freebsd-skq/sys/dev/ath/ath_hal/ah.h
Adrian Chadd 577cd9a9b2 Bring over some further HAL capabilities from the Atheros HAL, as well
as an EDMA check function.

For the AR9003 and later NICs, different TX/RX DMA and descriptor handling
code will be conditional on the EDMA check.

Obtained from:	Qualcomm Atheros
2012-07-02 06:02:12 +00:00

1376 lines
49 KiB
C

/*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#ifndef _ATH_AH_H_
#define _ATH_AH_H_
/*
* Atheros Hardware Access Layer
*
* Clients of the HAL call ath_hal_attach to obtain a reference to an ath_hal
* structure for use with the device. Hardware-related operations that
* follow must call back into the HAL through interface, supplying the
* reference as the first parameter.
*/
#include "ah_osdep.h"
/*
* The maximum number of TX/RX chains supported.
* This is intended to be used by various statistics gathering operations
* (NF, RSSI, EVM).
*/
#define AH_MIMO_MAX_CHAINS 3
#define AH_MIMO_MAX_EVM_PILOTS 6
/*
* __ahdecl is analogous to _cdecl; it defines the calling
* convention used within the HAL. For most systems this
* can just default to be empty and the compiler will (should)
* use _cdecl. For systems where _cdecl is not compatible this
* must be defined. See linux/ah_osdep.h for an example.
*/
#ifndef __ahdecl
#define __ahdecl
#endif
/*
* Status codes that may be returned by the HAL. Note that
* interfaces that return a status code set it only when an
* error occurs--i.e. you cannot check it for success.
*/
typedef enum {
HAL_OK = 0, /* No error */
HAL_ENXIO = 1, /* No hardware present */
HAL_ENOMEM = 2, /* Memory allocation failed */
HAL_EIO = 3, /* Hardware didn't respond as expected */
HAL_EEMAGIC = 4, /* EEPROM magic number invalid */
HAL_EEVERSION = 5, /* EEPROM version invalid */
HAL_EELOCKED = 6, /* EEPROM unreadable */
HAL_EEBADSUM = 7, /* EEPROM checksum invalid */
HAL_EEREAD = 8, /* EEPROM read problem */
HAL_EEBADMAC = 9, /* EEPROM mac address invalid */
HAL_EESIZE = 10, /* EEPROM size not supported */
HAL_EEWRITE = 11, /* Attempt to change write-locked EEPROM */
HAL_EINVAL = 12, /* Invalid parameter to function */
HAL_ENOTSUPP = 13, /* Hardware revision not supported */
HAL_ESELFTEST = 14, /* Hardware self-test failed */
HAL_EINPROGRESS = 15, /* Operation incomplete */
HAL_EEBADREG = 16, /* EEPROM invalid regulatory contents */
HAL_EEBADCC = 17, /* EEPROM invalid country code */
HAL_INV_PMODE = 18, /* Couldn't bring out of sleep state */
} HAL_STATUS;
typedef enum {
AH_FALSE = 0, /* NB: lots of code assumes false is zero */
AH_TRUE = 1,
} HAL_BOOL;
typedef enum {
HAL_CAP_REG_DMN = 0, /* current regulatory domain */
HAL_CAP_CIPHER = 1, /* hardware supports cipher */
HAL_CAP_TKIP_MIC = 2, /* handle TKIP MIC in hardware */
HAL_CAP_TKIP_SPLIT = 3, /* hardware TKIP uses split keys */
HAL_CAP_PHYCOUNTERS = 4, /* hardware PHY error counters */
HAL_CAP_DIVERSITY = 5, /* hardware supports fast diversity */
HAL_CAP_KEYCACHE_SIZE = 6, /* number of entries in key cache */
HAL_CAP_NUM_TXQUEUES = 7, /* number of hardware xmit queues */
HAL_CAP_VEOL = 9, /* hardware supports virtual EOL */
HAL_CAP_PSPOLL = 10, /* hardware has working PS-Poll support */
HAL_CAP_DIAG = 11, /* hardware diagnostic support */
HAL_CAP_COMPRESSION = 12, /* hardware supports compression */
HAL_CAP_BURST = 13, /* hardware supports packet bursting */
HAL_CAP_FASTFRAME = 14, /* hardware supoprts fast frames */
HAL_CAP_TXPOW = 15, /* global tx power limit */
HAL_CAP_TPC = 16, /* per-packet tx power control */
HAL_CAP_PHYDIAG = 17, /* hardware phy error diagnostic */
HAL_CAP_BSSIDMASK = 18, /* hardware supports bssid mask */
HAL_CAP_MCAST_KEYSRCH = 19, /* hardware has multicast key search */
HAL_CAP_TSF_ADJUST = 20, /* hardware has beacon tsf adjust */
/* 21 was HAL_CAP_XR */
HAL_CAP_WME_TKIPMIC = 22, /* hardware can support TKIP MIC when WMM is turned on */
/* 23 was HAL_CAP_CHAN_HALFRATE */
/* 24 was HAL_CAP_CHAN_QUARTERRATE */
HAL_CAP_RFSILENT = 25, /* hardware has rfsilent support */
HAL_CAP_TPC_ACK = 26, /* ack txpower with per-packet tpc */
HAL_CAP_TPC_CTS = 27, /* cts txpower with per-packet tpc */
HAL_CAP_11D = 28, /* 11d beacon support for changing cc */
HAL_CAP_PCIE_PS = 29,
HAL_CAP_HT = 30, /* hardware can support HT */
HAL_CAP_GTXTO = 31, /* hardware supports global tx timeout */
HAL_CAP_FAST_CC = 32, /* hardware supports fast channel change */
HAL_CAP_TX_CHAINMASK = 33, /* mask of TX chains supported */
HAL_CAP_RX_CHAINMASK = 34, /* mask of RX chains supported */
HAL_CAP_NUM_GPIO_PINS = 36, /* number of GPIO pins */
HAL_CAP_CST = 38, /* hardware supports carrier sense timeout */
HAL_CAP_RIFS_RX = 39,
HAL_CAP_RIFS_TX = 40,
HAL_CAP_FORCE_PPM = 41,
HAL_CAP_RTS_AGGR_LIMIT = 42, /* aggregation limit with RTS */
HAL_CAP_4ADDR_AGGR = 43, /* hardware is capable of 4addr aggregation */
HAL_CAP_DFS_DMN = 44, /* current DFS domain */
HAL_CAP_EXT_CHAN_DFS = 45, /* DFS support for extension channel */
HAL_CAP_COMBINED_RADAR_RSSI = 46, /* Is combined RSSI for radar accurate */
HAL_CAP_AUTO_SLEEP = 48, /* hardware can go to network sleep
automatically after waking up to receive TIM */
HAL_CAP_MBSSID_AGGR_SUPPORT = 49, /* Support for mBSSID Aggregation */
HAL_CAP_SPLIT_4KB_TRANS = 50, /* hardware supports descriptors straddling a 4k page boundary */
HAL_CAP_REG_FLAG = 51, /* Regulatory domain flags */
HAL_CAP_BB_RIFS_HANG = 52,
HAL_CAP_RIFS_RX_ENABLED = 53,
HAL_CAP_BB_DFS_HANG = 54,
HAL_CAP_BT_COEX = 60, /* hardware is capable of bluetooth coexistence */
HAL_CAP_DYNAMIC_SMPS = 61, /* Dynamic MIMO Power Save hardware support */
HAL_CAP_DS = 67, /* 2 stream */
HAL_CAP_BB_RX_CLEAR_STUCK_HANG = 68,
HAL_CAP_MAC_HANG = 69, /* can MAC hang */
HAL_CAP_MFP = 70, /* Manangement Frame Protection in hardware */
HAL_CAP_TS = 72, /* 3 stream */
HAL_CAP_ENHANCED_DMA_SUPPORT = 75, /* DMA FIFO support */
HAL_CAP_RX_BUFSIZE = 81,
HAL_CAP_NUM_MR_ENTRIES = 82,
HAL_CAP_OL_PWRCTRL = 84, /* Open loop TX power control */
HAL_CAP_BB_PANIC_WATCHDOG = 92,
HAL_CAP_HT20_SGI = 96, /* hardware supports HT20 short GI */
HAL_CAP_RXTSTAMP_PREC = 100, /* rx desc tstamp precision (bits) */
HAL_CAP_ENHANCED_DFS_SUPPORT = 117, /* hardware supports enhanced DFS */
/* The following are private to the FreeBSD HAL (224 onward) */
HAL_CAP_INTMIT = 229, /* interference mitigation */
HAL_CAP_RXORN_FATAL = 230, /* HAL_INT_RXORN treated as fatal */
HAL_CAP_BB_HANG = 235, /* can baseband hang */
HAL_CAP_INTRMASK = 237, /* bitmask of supported interrupts */
HAL_CAP_BSSIDMATCH = 238, /* hardware has disable bssid match */
HAL_CAP_STREAMS = 239, /* how many 802.11n spatial streams are available */
HAL_CAP_RXDESC_SELFLINK = 242, /* support a self-linked tail RX descriptor */
HAL_CAP_LONG_RXDESC_TSF = 243, /* hardware supports 32bit TSF in RX descriptor */
HAL_CAP_BB_READ_WAR = 244, /* baseband read WAR */
HAL_CAP_SERIALISE_WAR = 245, /* serialise register access on PCI */
} HAL_CAPABILITY_TYPE;
/*
* "States" for setting the LED. These correspond to
* the possible 802.11 operational states and there may
* be a many-to-one mapping between these states and the
* actual hardware state for the LED's (i.e. the hardware
* may have fewer states).
*/
typedef enum {
HAL_LED_INIT = 0,
HAL_LED_SCAN = 1,
HAL_LED_AUTH = 2,
HAL_LED_ASSOC = 3,
HAL_LED_RUN = 4
} HAL_LED_STATE;
/*
* Transmit queue types/numbers. These are used to tag
* each transmit queue in the hardware and to identify a set
* of transmit queues for operations such as start/stop dma.
*/
typedef enum {
HAL_TX_QUEUE_INACTIVE = 0, /* queue is inactive/unused */
HAL_TX_QUEUE_DATA = 1, /* data xmit q's */
HAL_TX_QUEUE_BEACON = 2, /* beacon xmit q */
HAL_TX_QUEUE_CAB = 3, /* "crap after beacon" xmit q */
HAL_TX_QUEUE_UAPSD = 4, /* u-apsd power save xmit q */
HAL_TX_QUEUE_PSPOLL = 5, /* power save poll xmit q */
HAL_TX_QUEUE_CFEND = 6,
HAL_TX_QUEUE_PAPRD = 7,
} HAL_TX_QUEUE;
#define HAL_NUM_TX_QUEUES 10 /* max possible # of queues */
typedef enum {
HAL_RX_QUEUE_HP = 0, /* high priority recv queue */
HAL_RX_QUEUE_LP = 0, /* low priority recv queue */
} HAL_RX_QUEUE;
#define HAL_NUM_RX_QUEUES 2 /* max possible # of queues */
/*
* Transmit queue subtype. These map directly to
* WME Access Categories (except for UPSD). Refer
* to Table 5 of the WME spec.
*/
typedef enum {
HAL_WME_AC_BK = 0, /* background access category */
HAL_WME_AC_BE = 1, /* best effort access category*/
HAL_WME_AC_VI = 2, /* video access category */
HAL_WME_AC_VO = 3, /* voice access category */
HAL_WME_UPSD = 4, /* uplink power save */
} HAL_TX_QUEUE_SUBTYPE;
/*
* Transmit queue flags that control various
* operational parameters.
*/
typedef enum {
/*
* Per queue interrupt enables. When set the associated
* interrupt may be delivered for packets sent through
* the queue. Without these enabled no interrupts will
* be delivered for transmits through the queue.
*/
HAL_TXQ_TXOKINT_ENABLE = 0x0001, /* enable TXOK interrupt */
HAL_TXQ_TXERRINT_ENABLE = 0x0001, /* enable TXERR interrupt */
HAL_TXQ_TXDESCINT_ENABLE = 0x0002, /* enable TXDESC interrupt */
HAL_TXQ_TXEOLINT_ENABLE = 0x0004, /* enable TXEOL interrupt */
HAL_TXQ_TXURNINT_ENABLE = 0x0008, /* enable TXURN interrupt */
/*
* Enable hardware compression for packets sent through
* the queue. The compression buffer must be setup and
* packets must have a key entry marked in the tx descriptor.
*/
HAL_TXQ_COMPRESSION_ENABLE = 0x0010, /* enable h/w compression */
/*
* Disable queue when veol is hit or ready time expires.
* By default the queue is disabled only on reaching the
* physical end of queue (i.e. a null link ptr in the
* descriptor chain).
*/
HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE = 0x0020,
/*
* Schedule frames on delivery of a DBA (DMA Beacon Alert)
* event. Frames will be transmitted only when this timer
* fires, e.g to transmit a beacon in ap or adhoc modes.
*/
HAL_TXQ_DBA_GATED = 0x0040, /* schedule based on DBA */
/*
* Each transmit queue has a counter that is incremented
* each time the queue is enabled and decremented when
* the list of frames to transmit is traversed (or when
* the ready time for the queue expires). This counter
* must be non-zero for frames to be scheduled for
* transmission. The following controls disable bumping
* this counter under certain conditions. Typically this
* is used to gate frames based on the contents of another
* queue (e.g. CAB traffic may only follow a beacon frame).
* These are meaningful only when frames are scheduled
* with a non-ASAP policy (e.g. DBA-gated).
*/
HAL_TXQ_CBR_DIS_QEMPTY = 0x0080, /* disable on this q empty */
HAL_TXQ_CBR_DIS_BEMPTY = 0x0100, /* disable on beacon q empty */
/*
* Fragment burst backoff policy. Normally the no backoff
* is done after a successful transmission, the next fragment
* is sent at SIFS. If this flag is set backoff is done
* after each fragment, regardless whether it was ack'd or
* not, after the backoff count reaches zero a normal channel
* access procedure is done before the next transmit (i.e.
* wait AIFS instead of SIFS).
*/
HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE = 0x00800000,
/*
* Disable post-tx backoff following each frame.
*/
HAL_TXQ_BACKOFF_DISABLE = 0x00010000, /* disable post backoff */
/*
* DCU arbiter lockout control. This controls how
* lower priority tx queues are handled with respect to
* to a specific queue when multiple queues have frames
* to send. No lockout means lower priority queues arbitrate
* concurrently with this queue. Intra-frame lockout
* means lower priority queues are locked out until the
* current frame transmits (e.g. including backoffs and bursting).
* Global lockout means nothing lower can arbitrary so
* long as there is traffic activity on this queue (frames,
* backoff, etc).
*/
HAL_TXQ_ARB_LOCKOUT_INTRA = 0x00020000, /* intra-frame lockout */
HAL_TXQ_ARB_LOCKOUT_GLOBAL = 0x00040000, /* full lockout s */
HAL_TXQ_IGNORE_VIRTCOL = 0x00080000, /* ignore virt collisions */
HAL_TXQ_SEQNUM_INC_DIS = 0x00100000, /* disable seqnum increment */
} HAL_TX_QUEUE_FLAGS;
typedef struct {
uint32_t tqi_ver; /* hal TXQ version */
HAL_TX_QUEUE_SUBTYPE tqi_subtype; /* subtype if applicable */
HAL_TX_QUEUE_FLAGS tqi_qflags; /* flags (see above) */
uint32_t tqi_priority; /* (not used) */
uint32_t tqi_aifs; /* aifs */
uint32_t tqi_cwmin; /* cwMin */
uint32_t tqi_cwmax; /* cwMax */
uint16_t tqi_shretry; /* rts retry limit */
uint16_t tqi_lgretry; /* long retry limit (not used)*/
uint32_t tqi_cbrPeriod; /* CBR period (us) */
uint32_t tqi_cbrOverflowLimit; /* threshold for CBROVF int */
uint32_t tqi_burstTime; /* max burst duration (us) */
uint32_t tqi_readyTime; /* frame schedule time (us) */
uint32_t tqi_compBuf; /* comp buffer phys addr */
} HAL_TXQ_INFO;
#define HAL_TQI_NONVAL 0xffff
/* token to use for aifs, cwmin, cwmax */
#define HAL_TXQ_USEDEFAULT ((uint32_t) -1)
/* compression definitions */
#define HAL_COMP_BUF_MAX_SIZE 9216 /* 9K */
#define HAL_COMP_BUF_ALIGN_SIZE 512
/*
* Transmit packet types. This belongs in ah_desc.h, but
* is here so we can give a proper type to various parameters
* (and not require everyone include the file).
*
* NB: These values are intentionally assigned for
* direct use when setting up h/w descriptors.
*/
typedef enum {
HAL_PKT_TYPE_NORMAL = 0,
HAL_PKT_TYPE_ATIM = 1,
HAL_PKT_TYPE_PSPOLL = 2,
HAL_PKT_TYPE_BEACON = 3,
HAL_PKT_TYPE_PROBE_RESP = 4,
HAL_PKT_TYPE_CHIRP = 5,
HAL_PKT_TYPE_GRP_POLL = 6,
HAL_PKT_TYPE_AMPDU = 7,
} HAL_PKT_TYPE;
/* Rx Filter Frame Types */
typedef enum {
/*
* These bits correspond to AR_RX_FILTER for all chips.
* Not all bits are supported by all chips.
*/
HAL_RX_FILTER_UCAST = 0x00000001, /* Allow unicast frames */
HAL_RX_FILTER_MCAST = 0x00000002, /* Allow multicast frames */
HAL_RX_FILTER_BCAST = 0x00000004, /* Allow broadcast frames */
HAL_RX_FILTER_CONTROL = 0x00000008, /* Allow control frames */
HAL_RX_FILTER_BEACON = 0x00000010, /* Allow beacon frames */
HAL_RX_FILTER_PROM = 0x00000020, /* Promiscuous mode */
HAL_RX_FILTER_PROBEREQ = 0x00000080, /* Allow probe request frames */
HAL_RX_FILTER_PHYERR = 0x00000100, /* Allow phy errors */
HAL_RX_FILTER_COMPBAR = 0x00000400, /* Allow compressed BAR */
HAL_RX_FILTER_COMP_BA = 0x00000800, /* Allow compressed blockack */
HAL_RX_FILTER_PHYRADAR = 0x00002000, /* Allow phy radar errors */
HAL_RX_FILTER_PSPOLL = 0x00004000, /* Allow PS-POLL frames */
HAL_RX_FILTER_MCAST_BCAST_ALL = 0x00008000,
/* Allow all mcast/bcast frames */
/*
* Magic RX filter flags that aren't targetting hardware bits
* but instead the HAL sets individual bits - eg PHYERR will result
* in OFDM/CCK timing error frames being received.
*/
HAL_RX_FILTER_BSSID = 0x40000000, /* Disable BSSID match */
} HAL_RX_FILTER;
typedef enum {
HAL_PM_AWAKE = 0,
HAL_PM_FULL_SLEEP = 1,
HAL_PM_NETWORK_SLEEP = 2,
HAL_PM_UNDEFINED = 3
} HAL_POWER_MODE;
/*
* NOTE WELL:
* These are mapped to take advantage of the common locations for many of
* the bits on all of the currently supported MAC chips. This is to make
* the ISR as efficient as possible, while still abstracting HW differences.
* When new hardware breaks this commonality this enumerated type, as well
* as the HAL functions using it, must be modified. All values are directly
* mapped unless commented otherwise.
*/
typedef enum {
HAL_INT_RX = 0x00000001, /* Non-common mapping */
HAL_INT_RXDESC = 0x00000002,
HAL_INT_RXNOFRM = 0x00000008,
HAL_INT_RXEOL = 0x00000010,
HAL_INT_RXORN = 0x00000020,
HAL_INT_TX = 0x00000040, /* Non-common mapping */
HAL_INT_TXDESC = 0x00000080,
HAL_INT_TIM_TIMER= 0x00000100,
HAL_INT_TXURN = 0x00000800,
HAL_INT_MIB = 0x00001000,
HAL_INT_RXPHY = 0x00004000,
HAL_INT_RXKCM = 0x00008000,
HAL_INT_SWBA = 0x00010000,
HAL_INT_BMISS = 0x00040000,
HAL_INT_BNR = 0x00100000,
HAL_INT_TIM = 0x00200000, /* Non-common mapping */
HAL_INT_DTIM = 0x00400000, /* Non-common mapping */
HAL_INT_DTIMSYNC= 0x00800000, /* Non-common mapping */
HAL_INT_GPIO = 0x01000000,
HAL_INT_CABEND = 0x02000000, /* Non-common mapping */
HAL_INT_TSFOOR = 0x04000000, /* Non-common mapping */
HAL_INT_TBTT = 0x08000000, /* Non-common mapping */
HAL_INT_CST = 0x10000000, /* Non-common mapping */
HAL_INT_GTT = 0x20000000, /* Non-common mapping */
HAL_INT_FATAL = 0x40000000, /* Non-common mapping */
#define HAL_INT_GLOBAL 0x80000000 /* Set/clear IER */
HAL_INT_BMISC = HAL_INT_TIM
| HAL_INT_DTIM
| HAL_INT_DTIMSYNC
| HAL_INT_CABEND
| HAL_INT_TBTT,
/* Interrupt bits that map directly to ISR/IMR bits */
HAL_INT_COMMON = HAL_INT_RXNOFRM
| HAL_INT_RXDESC
| HAL_INT_RXEOL
| HAL_INT_RXORN
| HAL_INT_TXDESC
| HAL_INT_TXURN
| HAL_INT_MIB
| HAL_INT_RXPHY
| HAL_INT_RXKCM
| HAL_INT_SWBA
| HAL_INT_BMISS
| HAL_INT_BNR
| HAL_INT_GPIO,
} HAL_INT;
/*
* MSI vector assignments
*/
typedef enum {
HAL_MSIVEC_MISC = 0,
HAL_MSIVEC_TX = 1,
HAL_MSIVEC_RXLP = 2,
HAL_MSIVEC_RXHP = 3,
} HAL_MSIVEC;
typedef enum {
HAL_INT_LINE = 0,
HAL_INT_MSI = 1,
} HAL_INT_TYPE;
/* For interrupt mitigation registers */
typedef enum {
HAL_INT_RX_FIRSTPKT=0,
HAL_INT_RX_LASTPKT,
HAL_INT_TX_FIRSTPKT,
HAL_INT_TX_LASTPKT,
HAL_INT_THRESHOLD
} HAL_INT_MITIGATION;
typedef enum {
HAL_GPIO_OUTPUT_MUX_AS_OUTPUT = 0,
HAL_GPIO_OUTPUT_MUX_PCIE_ATTENTION_LED = 1,
HAL_GPIO_OUTPUT_MUX_PCIE_POWER_LED = 2,
HAL_GPIO_OUTPUT_MUX_MAC_NETWORK_LED = 3,
HAL_GPIO_OUTPUT_MUX_MAC_POWER_LED = 4,
HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE = 5,
HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME = 6
} HAL_GPIO_MUX_TYPE;
typedef enum {
HAL_GPIO_INTR_LOW = 0,
HAL_GPIO_INTR_HIGH = 1,
HAL_GPIO_INTR_DISABLE = 2
} HAL_GPIO_INTR_TYPE;
typedef enum {
HAL_RFGAIN_INACTIVE = 0,
HAL_RFGAIN_READ_REQUESTED = 1,
HAL_RFGAIN_NEED_CHANGE = 2
} HAL_RFGAIN;
typedef uint16_t HAL_CTRY_CODE; /* country code */
typedef uint16_t HAL_REG_DOMAIN; /* regulatory domain code */
#define HAL_ANTENNA_MIN_MODE 0
#define HAL_ANTENNA_FIXED_A 1
#define HAL_ANTENNA_FIXED_B 2
#define HAL_ANTENNA_MAX_MODE 3
typedef struct {
uint32_t ackrcv_bad;
uint32_t rts_bad;
uint32_t rts_good;
uint32_t fcs_bad;
uint32_t beacons;
} HAL_MIB_STATS;
enum {
HAL_MODE_11A = 0x001, /* 11a channels */
HAL_MODE_TURBO = 0x002, /* 11a turbo-only channels */
HAL_MODE_11B = 0x004, /* 11b channels */
HAL_MODE_PUREG = 0x008, /* 11g channels (OFDM only) */
#ifdef notdef
HAL_MODE_11G = 0x010, /* 11g channels (OFDM/CCK) */
#else
HAL_MODE_11G = 0x008, /* XXX historical */
#endif
HAL_MODE_108G = 0x020, /* 11g+Turbo channels */
HAL_MODE_108A = 0x040, /* 11a+Turbo channels */
HAL_MODE_11A_HALF_RATE = 0x200, /* 11a half width channels */
HAL_MODE_11A_QUARTER_RATE = 0x400, /* 11a quarter width channels */
HAL_MODE_11G_HALF_RATE = 0x800, /* 11g half width channels */
HAL_MODE_11G_QUARTER_RATE = 0x1000, /* 11g quarter width channels */
HAL_MODE_11NG_HT20 = 0x008000,
HAL_MODE_11NA_HT20 = 0x010000,
HAL_MODE_11NG_HT40PLUS = 0x020000,
HAL_MODE_11NG_HT40MINUS = 0x040000,
HAL_MODE_11NA_HT40PLUS = 0x080000,
HAL_MODE_11NA_HT40MINUS = 0x100000,
HAL_MODE_ALL = 0xffffff
};
typedef struct {
int rateCount; /* NB: for proper padding */
uint8_t rateCodeToIndex[144]; /* back mapping */
struct {
uint8_t valid; /* valid for rate control use */
uint8_t phy; /* CCK/OFDM/XR */
uint32_t rateKbps; /* transfer rate in kbs */
uint8_t rateCode; /* rate for h/w descriptors */
uint8_t shortPreamble; /* mask for enabling short
* preamble in CCK rate code */
uint8_t dot11Rate; /* value for supported rates
* info element of MLME */
uint8_t controlRate; /* index of next lower basic
* rate; used for dur. calcs */
uint16_t lpAckDuration; /* long preamble ACK duration */
uint16_t spAckDuration; /* short preamble ACK duration*/
} info[32];
} HAL_RATE_TABLE;
typedef struct {
u_int rs_count; /* number of valid entries */
uint8_t rs_rates[32]; /* rates */
} HAL_RATE_SET;
/*
* 802.11n specific structures and enums
*/
typedef enum {
HAL_CHAINTYPE_TX = 1, /* Tx chain type */
HAL_CHAINTYPE_RX = 2, /* RX chain type */
} HAL_CHAIN_TYPE;
typedef struct {
u_int Tries;
u_int Rate;
u_int PktDuration;
u_int ChSel;
u_int RateFlags;
#define HAL_RATESERIES_RTS_CTS 0x0001 /* use rts/cts w/this series */
#define HAL_RATESERIES_2040 0x0002 /* use ext channel for series */
#define HAL_RATESERIES_HALFGI 0x0004 /* use half-gi for series */
} HAL_11N_RATE_SERIES;
typedef enum {
HAL_HT_MACMODE_20 = 0, /* 20 MHz operation */
HAL_HT_MACMODE_2040 = 1, /* 20/40 MHz operation */
} HAL_HT_MACMODE;
typedef enum {
HAL_HT_PHYMODE_20 = 0, /* 20 MHz operation */
HAL_HT_PHYMODE_2040 = 1, /* 20/40 MHz operation */
} HAL_HT_PHYMODE;
typedef enum {
HAL_HT_EXTPROTSPACING_20 = 0, /* 20 MHz spacing */
HAL_HT_EXTPROTSPACING_25 = 1, /* 25 MHz spacing */
} HAL_HT_EXTPROTSPACING;
typedef enum {
HAL_RX_CLEAR_CTL_LOW = 0x1, /* force control channel to appear busy */
HAL_RX_CLEAR_EXT_LOW = 0x2, /* force extension channel to appear busy */
} HAL_HT_RXCLEAR;
/*
* Antenna switch control. By default antenna selection
* enables multiple (2) antenna use. To force use of the
* A or B antenna only specify a fixed setting. Fixing
* the antenna will also disable any diversity support.
*/
typedef enum {
HAL_ANT_VARIABLE = 0, /* variable by programming */
HAL_ANT_FIXED_A = 1, /* fixed antenna A */
HAL_ANT_FIXED_B = 2, /* fixed antenna B */
} HAL_ANT_SETTING;
typedef enum {
HAL_M_STA = 1, /* infrastructure station */
HAL_M_IBSS = 0, /* IBSS (adhoc) station */
HAL_M_HOSTAP = 6, /* Software Access Point */
HAL_M_MONITOR = 8 /* Monitor mode */
} HAL_OPMODE;
typedef struct {
uint8_t kv_type; /* one of HAL_CIPHER */
uint8_t kv_apsd; /* Mask for APSD enabled ACs */
uint16_t kv_len; /* length in bits */
uint8_t kv_val[16]; /* enough for 128-bit keys */
uint8_t kv_mic[8]; /* TKIP MIC key */
uint8_t kv_txmic[8]; /* TKIP TX MIC key (optional) */
} HAL_KEYVAL;
typedef enum {
HAL_CIPHER_WEP = 0,
HAL_CIPHER_AES_OCB = 1,
HAL_CIPHER_AES_CCM = 2,
HAL_CIPHER_CKIP = 3,
HAL_CIPHER_TKIP = 4,
HAL_CIPHER_CLR = 5, /* no encryption */
HAL_CIPHER_MIC = 127 /* TKIP-MIC, not a cipher */
} HAL_CIPHER;
enum {
HAL_SLOT_TIME_6 = 6, /* NB: for turbo mode */
HAL_SLOT_TIME_9 = 9,
HAL_SLOT_TIME_20 = 20,
};
/*
* Per-station beacon timer state. Note that the specified
* beacon interval (given in TU's) can also include flags
* to force a TSF reset and to enable the beacon xmit logic.
* If bs_cfpmaxduration is non-zero the hardware is setup to
* coexist with a PCF-capable AP.
*/
typedef struct {
uint32_t bs_nexttbtt; /* next beacon in TU */
uint32_t bs_nextdtim; /* next DTIM in TU */
uint32_t bs_intval; /* beacon interval+flags */
#define HAL_BEACON_PERIOD 0x0000ffff /* beacon interval period */
#define HAL_BEACON_ENA 0x00800000 /* beacon xmit enable */
#define HAL_BEACON_RESET_TSF 0x01000000 /* clear TSF */
uint32_t bs_dtimperiod;
uint16_t bs_cfpperiod; /* CFP period in TU */
uint16_t bs_cfpmaxduration; /* max CFP duration in TU */
uint32_t bs_cfpnext; /* next CFP in TU */
uint16_t bs_timoffset; /* byte offset to TIM bitmap */
uint16_t bs_bmissthreshold; /* beacon miss threshold */
uint32_t bs_sleepduration; /* max sleep duration */
} HAL_BEACON_STATE;
/*
* Like HAL_BEACON_STATE but for non-station mode setup.
* NB: see above flag definitions for bt_intval.
*/
typedef struct {
uint32_t bt_intval; /* beacon interval+flags */
uint32_t bt_nexttbtt; /* next beacon in TU */
uint32_t bt_nextatim; /* next ATIM in TU */
uint32_t bt_nextdba; /* next DBA in 1/8th TU */
uint32_t bt_nextswba; /* next SWBA in 1/8th TU */
uint32_t bt_flags; /* timer enables */
#define HAL_BEACON_TBTT_EN 0x00000001
#define HAL_BEACON_DBA_EN 0x00000002
#define HAL_BEACON_SWBA_EN 0x00000004
} HAL_BEACON_TIMERS;
/*
* Per-node statistics maintained by the driver for use in
* optimizing signal quality and other operational aspects.
*/
typedef struct {
uint32_t ns_avgbrssi; /* average beacon rssi */
uint32_t ns_avgrssi; /* average data rssi */
uint32_t ns_avgtxrssi; /* average tx rssi */
} HAL_NODE_STATS;
#define HAL_RSSI_EP_MULTIPLIER (1<<7) /* pow2 to optimize out * and / */
struct ath_desc;
struct ath_tx_status;
struct ath_rx_status;
struct ieee80211_channel;
/*
* This is a channel survey sample entry.
*
* The AR5212 ANI routines fill these samples. The ANI code then uses it
* when calculating listen time; it is also exported via a diagnostic
* API.
*/
typedef struct {
uint32_t seq_num;
uint32_t tx_busy;
uint32_t rx_busy;
uint32_t chan_busy;
uint32_t ext_chan_busy;
uint32_t cycle_count;
/* XXX TODO */
uint32_t ofdm_phyerr_count;
uint32_t cck_phyerr_count;
} HAL_SURVEY_SAMPLE;
/*
* This provides 3.2 seconds of sample space given an
* ANI time of 1/10th of a second. This may not be enough!
*/
#define CHANNEL_SURVEY_SAMPLE_COUNT 32
typedef struct {
HAL_SURVEY_SAMPLE samples[CHANNEL_SURVEY_SAMPLE_COUNT];
uint32_t cur_sample; /* current sample in sequence */
uint32_t cur_seq; /* current sequence number */
} HAL_CHANNEL_SURVEY;
/*
* ANI commands.
*
* These are used both internally and externally via the diagnostic
* API.
*
* Note that this is NOT the ANI commands being used via the INTMIT
* capability - that has a different mapping for some reason.
*/
typedef enum {
HAL_ANI_PRESENT = 0, /* is ANI support present */
HAL_ANI_NOISE_IMMUNITY_LEVEL = 1, /* set level */
HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION = 2, /* enable/disable */
HAL_ANI_CCK_WEAK_SIGNAL_THR = 3, /* enable/disable */
HAL_ANI_FIRSTEP_LEVEL = 4, /* set level */
HAL_ANI_SPUR_IMMUNITY_LEVEL = 5, /* set level */
HAL_ANI_MODE = 6, /* 0 => manual, 1 => auto (XXX do not change) */
HAL_ANI_PHYERR_RESET = 7, /* reset phy error stats */
HAL_ANI_MRC_CCK = 8,
} HAL_ANI_CMD;
/*
* This is the layout of the ANI INTMIT capability.
*
* Notice that the command values differ to HAL_ANI_CMD.
*/
typedef enum {
HAL_CAP_INTMIT_PRESENT = 0,
HAL_CAP_INTMIT_ENABLE = 1,
HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL = 2,
HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL = 3,
HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR = 4,
HAL_CAP_INTMIT_FIRSTEP_LEVEL = 5,
HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL = 6
} HAL_CAP_INTMIT_CMD;
/* DFS defines */
typedef struct {
int32_t pe_firpwr; /* FIR pwr out threshold */
int32_t pe_rrssi; /* Radar rssi thresh */
int32_t pe_height; /* Pulse height thresh */
int32_t pe_prssi; /* Pulse rssi thresh */
int32_t pe_inband; /* Inband thresh */
/* The following params are only for AR5413 and later */
u_int32_t pe_relpwr; /* Relative power threshold in 0.5dB steps */
u_int32_t pe_relstep; /* Pulse Relative step threshold in 0.5dB steps */
u_int32_t pe_maxlen; /* Max length of radar sign in 0.8us units */
int32_t pe_usefir128; /* Use the average in-band power measured over 128 cycles */
int32_t pe_blockradar; /*
* Enable to block radar check if pkt detect is done via OFDM
* weak signal detect or pkt is detected immediately after tx
* to rx transition
*/
int32_t pe_enmaxrssi; /*
* Enable to use the max rssi instead of the last rssi during
* fine gain changes for radar detection
*/
int32_t pe_extchannel; /* Enable DFS on ext channel */
int32_t pe_enabled; /* Whether radar detection is enabled */
int32_t pe_enrelpwr;
int32_t pe_en_relstep_check;
} HAL_PHYERR_PARAM;
#define HAL_PHYERR_PARAM_NOVAL 65535
/*
* DFS operating mode flags.
*/
typedef enum {
HAL_DFS_UNINIT_DOMAIN = 0, /* Uninitialized dfs domain */
HAL_DFS_FCC_DOMAIN = 1, /* FCC3 dfs domain */
HAL_DFS_ETSI_DOMAIN = 2, /* ETSI dfs domain */
HAL_DFS_MKK4_DOMAIN = 3, /* Japan dfs domain */
} HAL_DFS_DOMAIN;
/*
* Flag for setting QUIET period
*/
typedef enum {
HAL_QUIET_DISABLE = 0x0,
HAL_QUIET_ENABLE = 0x1,
HAL_QUIET_ADD_CURRENT_TSF = 0x2, /* add current TSF to next_start offset */
HAL_QUIET_ADD_SWBA_RESP_TIME = 0x4, /* add beacon response time to next_start offset */
} HAL_QUIET_FLAG;
#define HAL_DFS_EVENT_PRICH 0x0000001
#define HAL_DFS_EVENT_EXTCH 0x0000002
#define HAL_DFS_EVENT_EXTEARLY 0x0000004
#define HAL_DFS_EVENT_ISDC 0x0000008
struct hal_dfs_event {
uint64_t re_full_ts; /* 64-bit full timestamp from interrupt time */
uint32_t re_ts; /* Original 15 bit recv timestamp */
uint8_t re_rssi; /* rssi of radar event */
uint8_t re_dur; /* duration of radar pulse */
uint32_t re_flags; /* Flags (see above) */
};
typedef struct hal_dfs_event HAL_DFS_EVENT;
/*
* BT Co-existence definitions
*/
typedef enum {
HAL_BT_MODULE_CSR_BC4 = 0, /* CSR BlueCore v4 */
HAL_BT_MODULE_JANUS = 1, /* Kite + Valkyrie combo */
HAL_BT_MODULE_HELIUS = 2, /* Kiwi + Valkyrie combo */
HAL_MAX_BT_MODULES
} HAL_BT_MODULE;
typedef struct {
HAL_BT_MODULE bt_module;
u_int8_t bt_coex_config;
u_int8_t bt_gpio_bt_active;
u_int8_t bt_gpio_bt_priority;
u_int8_t bt_gpio_wlan_active;
u_int8_t bt_active_polarity;
HAL_BOOL bt_single_ant;
u_int8_t bt_dutyCycle;
u_int8_t bt_isolation;
u_int8_t bt_period;
} HAL_BT_COEX_INFO;
typedef enum {
HAL_BT_COEX_MODE_LEGACY = 0, /* legacy rx_clear mode */
HAL_BT_COEX_MODE_UNSLOTTED = 1, /* untimed/unslotted mode */
HAL_BT_COEX_MODE_SLOTTED = 2, /* slotted mode */
HAL_BT_COEX_MODE_DISALBED = 3, /* coexistence disabled */
} HAL_BT_COEX_MODE;
typedef enum {
HAL_BT_COEX_CFG_NONE, /* No bt coex enabled */
HAL_BT_COEX_CFG_2WIRE_2CH, /* 2-wire with 2 chains */
HAL_BT_COEX_CFG_2WIRE_CH1, /* 2-wire with ch1 */
HAL_BT_COEX_CFG_2WIRE_CH0, /* 2-wire with ch0 */
HAL_BT_COEX_CFG_3WIRE, /* 3-wire */
HAL_BT_COEX_CFG_MCI /* MCI */
} HAL_BT_COEX_CFG;
typedef enum {
HAL_BT_COEX_SET_ACK_PWR = 0, /* Change ACK power setting */
HAL_BT_COEX_LOWER_TX_PWR, /* Change transmit power */
HAL_BT_COEX_ANTENNA_DIVERSITY, /* Enable RX diversity for Kite */
} HAL_BT_COEX_SET_PARAMETER;
#define HAL_BT_COEX_FLAG_LOW_ACK_PWR 0x00000001
#define HAL_BT_COEX_FLAG_LOWER_TX_PWR 0x00000002
/* Check Rx Diversity is allowed */
#define HAL_BT_COEX_FLAG_ANT_DIV_ALLOW 0x00000004
/* Check Diversity is on or off */
#define HAL_BT_COEX_FLAG_ANT_DIV_ENABLE 0x00000008
#define HAL_BT_COEX_ANTDIV_CONTROL1_ENABLE 0x0b
/* main: LNA1, alt: LNA2 */
#define HAL_BT_COEX_ANTDIV_CONTROL2_ENABLE 0x09
#define HAL_BT_COEX_ANTDIV_CONTROL1_FIXED_A 0x04
#define HAL_BT_COEX_ANTDIV_CONTROL2_FIXED_A 0x09
#define HAL_BT_COEX_ANTDIV_CONTROL1_FIXED_B 0x02
#define HAL_BT_COEX_ANTDIV_CONTROL2_FIXED_B 0x06
#define HAL_BT_COEX_ISOLATION_FOR_NO_COEX 30
#define HAL_BT_COEX_ANT_DIV_SWITCH_COM 0x66666666
#define HAL_BT_COEX_HELIUS_CHAINMASK 0x02
#define HAL_BT_COEX_LOW_ACK_POWER 0x0
#define HAL_BT_COEX_HIGH_ACK_POWER 0x3f3f3f
typedef enum {
HAL_BT_COEX_NO_STOMP = 0,
HAL_BT_COEX_STOMP_ALL,
HAL_BT_COEX_STOMP_LOW,
HAL_BT_COEX_STOMP_NONE,
HAL_BT_COEX_STOMP_ALL_FORCE,
HAL_BT_COEX_STOMP_LOW_FORCE,
} HAL_BT_COEX_STOMP_TYPE;
typedef struct {
/* extend rx_clear after tx/rx to protect the burst (in usec). */
u_int8_t bt_time_extend;
/*
* extend rx_clear as long as txsm is
* transmitting or waiting for ack.
*/
HAL_BOOL bt_txstate_extend;
/*
* extend rx_clear so that when tx_frame
* is asserted, rx_clear will drop.
*/
HAL_BOOL bt_txframe_extend;
/*
* coexistence mode
*/
HAL_BT_COEX_MODE bt_mode;
/*
* treat BT high priority traffic as
* a quiet collision
*/
HAL_BOOL bt_quiet_collision;
/*
* invert rx_clear as WLAN_ACTIVE
*/
HAL_BOOL bt_rxclear_polarity;
/*
* slotted mode only. indicate the time in usec
* from the rising edge of BT_ACTIVE to the time
* BT_PRIORITY can be sampled to indicate priority.
*/
u_int8_t bt_priority_time;
/*
* slotted mode only. indicate the time in usec
* from the rising edge of BT_ACTIVE to the time
* BT_PRIORITY can be sampled to indicate tx/rx and
* BT_FREQ is sampled.
*/
u_int8_t bt_first_slot_time;
/*
* slotted mode only. rx_clear and bt_ant decision
* will be held the entire time that BT_ACTIVE is asserted,
* otherwise the decision is made before every slot boundry.
*/
HAL_BOOL bt_hold_rxclear;
} HAL_BT_COEX_CONFIG;
typedef struct
{
int ah_debug; /* only used if AH_DEBUG is defined */
int ah_ar5416_biasadj; /* enable AR2133 radio specific bias fiddling */
/* NB: these are deprecated; they exist for now for compatibility */
int ah_dma_beacon_response_time;/* in TU's */
int ah_sw_beacon_response_time; /* in TU's */
int ah_additional_swba_backoff; /* in TU's */
int ah_force_full_reset; /* force full chip reset rather then warm reset */
int ah_serialise_reg_war; /* force serialisation of register IO */
} HAL_OPS_CONFIG;
/*
* Hardware Access Layer (HAL) API.
*
* Clients of the HAL call ath_hal_attach to obtain a reference to an
* ath_hal structure for use with the device. Hardware-related operations
* that follow must call back into the HAL through interface, supplying
* the reference as the first parameter. Note that before using the
* reference returned by ath_hal_attach the caller should verify the
* ABI version number.
*/
struct ath_hal {
uint32_t ah_magic; /* consistency check magic number */
uint16_t ah_devid; /* PCI device ID */
uint16_t ah_subvendorid; /* PCI subvendor ID */
HAL_SOFTC ah_sc; /* back pointer to driver/os state */
HAL_BUS_TAG ah_st; /* params for register r+w */
HAL_BUS_HANDLE ah_sh;
HAL_CTRY_CODE ah_countryCode;
uint32_t ah_macVersion; /* MAC version id */
uint16_t ah_macRev; /* MAC revision */
uint16_t ah_phyRev; /* PHY revision */
/* NB: when only one radio is present the rev is in 5Ghz */
uint16_t ah_analog5GhzRev;/* 5GHz radio revision */
uint16_t ah_analog2GhzRev;/* 2GHz radio revision */
uint16_t *ah_eepromdata; /* eeprom buffer, if needed */
uint32_t ah_intrstate[8]; /* last int state */
uint32_t ah_syncstate; /* last sync intr state */
HAL_OPS_CONFIG ah_config;
const HAL_RATE_TABLE *__ahdecl(*ah_getRateTable)(struct ath_hal *,
u_int mode);
void __ahdecl(*ah_detach)(struct ath_hal*);
/* Reset functions */
HAL_BOOL __ahdecl(*ah_reset)(struct ath_hal *, HAL_OPMODE,
struct ieee80211_channel *,
HAL_BOOL bChannelChange, HAL_STATUS *status);
HAL_BOOL __ahdecl(*ah_phyDisable)(struct ath_hal *);
HAL_BOOL __ahdecl(*ah_disable)(struct ath_hal *);
void __ahdecl(*ah_configPCIE)(struct ath_hal *, HAL_BOOL restore,
HAL_BOOL power_off);
void __ahdecl(*ah_disablePCIE)(struct ath_hal *);
void __ahdecl(*ah_setPCUConfig)(struct ath_hal *);
HAL_BOOL __ahdecl(*ah_perCalibration)(struct ath_hal*,
struct ieee80211_channel *, HAL_BOOL *);
HAL_BOOL __ahdecl(*ah_perCalibrationN)(struct ath_hal *,
struct ieee80211_channel *, u_int chainMask,
HAL_BOOL longCal, HAL_BOOL *isCalDone);
HAL_BOOL __ahdecl(*ah_resetCalValid)(struct ath_hal *,
const struct ieee80211_channel *);
HAL_BOOL __ahdecl(*ah_setTxPower)(struct ath_hal *,
const struct ieee80211_channel *, uint16_t *);
HAL_BOOL __ahdecl(*ah_setTxPowerLimit)(struct ath_hal *, uint32_t);
HAL_BOOL __ahdecl(*ah_setBoardValues)(struct ath_hal *,
const struct ieee80211_channel *);
/* Transmit functions */
HAL_BOOL __ahdecl(*ah_updateTxTrigLevel)(struct ath_hal*,
HAL_BOOL incTrigLevel);
int __ahdecl(*ah_setupTxQueue)(struct ath_hal *, HAL_TX_QUEUE,
const HAL_TXQ_INFO *qInfo);
HAL_BOOL __ahdecl(*ah_setTxQueueProps)(struct ath_hal *, int q,
const HAL_TXQ_INFO *qInfo);
HAL_BOOL __ahdecl(*ah_getTxQueueProps)(struct ath_hal *, int q,
HAL_TXQ_INFO *qInfo);
HAL_BOOL __ahdecl(*ah_releaseTxQueue)(struct ath_hal *ah, u_int q);
HAL_BOOL __ahdecl(*ah_resetTxQueue)(struct ath_hal *ah, u_int q);
uint32_t __ahdecl(*ah_getTxDP)(struct ath_hal*, u_int);
HAL_BOOL __ahdecl(*ah_setTxDP)(struct ath_hal*, u_int, uint32_t txdp);
uint32_t __ahdecl(*ah_numTxPending)(struct ath_hal *, u_int q);
HAL_BOOL __ahdecl(*ah_startTxDma)(struct ath_hal*, u_int);
HAL_BOOL __ahdecl(*ah_stopTxDma)(struct ath_hal*, u_int);
HAL_BOOL __ahdecl(*ah_setupTxDesc)(struct ath_hal *, struct ath_desc *,
u_int pktLen, u_int hdrLen,
HAL_PKT_TYPE type, u_int txPower,
u_int txRate0, u_int txTries0,
u_int keyIx, u_int antMode, u_int flags,
u_int rtsctsRate, u_int rtsctsDuration,
u_int compicvLen, u_int compivLen,
u_int comp);
HAL_BOOL __ahdecl(*ah_setupXTxDesc)(struct ath_hal *, struct ath_desc*,
u_int txRate1, u_int txTries1,
u_int txRate2, u_int txTries2,
u_int txRate3, u_int txTries3);
HAL_BOOL __ahdecl(*ah_fillTxDesc)(struct ath_hal *, struct ath_desc *,
u_int segLen, HAL_BOOL firstSeg,
HAL_BOOL lastSeg, const struct ath_desc *);
HAL_STATUS __ahdecl(*ah_procTxDesc)(struct ath_hal *,
struct ath_desc *, struct ath_tx_status *);
void __ahdecl(*ah_getTxIntrQueue)(struct ath_hal *, uint32_t *);
void __ahdecl(*ah_reqTxIntrDesc)(struct ath_hal *, struct ath_desc*);
HAL_BOOL __ahdecl(*ah_getTxCompletionRates)(struct ath_hal *,
const struct ath_desc *ds, int *rates, int *tries);
/* Receive Functions */
uint32_t __ahdecl(*ah_getRxDP)(struct ath_hal*);
void __ahdecl(*ah_setRxDP)(struct ath_hal*, uint32_t rxdp);
void __ahdecl(*ah_enableReceive)(struct ath_hal*);
HAL_BOOL __ahdecl(*ah_stopDmaReceive)(struct ath_hal*);
void __ahdecl(*ah_startPcuReceive)(struct ath_hal*);
void __ahdecl(*ah_stopPcuReceive)(struct ath_hal*);
void __ahdecl(*ah_setMulticastFilter)(struct ath_hal*,
uint32_t filter0, uint32_t filter1);
HAL_BOOL __ahdecl(*ah_setMulticastFilterIndex)(struct ath_hal*,
uint32_t index);
HAL_BOOL __ahdecl(*ah_clrMulticastFilterIndex)(struct ath_hal*,
uint32_t index);
uint32_t __ahdecl(*ah_getRxFilter)(struct ath_hal*);
void __ahdecl(*ah_setRxFilter)(struct ath_hal*, uint32_t);
HAL_BOOL __ahdecl(*ah_setupRxDesc)(struct ath_hal *, struct ath_desc *,
uint32_t size, u_int flags);
HAL_STATUS __ahdecl(*ah_procRxDesc)(struct ath_hal *,
struct ath_desc *, uint32_t phyAddr,
struct ath_desc *next, uint64_t tsf,
struct ath_rx_status *);
void __ahdecl(*ah_rxMonitor)(struct ath_hal *,
const HAL_NODE_STATS *,
const struct ieee80211_channel *);
void __ahdecl(*ah_aniPoll)(struct ath_hal *,
const struct ieee80211_channel *);
void __ahdecl(*ah_procMibEvent)(struct ath_hal *,
const HAL_NODE_STATS *);
void __ahdecl(*ah_rxAntCombDiversity)(struct ath_hal *,
struct ath_rx_status *,
unsigned long, int);
/* Misc Functions */
HAL_STATUS __ahdecl(*ah_getCapability)(struct ath_hal *,
HAL_CAPABILITY_TYPE, uint32_t capability,
uint32_t *result);
HAL_BOOL __ahdecl(*ah_setCapability)(struct ath_hal *,
HAL_CAPABILITY_TYPE, uint32_t capability,
uint32_t setting, HAL_STATUS *);
HAL_BOOL __ahdecl(*ah_getDiagState)(struct ath_hal *, int request,
const void *args, uint32_t argsize,
void **result, uint32_t *resultsize);
void __ahdecl(*ah_getMacAddress)(struct ath_hal *, uint8_t *);
HAL_BOOL __ahdecl(*ah_setMacAddress)(struct ath_hal *, const uint8_t*);
void __ahdecl(*ah_getBssIdMask)(struct ath_hal *, uint8_t *);
HAL_BOOL __ahdecl(*ah_setBssIdMask)(struct ath_hal *, const uint8_t*);
HAL_BOOL __ahdecl(*ah_setRegulatoryDomain)(struct ath_hal*,
uint16_t, HAL_STATUS *);
void __ahdecl(*ah_setLedState)(struct ath_hal*, HAL_LED_STATE);
void __ahdecl(*ah_writeAssocid)(struct ath_hal*,
const uint8_t *bssid, uint16_t assocId);
HAL_BOOL __ahdecl(*ah_gpioCfgOutput)(struct ath_hal *,
uint32_t gpio, HAL_GPIO_MUX_TYPE);
HAL_BOOL __ahdecl(*ah_gpioCfgInput)(struct ath_hal *, uint32_t gpio);
uint32_t __ahdecl(*ah_gpioGet)(struct ath_hal *, uint32_t gpio);
HAL_BOOL __ahdecl(*ah_gpioSet)(struct ath_hal *,
uint32_t gpio, uint32_t val);
void __ahdecl(*ah_gpioSetIntr)(struct ath_hal*, u_int, uint32_t);
uint32_t __ahdecl(*ah_getTsf32)(struct ath_hal*);
uint64_t __ahdecl(*ah_getTsf64)(struct ath_hal*);
void __ahdecl(*ah_resetTsf)(struct ath_hal*);
HAL_BOOL __ahdecl(*ah_detectCardPresent)(struct ath_hal*);
void __ahdecl(*ah_updateMibCounters)(struct ath_hal*,
HAL_MIB_STATS*);
HAL_RFGAIN __ahdecl(*ah_getRfGain)(struct ath_hal*);
u_int __ahdecl(*ah_getDefAntenna)(struct ath_hal*);
void __ahdecl(*ah_setDefAntenna)(struct ath_hal*, u_int);
HAL_ANT_SETTING __ahdecl(*ah_getAntennaSwitch)(struct ath_hal*);
HAL_BOOL __ahdecl(*ah_setAntennaSwitch)(struct ath_hal*,
HAL_ANT_SETTING);
HAL_BOOL __ahdecl(*ah_setSifsTime)(struct ath_hal*, u_int);
u_int __ahdecl(*ah_getSifsTime)(struct ath_hal*);
HAL_BOOL __ahdecl(*ah_setSlotTime)(struct ath_hal*, u_int);
u_int __ahdecl(*ah_getSlotTime)(struct ath_hal*);
HAL_BOOL __ahdecl(*ah_setAckTimeout)(struct ath_hal*, u_int);
u_int __ahdecl(*ah_getAckTimeout)(struct ath_hal*);
HAL_BOOL __ahdecl(*ah_setAckCTSRate)(struct ath_hal*, u_int);
u_int __ahdecl(*ah_getAckCTSRate)(struct ath_hal*);
HAL_BOOL __ahdecl(*ah_setCTSTimeout)(struct ath_hal*, u_int);
u_int __ahdecl(*ah_getCTSTimeout)(struct ath_hal*);
HAL_BOOL __ahdecl(*ah_setDecompMask)(struct ath_hal*, uint16_t, int);
void __ahdecl(*ah_setCoverageClass)(struct ath_hal*, uint8_t, int);
HAL_STATUS __ahdecl(*ah_setQuiet)(struct ath_hal *ah, uint32_t period,
uint32_t duration, uint32_t nextStart,
HAL_QUIET_FLAG flag);
/* DFS functions */
void __ahdecl(*ah_enableDfs)(struct ath_hal *ah,
HAL_PHYERR_PARAM *pe);
void __ahdecl(*ah_getDfsThresh)(struct ath_hal *ah,
HAL_PHYERR_PARAM *pe);
HAL_BOOL __ahdecl(*ah_procRadarEvent)(struct ath_hal *ah,
struct ath_rx_status *rxs, uint64_t fulltsf,
const char *buf, HAL_DFS_EVENT *event);
HAL_BOOL __ahdecl(*ah_isFastClockEnabled)(struct ath_hal *ah);
/* Key Cache Functions */
uint32_t __ahdecl(*ah_getKeyCacheSize)(struct ath_hal*);
HAL_BOOL __ahdecl(*ah_resetKeyCacheEntry)(struct ath_hal*, uint16_t);
HAL_BOOL __ahdecl(*ah_isKeyCacheEntryValid)(struct ath_hal *,
uint16_t);
HAL_BOOL __ahdecl(*ah_setKeyCacheEntry)(struct ath_hal*,
uint16_t, const HAL_KEYVAL *,
const uint8_t *, int);
HAL_BOOL __ahdecl(*ah_setKeyCacheEntryMac)(struct ath_hal*,
uint16_t, const uint8_t *);
/* Power Management Functions */
HAL_BOOL __ahdecl(*ah_setPowerMode)(struct ath_hal*,
HAL_POWER_MODE mode, int setChip);
HAL_POWER_MODE __ahdecl(*ah_getPowerMode)(struct ath_hal*);
int16_t __ahdecl(*ah_getChanNoise)(struct ath_hal *,
const struct ieee80211_channel *);
/* Beacon Management Functions */
void __ahdecl(*ah_setBeaconTimers)(struct ath_hal*,
const HAL_BEACON_TIMERS *);
/* NB: deprecated, use ah_setBeaconTimers instead */
void __ahdecl(*ah_beaconInit)(struct ath_hal *,
uint32_t nexttbtt, uint32_t intval);
void __ahdecl(*ah_setStationBeaconTimers)(struct ath_hal*,
const HAL_BEACON_STATE *);
void __ahdecl(*ah_resetStationBeaconTimers)(struct ath_hal*);
uint64_t __ahdecl(*ah_getNextTBTT)(struct ath_hal *);
/* 802.11n Functions */
HAL_BOOL __ahdecl(*ah_chainTxDesc)(struct ath_hal *,
struct ath_desc *, u_int, u_int, HAL_PKT_TYPE,
u_int, HAL_CIPHER, uint8_t, u_int, HAL_BOOL,
HAL_BOOL, HAL_BOOL);
HAL_BOOL __ahdecl(*ah_setupFirstTxDesc)(struct ath_hal *,
struct ath_desc *, u_int, u_int, u_int,
u_int, u_int, u_int, u_int, u_int);
HAL_BOOL __ahdecl(*ah_setupLastTxDesc)(struct ath_hal *,
struct ath_desc *, const struct ath_desc *);
void __ahdecl(*ah_set11nRateScenario)(struct ath_hal *,
struct ath_desc *, u_int, u_int,
HAL_11N_RATE_SERIES [], u_int, u_int);
void __ahdecl(*ah_set11nAggrFirst)(struct ath_hal *,
struct ath_desc *, u_int, u_int);
void __ahdecl(*ah_set11nAggrMiddle)(struct ath_hal *,
struct ath_desc *, u_int);
void __ahdecl(*ah_set11nAggrLast)(struct ath_hal *,
struct ath_desc *);
void __ahdecl(*ah_clr11nAggr)(struct ath_hal *,
struct ath_desc *);
void __ahdecl(*ah_set11nBurstDuration)(struct ath_hal *,
struct ath_desc *, u_int);
HAL_BOOL __ahdecl(*ah_getMibCycleCounts) (struct ath_hal *,
HAL_SURVEY_SAMPLE *);
uint32_t __ahdecl(*ah_get11nExtBusy)(struct ath_hal *);
void __ahdecl(*ah_set11nMac2040)(struct ath_hal *,
HAL_HT_MACMODE);
HAL_HT_RXCLEAR __ahdecl(*ah_get11nRxClear)(struct ath_hal *ah);
void __ahdecl(*ah_set11nRxClear)(struct ath_hal *,
HAL_HT_RXCLEAR);
/* Interrupt functions */
HAL_BOOL __ahdecl(*ah_isInterruptPending)(struct ath_hal*);
HAL_BOOL __ahdecl(*ah_getPendingInterrupts)(struct ath_hal*, HAL_INT*);
HAL_INT __ahdecl(*ah_getInterrupts)(struct ath_hal*);
HAL_INT __ahdecl(*ah_setInterrupts)(struct ath_hal*, HAL_INT);
};
/*
* Check the PCI vendor ID and device ID against Atheros' values
* and return a printable description for any Atheros hardware.
* AH_NULL is returned if the ID's do not describe Atheros hardware.
*/
extern const char *__ahdecl ath_hal_probe(uint16_t vendorid, uint16_t devid);
/*
* Attach the HAL for use with the specified device. The device is
* defined by the PCI device ID. The caller provides an opaque pointer
* to an upper-layer data structure (HAL_SOFTC) that is stored in the
* HAL state block for later use. Hardware register accesses are done
* using the specified bus tag and handle. On successful return a
* reference to a state block is returned that must be supplied in all
* subsequent HAL calls. Storage associated with this reference is
* dynamically allocated and must be freed by calling the ah_detach
* method when the client is done. If the attach operation fails a
* null (AH_NULL) reference will be returned and a status code will
* be returned if the status parameter is non-zero.
*/
extern struct ath_hal * __ahdecl ath_hal_attach(uint16_t devid, HAL_SOFTC,
HAL_BUS_TAG, HAL_BUS_HANDLE, uint16_t *eepromdata, HAL_STATUS* status);
extern const char *ath_hal_mac_name(struct ath_hal *);
extern const char *ath_hal_rf_name(struct ath_hal *);
/*
* Regulatory interfaces. Drivers should use ath_hal_init_channels to
* request a set of channels for a particular country code and/or
* regulatory domain. If CTRY_DEFAULT and SKU_NONE are specified then
* this list is constructed according to the contents of the EEPROM.
* ath_hal_getchannels acts similarly but does not alter the operating
* state; this can be used to collect information for a particular
* regulatory configuration. Finally ath_hal_set_channels installs a
* channel list constructed outside the driver. The HAL will adopt the
* channel list and setup internal state according to the specified
* regulatory configuration (e.g. conformance test limits).
*
* For all interfaces the channel list is returned in the supplied array.
* maxchans defines the maximum size of this array. nchans contains the
* actual number of channels returned. If a problem occurred then a
* status code != HAL_OK is returned.
*/
struct ieee80211_channel;
/*
* Return a list of channels according to the specified regulatory.
*/
extern HAL_STATUS __ahdecl ath_hal_getchannels(struct ath_hal *,
struct ieee80211_channel *chans, u_int maxchans, int *nchans,
u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
HAL_BOOL enableExtendedChannels);
/*
* Return a list of channels and install it as the current operating
* regulatory list.
*/
extern HAL_STATUS __ahdecl ath_hal_init_channels(struct ath_hal *,
struct ieee80211_channel *chans, u_int maxchans, int *nchans,
u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN rd,
HAL_BOOL enableExtendedChannels);
/*
* Install the list of channels as the current operating regulatory
* and setup related state according to the country code and sku.
*/
extern HAL_STATUS __ahdecl ath_hal_set_channels(struct ath_hal *,
struct ieee80211_channel *chans, int nchans,
HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn);
/*
* Fetch the ctl/ext noise floor values reported by a MIMO
* radio. Returns 1 for valid results, 0 for invalid channel.
*/
extern int __ahdecl ath_hal_get_mimo_chan_noise(struct ath_hal *ah,
const struct ieee80211_channel *chan, int16_t *nf_ctl,
int16_t *nf_ext);
/*
* Calibrate noise floor data following a channel scan or similar.
* This must be called prior retrieving noise floor data.
*/
extern void __ahdecl ath_hal_process_noisefloor(struct ath_hal *ah);
/*
* Return bit mask of wireless modes supported by the hardware.
*/
extern u_int __ahdecl ath_hal_getwirelessmodes(struct ath_hal*);
/*
* Calculate the packet TX time for a legacy or 11n frame
*/
extern uint32_t __ahdecl ath_hal_pkt_txtime(struct ath_hal *ah,
const HAL_RATE_TABLE *rates, uint32_t frameLen,
uint16_t rateix, HAL_BOOL isht40, HAL_BOOL shortPreamble);
/*
* Calculate the duration of an 11n frame.
*/
extern uint32_t __ahdecl ath_computedur_ht(uint32_t frameLen, uint16_t rate,
int streams, HAL_BOOL isht40, HAL_BOOL isShortGI);
/*
* Calculate the transmit duration of a legacy frame.
*/
extern uint16_t __ahdecl ath_hal_computetxtime(struct ath_hal *,
const HAL_RATE_TABLE *rates, uint32_t frameLen,
uint16_t rateix, HAL_BOOL shortPreamble);
/*
* Adjust the TSF.
*/
extern void __ahdecl ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta);
/*
* Enable or disable CCA.
*/
void __ahdecl ath_hal_setcca(struct ath_hal *ah, int ena);
/*
* Get CCA setting.
*/
int __ahdecl ath_hal_getcca(struct ath_hal *ah);
/*
* Read EEPROM data from ah_eepromdata
*/
HAL_BOOL __ahdecl ath_hal_EepromDataRead(struct ath_hal *ah,
u_int off, uint16_t *data);
#endif /* _ATH_AH_H_ */