, int));
|
|
static int in6_selectif __P((struct sockaddr_in6 *, struct ip6_pktopts *,
|
|
struct ip6_moptions *, struct route_in6 *ro, struct ifnet **));
|
|
|
|
static struct in6_addrpolicy *lookup_addrsel_policy __P((struct sockaddr_in6 *));
|
|
|
|
static void init_policy_queue __P((void));
|
|
static int add_addrsel_policyent __P((struct in6_addrpolicy *));
|
|
static int delete_addrsel_policyent __P((struct in6_addrpolicy *));
|
|
static int walk_addrsel_policy __P((int (*)(struct in6_addrpolicy *, void *),
|
|
void *));
|
|
static int dump_addrsel_policyent __P((struct in6_addrpolicy *, void *));
|
|
static struct in6_addrpolicy *match_addrsel_policy __P((struct sockaddr_in6 *));
|
|
|
|
/*
|
|
* Return an IPv6 address, which is the most appropriate for a given
|
|
* destination and user specified options.
|
|
* If necessary, this function lookups the routing table and returns
|
|
* an entry to the caller for later use.
|
|
*/
|
|
#define REPLACE(r) do {\
|
|
if ((r) < sizeof(ip6stat.ip6s_sources_rule) / \
|
|
sizeof(ip6stat.ip6s_sources_rule[0])) /* check for safety */ \
|
|
ip6stat.ip6s_sources_rule[(r)]++; \
|
|
/* printf("in6_selectsrc: replace %s with %s by %d\n", ia_best ? ip6_sprintf(&ia_best->ia_addr.sin6_addr) : "none", ip6_sprintf(&ia->ia_addr.sin6_addr), (r)); */ \
|
|
goto replace; \
|
|
} while(0)
|
|
#define NEXT(r) do {\
|
|
if ((r) < sizeof(ip6stat.ip6s_sources_rule) / \
|
|
sizeof(ip6stat.ip6s_sources_rule[0])) /* check for safety */ \
|
|
ip6stat.ip6s_sources_rule[(r)]++; \
|
|
/* printf("in6_selectsrc: keep %s against %s by %d\n", ia_best ? ip6_sprintf(&ia_best->ia_addr.sin6_addr) : "none", ip6_sprintf(&ia->ia_addr.sin6_addr), (r)); */ \
|
|
goto next; /* XXX: we can't use 'continue' here */ \
|
|
} while(0)
|
|
#define BREAK(r) do { \
|
|
if ((r) < sizeof(ip6stat.ip6s_sources_rule) / \
|
|
sizeof(ip6stat.ip6s_sources_rule[0])) /* check for safety */ \
|
|
ip6stat.ip6s_sources_rule[(r)]++; \
|
|
goto out; /* XXX: we can't use 'break' here */ \
|
|
} while(0)
|
|
|
|
struct in6_addr *
|
|
in6_selectsrc(dstsock, opts, mopts, ro, laddr, ifpp, errorp)
|
|
struct sockaddr_in6 *dstsock;
|
|
struct ip6_pktopts *opts;
|
|
struct ip6_moptions *mopts;
|
|
struct route_in6 *ro;
|
|
struct in6_addr *laddr;
|
|
struct ifnet **ifpp;
|
|
int *errorp;
|
|
{
|
|
struct in6_addr dst;
|
|
struct ifnet *ifp = NULL;
|
|
struct in6_ifaddr *ia = NULL, *ia_best = NULL;
|
|
struct in6_pktinfo *pi = NULL;
|
|
int dst_scope = -1, best_scope = -1, best_matchlen = -1;
|
|
struct in6_addrpolicy *dst_policy = NULL, *best_policy = NULL;
|
|
u_int32_t odstzone;
|
|
int prefer_tempaddr;
|
|
|
|
dst = dstsock->sin6_addr; /* make a copy for local operation */
|
|
*errorp = 0;
|
|
if (ifpp)
|
|
*ifpp = NULL;
|
|
|
|
/*
|
|
* If the source address is explicitly specified by the caller,
|
|
* check if the requested source address is indeed a unicast address
|
|
* assigned to the node, and can be used as the packet's source
|
|
* address. If everything is okay, use the address as source.
|
|
*/
|
|
if (opts && (pi = opts->ip6po_pktinfo) &&
|
|
!IN6_IS_ADDR_UNSPECIFIED(&pi->ipi6_addr)) {
|
|
struct sockaddr_in6 srcsock;
|
|
struct in6_ifaddr *ia6;
|
|
|
|
/* get the outgoing interface */
|
|
if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ifp))
|
|
!= 0) {
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* determine the appropriate zone id of the source based on
|
|
* the zone of the destination and the outgoing interface.
|
|
* If the specified address is ambiguous wrt the scope zone,
|
|
* the interface must be specified; otherwise, ifa_ifwithaddr()
|
|
* will fail matching the address.
|
|
*/
|
|
bzero(&srcsock, sizeof(srcsock));
|
|
srcsock.sin6_family = AF_INET6;
|
|
srcsock.sin6_len = sizeof(srcsock);
|
|
srcsock.sin6_addr = pi->ipi6_addr;
|
|
if (ifp) {
|
|
*errorp = in6_setscope(&srcsock.sin6_addr, ifp, NULL);
|
|
if (*errorp != 0)
|
|
return (NULL);
|
|
}
|
|
|
|
ia6 = (struct in6_ifaddr *)ifa_ifwithaddr((struct sockaddr *)(&srcsock));
|
|
if (ia6 == NULL ||
|
|
(ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_NOTREADY))) {
|
|
*errorp = EADDRNOTAVAIL;
|
|
return (NULL);
|
|
}
|
|
pi->ipi6_addr = srcsock.sin6_addr; /* XXX: this overrides pi */
|
|
if (ifpp)
|
|
*ifpp = ifp;
|
|
return (&ia6->ia_addr.sin6_addr);
|
|
}
|
|
|
|
/*
|
|
* Otherwise, if the socket has already bound the source, just use it.
|
|
*/
|
|
if (laddr && !IN6_IS_ADDR_UNSPECIFIED(laddr))
|
|
return (laddr);
|
|
|
|
/*
|
|
* If the address is not specified, choose the best one based on
|
|
* the outgoing interface and the destination address.
|
|
*/
|
|
/* get the outgoing interface */
|
|
if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ifp)) != 0)
|
|
return (NULL);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (ifp == NULL) /* this should not happen */
|
|
panic("in6_selectsrc: NULL ifp");
|
|
#endif
|
|
*errorp = in6_setscope(&dst, ifp, &odstzone);
|
|
if (*errorp != 0)
|
|
return (NULL);
|
|
|
|
for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
|
|
int new_scope = -1, new_matchlen = -1;
|
|
struct in6_addrpolicy *new_policy = NULL;
|
|
u_int32_t srczone, osrczone, dstzone;
|
|
struct in6_addr src;
|
|
struct ifnet *ifp1 = ia->ia_ifp;
|
|
|
|
/*
|
|
* We'll never take an address that breaks the scope zone
|
|
* of the destination. We also skip an address if its zone
|
|
* does not contain the outgoing interface.
|
|
* XXX: we should probably use sin6_scope_id here.
|
|
*/
|
|
if (in6_setscope(&dst, ifp1, &dstzone) ||
|
|
odstzone != dstzone) {
|
|
continue;
|
|
}
|
|
src = ia->ia_addr.sin6_addr;
|
|
if (in6_setscope(&src, ifp, &osrczone) ||
|
|
in6_setscope(&src, ifp1, &srczone) ||
|
|
osrczone != srczone) {
|
|
continue;
|
|
}
|
|
|
|
/* avoid unusable addresses */
|
|
if ((ia->ia6_flags &
|
|
(IN6_IFF_NOTREADY | IN6_IFF_ANYCAST | IN6_IFF_DETACHED))) {
|
|
continue;
|
|
}
|
|
if (!ip6_use_deprecated && IFA6_IS_DEPRECATED(ia))
|
|
continue;
|
|
|
|
/* Rule 1: Prefer same address */
|
|
if (IN6_ARE_ADDR_EQUAL(&dst, &ia->ia_addr.sin6_addr)) {
|
|
ia_best = ia;
|
|
BREAK(1); /* there should be no better candidate */
|
|
}
|
|
|
|
if (ia_best == NULL)
|
|
REPLACE(0);
|
|
|
|
/* Rule 2: Prefer appropriate scope */
|
|
if (dst_scope < 0)
|
|
dst_scope = in6_addrscope(&dst);
|
|
new_scope = in6_addrscope(&ia->ia_addr.sin6_addr);
|
|
if (IN6_ARE_SCOPE_CMP(best_scope, new_scope) < 0) {
|
|
if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0)
|
|
REPLACE(2);
|
|
NEXT(2);
|
|
} else if (IN6_ARE_SCOPE_CMP(new_scope, best_scope) < 0) {
|
|
if (IN6_ARE_SCOPE_CMP(new_scope, dst_scope) < 0)
|
|
NEXT(2);
|
|
REPLACE(2);
|
|
}
|
|
|
|
/*
|
|
* Rule 3: Avoid deprecated addresses. Note that the case of
|
|
* !ip6_use_deprecated is already rejected above.
|
|
*/
|
|
if (!IFA6_IS_DEPRECATED(ia_best) && IFA6_IS_DEPRECATED(ia))
|
|
NEXT(3);
|
|
if (IFA6_IS_DEPRECATED(ia_best) && !IFA6_IS_DEPRECATED(ia))
|
|
REPLACE(3);
|
|
|
|
/* Rule 4: Prefer home addresses */
|
|
/*
|
|
* XXX: This is a TODO. We should probably merge the MIP6
|
|
* case above.
|
|
*/
|
|
|
|
/* Rule 5: Prefer outgoing interface */
|
|
if (ia_best->ia_ifp == ifp && ia->ia_ifp != ifp)
|
|
NEXT(5);
|
|
if (ia_best->ia_ifp != ifp && ia->ia_ifp == ifp)
|
|
REPLACE(5);
|
|
|
|
/*
|
|
* Rule 6: Prefer matching label
|
|
* Note that best_policy should be non-NULL here.
|
|
*/
|
|
if (dst_policy == NULL)
|
|
dst_policy = lookup_addrsel_policy(dstsock);
|
|
if (dst_policy->label != ADDR_LABEL_NOTAPP) {
|
|
new_policy = lookup_addrsel_policy(&ia->ia_addr);
|
|
if (dst_policy->label == best_policy->label &&
|
|
dst_policy->label != new_policy->label)
|
|
NEXT(6);
|
|
if (dst_policy->label != best_policy->label &&
|
|
dst_policy->label == new_policy->label)
|
|
REPLACE(6);
|
|
}
|
|
|
|
/*
|
|
* Rule 7: Prefer public addresses.
|
|
* We allow users to reverse the logic by configuring
|
|
* a sysctl variable, so that privacy conscious users can
|
|
* always prefer temporary addresses.
|
|
*/
|
|
if (opts == NULL ||
|
|
opts->ip6po_prefer_tempaddr == IP6PO_TEMPADDR_SYSTEM) {
|
|
prefer_tempaddr = ip6_prefer_tempaddr;
|
|
} else if (opts->ip6po_prefer_tempaddr ==
|
|
IP6PO_TEMPADDR_NOTPREFER) {
|
|
prefer_tempaddr = 0;
|
|
} else
|
|
prefer_tempaddr = 1;
|
|
if (!(ia_best->ia6_flags & IN6_IFF_TEMPORARY) &&
|
|
(ia->ia6_flags & IN6_IFF_TEMPORARY)) {
|
|
if (prefer_tempaddr)
|
|
REPLACE(7);
|
|
else
|
|
NEXT(7);
|
|
}
|
|
if ((ia_best->ia6_flags & IN6_IFF_TEMPORARY) &&
|
|
!(ia->ia6_flags & IN6_IFF_TEMPORARY)) {
|
|
if (prefer_tempaddr)
|
|
NEXT(7);
|
|
else
|
|
REPLACE(7);
|
|
}
|
|
|
|
/*
|
|
* Rule 8: prefer addresses on alive interfaces.
|
|
* This is a KAME specific rule.
|
|
*/
|
|
if ((ia_best->ia_ifp->if_flags & IFF_UP) &&
|
|
!(ia->ia_ifp->if_flags & IFF_UP))
|
|
NEXT(8);
|
|
if (!(ia_best->ia_ifp->if_flags & IFF_UP) &&
|
|
(ia->ia_ifp->if_flags & IFF_UP))
|
|
REPLACE(8);
|
|
|
|
/*
|
|
* Rule 14: Use longest matching prefix.
|
|
* Note: in the address selection draft, this rule is
|
|
* documented as "Rule 8". However, since it is also
|
|
* documented that this rule can be overridden, we assign
|
|
* a large number so that it is easy to assign smaller numbers
|
|
* to more preferred rules.
|
|
*/
|
|
new_matchlen = in6_matchlen(&ia->ia_addr.sin6_addr, &dst);
|
|
if (best_matchlen < new_matchlen)
|
|
REPLACE(14);
|
|
if (new_matchlen < best_matchlen)
|
|
NEXT(14);
|
|
|
|
/* Rule 15 is reserved. */
|
|
|
|
/*
|
|
* Last resort: just keep the current candidate.
|
|
* Or, do we need more rules?
|
|
*/
|
|
continue;
|
|
|
|
replace:
|
|
ia_best = ia;
|
|
best_scope = (new_scope >= 0 ? new_scope :
|
|
in6_addrscope(&ia_best->ia_addr.sin6_addr));
|
|
best_policy = (new_policy ? new_policy :
|
|
lookup_addrsel_policy(&ia_best->ia_addr));
|
|
best_matchlen = (new_matchlen >= 0 ? new_matchlen :
|
|
in6_matchlen(&ia_best->ia_addr.sin6_addr,
|
|
&dst));
|
|
|
|
next:
|
|
continue;
|
|
|
|
out:
|
|
break;
|
|
}
|
|
|
|
if ((ia = ia_best) == NULL) {
|
|
*errorp = EADDRNOTAVAIL;
|
|
return (NULL);
|
|
}
|
|
|
|
if (ifpp)
|
|
*ifpp = ifp;
|
|
|
|
return (&ia->ia_addr.sin6_addr);
|
|
}
|
|
|
|
static int
|
|
selectroute(dstsock, opts, mopts, ro, retifp, retrt, clone, norouteok)
|
|
struct sockaddr_in6 *dstsock;
|
|
struct ip6_pktopts *opts;
|
|
struct ip6_moptions *mopts;
|
|
struct route_in6 *ro;
|
|
struct ifnet **retifp;
|
|
struct rtentry **retrt;
|
|
int clone; /* meaningful only for bsdi and freebsd. */
|
|
int norouteok;
|
|
{
|
|
int error = 0;
|
|
struct ifnet *ifp = NULL;
|
|
struct rtentry *rt = NULL;
|
|
struct sockaddr_in6 *sin6_next;
|
|
struct in6_pktinfo *pi = NULL;
|
|
struct in6_addr *dst = &dstsock->sin6_addr;
|
|
|
|
#if 0
|
|
if (dstsock->sin6_addr.s6_addr32[0] == 0 &&
|
|
dstsock->sin6_addr.s6_addr32[1] == 0 &&
|
|
!IN6_IS_ADDR_LOOPBACK(&dstsock->sin6_addr)) {
|
|
printf("in6_selectroute: strange destination %s\n",
|
|
ip6_sprintf(&dstsock->sin6_addr));
|
|
} else {
|
|
printf("in6_selectroute: destination = %s%%%d\n",
|
|
ip6_sprintf(&dstsock->sin6_addr),
|
|
dstsock->sin6_scope_id); /* for debug */
|
|
}
|
|
#endif
|
|
|
|
/* If the caller specify the outgoing interface explicitly, use it. */
|
|
if (opts && (pi = opts->ip6po_pktinfo) != NULL && pi->ipi6_ifindex) {
|
|
/* XXX boundary check is assumed to be already done. */
|
|
ifp = ifnet_byindex(pi->ipi6_ifindex);
|
|
if (ifp != NULL &&
|
|
(norouteok || retrt == NULL ||
|
|
IN6_IS_ADDR_MULTICAST(dst))) {
|
|
/*
|
|
* we do not have to check or get the route for
|
|
* multicast.
|
|
*/
|
|
goto done;
|
|
} else
|
|
goto getroute;
|
|
}
|
|
|
|
/*
|
|
* If the destination address is a multicast address and the outgoing
|
|
* interface for the address is specified by the caller, use it.
|
|
*/
|
|
if (IN6_IS_ADDR_MULTICAST(dst) &&
|
|
mopts != NULL && (ifp = mopts->im6o_multicast_ifp) != NULL) {
|
|
goto done; /* we do not need a route for multicast. */
|
|
}
|
|
|
|
getroute:
|
|
/*
|
|
* If the next hop address for the packet is specified by the caller,
|
|
* use it as the gateway.
|
|
*/
|
|
if (opts && opts->ip6po_nexthop) {
|
|
struct route_in6 *ron;
|
|
|
|
sin6_next = satosin6(opts->ip6po_nexthop);
|
|
|
|
/* at this moment, we only support AF_INET6 next hops */
|
|
if (sin6_next->sin6_family != AF_INET6) {
|
|
error = EAFNOSUPPORT; /* or should we proceed? */
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* If the next hop is an IPv6 address, then the node identified
|
|
* by that address must be a neighbor of the sending host.
|
|
*/
|
|
ron = &opts->ip6po_nextroute;
|
|
if ((ron->ro_rt &&
|
|
(ron->ro_rt->rt_flags & (RTF_UP | RTF_LLINFO)) !=
|
|
(RTF_UP | RTF_LLINFO)) ||
|
|
!IN6_ARE_ADDR_EQUAL(&satosin6(&ron->ro_dst)->sin6_addr,
|
|
&sin6_next->sin6_addr)) {
|
|
if (ron->ro_rt) {
|
|
RTFREE(ron->ro_rt);
|
|
ron->ro_rt = NULL;
|
|
}
|
|
*satosin6(&ron->ro_dst) = *sin6_next;
|
|
}
|
|
if (ron->ro_rt == NULL) {
|
|
rtalloc((struct route *)ron); /* multi path case? */
|
|
if (ron->ro_rt == NULL ||
|
|
!(ron->ro_rt->rt_flags & RTF_LLINFO)) {
|
|
if (ron->ro_rt) {
|
|
RTFREE(ron->ro_rt);
|
|
ron->ro_rt = NULL;
|
|
}
|
|
error = EHOSTUNREACH;
|
|
goto done;
|
|
}
|
|
}
|
|
rt = ron->ro_rt;
|
|
ifp = rt->rt_ifp;
|
|
|
|
/*
|
|
* When cloning is required, try to allocate a route to the
|
|
* destination so that the caller can store path MTU
|
|
* information.
|
|
*/
|
|
if (!clone)
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Use a cached route if it exists and is valid, else try to allocate
|
|
* a new one. Note that we should check the address family of the
|
|
* cached destination, in case of sharing the cache with IPv4.
|
|
*/
|
|
if (ro) {
|
|
if (ro->ro_rt &&
|
|
(!(ro->ro_rt->rt_flags & RTF_UP) ||
|
|
((struct sockaddr *)(&ro->ro_dst))->sa_family != AF_INET6 ||
|
|
!IN6_ARE_ADDR_EQUAL(&satosin6(&ro->ro_dst)->sin6_addr,
|
|
dst))) {
|
|
RTFREE(ro->ro_rt);
|
|
ro->ro_rt = (struct rtentry *)NULL;
|
|
}
|
|
if (ro->ro_rt == (struct rtentry *)NULL) {
|
|
struct sockaddr_in6 *sa6;
|
|
|
|
/* No route yet, so try to acquire one */
|
|
bzero(&ro->ro_dst, sizeof(struct sockaddr_in6));
|
|
sa6 = (struct sockaddr_in6 *)&ro->ro_dst;
|
|
*sa6 = *dstsock;
|
|
sa6->sin6_scope_id = 0;
|
|
|
|
if (clone) {
|
|
rtalloc((struct route *)ro);
|
|
} else {
|
|
ro->ro_rt = rtalloc1(&((struct route *)ro)
|
|
->ro_dst, 0, 0UL);
|
|
if (ro->ro_rt)
|
|
RT_UNLOCK(ro->ro_rt);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* do not care about the result if we have the nexthop
|
|
* explicitly specified.
|
|
*/
|
|
if (opts && opts->ip6po_nexthop)
|
|
goto done;
|
|
|
|
if (ro->ro_rt) {
|
|
ifp = ro->ro_rt->rt_ifp;
|
|
|
|
if (ifp == NULL) { /* can this really happen? */
|
|
RTFREE(ro->ro_rt);
|
|
ro->ro_rt = NULL;
|
|
}
|
|
}
|
|
if (ro->ro_rt == NULL)
|
|
error = EHOSTUNREACH;
|
|
rt = ro->ro_rt;
|
|
|
|
/*
|
|
* Check if the outgoing interface conflicts with
|
|
* the interface specified by ipi6_ifindex (if specified).
|
|
* Note that loopback interface is always okay.
|
|
* (this may happen when we are sending a packet to one of
|
|
* our own addresses.)
|
|
*/
|
|
if (ifp && opts && opts->ip6po_pktinfo &&
|
|
opts->ip6po_pktinfo->ipi6_ifindex) {
|
|
if (!(ifp->if_flags & IFF_LOOPBACK) &&
|
|
ifp->if_index !=
|
|
opts->ip6po_pktinfo->ipi6_ifindex) {
|
|
error = EHOSTUNREACH;
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
done:
|
|
if (ifp == NULL && rt == NULL) {
|
|
/*
|
|
* This can happen if the caller did not pass a cached route
|
|
* nor any other hints. We treat this case an error.
|
|
*/
|
|
error = EHOSTUNREACH;
|
|
}
|
|
if (error == EHOSTUNREACH)
|
|
ip6stat.ip6s_noroute++;
|
|
|
|
if (retifp != NULL)
|
|
*retifp = ifp;
|
|
if (retrt != NULL)
|
|
*retrt = rt; /* rt may be NULL */
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
in6_selectif(dstsock, opts, mopts, ro, retifp)
|
|
struct sockaddr_in6 *dstsock;
|
|
struct ip6_pktopts *opts;
|
|
struct ip6_moptions *mopts;
|
|
struct route_in6 *ro;
|
|
struct ifnet **retifp;
|
|
{
|
|
int error;
|
|
struct route_in6 sro;
|
|
struct rtentry *rt = NULL;
|
|
|
|
if (ro == NULL) {
|
|
bzero(&sro, sizeof(sro));
|
|
ro = &sro;
|
|
}
|
|
|
|
if ((error = selectroute(dstsock, opts, mopts, ro, retifp,
|
|
&rt, 0, 1)) != 0) {
|
|
if (ro == &sro && rt && rt == sro.ro_rt)
|
|
RTFREE(rt);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* do not use a rejected or black hole route.
|
|
* XXX: this check should be done in the L2 output routine.
|
|
* However, if we skipped this check here, we'd see the following
|
|
* scenario:
|
|
* - install a rejected route for a scoped address prefix
|
|
* (like fe80::/10)
|
|
* - send a packet to a destination that matches the scoped prefix,
|
|
* with ambiguity about the scope zone.
|
|
* - pick the outgoing interface from the route, and disambiguate the
|
|
* scope zone with the interface.
|
|
* - ip6_output() would try to get another route with the "new"
|
|
* destination, which may be valid.
|
|
* - we'd see no error on output.
|
|
* Although this may not be very harmful, it should still be confusing.
|
|
* We thus reject the case here.
|
|
*/
|
|
if (rt && (rt->rt_flags & (RTF_REJECT | RTF_BLACKHOLE))) {
|
|
int flags = (rt->rt_flags & RTF_HOST ? EHOSTUNREACH : ENETUNREACH);
|
|
|
|
if (ro == &sro && rt && rt == sro.ro_rt)
|
|
RTFREE(rt);
|
|
return (flags);
|
|
}
|
|
|
|
/*
|
|
* Adjust the "outgoing" interface. If we're going to loop the packet
|
|
* back to ourselves, the ifp would be the loopback interface.
|
|
* However, we'd rather know the interface associated to the
|
|
* destination address (which should probably be one of our own
|
|
* addresses.)
|
|
*/
|
|
if (rt && rt->rt_ifa && rt->rt_ifa->ifa_ifp)
|
|
*retifp = rt->rt_ifa->ifa_ifp;
|
|
|
|
if (ro == &sro && rt && rt == sro.ro_rt)
|
|
RTFREE(rt);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
in6_selectroute(dstsock, opts, mopts, ro, retifp, retrt, clone)
|
|
struct sockaddr_in6 *dstsock;
|
|
struct ip6_pktopts *opts;
|
|
struct ip6_moptions *mopts;
|
|
struct route_in6 *ro;
|
|
struct ifnet **retifp;
|
|
struct rtentry **retrt;
|
|
int clone; /* meaningful only for bsdi and freebsd. */
|
|
{
|
|
return (selectroute(dstsock, opts, mopts, ro, retifp,
|
|
retrt, clone, 0));
|
|
}
|
|
|
|
/*
|
|
* Default hop limit selection. The precedence is as follows:
|
|
* 1. Hoplimit value specified via ioctl.
|
|
* 2. (If the outgoing interface is detected) the current
|
|
* hop limit of the interface specified by router advertisement.
|
|
* 3. The system default hoplimit.
|
|
*/
|
|
int
|
|
in6_selecthlim(in6p, ifp)
|
|
struct in6pcb *in6p;
|
|
struct ifnet *ifp;
|
|
{
|
|
if (in6p && in6p->in6p_hops >= 0)
|
|
return (in6p->in6p_hops);
|
|
else if (ifp)
|
|
return (ND_IFINFO(ifp)->chlim);
|
|
else if (in6p && !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
|
|
struct route_in6 ro6;
|
|
struct ifnet *lifp;
|
|
|
|
bzero(&ro6, sizeof(ro6));
|
|
ro6.ro_dst.sin6_family = AF_INET6;
|
|
ro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
|
|
ro6.ro_dst.sin6_addr = in6p->in6p_faddr;
|
|
rtalloc((struct route *)&ro6);
|
|
if (ro6.ro_rt) {
|
|
lifp = ro6.ro_rt->rt_ifp;
|
|
RTFREE(ro6.ro_rt);
|
|
if (lifp)
|
|
return (ND_IFINFO(lifp)->chlim);
|
|
} else
|
|
return (ip6_defhlim);
|
|
}
|
|
return (ip6_defhlim);
|
|
}
|
|
|
|
/*
|
|
* XXX: this is borrowed from in6_pcbbind(). If possible, we should
|
|
* share this function by all *bsd*...
|
|
*/
|
|
int
|
|
in6_pcbsetport(laddr, inp, cred)
|
|
struct in6_addr *laddr;
|
|
struct inpcb *inp;
|
|
struct ucred *cred;
|
|
{
|
|
struct socket *so = inp->inp_socket;
|
|
u_int16_t lport = 0, first, last, *lastport;
|
|
int count, error = 0, wild = 0;
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
|
|
INP_INFO_WLOCK_ASSERT(pcbinfo);
|
|
INP_LOCK_ASSERT(inp);
|
|
|
|
/* XXX: this is redundant when called from in6_pcbbind */
|
|
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
|
|
wild = INPLOOKUP_WILDCARD;
|
|
|
|
inp->inp_flags |= INP_ANONPORT;
|
|
|
|
if (inp->inp_flags & INP_HIGHPORT) {
|
|
first = ipport_hifirstauto; /* sysctl */
|
|
last = ipport_hilastauto;
|
|
lastport = &pcbinfo->lasthi;
|
|
} else if (inp->inp_flags & INP_LOWPORT) {
|
|
error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
|
|
SUSER_ALLOWJAIL);
|
|
if (error)
|
|
return error;
|
|
first = ipport_lowfirstauto; /* 1023 */
|
|
last = ipport_lowlastauto; /* 600 */
|
|
lastport = &pcbinfo->lastlow;
|
|
} else {
|
|
first = ipport_firstauto; /* sysctl */
|
|
last = ipport_lastauto;
|
|
lastport = &pcbinfo->lastport;
|
|
}
|
|
/*
|
|
* Simple check to ensure all ports are not used up causing
|
|
* a deadlock here.
|
|
*
|
|
* We split the two cases (up and down) so that the direction
|
|
* is not being tested on each round of the loop.
|
|
*/
|
|
if (first > last) {
|
|
/*
|
|
* counting down
|
|
*/
|
|
count = first - last;
|
|
|
|
do {
|
|
if (count-- < 0) { /* completely used? */
|
|
/*
|
|
* Undo any address bind that may have
|
|
* occurred above.
|
|
*/
|
|
inp->in6p_laddr = in6addr_any;
|
|
return (EAGAIN);
|
|
}
|
|
--*lastport;
|
|
if (*lastport > first || *lastport < last)
|
|
*lastport = first;
|
|
lport = htons(*lastport);
|
|
} while (in6_pcblookup_local(pcbinfo, &inp->in6p_laddr,
|
|
lport, wild));
|
|
} else {
|
|
/*
|
|
* counting up
|
|
*/
|
|
count = last - first;
|
|
|
|
do {
|
|
if (count-- < 0) { /* completely used? */
|
|
/*
|
|
* Undo any address bind that may have
|
|
* occurred above.
|
|
*/
|
|
inp->in6p_laddr = in6addr_any;
|
|
return (EAGAIN);
|
|
}
|
|
++*lastport;
|
|
if (*lastport < first || *lastport > last)
|
|
*lastport = first;
|
|
lport = htons(*lastport);
|
|
} while (in6_pcblookup_local(pcbinfo,
|
|
&inp->in6p_laddr, lport, wild));
|
|
}
|
|
|
|
inp->inp_lport = lport;
|
|
if (in_pcbinshash(inp) != 0) {
|
|
inp->in6p_laddr = in6addr_any;
|
|
inp->inp_lport = 0;
|
|
return (EAGAIN);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
addrsel_policy_init()
|
|
{
|
|
ADDRSEL_LOCK_INIT();
|
|
ADDRSEL_SXLOCK_INIT();
|
|
|
|
init_policy_queue();
|
|
|
|
/* initialize the "last resort" policy */
|
|
bzero(&defaultaddrpolicy, sizeof(defaultaddrpolicy));
|
|
defaultaddrpolicy.label = ADDR_LABEL_NOTAPP;
|
|
}
|
|
|
|
static struct in6_addrpolicy *
|
|
lookup_addrsel_policy(key)
|
|
struct sockaddr_in6 *key;
|
|
{
|
|
struct in6_addrpolicy *match = NULL;
|
|
|
|
ADDRSEL_LOCK();
|
|
match = match_addrsel_policy(key);
|
|
|
|
if (match == NULL)
|
|
match = &defaultaddrpolicy;
|
|
else
|
|
match->use++;
|
|
ADDRSEL_UNLOCK();
|
|
|
|
return (match);
|
|
}
|
|
|
|
/*
|
|
* Subroutines to manage the address selection policy table via sysctl.
|
|
*/
|
|
struct walkarg {
|
|
struct sysctl_req *w_req;
|
|
};
|
|
|
|
static int in6_src_sysctl(SYSCTL_HANDLER_ARGS);
|
|
SYSCTL_DECL(_net_inet6_ip6);
|
|
SYSCTL_NODE(_net_inet6_ip6, IPV6CTL_ADDRCTLPOLICY, addrctlpolicy,
|
|
CTLFLAG_RD, in6_src_sysctl, "");
|
|
|
|
static int
|
|
in6_src_sysctl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct walkarg w;
|
|
|
|
if (req->newptr)
|
|
return EPERM;
|
|
|
|
bzero(&w, sizeof(w));
|
|
w.w_req = req;
|
|
|
|
return (walk_addrsel_policy(dump_addrsel_policyent, &w));
|
|
}
|
|
|
|
int
|
|
in6_src_ioctl(cmd, data)
|
|
u_long cmd;
|
|
caddr_t data;
|
|
{
|
|
int i;
|
|
struct in6_addrpolicy ent0;
|
|
|
|
if (cmd != SIOCAADDRCTL_POLICY && cmd != SIOCDADDRCTL_POLICY)
|
|
return (EOPNOTSUPP); /* check for safety */
|
|
|
|
ent0 = *(struct in6_addrpolicy *)data;
|
|
|
|
if (ent0.label == ADDR_LABEL_NOTAPP)
|
|
return (EINVAL);
|
|
/* check if the prefix mask is consecutive. */
|
|
if (in6_mask2len(&ent0.addrmask.sin6_addr, NULL) < 0)
|
|
return (EINVAL);
|
|
/* clear trailing garbages (if any) of the prefix address. */
|
|
for (i = 0; i < 4; i++) {
|
|
ent0.addr.sin6_addr.s6_addr32[i] &=
|
|
ent0.addrmask.sin6_addr.s6_addr32[i];
|
|
}
|
|
ent0.use = 0;
|
|
|
|
switch (cmd) {
|
|
case SIOCAADDRCTL_POLICY:
|
|
return (add_addrsel_policyent(&ent0));
|
|
case SIOCDADDRCTL_POLICY:
|
|
return (delete_addrsel_policyent(&ent0));
|
|
}
|
|
|
|
return (0); /* XXX: compromise compilers */
|
|
}
|
|
|
|
/*
|
|
* The followings are implementation of the policy table using a
|
|
* simple tail queue.
|
|
* XXX such details should be hidden.
|
|
* XXX implementation using binary tree should be more efficient.
|
|
*/
|
|
struct addrsel_policyent {
|
|
TAILQ_ENTRY(addrsel_policyent) ape_entry;
|
|
struct in6_addrpolicy ape_policy;
|
|
};
|
|
|
|
TAILQ_HEAD(addrsel_policyhead, addrsel_policyent);
|
|
|
|
struct addrsel_policyhead addrsel_policytab;
|
|
|
|
static void
|
|
init_policy_queue()
|
|
{
|
|
TAILQ_INIT(&addrsel_policytab);
|
|
}
|
|
|
|
static int
|
|
add_addrsel_policyent(newpolicy)
|
|
struct in6_addrpolicy *newpolicy;
|
|
{
|
|
struct addrsel_policyent *new, *pol;
|
|
|
|
MALLOC(new, struct addrsel_policyent *, sizeof(*new), M_IFADDR,
|
|
M_WAITOK);
|
|
ADDRSEL_XLOCK();
|
|
ADDRSEL_LOCK();
|
|
|
|
/* duplication check */
|
|
TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) {
|
|
if (IN6_ARE_ADDR_EQUAL(&newpolicy->addr.sin6_addr,
|
|
&pol->ape_policy.addr.sin6_addr) &&
|
|
IN6_ARE_ADDR_EQUAL(&newpolicy->addrmask.sin6_addr,
|
|
&pol->ape_policy.addrmask.sin6_addr)) {
|
|
ADDRSEL_UNLOCK();
|
|
ADDRSEL_XUNLOCK();
|
|
FREE(new, M_IFADDR);
|
|
return (EEXIST); /* or override it? */
|
|
}
|
|
}
|
|
|
|
bzero(new, sizeof(*new));
|
|
|
|
/* XXX: should validate entry */
|
|
new->ape_policy = *newpolicy;
|
|
|
|
TAILQ_INSERT_TAIL(&addrsel_policytab, new, ape_entry);
|
|
ADDRSEL_UNLOCK();
|
|
ADDRSEL_XUNLOCK();
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
delete_addrsel_policyent(key)
|
|
struct in6_addrpolicy *key;
|
|
{
|
|
struct addrsel_policyent *pol;
|
|
|
|
ADDRSEL_XLOCK();
|
|
ADDRSEL_LOCK();
|
|
|
|
/* search for the entry in the table */
|
|
TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) {
|
|
if (IN6_ARE_ADDR_EQUAL(&key->addr.sin6_addr,
|
|
&pol->ape_policy.addr.sin6_addr) &&
|
|
IN6_ARE_ADDR_EQUAL(&key->addrmask.sin6_addr,
|
|
&pol->ape_policy.addrmask.sin6_addr)) {
|
|
break;
|
|
}
|
|
}
|
|
if (pol == NULL) {
|
|
ADDRSEL_UNLOCK();
|
|
ADDRSEL_XUNLOCK();
|
|
return (ESRCH);
|
|
}
|
|
|
|
TAILQ_REMOVE(&addrsel_policytab, pol, ape_entry);
|
|
ADDRSEL_UNLOCK();
|
|
ADDRSEL_XUNLOCK();
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
walk_addrsel_policy(callback, w)
|
|
int (*callback) __P((struct in6_addrpolicy *, void *));
|
|
void *w;
|
|
{
|
|
struct addrsel_policyent *pol;
|
|
int error = 0;
|
|
|
|
ADDRSEL_SLOCK();
|
|
TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) {
|
|
if ((error = (*callback)(&pol->ape_policy, w)) != 0) {
|
|
ADDRSEL_SUNLOCK();
|
|
return (error);
|
|
}
|
|
}
|
|
ADDRSEL_SUNLOCK();
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
dump_addrsel_policyent(pol, arg)
|
|
struct in6_addrpolicy *pol;
|
|
void *arg;
|
|
{
|
|
int error = 0;
|
|
struct walkarg *w = arg;
|
|
|
|
error = SYSCTL_OUT(w->w_req, pol, sizeof(*pol));
|
|
|
|
return (error);
|
|
}
|
|
|
|
static struct in6_addrpolicy *
|
|
match_addrsel_policy(key)
|
|
struct sockaddr_in6 *key;
|
|
{
|
|
struct addrsel_policyent *pent;
|
|
struct in6_addrpolicy *bestpol = NULL, *pol;
|
|
int matchlen, bestmatchlen = -1;
|
|
u_char *mp, *ep, *k, *p, m;
|
|
|
|
TAILQ_FOREACH(pent, &addrsel_policytab, ape_entry) {
|
|
matchlen = 0;
|
|
|
|
pol = &pent->ape_policy;
|
|
mp = (u_char *)&pol->addrmask.sin6_addr;
|
|
ep = mp + 16; /* XXX: scope field? */
|
|
k = (u_char *)&key->sin6_addr;
|
|
p = (u_char *)&pol->addr.sin6_addr;
|
|
for (; mp < ep && *mp; mp++, k++, p++) {
|
|
m = *mp;
|
|
if ((*k & m) != *p)
|
|
goto next; /* not match */
|
|
if (m == 0xff) /* short cut for a typical case */
|
|
matchlen += 8;
|
|
else {
|
|
while (m >= 0x80) {
|
|
matchlen++;
|
|
m <<= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* matched. check if this is better than the current best. */
|
|
if (bestpol == NULL ||
|
|
matchlen > bestmatchlen) {
|
|
bestpol = pol;
|
|
bestmatchlen = matchlen;
|
|
}
|
|
|
|
next:
|
|
continue;
|
|
}
|
|
|
|
return (bestpol);
|
|
}
|