892fe839c4
if_watchdog/if_timer to NULL/0 when initializing an ifnet. if_alloc() sets those members to NULL/0 already.
2742 lines
67 KiB
C
2742 lines
67 KiB
C
/* $NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2001 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Device driver for the Sundance Tech. TC9021 10/100/1000
|
|
* Ethernet controller.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_device_polling.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <dev/stge/if_stgereg.h>
|
|
|
|
#define STGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
|
|
|
|
MODULE_DEPEND(stge, pci, 1, 1, 1);
|
|
MODULE_DEPEND(stge, ether, 1, 1, 1);
|
|
MODULE_DEPEND(stge, miibus, 1, 1, 1);
|
|
|
|
/* "device miibus" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
/*
|
|
* Devices supported by this driver.
|
|
*/
|
|
static struct stge_product {
|
|
uint16_t stge_vendorid;
|
|
uint16_t stge_deviceid;
|
|
const char *stge_name;
|
|
} stge_products[] = {
|
|
{ VENDOR_SUNDANCETI, DEVICEID_SUNDANCETI_ST1023,
|
|
"Sundance ST-1023 Gigabit Ethernet" },
|
|
|
|
{ VENDOR_SUNDANCETI, DEVICEID_SUNDANCETI_ST2021,
|
|
"Sundance ST-2021 Gigabit Ethernet" },
|
|
|
|
{ VENDOR_TAMARACK, DEVICEID_TAMARACK_TC9021,
|
|
"Tamarack TC9021 Gigabit Ethernet" },
|
|
|
|
{ VENDOR_TAMARACK, DEVICEID_TAMARACK_TC9021_ALT,
|
|
"Tamarack TC9021 Gigabit Ethernet" },
|
|
|
|
/*
|
|
* The Sundance sample boards use the Sundance vendor ID,
|
|
* but the Tamarack product ID.
|
|
*/
|
|
{ VENDOR_SUNDANCETI, DEVICEID_TAMARACK_TC9021,
|
|
"Sundance TC9021 Gigabit Ethernet" },
|
|
|
|
{ VENDOR_SUNDANCETI, DEVICEID_TAMARACK_TC9021_ALT,
|
|
"Sundance TC9021 Gigabit Ethernet" },
|
|
|
|
{ VENDOR_DLINK, DEVICEID_DLINK_DL4000,
|
|
"D-Link DL-4000 Gigabit Ethernet" },
|
|
|
|
{ VENDOR_ANTARES, DEVICEID_ANTARES_TC9021,
|
|
"Antares Gigabit Ethernet" }
|
|
};
|
|
|
|
static int stge_probe(device_t);
|
|
static int stge_attach(device_t);
|
|
static int stge_detach(device_t);
|
|
static int stge_shutdown(device_t);
|
|
static int stge_suspend(device_t);
|
|
static int stge_resume(device_t);
|
|
|
|
static int stge_encap(struct stge_softc *, struct mbuf **);
|
|
static void stge_start(struct ifnet *);
|
|
static void stge_start_locked(struct ifnet *);
|
|
static void stge_watchdog(struct stge_softc *);
|
|
static int stge_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void stge_init(void *);
|
|
static void stge_init_locked(struct stge_softc *);
|
|
static void stge_vlan_setup(struct stge_softc *);
|
|
static void stge_stop(struct stge_softc *);
|
|
static void stge_start_tx(struct stge_softc *);
|
|
static void stge_start_rx(struct stge_softc *);
|
|
static void stge_stop_tx(struct stge_softc *);
|
|
static void stge_stop_rx(struct stge_softc *);
|
|
|
|
static void stge_reset(struct stge_softc *, uint32_t);
|
|
static int stge_eeprom_wait(struct stge_softc *);
|
|
static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
|
|
static void stge_tick(void *);
|
|
static void stge_stats_update(struct stge_softc *);
|
|
static void stge_set_filter(struct stge_softc *);
|
|
static void stge_set_multi(struct stge_softc *);
|
|
|
|
static void stge_link_task(void *, int);
|
|
static void stge_intr(void *);
|
|
static __inline int stge_tx_error(struct stge_softc *);
|
|
static void stge_txeof(struct stge_softc *);
|
|
static int stge_rxeof(struct stge_softc *);
|
|
static __inline void stge_discard_rxbuf(struct stge_softc *, int);
|
|
static int stge_newbuf(struct stge_softc *, int);
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
|
|
#endif
|
|
|
|
static void stge_mii_sync(struct stge_softc *);
|
|
static void stge_mii_send(struct stge_softc *, uint32_t, int);
|
|
static int stge_mii_readreg(struct stge_softc *, struct stge_mii_frame *);
|
|
static int stge_mii_writereg(struct stge_softc *, struct stge_mii_frame *);
|
|
static int stge_miibus_readreg(device_t, int, int);
|
|
static int stge_miibus_writereg(device_t, int, int, int);
|
|
static void stge_miibus_statchg(device_t);
|
|
static int stge_mediachange(struct ifnet *);
|
|
static void stge_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
static void stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
|
|
static int stge_dma_alloc(struct stge_softc *);
|
|
static void stge_dma_free(struct stge_softc *);
|
|
static void stge_dma_wait(struct stge_softc *);
|
|
static void stge_init_tx_ring(struct stge_softc *);
|
|
static int stge_init_rx_ring(struct stge_softc *);
|
|
#ifdef DEVICE_POLLING
|
|
static int stge_poll(struct ifnet *, enum poll_cmd, int);
|
|
#endif
|
|
|
|
static void stge_setwol(struct stge_softc *);
|
|
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
|
|
static int sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
|
|
static int sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
|
|
|
|
static device_method_t stge_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, stge_probe),
|
|
DEVMETHOD(device_attach, stge_attach),
|
|
DEVMETHOD(device_detach, stge_detach),
|
|
DEVMETHOD(device_shutdown, stge_shutdown),
|
|
DEVMETHOD(device_suspend, stge_suspend),
|
|
DEVMETHOD(device_resume, stge_resume),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, stge_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, stge_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, stge_miibus_statchg),
|
|
|
|
{ 0, 0 }
|
|
|
|
};
|
|
|
|
static driver_t stge_driver = {
|
|
"stge",
|
|
stge_methods,
|
|
sizeof(struct stge_softc)
|
|
};
|
|
|
|
static devclass_t stge_devclass;
|
|
|
|
DRIVER_MODULE(stge, pci, stge_driver, stge_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, stge, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
static struct resource_spec stge_res_spec_io[] = {
|
|
{ SYS_RES_IOPORT, PCIR_BAR(0), RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
|
|
{ -1, 0, 0 }
|
|
};
|
|
|
|
static struct resource_spec stge_res_spec_mem[] = {
|
|
{ SYS_RES_MEMORY, PCIR_BAR(1), RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
|
|
{ -1, 0, 0 }
|
|
};
|
|
|
|
#define MII_SET(x) \
|
|
CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) | (x))
|
|
#define MII_CLR(x) \
|
|
CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) & ~(x))
|
|
|
|
/*
|
|
* Sync the PHYs by setting data bit and strobing the clock 32 times.
|
|
*/
|
|
static void
|
|
stge_mii_sync(struct stge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
MII_SET(PC_MgmtDir | PC_MgmtData);
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
MII_SET(PC_MgmtClk);
|
|
DELAY(1);
|
|
MII_CLR(PC_MgmtClk);
|
|
DELAY(1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clock a series of bits through the MII.
|
|
*/
|
|
static void
|
|
stge_mii_send(struct stge_softc *sc, uint32_t bits, int cnt)
|
|
{
|
|
int i;
|
|
|
|
MII_CLR(PC_MgmtClk);
|
|
|
|
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
|
|
if (bits & i)
|
|
MII_SET(PC_MgmtData);
|
|
else
|
|
MII_CLR(PC_MgmtData);
|
|
DELAY(1);
|
|
MII_CLR(PC_MgmtClk);
|
|
DELAY(1);
|
|
MII_SET(PC_MgmtClk);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read an PHY register through the MII.
|
|
*/
|
|
static int
|
|
stge_mii_readreg(struct stge_softc *sc, struct stge_mii_frame *frame)
|
|
{
|
|
int i, ack;
|
|
|
|
/*
|
|
* Set up frame for RX.
|
|
*/
|
|
frame->mii_stdelim = STGE_MII_STARTDELIM;
|
|
frame->mii_opcode = STGE_MII_READOP;
|
|
frame->mii_turnaround = 0;
|
|
frame->mii_data = 0;
|
|
|
|
CSR_WRITE_1(sc, STGE_PhyCtrl, 0 | sc->sc_PhyCtrl);
|
|
/*
|
|
* Turn on data xmit.
|
|
*/
|
|
MII_SET(PC_MgmtDir);
|
|
|
|
stge_mii_sync(sc);
|
|
|
|
/*
|
|
* Send command/address info.
|
|
*/
|
|
stge_mii_send(sc, frame->mii_stdelim, 2);
|
|
stge_mii_send(sc, frame->mii_opcode, 2);
|
|
stge_mii_send(sc, frame->mii_phyaddr, 5);
|
|
stge_mii_send(sc, frame->mii_regaddr, 5);
|
|
|
|
/* Turn off xmit. */
|
|
MII_CLR(PC_MgmtDir);
|
|
|
|
/* Idle bit */
|
|
MII_CLR((PC_MgmtClk | PC_MgmtData));
|
|
DELAY(1);
|
|
MII_SET(PC_MgmtClk);
|
|
DELAY(1);
|
|
|
|
/* Check for ack */
|
|
MII_CLR(PC_MgmtClk);
|
|
DELAY(1);
|
|
ack = CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData;
|
|
MII_SET(PC_MgmtClk);
|
|
DELAY(1);
|
|
|
|
/*
|
|
* Now try reading data bits. If the ack failed, we still
|
|
* need to clock through 16 cycles to keep the PHY(s) in sync.
|
|
*/
|
|
if (ack) {
|
|
for(i = 0; i < 16; i++) {
|
|
MII_CLR(PC_MgmtClk);
|
|
DELAY(1);
|
|
MII_SET(PC_MgmtClk);
|
|
DELAY(1);
|
|
}
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
MII_CLR(PC_MgmtClk);
|
|
DELAY(1);
|
|
if (!ack) {
|
|
if (CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData)
|
|
frame->mii_data |= i;
|
|
DELAY(1);
|
|
}
|
|
MII_SET(PC_MgmtClk);
|
|
DELAY(1);
|
|
}
|
|
|
|
fail:
|
|
MII_CLR(PC_MgmtClk);
|
|
DELAY(1);
|
|
MII_SET(PC_MgmtClk);
|
|
DELAY(1);
|
|
|
|
if (ack)
|
|
return(1);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Write to a PHY register through the MII.
|
|
*/
|
|
static int
|
|
stge_mii_writereg(struct stge_softc *sc, struct stge_mii_frame *frame)
|
|
{
|
|
|
|
/*
|
|
* Set up frame for TX.
|
|
*/
|
|
frame->mii_stdelim = STGE_MII_STARTDELIM;
|
|
frame->mii_opcode = STGE_MII_WRITEOP;
|
|
frame->mii_turnaround = STGE_MII_TURNAROUND;
|
|
|
|
/*
|
|
* Turn on data output.
|
|
*/
|
|
MII_SET(PC_MgmtDir);
|
|
|
|
stge_mii_sync(sc);
|
|
|
|
stge_mii_send(sc, frame->mii_stdelim, 2);
|
|
stge_mii_send(sc, frame->mii_opcode, 2);
|
|
stge_mii_send(sc, frame->mii_phyaddr, 5);
|
|
stge_mii_send(sc, frame->mii_regaddr, 5);
|
|
stge_mii_send(sc, frame->mii_turnaround, 2);
|
|
stge_mii_send(sc, frame->mii_data, 16);
|
|
|
|
/* Idle bit. */
|
|
MII_SET(PC_MgmtClk);
|
|
DELAY(1);
|
|
MII_CLR(PC_MgmtClk);
|
|
DELAY(1);
|
|
|
|
/*
|
|
* Turn off xmit.
|
|
*/
|
|
MII_CLR(PC_MgmtDir);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* sc_miibus_readreg: [mii interface function]
|
|
*
|
|
* Read a PHY register on the MII of the TC9021.
|
|
*/
|
|
static int
|
|
stge_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct stge_softc *sc;
|
|
struct stge_mii_frame frame;
|
|
int error;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
if (reg == STGE_PhyCtrl) {
|
|
/* XXX allow ip1000phy read STGE_PhyCtrl register. */
|
|
STGE_MII_LOCK(sc);
|
|
error = CSR_READ_1(sc, STGE_PhyCtrl);
|
|
STGE_MII_UNLOCK(sc);
|
|
return (error);
|
|
}
|
|
bzero(&frame, sizeof(frame));
|
|
frame.mii_phyaddr = phy;
|
|
frame.mii_regaddr = reg;
|
|
|
|
STGE_MII_LOCK(sc);
|
|
error = stge_mii_readreg(sc, &frame);
|
|
STGE_MII_UNLOCK(sc);
|
|
|
|
if (error != 0) {
|
|
/* Don't show errors for PHY probe request */
|
|
if (reg != 1)
|
|
device_printf(sc->sc_dev, "phy read fail\n");
|
|
return (0);
|
|
}
|
|
return (frame.mii_data);
|
|
}
|
|
|
|
/*
|
|
* stge_miibus_writereg: [mii interface function]
|
|
*
|
|
* Write a PHY register on the MII of the TC9021.
|
|
*/
|
|
static int
|
|
stge_miibus_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct stge_softc *sc;
|
|
struct stge_mii_frame frame;
|
|
int error;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
bzero(&frame, sizeof(frame));
|
|
frame.mii_phyaddr = phy;
|
|
frame.mii_regaddr = reg;
|
|
frame.mii_data = val;
|
|
|
|
STGE_MII_LOCK(sc);
|
|
error = stge_mii_writereg(sc, &frame);
|
|
STGE_MII_UNLOCK(sc);
|
|
|
|
if (error != 0)
|
|
device_printf(sc->sc_dev, "phy write fail\n");
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* stge_miibus_statchg: [mii interface function]
|
|
*
|
|
* Callback from MII layer when media changes.
|
|
*/
|
|
static void
|
|
stge_miibus_statchg(device_t dev)
|
|
{
|
|
struct stge_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
|
|
}
|
|
|
|
/*
|
|
* stge_mediastatus: [ifmedia interface function]
|
|
*
|
|
* Get the current interface media status.
|
|
*/
|
|
static void
|
|
stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct stge_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
mii = device_get_softc(sc->sc_miibus);
|
|
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
}
|
|
|
|
/*
|
|
* stge_mediachange: [ifmedia interface function]
|
|
*
|
|
* Set hardware to newly-selected media.
|
|
*/
|
|
static int
|
|
stge_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct stge_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
mii = device_get_softc(sc->sc_miibus);
|
|
mii_mediachg(mii);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
stge_eeprom_wait(struct stge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < STGE_TIMEOUT; i++) {
|
|
DELAY(1000);
|
|
if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* stge_read_eeprom:
|
|
*
|
|
* Read data from the serial EEPROM.
|
|
*/
|
|
static void
|
|
stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
|
|
{
|
|
|
|
if (stge_eeprom_wait(sc))
|
|
device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
|
|
|
|
CSR_WRITE_2(sc, STGE_EepromCtrl,
|
|
EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
|
|
if (stge_eeprom_wait(sc))
|
|
device_printf(sc->sc_dev, "EEPROM read timed out\n");
|
|
*data = CSR_READ_2(sc, STGE_EepromData);
|
|
}
|
|
|
|
|
|
static int
|
|
stge_probe(device_t dev)
|
|
{
|
|
struct stge_product *sp;
|
|
int i;
|
|
uint16_t vendor, devid;
|
|
|
|
vendor = pci_get_vendor(dev);
|
|
devid = pci_get_device(dev);
|
|
sp = stge_products;
|
|
for (i = 0; i < sizeof(stge_products)/sizeof(stge_products[0]);
|
|
i++, sp++) {
|
|
if (vendor == sp->stge_vendorid &&
|
|
devid == sp->stge_deviceid) {
|
|
device_set_desc(dev, sp->stge_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
static int
|
|
stge_attach(device_t dev)
|
|
{
|
|
struct stge_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint8_t enaddr[ETHER_ADDR_LEN];
|
|
int error, i;
|
|
uint16_t cmd;
|
|
uint32_t val;
|
|
|
|
error = 0;
|
|
sc = device_get_softc(dev);
|
|
sc->sc_dev = dev;
|
|
|
|
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
|
|
callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
|
|
TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
|
|
|
|
/*
|
|
* Map the device.
|
|
*/
|
|
pci_enable_busmaster(dev);
|
|
cmd = pci_read_config(dev, PCIR_COMMAND, 2);
|
|
val = pci_read_config(dev, PCIR_BAR(1), 4);
|
|
if ((val & 0x01) != 0)
|
|
sc->sc_spec = stge_res_spec_mem;
|
|
else {
|
|
val = pci_read_config(dev, PCIR_BAR(0), 4);
|
|
if ((val & 0x01) == 0) {
|
|
device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
sc->sc_spec = stge_res_spec_io;
|
|
}
|
|
error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
|
|
if (error != 0) {
|
|
device_printf(dev, "couldn't allocate %s resources\n",
|
|
sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
|
|
goto fail;
|
|
}
|
|
sc->sc_rev = pci_get_revid(dev);
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
|
|
"rxint_nframe", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_nframe, 0,
|
|
sysctl_hw_stge_rxint_nframe, "I", "stge rx interrupt nframe");
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
|
|
"rxint_dmawait", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_dmawait, 0,
|
|
sysctl_hw_stge_rxint_dmawait, "I", "stge rx interrupt dmawait");
|
|
|
|
/* Pull in device tunables. */
|
|
sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
|
|
error = resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"rxint_nframe", &sc->sc_rxint_nframe);
|
|
if (error == 0) {
|
|
if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
|
|
sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
|
|
device_printf(dev, "rxint_nframe value out of range; "
|
|
"using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
|
|
sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
|
|
}
|
|
}
|
|
|
|
sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
|
|
error = resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"rxint_dmawait", &sc->sc_rxint_dmawait);
|
|
if (error == 0) {
|
|
if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
|
|
sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
|
|
device_printf(dev, "rxint_dmawait value out of range; "
|
|
"using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
|
|
sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
|
|
}
|
|
}
|
|
|
|
if ((error = stge_dma_alloc(sc) != 0))
|
|
goto fail;
|
|
|
|
/*
|
|
* Determine if we're copper or fiber. It affects how we
|
|
* reset the card.
|
|
*/
|
|
if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
|
|
sc->sc_usefiber = 1;
|
|
else
|
|
sc->sc_usefiber = 0;
|
|
|
|
/* Load LED configuration from EEPROM. */
|
|
stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
|
|
|
|
/*
|
|
* Reset the chip to a known state.
|
|
*/
|
|
STGE_LOCK(sc);
|
|
stge_reset(sc, STGE_RESET_FULL);
|
|
STGE_UNLOCK(sc);
|
|
|
|
/*
|
|
* Reading the station address from the EEPROM doesn't seem
|
|
* to work, at least on my sample boards. Instead, since
|
|
* the reset sequence does AutoInit, read it from the station
|
|
* address registers. For Sundance 1023 you can only read it
|
|
* from EEPROM.
|
|
*/
|
|
if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
|
|
uint16_t v;
|
|
|
|
v = CSR_READ_2(sc, STGE_StationAddress0);
|
|
enaddr[0] = v & 0xff;
|
|
enaddr[1] = v >> 8;
|
|
v = CSR_READ_2(sc, STGE_StationAddress1);
|
|
enaddr[2] = v & 0xff;
|
|
enaddr[3] = v >> 8;
|
|
v = CSR_READ_2(sc, STGE_StationAddress2);
|
|
enaddr[4] = v & 0xff;
|
|
enaddr[5] = v >> 8;
|
|
sc->sc_stge1023 = 0;
|
|
} else {
|
|
uint16_t myaddr[ETHER_ADDR_LEN / 2];
|
|
for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
|
|
stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
|
|
&myaddr[i]);
|
|
myaddr[i] = le16toh(myaddr[i]);
|
|
}
|
|
bcopy(myaddr, enaddr, sizeof(enaddr));
|
|
sc->sc_stge1023 = 1;
|
|
}
|
|
|
|
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(sc->sc_dev, "failed to if_alloc()\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = stge_ioctl;
|
|
ifp->if_start = stge_start;
|
|
ifp->if_init = stge_init;
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_snd.ifq_drv_maxlen = STGE_TX_RING_CNT - 1;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
/* Revision B3 and earlier chips have checksum bug. */
|
|
if (sc->sc_rev >= 0x0c) {
|
|
ifp->if_hwassist = STGE_CSUM_FEATURES;
|
|
ifp->if_capabilities = IFCAP_HWCSUM;
|
|
} else {
|
|
ifp->if_hwassist = 0;
|
|
ifp->if_capabilities = 0;
|
|
}
|
|
ifp->if_capabilities |= IFCAP_WOL_MAGIC;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
|
|
/*
|
|
* Read some important bits from the PhyCtrl register.
|
|
*/
|
|
sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
|
|
(PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
|
|
|
|
/* Set up MII bus. */
|
|
if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, stge_mediachange,
|
|
stge_mediastatus)) != 0) {
|
|
device_printf(sc->sc_dev, "no PHY found!\n");
|
|
goto fail;
|
|
}
|
|
|
|
ether_ifattach(ifp, enaddr);
|
|
|
|
/* VLAN capability setup */
|
|
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
|
|
if (sc->sc_rev >= 0x0c)
|
|
ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
#ifdef DEVICE_POLLING
|
|
ifp->if_capabilities |= IFCAP_POLLING;
|
|
#endif
|
|
/*
|
|
* Tell the upper layer(s) we support long frames.
|
|
* Must appear after the call to ether_ifattach() because
|
|
* ether_ifattach() sets ifi_hdrlen to the default value.
|
|
*/
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
|
|
/*
|
|
* The manual recommends disabling early transmit, so we
|
|
* do. It's disabled anyway, if using IP checksumming,
|
|
* since the entire packet must be in the FIFO in order
|
|
* for the chip to perform the checksum.
|
|
*/
|
|
sc->sc_txthresh = 0x0fff;
|
|
|
|
/*
|
|
* Disable MWI if the PCI layer tells us to.
|
|
*/
|
|
sc->sc_DMACtrl = 0;
|
|
if ((cmd & PCIM_CMD_MWRICEN) == 0)
|
|
sc->sc_DMACtrl |= DMAC_MWIDisable;
|
|
|
|
/*
|
|
* Hookup IRQ
|
|
*/
|
|
error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
|
|
NULL, stge_intr, sc, &sc->sc_ih);
|
|
if (error != 0) {
|
|
ether_ifdetach(ifp);
|
|
device_printf(sc->sc_dev, "couldn't set up IRQ\n");
|
|
sc->sc_ifp = NULL;
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error != 0)
|
|
stge_detach(dev);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
stge_detach(device_t dev)
|
|
{
|
|
struct stge_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
ifp = sc->sc_ifp;
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp && ifp->if_capenable & IFCAP_POLLING)
|
|
ether_poll_deregister(ifp);
|
|
#endif
|
|
if (device_is_attached(dev)) {
|
|
STGE_LOCK(sc);
|
|
/* XXX */
|
|
sc->sc_detach = 1;
|
|
stge_stop(sc);
|
|
STGE_UNLOCK(sc);
|
|
callout_drain(&sc->sc_tick_ch);
|
|
taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
|
|
ether_ifdetach(ifp);
|
|
}
|
|
|
|
if (sc->sc_miibus != NULL) {
|
|
device_delete_child(dev, sc->sc_miibus);
|
|
sc->sc_miibus = NULL;
|
|
}
|
|
bus_generic_detach(dev);
|
|
stge_dma_free(sc);
|
|
|
|
if (ifp != NULL) {
|
|
if_free(ifp);
|
|
sc->sc_ifp = NULL;
|
|
}
|
|
|
|
if (sc->sc_ih) {
|
|
bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
|
|
sc->sc_ih = NULL;
|
|
}
|
|
bus_release_resources(dev, sc->sc_spec, sc->sc_res);
|
|
|
|
mtx_destroy(&sc->sc_mii_mtx);
|
|
mtx_destroy(&sc->sc_mtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
struct stge_dmamap_arg {
|
|
bus_addr_t stge_busaddr;
|
|
};
|
|
|
|
static void
|
|
stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct stge_dmamap_arg *ctx;
|
|
|
|
if (error != 0)
|
|
return;
|
|
|
|
ctx = (struct stge_dmamap_arg *)arg;
|
|
ctx->stge_busaddr = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
stge_dma_alloc(struct stge_softc *sc)
|
|
{
|
|
struct stge_dmamap_arg ctx;
|
|
struct stge_txdesc *txd;
|
|
struct stge_rxdesc *rxd;
|
|
int error, i;
|
|
|
|
/* create parent tag. */
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
STGE_DMA_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
0, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->sc_cdata.stge_parent_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
|
|
goto fail;
|
|
}
|
|
/* create tag for Tx ring. */
|
|
error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
|
|
STGE_RING_ALIGN, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
STGE_TX_RING_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
STGE_TX_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->sc_cdata.stge_tx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"failed to allocate Tx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* create tag for Rx ring. */
|
|
error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
|
|
STGE_RING_ALIGN, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
STGE_RX_RING_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
STGE_RX_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->sc_cdata.stge_rx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"failed to allocate Rx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* create tag for Tx buffers. */
|
|
error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES * STGE_MAXTXSEGS, /* maxsize */
|
|
STGE_MAXTXSEGS, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->sc_cdata.stge_tx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* create tag for Rx buffers. */
|
|
error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->sc_cdata.stge_rx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* allocate DMA'able memory and load the DMA map for Tx ring. */
|
|
error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
|
|
(void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
|
|
&sc->sc_cdata.stge_tx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"failed to allocate DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.stge_busaddr = 0;
|
|
error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
|
|
sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
|
|
STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
|
|
if (error != 0 || ctx.stge_busaddr == 0) {
|
|
device_printf(sc->sc_dev,
|
|
"failed to load DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
|
|
|
|
/* allocate DMA'able memory and load the DMA map for Rx ring. */
|
|
error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
|
|
(void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
|
|
&sc->sc_cdata.stge_rx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"failed to allocate DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.stge_busaddr = 0;
|
|
error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
|
|
sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
|
|
STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
|
|
if (error != 0 || ctx.stge_busaddr == 0) {
|
|
device_printf(sc->sc_dev,
|
|
"failed to load DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
|
|
|
|
/* create DMA maps for Tx buffers. */
|
|
for (i = 0; i < STGE_TX_RING_CNT; i++) {
|
|
txd = &sc->sc_cdata.stge_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_dmamap = 0;
|
|
error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
|
|
&txd->tx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"failed to create Tx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
/* create DMA maps for Rx buffers. */
|
|
if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
|
|
&sc->sc_cdata.stge_rx_sparemap)) != 0) {
|
|
device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
for (i = 0; i < STGE_RX_RING_CNT; i++) {
|
|
rxd = &sc->sc_cdata.stge_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_dmamap = 0;
|
|
error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
|
|
&rxd->rx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"failed to create Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
stge_dma_free(struct stge_softc *sc)
|
|
{
|
|
struct stge_txdesc *txd;
|
|
struct stge_rxdesc *rxd;
|
|
int i;
|
|
|
|
/* Tx ring */
|
|
if (sc->sc_cdata.stge_tx_ring_tag) {
|
|
if (sc->sc_cdata.stge_tx_ring_map)
|
|
bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
|
|
sc->sc_cdata.stge_tx_ring_map);
|
|
if (sc->sc_cdata.stge_tx_ring_map &&
|
|
sc->sc_rdata.stge_tx_ring)
|
|
bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
|
|
sc->sc_rdata.stge_tx_ring,
|
|
sc->sc_cdata.stge_tx_ring_map);
|
|
sc->sc_rdata.stge_tx_ring = NULL;
|
|
sc->sc_cdata.stge_tx_ring_map = 0;
|
|
bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
|
|
sc->sc_cdata.stge_tx_ring_tag = NULL;
|
|
}
|
|
/* Rx ring */
|
|
if (sc->sc_cdata.stge_rx_ring_tag) {
|
|
if (sc->sc_cdata.stge_rx_ring_map)
|
|
bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
|
|
sc->sc_cdata.stge_rx_ring_map);
|
|
if (sc->sc_cdata.stge_rx_ring_map &&
|
|
sc->sc_rdata.stge_rx_ring)
|
|
bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
|
|
sc->sc_rdata.stge_rx_ring,
|
|
sc->sc_cdata.stge_rx_ring_map);
|
|
sc->sc_rdata.stge_rx_ring = NULL;
|
|
sc->sc_cdata.stge_rx_ring_map = 0;
|
|
bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
|
|
sc->sc_cdata.stge_rx_ring_tag = NULL;
|
|
}
|
|
/* Tx buffers */
|
|
if (sc->sc_cdata.stge_tx_tag) {
|
|
for (i = 0; i < STGE_TX_RING_CNT; i++) {
|
|
txd = &sc->sc_cdata.stge_txdesc[i];
|
|
if (txd->tx_dmamap) {
|
|
bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
|
|
txd->tx_dmamap);
|
|
txd->tx_dmamap = 0;
|
|
}
|
|
}
|
|
bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
|
|
sc->sc_cdata.stge_tx_tag = NULL;
|
|
}
|
|
/* Rx buffers */
|
|
if (sc->sc_cdata.stge_rx_tag) {
|
|
for (i = 0; i < STGE_RX_RING_CNT; i++) {
|
|
rxd = &sc->sc_cdata.stge_rxdesc[i];
|
|
if (rxd->rx_dmamap) {
|
|
bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
|
|
rxd->rx_dmamap);
|
|
rxd->rx_dmamap = 0;
|
|
}
|
|
}
|
|
if (sc->sc_cdata.stge_rx_sparemap) {
|
|
bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
|
|
sc->sc_cdata.stge_rx_sparemap);
|
|
sc->sc_cdata.stge_rx_sparemap = 0;
|
|
}
|
|
bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
|
|
sc->sc_cdata.stge_rx_tag = NULL;
|
|
}
|
|
|
|
if (sc->sc_cdata.stge_parent_tag) {
|
|
bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
|
|
sc->sc_cdata.stge_parent_tag = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* stge_shutdown:
|
|
*
|
|
* Make sure the interface is stopped at reboot time.
|
|
*/
|
|
static int
|
|
stge_shutdown(device_t dev)
|
|
{
|
|
|
|
return (stge_suspend(dev));
|
|
}
|
|
|
|
static void
|
|
stge_setwol(struct stge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint8_t v;
|
|
|
|
STGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->sc_ifp;
|
|
v = CSR_READ_1(sc, STGE_WakeEvent);
|
|
/* Disable all WOL bits. */
|
|
v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
|
|
WE_WakeOnLanEnable);
|
|
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
|
|
v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
|
|
CSR_WRITE_1(sc, STGE_WakeEvent, v);
|
|
/* Reset Tx and prevent transmission. */
|
|
CSR_WRITE_4(sc, STGE_AsicCtrl,
|
|
CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
|
|
/*
|
|
* TC9021 automatically reset link speed to 100Mbps when it's put
|
|
* into sleep so there is no need to try to resetting link speed.
|
|
*/
|
|
}
|
|
|
|
static int
|
|
stge_suspend(device_t dev)
|
|
{
|
|
struct stge_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
STGE_LOCK(sc);
|
|
stge_stop(sc);
|
|
sc->sc_suspended = 1;
|
|
stge_setwol(sc);
|
|
STGE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
stge_resume(device_t dev)
|
|
{
|
|
struct stge_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint8_t v;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
STGE_LOCK(sc);
|
|
/*
|
|
* Clear WOL bits, so special frames wouldn't interfere
|
|
* normal Rx operation anymore.
|
|
*/
|
|
v = CSR_READ_1(sc, STGE_WakeEvent);
|
|
v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
|
|
WE_WakeOnLanEnable);
|
|
CSR_WRITE_1(sc, STGE_WakeEvent, v);
|
|
ifp = sc->sc_ifp;
|
|
if (ifp->if_flags & IFF_UP)
|
|
stge_init_locked(sc);
|
|
|
|
sc->sc_suspended = 0;
|
|
STGE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
stge_dma_wait(struct stge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < STGE_TIMEOUT; i++) {
|
|
DELAY(2);
|
|
if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == STGE_TIMEOUT)
|
|
device_printf(sc->sc_dev, "DMA wait timed out\n");
|
|
}
|
|
|
|
static int
|
|
stge_encap(struct stge_softc *sc, struct mbuf **m_head)
|
|
{
|
|
struct stge_txdesc *txd;
|
|
struct stge_tfd *tfd;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
|
|
int error, i, nsegs, si;
|
|
uint64_t csum_flags, tfc;
|
|
|
|
STGE_LOCK_ASSERT(sc);
|
|
|
|
if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
|
|
return (ENOBUFS);
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
|
|
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
|
|
if (error == EFBIG) {
|
|
m = m_collapse(*m_head, M_DONTWAIT, STGE_MAXTXSEGS);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOMEM);
|
|
}
|
|
*m_head = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
|
|
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
|
|
if (error != 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
if (nsegs == 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (EIO);
|
|
}
|
|
|
|
m = *m_head;
|
|
csum_flags = 0;
|
|
if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
|
|
if (m->m_pkthdr.csum_flags & CSUM_IP)
|
|
csum_flags |= TFD_IPChecksumEnable;
|
|
if (m->m_pkthdr.csum_flags & CSUM_TCP)
|
|
csum_flags |= TFD_TCPChecksumEnable;
|
|
else if (m->m_pkthdr.csum_flags & CSUM_UDP)
|
|
csum_flags |= TFD_UDPChecksumEnable;
|
|
}
|
|
|
|
si = sc->sc_cdata.stge_tx_prod;
|
|
tfd = &sc->sc_rdata.stge_tx_ring[si];
|
|
for (i = 0; i < nsegs; i++)
|
|
tfd->tfd_frags[i].frag_word0 =
|
|
htole64(FRAG_ADDR(txsegs[i].ds_addr) |
|
|
FRAG_LEN(txsegs[i].ds_len));
|
|
sc->sc_cdata.stge_tx_cnt++;
|
|
|
|
tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
|
|
TFD_FragCount(nsegs) | csum_flags;
|
|
if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
|
|
tfc |= TFD_TxDMAIndicate;
|
|
|
|
/* Update producer index. */
|
|
sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
|
|
|
|
/* Check if we have a VLAN tag to insert. */
|
|
if (m->m_flags & M_VLANTAG)
|
|
tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
|
|
tfd->tfd_control = htole64(tfc);
|
|
|
|
/* Update Tx Queue. */
|
|
STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
|
|
STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
|
|
txd->tx_m = m;
|
|
|
|
/* Sync descriptors. */
|
|
bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
|
|
sc->sc_cdata.stge_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* stge_start: [ifnet interface function]
|
|
*
|
|
* Start packet transmission on the interface.
|
|
*/
|
|
static void
|
|
stge_start(struct ifnet *ifp)
|
|
{
|
|
struct stge_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
STGE_LOCK(sc);
|
|
stge_start_locked(ifp);
|
|
STGE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
stge_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct stge_softc *sc;
|
|
struct mbuf *m_head;
|
|
int enq;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
STGE_LOCK_ASSERT(sc);
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING || sc->sc_link == 0)
|
|
return;
|
|
|
|
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
|
|
if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if (stge_encap(sc, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
enq++;
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
}
|
|
|
|
if (enq > 0) {
|
|
/* Transmit */
|
|
CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
|
|
|
|
/* Set a timeout in case the chip goes out to lunch. */
|
|
sc->sc_watchdog_timer = 5;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* stge_watchdog:
|
|
*
|
|
* Watchdog timer handler.
|
|
*/
|
|
static void
|
|
stge_watchdog(struct stge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
STGE_LOCK_ASSERT(sc);
|
|
|
|
if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
|
|
return;
|
|
|
|
ifp = sc->sc_ifp;
|
|
if_printf(sc->sc_ifp, "device timeout\n");
|
|
ifp->if_oerrors++;
|
|
stge_init_locked(sc);
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
stge_start_locked(ifp);
|
|
}
|
|
|
|
/*
|
|
* stge_ioctl: [ifnet interface function]
|
|
*
|
|
* Handle control requests from the operator.
|
|
*/
|
|
static int
|
|
stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct stge_softc *sc;
|
|
struct ifreq *ifr;
|
|
struct mii_data *mii;
|
|
int error, mask;
|
|
|
|
sc = ifp->if_softc;
|
|
ifr = (struct ifreq *)data;
|
|
error = 0;
|
|
switch (cmd) {
|
|
case SIOCSIFMTU:
|
|
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
|
|
error = EINVAL;
|
|
else if (ifp->if_mtu != ifr->ifr_mtu) {
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
STGE_LOCK(sc);
|
|
stge_init_locked(sc);
|
|
STGE_UNLOCK(sc);
|
|
}
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
STGE_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) != 0) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
|
|
if (((ifp->if_flags ^ sc->sc_if_flags)
|
|
& IFF_PROMISC) != 0)
|
|
stge_set_filter(sc);
|
|
} else {
|
|
if (sc->sc_detach == 0)
|
|
stge_init_locked(sc);
|
|
}
|
|
} else {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
stge_stop(sc);
|
|
}
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
STGE_UNLOCK(sc);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
STGE_LOCK(sc);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
stge_set_multi(sc);
|
|
STGE_UNLOCK(sc);
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
mii = device_get_softc(sc->sc_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
#ifdef DEVICE_POLLING
|
|
if ((mask & IFCAP_POLLING) != 0) {
|
|
if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
|
|
error = ether_poll_register(stge_poll, ifp);
|
|
if (error != 0)
|
|
break;
|
|
STGE_LOCK(sc);
|
|
CSR_WRITE_2(sc, STGE_IntEnable, 0);
|
|
ifp->if_capenable |= IFCAP_POLLING;
|
|
STGE_UNLOCK(sc);
|
|
} else {
|
|
error = ether_poll_deregister(ifp);
|
|
if (error != 0)
|
|
break;
|
|
STGE_LOCK(sc);
|
|
CSR_WRITE_2(sc, STGE_IntEnable,
|
|
sc->sc_IntEnable);
|
|
ifp->if_capenable &= ~IFCAP_POLLING;
|
|
STGE_UNLOCK(sc);
|
|
}
|
|
}
|
|
#endif
|
|
if ((mask & IFCAP_HWCSUM) != 0) {
|
|
ifp->if_capenable ^= IFCAP_HWCSUM;
|
|
if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 &&
|
|
(IFCAP_HWCSUM & ifp->if_capabilities) != 0)
|
|
ifp->if_hwassist = STGE_CSUM_FEATURES;
|
|
else
|
|
ifp->if_hwassist = 0;
|
|
}
|
|
if ((mask & IFCAP_WOL) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_WOL) != 0) {
|
|
if ((mask & IFCAP_WOL_MAGIC) != 0)
|
|
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
|
|
}
|
|
if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
|
|
STGE_LOCK(sc);
|
|
stge_vlan_setup(sc);
|
|
STGE_UNLOCK(sc);
|
|
}
|
|
}
|
|
VLAN_CAPABILITIES(ifp);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
stge_link_task(void *arg, int pending)
|
|
{
|
|
struct stge_softc *sc;
|
|
struct mii_data *mii;
|
|
uint32_t v, ac;
|
|
int i;
|
|
|
|
sc = (struct stge_softc *)arg;
|
|
STGE_LOCK(sc);
|
|
|
|
mii = device_get_softc(sc->sc_miibus);
|
|
if (mii->mii_media_status & IFM_ACTIVE) {
|
|
if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
|
|
sc->sc_link = 1;
|
|
} else
|
|
sc->sc_link = 0;
|
|
|
|
sc->sc_MACCtrl = 0;
|
|
if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
|
|
sc->sc_MACCtrl |= MC_DuplexSelect;
|
|
if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) != 0)
|
|
sc->sc_MACCtrl |= MC_RxFlowControlEnable;
|
|
if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) != 0)
|
|
sc->sc_MACCtrl |= MC_TxFlowControlEnable;
|
|
/*
|
|
* Update STGE_MACCtrl register depending on link status.
|
|
* (duplex, flow control etc)
|
|
*/
|
|
v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
|
|
v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
|
|
v |= sc->sc_MACCtrl;
|
|
CSR_WRITE_4(sc, STGE_MACCtrl, v);
|
|
if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
|
|
/* Duplex setting changed, reset Tx/Rx functions. */
|
|
ac = CSR_READ_4(sc, STGE_AsicCtrl);
|
|
ac |= AC_TxReset | AC_RxReset;
|
|
CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
|
|
for (i = 0; i < STGE_TIMEOUT; i++) {
|
|
DELAY(100);
|
|
if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
|
|
break;
|
|
}
|
|
if (i == STGE_TIMEOUT)
|
|
device_printf(sc->sc_dev, "reset failed to complete\n");
|
|
}
|
|
STGE_UNLOCK(sc);
|
|
}
|
|
|
|
static __inline int
|
|
stge_tx_error(struct stge_softc *sc)
|
|
{
|
|
uint32_t txstat;
|
|
int error;
|
|
|
|
for (error = 0;;) {
|
|
txstat = CSR_READ_4(sc, STGE_TxStatus);
|
|
if ((txstat & TS_TxComplete) == 0)
|
|
break;
|
|
/* Tx underrun */
|
|
if ((txstat & TS_TxUnderrun) != 0) {
|
|
/*
|
|
* XXX
|
|
* There should be a more better way to recover
|
|
* from Tx underrun instead of a full reset.
|
|
*/
|
|
if (sc->sc_nerr++ < STGE_MAXERR)
|
|
device_printf(sc->sc_dev, "Tx underrun, "
|
|
"resetting...\n");
|
|
if (sc->sc_nerr == STGE_MAXERR)
|
|
device_printf(sc->sc_dev, "too many errors; "
|
|
"not reporting any more\n");
|
|
error = -1;
|
|
break;
|
|
}
|
|
/* Maximum/Late collisions, Re-enable Tx MAC. */
|
|
if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
|
|
CSR_WRITE_4(sc, STGE_MACCtrl,
|
|
(CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
|
|
MC_TxEnable);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* stge_intr:
|
|
*
|
|
* Interrupt service routine.
|
|
*/
|
|
static void
|
|
stge_intr(void *arg)
|
|
{
|
|
struct stge_softc *sc;
|
|
struct ifnet *ifp;
|
|
int reinit;
|
|
uint16_t status;
|
|
|
|
sc = (struct stge_softc *)arg;
|
|
ifp = sc->sc_ifp;
|
|
|
|
STGE_LOCK(sc);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
|
|
goto done_locked;
|
|
#endif
|
|
status = CSR_READ_2(sc, STGE_IntStatus);
|
|
if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
|
|
goto done_locked;
|
|
|
|
/* Disable interrupts. */
|
|
for (reinit = 0;;) {
|
|
status = CSR_READ_2(sc, STGE_IntStatusAck);
|
|
status &= sc->sc_IntEnable;
|
|
if (status == 0)
|
|
break;
|
|
/* Host interface errors. */
|
|
if ((status & IS_HostError) != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"Host interface error, resetting...\n");
|
|
reinit = 1;
|
|
goto force_init;
|
|
}
|
|
|
|
/* Receive interrupts. */
|
|
if ((status & IS_RxDMAComplete) != 0) {
|
|
stge_rxeof(sc);
|
|
if ((status & IS_RFDListEnd) != 0)
|
|
CSR_WRITE_4(sc, STGE_DMACtrl,
|
|
DMAC_RxDMAPollNow);
|
|
}
|
|
|
|
/* Transmit interrupts. */
|
|
if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
|
|
stge_txeof(sc);
|
|
|
|
/* Transmission errors.*/
|
|
if ((status & IS_TxComplete) != 0) {
|
|
if ((reinit = stge_tx_error(sc)) != 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
force_init:
|
|
if (reinit != 0)
|
|
stge_init_locked(sc);
|
|
|
|
/* Re-enable interrupts. */
|
|
CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
|
|
|
|
/* Try to get more packets going. */
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
stge_start_locked(ifp);
|
|
|
|
done_locked:
|
|
STGE_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* stge_txeof:
|
|
*
|
|
* Helper; handle transmit interrupts.
|
|
*/
|
|
static void
|
|
stge_txeof(struct stge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct stge_txdesc *txd;
|
|
uint64_t control;
|
|
int cons;
|
|
|
|
STGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->sc_ifp;
|
|
|
|
txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
|
|
if (txd == NULL)
|
|
return;
|
|
bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
|
|
sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
|
|
|
|
/*
|
|
* Go through our Tx list and free mbufs for those
|
|
* frames which have been transmitted.
|
|
*/
|
|
for (cons = sc->sc_cdata.stge_tx_cons;;
|
|
cons = (cons + 1) % STGE_TX_RING_CNT) {
|
|
if (sc->sc_cdata.stge_tx_cnt <= 0)
|
|
break;
|
|
control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
|
|
if ((control & TFD_TFDDone) == 0)
|
|
break;
|
|
sc->sc_cdata.stge_tx_cnt--;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
|
|
|
|
/* Output counter is updated with statistics register */
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
|
|
STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
|
|
txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
|
|
}
|
|
sc->sc_cdata.stge_tx_cons = cons;
|
|
if (sc->sc_cdata.stge_tx_cnt == 0)
|
|
sc->sc_watchdog_timer = 0;
|
|
|
|
bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
|
|
sc->sc_cdata.stge_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static __inline void
|
|
stge_discard_rxbuf(struct stge_softc *sc, int idx)
|
|
{
|
|
struct stge_rfd *rfd;
|
|
|
|
rfd = &sc->sc_rdata.stge_rx_ring[idx];
|
|
rfd->rfd_status = 0;
|
|
}
|
|
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
/*
|
|
* It seems that TC9021's DMA engine has alignment restrictions in
|
|
* DMA scatter operations. The first DMA segment has no address
|
|
* alignment restrictins but the rest should be aligned on 4(?) bytes
|
|
* boundary. Otherwise it would corrupt random memory. Since we don't
|
|
* know which one is used for the first segment in advance we simply
|
|
* don't align at all.
|
|
* To avoid copying over an entire frame to align, we allocate a new
|
|
* mbuf and copy ethernet header to the new mbuf. The new mbuf is
|
|
* prepended into the existing mbuf chain.
|
|
*/
|
|
static __inline struct mbuf *
|
|
stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
|
|
{
|
|
struct mbuf *n;
|
|
|
|
n = NULL;
|
|
if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
|
|
bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
|
|
m->m_data += ETHER_HDR_LEN;
|
|
n = m;
|
|
} else {
|
|
MGETHDR(n, M_DONTWAIT, MT_DATA);
|
|
if (n != NULL) {
|
|
bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
|
|
m->m_data += ETHER_HDR_LEN;
|
|
m->m_len -= ETHER_HDR_LEN;
|
|
n->m_len = ETHER_HDR_LEN;
|
|
M_MOVE_PKTHDR(n, m);
|
|
n->m_next = m;
|
|
} else
|
|
m_freem(m);
|
|
}
|
|
|
|
return (n);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* stge_rxeof:
|
|
*
|
|
* Helper; handle receive interrupts.
|
|
*/
|
|
static int
|
|
stge_rxeof(struct stge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct stge_rxdesc *rxd;
|
|
struct mbuf *mp, *m;
|
|
uint64_t status64;
|
|
uint32_t status;
|
|
int cons, prog, rx_npkts;
|
|
|
|
STGE_LOCK_ASSERT(sc);
|
|
|
|
rx_npkts = 0;
|
|
ifp = sc->sc_ifp;
|
|
|
|
bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
|
|
sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
|
|
|
|
prog = 0;
|
|
for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
|
|
prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
|
|
status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
|
|
status = RFD_RxStatus(status64);
|
|
if ((status & RFD_RFDDone) == 0)
|
|
break;
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING) {
|
|
if (sc->sc_cdata.stge_rxcycles <= 0)
|
|
break;
|
|
sc->sc_cdata.stge_rxcycles--;
|
|
}
|
|
#endif
|
|
prog++;
|
|
rxd = &sc->sc_cdata.stge_rxdesc[cons];
|
|
mp = rxd->rx_m;
|
|
|
|
/*
|
|
* If the packet had an error, drop it. Note we count
|
|
* the error later in the periodic stats update.
|
|
*/
|
|
if ((status & RFD_FrameEnd) != 0 && (status &
|
|
(RFD_RxFIFOOverrun | RFD_RxRuntFrame |
|
|
RFD_RxAlignmentError | RFD_RxFCSError |
|
|
RFD_RxLengthError)) != 0) {
|
|
stge_discard_rxbuf(sc, cons);
|
|
if (sc->sc_cdata.stge_rxhead != NULL) {
|
|
m_freem(sc->sc_cdata.stge_rxhead);
|
|
STGE_RXCHAIN_RESET(sc);
|
|
}
|
|
continue;
|
|
}
|
|
/*
|
|
* Add a new receive buffer to the ring.
|
|
*/
|
|
if (stge_newbuf(sc, cons) != 0) {
|
|
ifp->if_iqdrops++;
|
|
stge_discard_rxbuf(sc, cons);
|
|
if (sc->sc_cdata.stge_rxhead != NULL) {
|
|
m_freem(sc->sc_cdata.stge_rxhead);
|
|
STGE_RXCHAIN_RESET(sc);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if ((status & RFD_FrameEnd) != 0)
|
|
mp->m_len = RFD_RxDMAFrameLen(status) -
|
|
sc->sc_cdata.stge_rxlen;
|
|
sc->sc_cdata.stge_rxlen += mp->m_len;
|
|
|
|
/* Chain mbufs. */
|
|
if (sc->sc_cdata.stge_rxhead == NULL) {
|
|
sc->sc_cdata.stge_rxhead = mp;
|
|
sc->sc_cdata.stge_rxtail = mp;
|
|
} else {
|
|
mp->m_flags &= ~M_PKTHDR;
|
|
sc->sc_cdata.stge_rxtail->m_next = mp;
|
|
sc->sc_cdata.stge_rxtail = mp;
|
|
}
|
|
|
|
if ((status & RFD_FrameEnd) != 0) {
|
|
m = sc->sc_cdata.stge_rxhead;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
|
|
|
|
if (m->m_pkthdr.len > sc->sc_if_framesize) {
|
|
m_freem(m);
|
|
STGE_RXCHAIN_RESET(sc);
|
|
continue;
|
|
}
|
|
/*
|
|
* Set the incoming checksum information for
|
|
* the packet.
|
|
*/
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
|
|
if ((status & RFD_IPDetected) != 0) {
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_IP_CHECKED;
|
|
if ((status & RFD_IPError) == 0)
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_IP_VALID;
|
|
}
|
|
if (((status & RFD_TCPDetected) != 0 &&
|
|
(status & RFD_TCPError) == 0) ||
|
|
((status & RFD_UDPDetected) != 0 &&
|
|
(status & RFD_UDPError) == 0)) {
|
|
m->m_pkthdr.csum_flags |=
|
|
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
}
|
|
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
|
|
if ((m = stge_fixup_rx(sc, m)) == NULL) {
|
|
STGE_RXCHAIN_RESET(sc);
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
/* Check for VLAN tagged packets. */
|
|
if ((status & RFD_VLANDetected) != 0 &&
|
|
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
|
|
m->m_pkthdr.ether_vtag = RFD_TCI(status64);
|
|
m->m_flags |= M_VLANTAG;
|
|
}
|
|
|
|
STGE_UNLOCK(sc);
|
|
/* Pass it on. */
|
|
(*ifp->if_input)(ifp, m);
|
|
STGE_LOCK(sc);
|
|
rx_npkts++;
|
|
|
|
STGE_RXCHAIN_RESET(sc);
|
|
}
|
|
}
|
|
|
|
if (prog > 0) {
|
|
/* Update the consumer index. */
|
|
sc->sc_cdata.stge_rx_cons = cons;
|
|
bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
|
|
sc->sc_cdata.stge_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
return (rx_npkts);
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static int
|
|
stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct stge_softc *sc;
|
|
uint16_t status;
|
|
int rx_npkts;
|
|
|
|
rx_npkts = 0;
|
|
sc = ifp->if_softc;
|
|
STGE_LOCK(sc);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
STGE_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
|
|
sc->sc_cdata.stge_rxcycles = count;
|
|
rx_npkts = stge_rxeof(sc);
|
|
stge_txeof(sc);
|
|
|
|
if (cmd == POLL_AND_CHECK_STATUS) {
|
|
status = CSR_READ_2(sc, STGE_IntStatus);
|
|
status &= sc->sc_IntEnable;
|
|
if (status != 0) {
|
|
if ((status & IS_HostError) != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"Host interface error, resetting...\n");
|
|
stge_init_locked(sc);
|
|
}
|
|
if ((status & IS_TxComplete) != 0) {
|
|
if (stge_tx_error(sc) != 0)
|
|
stge_init_locked(sc);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
stge_start_locked(ifp);
|
|
|
|
STGE_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
/*
|
|
* stge_tick:
|
|
*
|
|
* One second timer, used to tick the MII.
|
|
*/
|
|
static void
|
|
stge_tick(void *arg)
|
|
{
|
|
struct stge_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = (struct stge_softc *)arg;
|
|
|
|
STGE_LOCK_ASSERT(sc);
|
|
|
|
mii = device_get_softc(sc->sc_miibus);
|
|
mii_tick(mii);
|
|
|
|
/* Update statistics counters. */
|
|
stge_stats_update(sc);
|
|
|
|
/*
|
|
* Relcaim any pending Tx descriptors to release mbufs in a
|
|
* timely manner as we don't generate Tx completion interrupts
|
|
* for every frame. This limits the delay to a maximum of one
|
|
* second.
|
|
*/
|
|
if (sc->sc_cdata.stge_tx_cnt != 0)
|
|
stge_txeof(sc);
|
|
|
|
stge_watchdog(sc);
|
|
|
|
callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* stge_stats_update:
|
|
*
|
|
* Read the TC9021 statistics counters.
|
|
*/
|
|
static void
|
|
stge_stats_update(struct stge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
STGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->sc_ifp;
|
|
|
|
CSR_READ_4(sc,STGE_OctetRcvOk);
|
|
|
|
ifp->if_ipackets += CSR_READ_4(sc, STGE_FramesRcvdOk);
|
|
|
|
ifp->if_ierrors += CSR_READ_2(sc, STGE_FramesLostRxErrors);
|
|
|
|
CSR_READ_4(sc, STGE_OctetXmtdOk);
|
|
|
|
ifp->if_opackets += CSR_READ_4(sc, STGE_FramesXmtdOk);
|
|
|
|
ifp->if_collisions +=
|
|
CSR_READ_4(sc, STGE_LateCollisions) +
|
|
CSR_READ_4(sc, STGE_MultiColFrames) +
|
|
CSR_READ_4(sc, STGE_SingleColFrames);
|
|
|
|
ifp->if_oerrors +=
|
|
CSR_READ_2(sc, STGE_FramesAbortXSColls) +
|
|
CSR_READ_2(sc, STGE_FramesWEXDeferal);
|
|
}
|
|
|
|
/*
|
|
* stge_reset:
|
|
*
|
|
* Perform a soft reset on the TC9021.
|
|
*/
|
|
static void
|
|
stge_reset(struct stge_softc *sc, uint32_t how)
|
|
{
|
|
uint32_t ac;
|
|
uint8_t v;
|
|
int i, dv;
|
|
|
|
STGE_LOCK_ASSERT(sc);
|
|
|
|
dv = 5000;
|
|
ac = CSR_READ_4(sc, STGE_AsicCtrl);
|
|
switch (how) {
|
|
case STGE_RESET_TX:
|
|
ac |= AC_TxReset | AC_FIFO;
|
|
dv = 100;
|
|
break;
|
|
case STGE_RESET_RX:
|
|
ac |= AC_RxReset | AC_FIFO;
|
|
dv = 100;
|
|
break;
|
|
case STGE_RESET_FULL:
|
|
default:
|
|
/*
|
|
* Only assert RstOut if we're fiber. We need GMII clocks
|
|
* to be present in order for the reset to complete on fiber
|
|
* cards.
|
|
*/
|
|
ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
|
|
AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
|
|
(sc->sc_usefiber ? AC_RstOut : 0);
|
|
break;
|
|
}
|
|
|
|
CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
|
|
|
|
/* Account for reset problem at 10Mbps. */
|
|
DELAY(dv);
|
|
|
|
for (i = 0; i < STGE_TIMEOUT; i++) {
|
|
if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
|
|
break;
|
|
DELAY(dv);
|
|
}
|
|
|
|
if (i == STGE_TIMEOUT)
|
|
device_printf(sc->sc_dev, "reset failed to complete\n");
|
|
|
|
/* Set LED, from Linux IPG driver. */
|
|
ac = CSR_READ_4(sc, STGE_AsicCtrl);
|
|
ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
|
|
if ((sc->sc_led & 0x01) != 0)
|
|
ac |= AC_LEDMode;
|
|
if ((sc->sc_led & 0x03) != 0)
|
|
ac |= AC_LEDModeBit1;
|
|
if ((sc->sc_led & 0x08) != 0)
|
|
ac |= AC_LEDSpeed;
|
|
CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
|
|
|
|
/* Set PHY, from Linux IPG driver */
|
|
v = CSR_READ_1(sc, STGE_PhySet);
|
|
v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
|
|
v |= ((sc->sc_led & 0x70) >> 4);
|
|
CSR_WRITE_1(sc, STGE_PhySet, v);
|
|
}
|
|
|
|
/*
|
|
* stge_init: [ ifnet interface function ]
|
|
*
|
|
* Initialize the interface.
|
|
*/
|
|
static void
|
|
stge_init(void *xsc)
|
|
{
|
|
struct stge_softc *sc;
|
|
|
|
sc = (struct stge_softc *)xsc;
|
|
STGE_LOCK(sc);
|
|
stge_init_locked(sc);
|
|
STGE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
stge_init_locked(struct stge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct mii_data *mii;
|
|
uint16_t eaddr[3];
|
|
uint32_t v;
|
|
int error;
|
|
|
|
STGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->sc_ifp;
|
|
mii = device_get_softc(sc->sc_miibus);
|
|
|
|
/*
|
|
* Cancel any pending I/O.
|
|
*/
|
|
stge_stop(sc);
|
|
|
|
/*
|
|
* Reset the chip to a known state.
|
|
*/
|
|
stge_reset(sc, STGE_RESET_FULL);
|
|
|
|
/* Init descriptors. */
|
|
error = stge_init_rx_ring(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"initialization failed: no memory for rx buffers\n");
|
|
stge_stop(sc);
|
|
goto out;
|
|
}
|
|
stge_init_tx_ring(sc);
|
|
|
|
/* Set the station address. */
|
|
bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
|
|
CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
|
|
CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
|
|
CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
|
|
|
|
/*
|
|
* Set the statistics masks. Disable all the RMON stats,
|
|
* and disable selected stats in the non-RMON stats registers.
|
|
*/
|
|
CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
|
|
CSR_WRITE_4(sc, STGE_StatisticsMask,
|
|
(1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
|
|
(1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
|
|
(1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
|
|
(1U << 21));
|
|
|
|
/* Set up the receive filter. */
|
|
stge_set_filter(sc);
|
|
/* Program multicast filter. */
|
|
stge_set_multi(sc);
|
|
|
|
/*
|
|
* Give the transmit and receive ring to the chip.
|
|
*/
|
|
CSR_WRITE_4(sc, STGE_TFDListPtrHi,
|
|
STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
|
|
CSR_WRITE_4(sc, STGE_TFDListPtrLo,
|
|
STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
|
|
|
|
CSR_WRITE_4(sc, STGE_RFDListPtrHi,
|
|
STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
|
|
CSR_WRITE_4(sc, STGE_RFDListPtrLo,
|
|
STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
|
|
|
|
/*
|
|
* Initialize the Tx auto-poll period. It's OK to make this number
|
|
* large (255 is the max, but we use 127) -- we explicitly kick the
|
|
* transmit engine when there's actually a packet.
|
|
*/
|
|
CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
|
|
|
|
/* ..and the Rx auto-poll period. */
|
|
CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
|
|
|
|
/* Initialize the Tx start threshold. */
|
|
CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
|
|
|
|
/* Rx DMA thresholds, from Linux */
|
|
CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
|
|
CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
|
|
|
|
/* Rx early threhold, from Linux */
|
|
CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
|
|
|
|
/* Tx DMA thresholds, from Linux */
|
|
CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
|
|
CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
|
|
|
|
/*
|
|
* Initialize the Rx DMA interrupt control register. We
|
|
* request an interrupt after every incoming packet, but
|
|
* defer it for sc_rxint_dmawait us. When the number of
|
|
* interrupts pending reaches STGE_RXINT_NFRAME, we stop
|
|
* deferring the interrupt, and signal it immediately.
|
|
*/
|
|
CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
|
|
RDIC_RxFrameCount(sc->sc_rxint_nframe) |
|
|
RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
|
|
|
|
/*
|
|
* Initialize the interrupt mask.
|
|
*/
|
|
sc->sc_IntEnable = IS_HostError | IS_TxComplete |
|
|
IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
|
|
#ifdef DEVICE_POLLING
|
|
/* Disable interrupts if we are polling. */
|
|
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
|
|
CSR_WRITE_2(sc, STGE_IntEnable, 0);
|
|
else
|
|
#endif
|
|
CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
|
|
|
|
/*
|
|
* Configure the DMA engine.
|
|
* XXX Should auto-tune TxBurstLimit.
|
|
*/
|
|
CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
|
|
|
|
/*
|
|
* Send a PAUSE frame when we reach 29,696 bytes in the Rx
|
|
* FIFO, and send an un-PAUSE frame when we reach 3056 bytes
|
|
* in the Rx FIFO.
|
|
*/
|
|
CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
|
|
CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
|
|
|
|
/*
|
|
* Set the maximum frame size.
|
|
*/
|
|
sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
|
|
CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
|
|
|
|
/*
|
|
* Initialize MacCtrl -- do it before setting the media,
|
|
* as setting the media will actually program the register.
|
|
*
|
|
* Note: We have to poke the IFS value before poking
|
|
* anything else.
|
|
*/
|
|
/* Tx/Rx MAC should be disabled before programming IFS.*/
|
|
CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
|
|
|
|
stge_vlan_setup(sc);
|
|
|
|
if (sc->sc_rev >= 6) { /* >= B.2 */
|
|
/* Multi-frag frame bug work-around. */
|
|
CSR_WRITE_2(sc, STGE_DebugCtrl,
|
|
CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
|
|
|
|
/* Tx Poll Now bug work-around. */
|
|
CSR_WRITE_2(sc, STGE_DebugCtrl,
|
|
CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
|
|
/* Tx Poll Now bug work-around. */
|
|
CSR_WRITE_2(sc, STGE_DebugCtrl,
|
|
CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
|
|
}
|
|
|
|
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
|
|
v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
|
|
CSR_WRITE_4(sc, STGE_MACCtrl, v);
|
|
/*
|
|
* It seems that transmitting frames without checking the state of
|
|
* Rx/Tx MAC wedge the hardware.
|
|
*/
|
|
stge_start_tx(sc);
|
|
stge_start_rx(sc);
|
|
|
|
sc->sc_link = 0;
|
|
/*
|
|
* Set the current media.
|
|
*/
|
|
mii_mediachg(mii);
|
|
|
|
/*
|
|
* Start the one second MII clock.
|
|
*/
|
|
callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
|
|
|
|
/*
|
|
* ...all done!
|
|
*/
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
out:
|
|
if (error != 0)
|
|
device_printf(sc->sc_dev, "interface not running\n");
|
|
}
|
|
|
|
static void
|
|
stge_vlan_setup(struct stge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint32_t v;
|
|
|
|
ifp = sc->sc_ifp;
|
|
/*
|
|
* The NIC always copy a VLAN tag regardless of STGE_MACCtrl
|
|
* MC_AutoVLANuntagging bit.
|
|
* MC_AutoVLANtagging bit selects which VLAN source to use
|
|
* between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
|
|
* bit has priority over MC_AutoVLANtagging bit. So we always
|
|
* use TFC instead of STGE_VLANTag register.
|
|
*/
|
|
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
|
|
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
|
|
v |= MC_AutoVLANuntagging;
|
|
else
|
|
v &= ~MC_AutoVLANuntagging;
|
|
CSR_WRITE_4(sc, STGE_MACCtrl, v);
|
|
}
|
|
|
|
/*
|
|
* Stop transmission on the interface.
|
|
*/
|
|
static void
|
|
stge_stop(struct stge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct stge_txdesc *txd;
|
|
struct stge_rxdesc *rxd;
|
|
uint32_t v;
|
|
int i;
|
|
|
|
STGE_LOCK_ASSERT(sc);
|
|
/*
|
|
* Stop the one second clock.
|
|
*/
|
|
callout_stop(&sc->sc_tick_ch);
|
|
sc->sc_watchdog_timer = 0;
|
|
|
|
/*
|
|
* Disable interrupts.
|
|
*/
|
|
CSR_WRITE_2(sc, STGE_IntEnable, 0);
|
|
|
|
/*
|
|
* Stop receiver, transmitter, and stats update.
|
|
*/
|
|
stge_stop_rx(sc);
|
|
stge_stop_tx(sc);
|
|
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
|
|
v |= MC_StatisticsDisable;
|
|
CSR_WRITE_4(sc, STGE_MACCtrl, v);
|
|
|
|
/*
|
|
* Stop the transmit and receive DMA.
|
|
*/
|
|
stge_dma_wait(sc);
|
|
CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
|
|
CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
|
|
CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
|
|
CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
|
|
|
|
/*
|
|
* Free RX and TX mbufs still in the queues.
|
|
*/
|
|
for (i = 0; i < STGE_RX_RING_CNT; i++) {
|
|
rxd = &sc->sc_cdata.stge_rxdesc[i];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
|
|
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
|
|
rxd->rx_dmamap);
|
|
m_freem(rxd->rx_m);
|
|
rxd->rx_m = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < STGE_TX_RING_CNT; i++) {
|
|
txd = &sc->sc_cdata.stge_txdesc[i];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
|
|
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
|
|
txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp = sc->sc_ifp;
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
sc->sc_link = 0;
|
|
}
|
|
|
|
static void
|
|
stge_start_tx(struct stge_softc *sc)
|
|
{
|
|
uint32_t v;
|
|
int i;
|
|
|
|
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
|
|
if ((v & MC_TxEnabled) != 0)
|
|
return;
|
|
v |= MC_TxEnable;
|
|
CSR_WRITE_4(sc, STGE_MACCtrl, v);
|
|
CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
|
|
for (i = STGE_TIMEOUT; i > 0; i--) {
|
|
DELAY(10);
|
|
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
|
|
if ((v & MC_TxEnabled) != 0)
|
|
break;
|
|
}
|
|
if (i == 0)
|
|
device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
|
|
}
|
|
|
|
static void
|
|
stge_start_rx(struct stge_softc *sc)
|
|
{
|
|
uint32_t v;
|
|
int i;
|
|
|
|
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
|
|
if ((v & MC_RxEnabled) != 0)
|
|
return;
|
|
v |= MC_RxEnable;
|
|
CSR_WRITE_4(sc, STGE_MACCtrl, v);
|
|
CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
|
|
for (i = STGE_TIMEOUT; i > 0; i--) {
|
|
DELAY(10);
|
|
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
|
|
if ((v & MC_RxEnabled) != 0)
|
|
break;
|
|
}
|
|
if (i == 0)
|
|
device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
|
|
}
|
|
|
|
static void
|
|
stge_stop_tx(struct stge_softc *sc)
|
|
{
|
|
uint32_t v;
|
|
int i;
|
|
|
|
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
|
|
if ((v & MC_TxEnabled) == 0)
|
|
return;
|
|
v |= MC_TxDisable;
|
|
CSR_WRITE_4(sc, STGE_MACCtrl, v);
|
|
for (i = STGE_TIMEOUT; i > 0; i--) {
|
|
DELAY(10);
|
|
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
|
|
if ((v & MC_TxEnabled) == 0)
|
|
break;
|
|
}
|
|
if (i == 0)
|
|
device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
|
|
}
|
|
|
|
static void
|
|
stge_stop_rx(struct stge_softc *sc)
|
|
{
|
|
uint32_t v;
|
|
int i;
|
|
|
|
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
|
|
if ((v & MC_RxEnabled) == 0)
|
|
return;
|
|
v |= MC_RxDisable;
|
|
CSR_WRITE_4(sc, STGE_MACCtrl, v);
|
|
for (i = STGE_TIMEOUT; i > 0; i--) {
|
|
DELAY(10);
|
|
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
|
|
if ((v & MC_RxEnabled) == 0)
|
|
break;
|
|
}
|
|
if (i == 0)
|
|
device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
|
|
}
|
|
|
|
static void
|
|
stge_init_tx_ring(struct stge_softc *sc)
|
|
{
|
|
struct stge_ring_data *rd;
|
|
struct stge_txdesc *txd;
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
|
|
STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
|
|
|
|
sc->sc_cdata.stge_tx_prod = 0;
|
|
sc->sc_cdata.stge_tx_cons = 0;
|
|
sc->sc_cdata.stge_tx_cnt = 0;
|
|
|
|
rd = &sc->sc_rdata;
|
|
bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
|
|
for (i = 0; i < STGE_TX_RING_CNT; i++) {
|
|
if (i == (STGE_TX_RING_CNT - 1))
|
|
addr = STGE_TX_RING_ADDR(sc, 0);
|
|
else
|
|
addr = STGE_TX_RING_ADDR(sc, i + 1);
|
|
rd->stge_tx_ring[i].tfd_next = htole64(addr);
|
|
rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
|
|
txd = &sc->sc_cdata.stge_txdesc[i];
|
|
STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
|
|
sc->sc_cdata.stge_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
}
|
|
|
|
static int
|
|
stge_init_rx_ring(struct stge_softc *sc)
|
|
{
|
|
struct stge_ring_data *rd;
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
sc->sc_cdata.stge_rx_cons = 0;
|
|
STGE_RXCHAIN_RESET(sc);
|
|
|
|
rd = &sc->sc_rdata;
|
|
bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
|
|
for (i = 0; i < STGE_RX_RING_CNT; i++) {
|
|
if (stge_newbuf(sc, i) != 0)
|
|
return (ENOBUFS);
|
|
if (i == (STGE_RX_RING_CNT - 1))
|
|
addr = STGE_RX_RING_ADDR(sc, 0);
|
|
else
|
|
addr = STGE_RX_RING_ADDR(sc, i + 1);
|
|
rd->stge_rx_ring[i].rfd_next = htole64(addr);
|
|
rd->stge_rx_ring[i].rfd_status = 0;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
|
|
sc->sc_cdata.stge_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* stge_newbuf:
|
|
*
|
|
* Add a receive buffer to the indicated descriptor.
|
|
*/
|
|
static int
|
|
stge_newbuf(struct stge_softc *sc, int idx)
|
|
{
|
|
struct stge_rxdesc *rxd;
|
|
struct stge_rfd *rfd;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
|
|
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
/*
|
|
* The hardware requires 4bytes aligned DMA address when JUMBO
|
|
* frame is used.
|
|
*/
|
|
if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
|
|
sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
rxd = &sc->sc_cdata.stge_rxdesc[idx];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
|
|
sc->sc_cdata.stge_rx_sparemap = map;
|
|
bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxd->rx_m = m;
|
|
|
|
rfd = &sc->sc_rdata.stge_rx_ring[idx];
|
|
rfd->rfd_frag.frag_word0 =
|
|
htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
|
|
rfd->rfd_status = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* stge_set_filter:
|
|
*
|
|
* Set up the receive filter.
|
|
*/
|
|
static void
|
|
stge_set_filter(struct stge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint16_t mode;
|
|
|
|
STGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->sc_ifp;
|
|
|
|
mode = CSR_READ_2(sc, STGE_ReceiveMode);
|
|
mode |= RM_ReceiveUnicast;
|
|
if ((ifp->if_flags & IFF_BROADCAST) != 0)
|
|
mode |= RM_ReceiveBroadcast;
|
|
else
|
|
mode &= ~RM_ReceiveBroadcast;
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0)
|
|
mode |= RM_ReceiveAllFrames;
|
|
else
|
|
mode &= ~RM_ReceiveAllFrames;
|
|
|
|
CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
|
|
}
|
|
|
|
static void
|
|
stge_set_multi(struct stge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
uint32_t crc;
|
|
uint32_t mchash[2];
|
|
uint16_t mode;
|
|
int count;
|
|
|
|
STGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->sc_ifp;
|
|
|
|
mode = CSR_READ_2(sc, STGE_ReceiveMode);
|
|
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0)
|
|
mode |= RM_ReceiveAllFrames;
|
|
else if ((ifp->if_flags & IFF_ALLMULTI) != 0)
|
|
mode |= RM_ReceiveMulticast;
|
|
CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
|
|
return;
|
|
}
|
|
|
|
/* clear existing filters. */
|
|
CSR_WRITE_4(sc, STGE_HashTable0, 0);
|
|
CSR_WRITE_4(sc, STGE_HashTable1, 0);
|
|
|
|
/*
|
|
* Set up the multicast address filter by passing all multicast
|
|
* addresses through a CRC generator, and then using the low-order
|
|
* 6 bits as an index into the 64 bit multicast hash table. The
|
|
* high order bits select the register, while the rest of the bits
|
|
* select the bit within the register.
|
|
*/
|
|
|
|
bzero(mchash, sizeof(mchash));
|
|
|
|
count = 0;
|
|
if_maddr_rlock(sc->sc_ifp);
|
|
TAILQ_FOREACH(ifma, &sc->sc_ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr), ETHER_ADDR_LEN);
|
|
|
|
/* Just want the 6 least significant bits. */
|
|
crc &= 0x3f;
|
|
|
|
/* Set the corresponding bit in the hash table. */
|
|
mchash[crc >> 5] |= 1 << (crc & 0x1f);
|
|
count++;
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
|
|
mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
|
|
if (count > 0)
|
|
mode |= RM_ReceiveMulticastHash;
|
|
else
|
|
mode &= ~RM_ReceiveMulticastHash;
|
|
|
|
CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
|
|
CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
|
|
CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
|
|
}
|
|
|
|
static int
|
|
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
|
|
{
|
|
int error, value;
|
|
|
|
if (!arg1)
|
|
return (EINVAL);
|
|
value = *(int *)arg1;
|
|
error = sysctl_handle_int(oidp, &value, 0, req);
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
if (value < low || value > high)
|
|
return (EINVAL);
|
|
*(int *)arg1 = value;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
return (sysctl_int_range(oidp, arg1, arg2, req,
|
|
STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
|
|
}
|
|
|
|
static int
|
|
sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
return (sysctl_int_range(oidp, arg1, arg2, req,
|
|
STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
|
|
}
|