freebsd-skq/sys/dev/ath/ath_hal/ar9002/ar9287_reset.c

589 lines
20 KiB
C

/*-
* SPDX-License-Identifier: ISC
*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#include "ah_eeprom_v14.h"
#include "ah_eeprom_9287.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
#include "ar9002/ar9287phy.h"
#include "ar9002/ar9287an.h"
#include "ar9002/ar9287_olc.h"
#include "ar9002/ar9287_reset.h"
/*
* Set the TX power calibration table per-chain.
*
* This only supports open-loop TX power control for the AR9287.
*/
static void
ar9287SetPowerCalTable(struct ath_hal *ah,
const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
{
struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
uint8_t *pCalBChans = NULL;
uint16_t pdGainOverlap_t2;
uint16_t numPiers = 0, i;
uint16_t numXpdGain, xpdMask;
uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
uint32_t regChainOffset;
HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
struct ar9287_eeprom *pEepData = &ee->ee_base;
xpdMask = pEepData->modalHeader.xpdGain;
if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
AR9287_EEP_MINOR_VER_2)
pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
else
pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
/* Note: Kiwi should only be 2ghz.. */
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
pCalBChans = pEepData->calFreqPier2G;
numPiers = AR9287_NUM_2G_CAL_PIERS;
pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
}
numXpdGain = 0;
/* Calculate the value of xpdgains from the xpdGain Mask */
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
if (numXpdGain >= AR5416_NUM_PD_GAINS)
break;
xpdGainValues[numXpdGain] =
(uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
numXpdGain++;
}
}
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
(numXpdGain - 1) & 0x3);
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
xpdGainValues[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
xpdGainValues[1]);
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
xpdGainValues[2]);
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
regChainOffset = i * 0x1000;
if (pEepData->baseEepHeader.txMask & (1 << i)) {
int8_t txPower;
pRawDatasetOpenLoop =
(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
ar9287olcGetTxGainIndex(ah, chan,
pRawDatasetOpenLoop,
pCalBChans, numPiers,
&txPower);
ar9287olcSetPDADCs(ah, txPower, i);
}
}
*pTxPowerIndexOffset = 0;
}
/* XXX hard-coded values? */
#define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
/*
* ar9287SetPowerPerRateTable
*
* Sets the transmit power in the baseband for the given
* operating channel and mode.
*
* This is like the v14 EEPROM table except the 5GHz code.
*/
static HAL_BOOL
ar9287SetPowerPerRateTable(struct ath_hal *ah,
struct ar9287_eeprom *pEepData,
const struct ieee80211_channel *chan,
int16_t *ratesArray, uint16_t cfgCtl,
uint16_t AntennaReduction,
uint16_t twiceMaxRegulatoryPower,
uint16_t powerLimit)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
/* Local defines to distinguish between extension and control CTL's */
#define EXT_ADDITIVE (0x8000)
#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
int i;
int16_t twiceLargestAntenna;
struct cal_ctl_data_ar9287 *rep;
CAL_TARGET_POWER_LEG targetPowerOfdm;
CAL_TARGET_POWER_LEG targetPowerCck = {0, {0, 0, 0, 0}};
CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}};
CAL_TARGET_POWER_LEG targetPowerCckExt = {0, {0, 0, 0, 0}};
CAL_TARGET_POWER_HT targetPowerHt20;
CAL_TARGET_POWER_HT targetPowerHt40 = {0, {0, 0, 0, 0}};
int16_t scaledPower, minCtlPower;
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
static const uint16_t ctlModesFor11g[] = {
CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
};
const uint16_t *pCtlMode;
uint16_t numCtlModes, ctlMode, freq;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
/* Compute TxPower reduction due to Antenna Gain */
twiceLargestAntenna = AH_MAX(
pEepData->modalHeader.antennaGainCh[0],
pEepData->modalHeader.antennaGainCh[1]);
twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
/* XXX setup for 5212 use (really used?) */
ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
/*
* scaledPower is the minimum of the user input power level and
* the regulatory allowed power level
*/
scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
/* Reduce scaled Power by number of chains active to get to per chain tx power level */
/* TODO: better value than these? */
switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
case 1:
break;
case 2:
scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
break;
default:
return AH_FALSE; /* Unsupported number of chains */
}
scaledPower = AH_MAX(0, scaledPower);
/* Get target powers from EEPROM - our baseline for TX Power */
/* XXX assume channel is 2ghz */
if (1) {
/* Setup for CTL modes */
numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
pCtlMode = ctlModesFor11g;
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
if (IEEE80211_IS_CHAN_HT40(chan)) {
numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
AR9287_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
/* Get target powers for extension channels */
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
}
}
/*
* For MIMO, need to apply regulatory caps individually across dynamically
* running modes: CCK, OFDM, HT20, HT40
*
* The outer loop walks through each possible applicable runtime mode.
* The inner loop walks through each ctlIndex entry in EEPROM.
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
*
*/
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
(pCtlMode[ctlMode] == CTL_2GHT40);
if (isHt40CtlMode) {
freq = centers.ctl_center;
} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
freq = centers.ext_center;
} else {
freq = centers.ctl_center;
}
/* walk through each CTL index stored in EEPROM */
for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
uint16_t twiceMinEdgePower;
/* compare test group from regulatory channel list with test mode from pCtlMode list */
if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
rep = &(pEepData->ctlData[i]);
twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
IEEE80211_IS_CHAN_2GHZ(chan));
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
/* Find the minimum of all CTL edge powers that apply to this channel */
twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
} else {
/* specific */
twiceMaxEdgePower = twiceMinEdgePower;
break;
}
}
}
minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
/* Apply ctl mode to correct target power set */
switch(pCtlMode[ctlMode]) {
case CTL_11B:
for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
}
break;
case CTL_11A:
case CTL_11G:
for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
}
break;
case CTL_5GHT20:
case CTL_2GHT20:
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
}
break;
case CTL_11B_EXT:
targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
break;
case CTL_11A_EXT:
case CTL_11G_EXT:
targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
break;
case CTL_5GHT40:
case CTL_2GHT40:
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
}
break;
default:
return AH_FALSE;
break;
}
} /* end ctl mode checking */
/* Set rates Array from collected data */
ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
&targetPowerCck,
&targetPowerCckExt,
&targetPowerOfdm,
&targetPowerOfdmExt,
&targetPowerHt20,
&targetPowerHt40);
return AH_TRUE;
#undef EXT_ADDITIVE
#undef CTL_11A_EXT
#undef CTL_11G_EXT
#undef CTL_11B_EXT
#undef SUB_NUM_CTL_MODES_AT_5G_40
#undef SUB_NUM_CTL_MODES_AT_2G_40
#undef N
}
#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
/*
* This is based off of the AR5416/AR9285 code and likely could
* be unified in the future.
*/
HAL_BOOL
ar9287SetTransmitPower(struct ath_hal *ah,
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
{
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
#define N(a) (sizeof (a) / sizeof (a[0]))
const struct modal_eep_ar9287_header *pModal;
struct ath_hal_5212 *ahp = AH5212(ah);
int16_t txPowerIndexOffset = 0;
int i;
uint16_t cfgCtl;
uint16_t powerLimit;
uint16_t twiceAntennaReduction;
uint16_t twiceMaxRegulatoryPower;
int16_t maxPower;
HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
struct ar9287_eeprom *pEepData = &ee->ee_base;
AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
/* Setup info for the actual eeprom */
OS_MEMZERO(AH5416(ah)->ah_ratesArray,
sizeof(AH5416(ah)->ah_ratesArray));
cfgCtl = ath_hal_getctl(ah, chan);
powerLimit = chan->ic_maxregpower * 2;
twiceAntennaReduction = chan->ic_maxantgain;
twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER,
AH_PRIVATE(ah)->ah_powerLimit);
pModal = &pEepData->modalHeader;
HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
__func__,chan->ic_freq, cfgCtl );
/* XXX Assume Minor is v2 or later */
AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
/* Fetch per-rate power table for the given channel */
if (! ar9287SetPowerPerRateTable(ah, pEepData, chan,
&AH5416(ah)->ah_ratesArray[0],
cfgCtl,
twiceAntennaReduction,
twiceMaxRegulatoryPower, powerLimit)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: unable to set tx power per rate table\n", __func__);
return AH_FALSE;
}
/* Set TX power control calibration curves for each TX chain */
ar9287SetPowerCalTable(ah, chan, &txPowerIndexOffset);
/* Calculate maximum power level */
maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
AH5416(ah)->ah_ratesArray[rateHt20_0]);
maxPower = AH_MAX(maxPower,
AH5416(ah)->ah_ratesArray[rate1l]);
if (IEEE80211_IS_CHAN_HT40(chan))
maxPower = AH_MAX(maxPower,
AH5416(ah)->ah_ratesArray[rateHt40_0]);
ahp->ah_tx6PowerInHalfDbm = maxPower;
AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
/*
* txPowerIndexOffset is set by the SetPowerTable() call -
* adjust the rate table (0 offset if rates EEPROM not loaded)
*/
/* XXX what about the pwrTableOffset? */
for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
AH5416(ah)->ah_ratesArray[i] =
(int16_t)(txPowerIndexOffset +
AH5416(ah)->ah_ratesArray[i]);
/* -5 dBm offset for Merlin and later; this includes Kiwi */
AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
if (AH5416(ah)->ah_ratesArray[i] < 0)
AH5416(ah)->ah_ratesArray[i] = 0;
}
#ifdef AH_EEPROM_DUMP
ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
#endif
/*
* Adjust the HT40 power to meet the correct target TX power
* for 40MHz mode, based on TX power curves that are established
* for 20MHz mode.
*
* XXX handle overflow/too high power level?
*/
if (IEEE80211_IS_CHAN_HT40(chan)) {
AH5416(ah)->ah_ratesArray[rateHt40_0] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_1] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_2] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_3] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_4] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_5] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_6] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_7] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
}
/* Write the TX power rate registers */
ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
return AH_TRUE;
#undef POW_SM
#undef N
}
/*
* Read EEPROM header info and program the device for correct operation
* given the channel value.
*/
HAL_BOOL
ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
const HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
const struct ar9287_eeprom *eep = &ee->ee_base;
const struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
uint16_t antWrites[AR9287_ANT_16S];
uint32_t regChainOffset, regval;
uint8_t txRxAttenLocal;
int i, j, offset_num;
pModal = &eep->modalHeader;
antWrites[0] = (uint16_t)((pModal->antCtrlCommon >> 28) & 0xF);
antWrites[1] = (uint16_t)((pModal->antCtrlCommon >> 24) & 0xF);
antWrites[2] = (uint16_t)((pModal->antCtrlCommon >> 20) & 0xF);
antWrites[3] = (uint16_t)((pModal->antCtrlCommon >> 16) & 0xF);
antWrites[4] = (uint16_t)((pModal->antCtrlCommon >> 12) & 0xF);
antWrites[5] = (uint16_t)((pModal->antCtrlCommon >> 8) & 0xF);
antWrites[6] = (uint16_t)((pModal->antCtrlCommon >> 4) & 0xF);
antWrites[7] = (uint16_t)(pModal->antCtrlCommon & 0xF);
offset_num = 8;
for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 28) & 0xf);
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 10) & 0x3);
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 8) & 0x3);
antWrites[j++] = 0;
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 6) & 0x3);
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 4) & 0x3);
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 2) & 0x3);
antWrites[j++] = (uint16_t)(pModal->antCtrlChain[i] & 0x3);
}
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
regChainOffset = i * 0x1000;
OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
pModal->antCtrlChain[i]);
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset,
(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)
+ regChainOffset)
& ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
SM(pModal->iqCalICh[i],
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
SM(pModal->iqCalQCh[i],
AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
txRxAttenLocal = pModal->txRxAttenCh[i];
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
pModal->bswMargin[i]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_DB,
pModal->bswAtten[i]);
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
AR9280_PHY_RXGAIN_TXRX_ATTEN,
txRxAttenLocal);
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
AR9280_PHY_RXGAIN_TXRX_MARGIN,
pModal->rxTxMarginCh[i]);
}
if (IEEE80211_IS_CHAN_HT40(chan))
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
else
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
| SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
OS_REG_RMW_FIELD(ah, AR_PHY_CCA,
AR9280_PHY_CCA_THRESH62, pModal->thresh62);
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH0);
regval &= ~(AR9287_AN_RF2G3_DB1 |
AR9287_AN_RF2G3_DB2 |
AR9287_AN_RF2G3_OB_CCK |
AR9287_AN_RF2G3_OB_PSK |
AR9287_AN_RF2G3_OB_QAM |
AR9287_AN_RF2G3_OB_PAL_OFF);
regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
/* Analog write - requires a 100usec delay */
OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);
regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH1);
regval &= ~(AR9287_AN_RF2G3_DB1 |
AR9287_AN_RF2G3_DB2 |
AR9287_AN_RF2G3_OB_CCK |
AR9287_AN_RF2G3_OB_PSK |
AR9287_AN_RF2G3_OB_QAM |
AR9287_AN_RF2G3_OB_PAL_OFF);
regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
OS_A_REG_RMW_FIELD(ah, AR9287_AN_TOP2,
AR9287_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
return AH_TRUE;
}