freebsd-skq/sys/dev/fdt/fdt_pci.c
Marcel Moolenaar 3a47c0e263 Don't operate on the parent of the PCI node. It's the PCI node itself
that represents the host controller. This makes the FDT PCI support
working an a bare-bones manner. This needs a lot more work, of which
the beginning are at the end of the file, compiled-out with #if 0.

The intend being that both the Marvell PCIE and Freescale PCI/PCIX/PCIE
duplicate the same platform-independent domain initialization, that
should be moved into an unified implementation in the FDT code. Handling
of resources requires help from the platform. A unified implementation
allows us to properly support PCI devices listed in the device tree and
configured according to the device tree specification.

Sponsored by: Juniper Networks
2011-01-29 21:14:29 +00:00

569 lines
16 KiB
C

/*-
* Copyright (c) 2010 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Semihalf under sponsorship from
* the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ktr.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/malloc.h>
#include <dev/fdt/fdt_common.h>
#include <dev/pci/pcireg.h>
#include <machine/fdt.h>
#include "ofw_bus_if.h"
#include "pcib_if.h"
#define DEBUG
#undef DEBUG
#ifdef DEBUG
#define debugf(fmt, args...) do { printf("%s(): ", __func__); \
printf(fmt,##args); } while (0)
#else
#define debugf(fmt, args...)
#endif
#define FDT_RANGES_CELLS ((3 + 3 + 2) * 2)
static void
fdt_pci_range_dump(struct fdt_pci_range *range)
{
#ifdef DEBUG
printf("\n");
printf(" base_pci = 0x%08lx\n", range->base_pci);
printf(" base_par = 0x%08lx\n", range->base_parent);
printf(" len = 0x%08lx\n", range->len);
#endif
}
int
fdt_pci_ranges_decode(phandle_t node, struct fdt_pci_range *io_space,
struct fdt_pci_range *mem_space)
{
pcell_t ranges[FDT_RANGES_CELLS];
struct fdt_pci_range *pci_space;
pcell_t addr_cells, size_cells, par_addr_cells;
pcell_t *rangesptr;
pcell_t cell0, cell1, cell2;
int tuple_size, tuples, i, rv, offset_cells, len;
/*
* Retrieve 'ranges' property.
*/
if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
return (EINVAL);
if (addr_cells != 3 || size_cells != 2)
return (ERANGE);
par_addr_cells = fdt_parent_addr_cells(node);
if (par_addr_cells > 3)
return (ERANGE);
len = OF_getproplen(node, "ranges");
if (len > sizeof(ranges))
return (ENOMEM);
if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
return (EINVAL);
tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
size_cells);
tuples = len / tuple_size;
rangesptr = &ranges[0];
offset_cells = 0;
for (i = 0; i < tuples; i++) {
cell0 = fdt_data_get((void *)rangesptr, 1);
rangesptr++;
cell1 = fdt_data_get((void *)rangesptr, 1);
rangesptr++;
cell2 = fdt_data_get((void *)rangesptr, 1);
rangesptr++;
if (cell0 & 0x02000000) {
pci_space = mem_space;
} else if (cell0 & 0x01000000) {
pci_space = io_space;
} else {
rv = ERANGE;
goto out;
}
if (par_addr_cells == 3) {
/*
* This is a PCI subnode 'ranges'. Skip cell0 and
* cell1 of this entry and only use cell2.
*/
offset_cells = 2;
rangesptr += offset_cells;
}
if (fdt_data_verify((void *)rangesptr, par_addr_cells -
offset_cells)) {
rv = ERANGE;
goto out;
}
pci_space->base_parent = fdt_data_get((void *)rangesptr,
par_addr_cells - offset_cells);
rangesptr += par_addr_cells - offset_cells;
if (fdt_data_verify((void *)rangesptr, size_cells)) {
rv = ERANGE;
goto out;
}
pci_space->len = fdt_data_get((void *)rangesptr, size_cells);
rangesptr += size_cells;
pci_space->base_pci = cell2;
}
rv = 0;
out:
return (rv);
}
int
fdt_pci_ranges(phandle_t node, struct fdt_pci_range *io_space,
struct fdt_pci_range *mem_space)
{
int err;
debugf("Processing PCI node: %x\n", node);
if ((err = fdt_pci_ranges_decode(node, io_space, mem_space)) != 0) {
debugf("could not decode parent PCI node 'ranges'\n");
return (err);
}
debugf("Post fixup dump:\n");
fdt_pci_range_dump(io_space);
fdt_pci_range_dump(mem_space);
return (0);
}
static int
fdt_addr_cells(phandle_t node, int *addr_cells)
{
pcell_t cell;
int cell_size;
cell_size = sizeof(cell);
if (OF_getprop(node, "#address-cells", &cell, cell_size) < cell_size)
return (EINVAL);
*addr_cells = fdt32_to_cpu((int)cell);
if (*addr_cells > 3)
return (ERANGE);
return (0);
}
static int
fdt_interrupt_cells(phandle_t node)
{
pcell_t intr_cells;
if (OF_getprop(node, "#interrupt-cells", &intr_cells,
sizeof(intr_cells)) <= 0) {
debugf("no intr-cells defined, defaulting to 1\n");
intr_cells = 1;
}
intr_cells = fdt32_to_cpu(intr_cells);
return ((int)intr_cells);
}
int
fdt_pci_intr_info(phandle_t node, struct fdt_pci_intr *intr_info)
{
void *map, *mask;
int acells, icells;
int error, len;
error = fdt_addr_cells(node, &acells);
if (error)
return (error);
icells = fdt_interrupt_cells(node);
/*
* Retrieve the interrupt map and mask properties.
*/
len = OF_getprop_alloc(node, "interrupt-map-mask", 1, &mask);
if (len / sizeof(pcell_t) != (acells + icells)) {
debugf("bad mask len = %d\n", len);
goto err;
}
len = OF_getprop_alloc(node, "interrupt-map", 1, &map);
if (len <= 0) {
debugf("bad map len = %d\n", len);
goto err;
}
intr_info->map_len = len;
intr_info->map = map;
intr_info->mask = mask;
intr_info->addr_cells = acells;
intr_info->intr_cells = icells;
debugf("acells=%u, icells=%u, map_len=%u\n", acells, icells, len);
return (0);
err:
free(mask, M_OFWPROP);
return (ENXIO);
}
int
fdt_pci_route_intr(int bus, int slot, int func, int pin,
struct fdt_pci_intr *intr_info, int *interrupt)
{
pcell_t child_spec[4], masked[4];
ihandle_t iph;
pcell_t intr_par;
pcell_t *map_ptr;
uint32_t addr;
int i, j, map_len;
int par_intr_cells, par_addr_cells, child_spec_cells, row_cells;
int par_idx, spec_idx, err, trig, pol;
child_spec_cells = intr_info->addr_cells + intr_info->intr_cells;
if (child_spec_cells > sizeof(child_spec) / sizeof(pcell_t))
return (ENOMEM);
addr = (bus << 16) | (slot << 11) | (func << 8);
child_spec[0] = addr;
child_spec[1] = 0;
child_spec[2] = 0;
child_spec[3] = pin;
map_len = intr_info->map_len;
map_ptr = intr_info->map;
par_idx = child_spec_cells;
i = 0;
while (i < map_len) {
iph = fdt32_to_cpu(map_ptr[par_idx]);
intr_par = OF_instance_to_package(iph);
err = fdt_addr_cells(intr_par, &par_addr_cells);
if (err != 0) {
debugf("could not retrieve intr parent #addr-cells\n");
return (err);
}
par_intr_cells = fdt_interrupt_cells(intr_par);
row_cells = child_spec_cells + 1 + par_addr_cells +
par_intr_cells;
/*
* Apply mask and look up the entry in interrupt map.
*/
for (j = 0; j < child_spec_cells; j++) {
masked[j] = child_spec[j] &
fdt32_to_cpu(intr_info->mask[j]);
if (masked[j] != fdt32_to_cpu(map_ptr[j]))
goto next;
}
/*
* Decode interrupt of the parent intr controller.
*/
spec_idx = child_spec_cells + 1 + par_addr_cells;
err = fdt_intr_decode(intr_par, &map_ptr[spec_idx],
interrupt, &trig, &pol);
if (err != 0) {
debugf("could not decode interrupt\n");
return (err);
}
debugf("decoded intr = %d, trig = %d, pol = %d\n", *interrupt,
trig, pol);
#if defined(__powerpc__)
powerpc_config_intr(FDT_MAP_IRQ(intr_par, *interrupt), trig,
pol);
#endif
return (0);
next:
map_ptr += row_cells;
i += (row_cells * sizeof(pcell_t));
}
return (ENXIO);
}
#if defined(__arm__)
int
fdt_pci_devmap(phandle_t node, struct pmap_devmap *devmap, vm_offset_t io_va,
vm_offset_t mem_va)
{
struct fdt_pci_range io_space, mem_space;
int error;
if ((error = fdt_pci_ranges_decode(node, &io_space, &mem_space)) != 0)
return (error);
devmap->pd_va = io_va;
devmap->pd_pa = io_space.base_parent;
devmap->pd_size = io_space.len;
devmap->pd_prot = VM_PROT_READ | VM_PROT_WRITE;
devmap->pd_cache = PTE_NOCACHE;
devmap++;
devmap->pd_va = mem_va;
devmap->pd_pa = mem_space.base_parent;
devmap->pd_size = mem_space.len;
devmap->pd_prot = VM_PROT_READ | VM_PROT_WRITE;
devmap->pd_cache = PTE_NOCACHE;
return (0);
}
#endif
#if 0
static int
fdt_pci_config_bar(device_t dev, int bus, int slot, int func, int bar)
{
}
static int
fdt_pci_config_normal(device_t dev, int bus, int slot, int func)
{
int bar;
uint8_t command, intline, intpin;
command = PCIB_READ_CONFIG(dev, bus, slot, func, PCIR_COMMAND, 1);
command &= ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN);
PCIB_WRITE_CONFIG(dev, bus, slot, func, PCIR_COMMAND, command, 1);
/* Program the base address registers. */
bar = 0;
while (bar <= PCIR_MAX_BAR_0)
bar += fdt_pci_config_bar(dev, bus, slot, func, bar);
/* Perform interrupt routing. */
intpin = PCIB_READ_CONFIG(dev, bus, slot, func, PCIR_INTPIN, 1);
intline = fsl_pcib_route_int(dev, bus, slot, func, intpin);
PCIB_WRITE_CONFIG(dev, bus, slot, func, PCIR_INTLINE, intline, 1);
command |= PCIM_CMD_MEMEN | PCIM_CMD_PORTEN;
PCIB_WRITE_CONFIG(dev, bus, slot, func, PCIR_COMMAND, command, 1);
}
static int
fdt_pci_config_bridge(device_t dev, int bus, int secbus, int slot, int func)
{
int maxbar;
uint8_t command;
command = PCIB_READ_CONFIG(dev, bus, slot, func, PCIR_COMMAND, 1);
command &= ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN);
PCIB_WRITE_CONFIG(dev, bus, slot, func, PCIR_COMMAND, command, 1);
/* Program the base address registers. */
maxbar = (hdrtype & PCIM_HDRTYPE) ? 1 : 6;
bar = 0;
while (bar < maxbar)
bar += fsl_pcib_init_bar(sc, bus, slot, func,
bar);
/* Perform interrupt routing. */
intpin = fsl_pcib_read_config(sc->sc_dev, bus, slot,
func, PCIR_INTPIN, 1);
intline = fsl_pcib_route_int(sc, bus, slot, func,
intpin);
fsl_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_INTLINE, intline, 1);
command |= PCIM_CMD_MEMEN | PCIM_CMD_PORTEN;
fsl_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_COMMAND, command, 1);
/*
* Handle PCI-PCI bridges
*/
class = fsl_pcib_read_config(sc->sc_dev, bus, slot,
func, PCIR_CLASS, 1);
subclass = fsl_pcib_read_config(sc->sc_dev, bus, slot,
func, PCIR_SUBCLASS, 1);
/* Allow only proper PCI-PCI briges */
if (class != PCIC_BRIDGE)
continue;
if (subclass != PCIS_BRIDGE_PCI)
continue;
secbus++;
/* Program I/O decoder. */
fsl_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_IOBASEL_1, sc->sc_ioport.rm_start >> 8, 1);
fsl_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_IOLIMITL_1, sc->sc_ioport.rm_end >> 8, 1);
fsl_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_IOBASEH_1, sc->sc_ioport.rm_start >> 16, 2);
fsl_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_IOLIMITH_1, sc->sc_ioport.rm_end >> 16, 2);
/* Program (non-prefetchable) memory decoder. */
fsl_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_MEMBASE_1, sc->sc_iomem.rm_start >> 16, 2);
fsl_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_MEMLIMIT_1, sc->sc_iomem.rm_end >> 16, 2);
/* Program prefetchable memory decoder. */
fsl_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_PMBASEL_1, 0x0010, 2);
fsl_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_PMLIMITL_1, 0x000f, 2);
fsl_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_PMBASEH_1, 0x00000000, 4);
fsl_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_PMLIMITH_1, 0x00000000, 4);
/* Read currect bus register configuration */
old_pribus = fsl_pcib_read_config(sc->sc_dev, bus,
slot, func, PCIR_PRIBUS_1, 1);
old_secbus = fsl_pcib_read_config(sc->sc_dev, bus,
slot, func, PCIR_SECBUS_1, 1);
old_subbus = fsl_pcib_read_config(sc->sc_dev, bus,
slot, func, PCIR_SUBBUS_1, 1);
if (bootverbose)
printf("PCI: reading firmware bus numbers for "
"secbus = %d (bus/sec/sub) = (%d/%d/%d)\n",
secbus, old_pribus, old_secbus, old_subbus);
new_pribus = bus;
new_secbus = secbus;
secbus = fsl_pcib_init(sc, secbus,
(subclass == PCIS_BRIDGE_PCI) ? PCI_SLOTMAX : 0);
new_subbus = secbus;
if (bootverbose)
printf("PCI: translate firmware bus numbers "
"for secbus %d (%d/%d/%d) -> (%d/%d/%d)\n",
secbus, old_pribus, old_secbus, old_subbus,
new_pribus, new_secbus, new_subbus);
fsl_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_PRIBUS_1, new_pribus, 1);
fsl_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_SECBUS_1, new_secbus, 1);
fsl_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_SUBBUS_1, new_subbus, 1);
}
static int
fdt_pci_config_slot(device_t dev, int bus, int secbus, int slot)
{
int func, maxfunc;
uint16_t vendor;
uint8_t hdrtype;
maxfunc = 0;
for (func = 0; func <= maxfunc; func++) {
hdrtype = PCIB_READ_CONFIG(dev, bus, slot, func,
PCIR_HDRTYPE, 1);
if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
continue;
if (func == 0 && (hdrtype & PCIM_MFDEV))
maxfunc = PCI_FUNCMAX;
vendor = PCIB_READ_CONFIG(dev, bus, slot, func,
PCIR_VENDOR, 2);
if (vendor == 0xffff)
continue;
if ((hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_NORMAL)
fdt_pci_config_normal(dev, bus, slot, func);
else
secbus = fdt_pci_config_bridge(dev, bus, secbus,
slot, func);
}
return (secbus);
}
static int
fdt_pci_config_bus(device_t dev, int bus, int maxslot)
{
int func, maxfunc, secbus, slot;
secbus = bus;
for (slot = 0; slot <= maxslot; slot++)
secbus = fdt_pci_config_slot(dev, bus, secbus, slot);
return (secbus);
}
int
fdt_pci_config_domain(device_t dev)
{
pcell_t bus_range[2];
phandle_t root;
int bus, error, maxslot;
root = ofw_bus_get_node(dev);
if (root == 0)
return (EINVAL);
if (!fdt_is_type(root, "pci"))
return (EINVAL);
/*
* Determine the bus number of the root in this domain.
* Lacking any information, this will be bus 0.
* Write the bus number to the bus device, using the IVAR.
*/
if ((OF_getprop(root, "bus-range", bus_range, sizeof(bus_range)) <= 0)
bus = 0;
else
bus = fdt32_to_cpu(bus_range[0]);
error = BUS_WRITE_IVAR(dev, NULL, PCIB_IVAR_BUS, bus);
if (error)
return (error);
/* Get the maximum slot number for bus-enumeration. */
maxslot = PCIB_MAXSLOTS(dev);
bus = fdt_pci_config_bus(dev, bus, maxslot);
return (0);
}
#endif