freebsd-skq/sys/dev/isci/isci.c
jimharris 1fc051e52f isci: explicitly enable/disable PCI busmaster
BIOS always enables PCI busmaster on the isci device, which effectively
worked around this omission.  But when passing the isci device through
to a guest VM, the hypervisor will disable busmaster and isci will not
work without calling pci_enable_busmaster().

MFC after:	3 days
Sponsored by:	Intel
2015-09-08 15:59:55 +00:00

677 lines
20 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/isci/isci.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <cam/cam_periph.h>
#include <dev/led/led.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/isci/scil/scic_logger.h>
#include <dev/isci/scil/scic_library.h>
#include <dev/isci/scil/scic_sgpio.h>
#include <dev/isci/scil/scic_user_callback.h>
#include <dev/isci/scil/scif_controller.h>
#include <dev/isci/scil/scif_library.h>
#include <dev/isci/scil/scif_logger.h>
#include <dev/isci/scil/scif_user_callback.h>
MALLOC_DEFINE(M_ISCI, "isci", "isci driver memory allocations");
struct isci_softc *g_isci;
uint32_t g_isci_debug_level = 0;
static int isci_probe(device_t);
static int isci_attach(device_t);
static int isci_detach(device_t);
int isci_initialize(struct isci_softc *isci);
void isci_allocate_dma_buffer_callback(void *arg, bus_dma_segment_t *seg,
int nseg, int error);
static devclass_t isci_devclass;
static device_method_t isci_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, isci_probe),
DEVMETHOD(device_attach, isci_attach),
DEVMETHOD(device_detach, isci_detach),
{ 0, 0 }
};
static driver_t isci_pci_driver = {
"isci",
isci_pci_methods,
sizeof(struct isci_softc),
};
DRIVER_MODULE(isci, pci, isci_pci_driver, isci_devclass, 0, 0);
MODULE_DEPEND(isci, cam, 1, 1, 1);
static struct _pcsid
{
u_int32_t type;
const char *desc;
} pci_ids[] = {
{ 0x1d608086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d618086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" },
{ 0x1d628086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d638086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d648086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d658086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d668086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d678086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d688086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d698086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d6a8086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" },
{ 0x1d6b8086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" },
{ 0x1d6c8086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d6d8086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d6e8086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d6f8086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" },
{ 0x00000000, NULL }
};
static int
isci_probe (device_t device)
{
u_int32_t type = pci_get_devid(device);
struct _pcsid *ep = pci_ids;
while (ep->type && ep->type != type)
++ep;
if (ep->desc)
{
device_set_desc(device, ep->desc);
return (BUS_PROBE_DEFAULT);
}
else
return (ENXIO);
}
static int
isci_allocate_pci_memory(struct isci_softc *isci)
{
int i;
for (i = 0; i < ISCI_NUM_PCI_BARS; i++)
{
struct ISCI_PCI_BAR *pci_bar = &isci->pci_bar[i];
pci_bar->resource_id = PCIR_BAR(i*2);
pci_bar->resource = bus_alloc_resource(isci->device,
SYS_RES_MEMORY, &pci_bar->resource_id, 0, ~0, 1,
RF_ACTIVE);
if(pci_bar->resource == NULL)
isci_log_message(0, "ISCI",
"unable to allocate pci resource\n");
else {
pci_bar->bus_tag = rman_get_bustag(pci_bar->resource);
pci_bar->bus_handle =
rman_get_bushandle(pci_bar->resource);
}
}
return (0);
}
static int
isci_attach(device_t device)
{
int error;
struct isci_softc *isci = DEVICE2SOFTC(device);
g_isci = isci;
isci->device = device;
pci_enable_busmaster(device);
isci_allocate_pci_memory(isci);
error = isci_initialize(isci);
if (error)
{
isci_detach(device);
return (error);
}
isci_interrupt_setup(isci);
isci_sysctl_initialize(isci);
return (0);
}
static int
isci_detach(device_t device)
{
struct isci_softc *isci = DEVICE2SOFTC(device);
int i, phy;
for (i = 0; i < isci->controller_count; i++) {
struct ISCI_CONTROLLER *controller = &isci->controllers[i];
SCI_STATUS status;
void *unmap_buffer;
if (controller->scif_controller_handle != NULL) {
scic_controller_disable_interrupts(
scif_controller_get_scic_handle(controller->scif_controller_handle));
mtx_lock(&controller->lock);
status = scif_controller_stop(controller->scif_controller_handle, 0);
mtx_unlock(&controller->lock);
while (controller->is_started == TRUE) {
/* Now poll for interrupts until the controller stop complete
* callback is received.
*/
mtx_lock(&controller->lock);
isci_interrupt_poll_handler(controller);
mtx_unlock(&controller->lock);
pause("isci", 1);
}
if(controller->sim != NULL) {
mtx_lock(&controller->lock);
xpt_free_path(controller->path);
xpt_bus_deregister(cam_sim_path(controller->sim));
cam_sim_free(controller->sim, TRUE);
mtx_unlock(&controller->lock);
}
}
if (controller->timer_memory != NULL)
free(controller->timer_memory, M_ISCI);
if (controller->remote_device_memory != NULL)
free(controller->remote_device_memory, M_ISCI);
for (phy = 0; phy < SCI_MAX_PHYS; phy++) {
if (controller->phys[phy].cdev_fault)
led_destroy(controller->phys[phy].cdev_fault);
if (controller->phys[phy].cdev_locate)
led_destroy(controller->phys[phy].cdev_locate);
}
while (1) {
sci_pool_get(controller->unmap_buffer_pool, unmap_buffer);
if (unmap_buffer == NULL)
break;
contigfree(unmap_buffer, PAGE_SIZE, M_ISCI);
}
}
/* The SCIF controllers have been stopped, so we can now
* free the SCI library memory.
*/
if (isci->sci_library_memory != NULL)
free(isci->sci_library_memory, M_ISCI);
for (i = 0; i < ISCI_NUM_PCI_BARS; i++)
{
struct ISCI_PCI_BAR *pci_bar = &isci->pci_bar[i];
if (pci_bar->resource != NULL)
bus_release_resource(device, SYS_RES_MEMORY,
pci_bar->resource_id, pci_bar->resource);
}
for (i = 0; i < isci->num_interrupts; i++)
{
struct ISCI_INTERRUPT_INFO *interrupt_info;
interrupt_info = &isci->interrupt_info[i];
if(interrupt_info->tag != NULL)
bus_teardown_intr(device, interrupt_info->res,
interrupt_info->tag);
if(interrupt_info->res != NULL)
bus_release_resource(device, SYS_RES_IRQ,
rman_get_rid(interrupt_info->res),
interrupt_info->res);
pci_release_msi(device);
}
pci_disable_busmaster(device);
return (0);
}
int
isci_initialize(struct isci_softc *isci)
{
int error;
uint32_t status = 0;
uint32_t library_object_size;
uint32_t verbosity_mask;
uint32_t scic_log_object_mask;
uint32_t scif_log_object_mask;
uint8_t *header_buffer;
library_object_size = scif_library_get_object_size(SCI_MAX_CONTROLLERS);
isci->sci_library_memory =
malloc(library_object_size, M_ISCI, M_NOWAIT | M_ZERO );
isci->sci_library_handle = scif_library_construct(
isci->sci_library_memory, SCI_MAX_CONTROLLERS);
sci_object_set_association( isci->sci_library_handle, (void *)isci);
verbosity_mask = (1<<SCI_LOG_VERBOSITY_ERROR) |
(1<<SCI_LOG_VERBOSITY_WARNING) | (1<<SCI_LOG_VERBOSITY_INFO) |
(1<<SCI_LOG_VERBOSITY_TRACE);
scic_log_object_mask = 0xFFFFFFFF;
scic_log_object_mask &= ~SCIC_LOG_OBJECT_COMPLETION_QUEUE;
scic_log_object_mask &= ~SCIC_LOG_OBJECT_SSP_IO_REQUEST;
scic_log_object_mask &= ~SCIC_LOG_OBJECT_STP_IO_REQUEST;
scic_log_object_mask &= ~SCIC_LOG_OBJECT_SMP_IO_REQUEST;
scic_log_object_mask &= ~SCIC_LOG_OBJECT_CONTROLLER;
scif_log_object_mask = 0xFFFFFFFF;
scif_log_object_mask &= ~SCIF_LOG_OBJECT_CONTROLLER;
scif_log_object_mask &= ~SCIF_LOG_OBJECT_IO_REQUEST;
TUNABLE_INT_FETCH("hw.isci.debug_level", &g_isci_debug_level);
sci_logger_enable(sci_object_get_logger(isci->sci_library_handle),
scif_log_object_mask, verbosity_mask);
sci_logger_enable(sci_object_get_logger(
scif_library_get_scic_handle(isci->sci_library_handle)),
scic_log_object_mask, verbosity_mask);
header_buffer = (uint8_t *)&isci->pci_common_header;
for (uint8_t i = 0; i < sizeof(isci->pci_common_header); i++)
header_buffer[i] = pci_read_config(isci->device, i, 1);
scic_library_set_pci_info(
scif_library_get_scic_handle(isci->sci_library_handle),
&isci->pci_common_header);
isci->oem_parameters_found = FALSE;
isci_get_oem_parameters(isci);
/* trigger interrupt if 32 completions occur before timeout expires */
isci->coalesce_number = 32;
/* trigger interrupt if 2 microseconds elapse after a completion occurs,
* regardless if "coalesce_number" completions have occurred
*/
isci->coalesce_timeout = 2;
isci->controller_count = scic_library_get_pci_device_controller_count(
scif_library_get_scic_handle(isci->sci_library_handle));
for (int index = 0; index < isci->controller_count; index++) {
struct ISCI_CONTROLLER *controller = &isci->controllers[index];
SCI_CONTROLLER_HANDLE_T scif_controller_handle;
controller->index = index;
isci_controller_construct(controller, isci);
scif_controller_handle = controller->scif_controller_handle;
status = isci_controller_initialize(controller);
if(status != SCI_SUCCESS) {
isci_log_message(0, "ISCI",
"isci_controller_initialize FAILED: %x\n",
status);
return (status);
}
error = isci_controller_allocate_memory(controller);
if (error != 0)
return (error);
scif_controller_set_interrupt_coalescence(
scif_controller_handle, isci->coalesce_number,
isci->coalesce_timeout);
}
/* FreeBSD provides us a hook to ensure we get a chance to start
* our controllers and complete initial domain discovery before
* it searches for the boot device. Once we're done, we'll
* disestablish the hook, signaling the kernel that is can proceed
* with the boot process.
*/
isci->config_hook.ich_func = &isci_controller_start;
isci->config_hook.ich_arg = &isci->controllers[0];
if (config_intrhook_establish(&isci->config_hook) != 0)
isci_log_message(0, "ISCI",
"config_intrhook_establish failed!\n");
return (status);
}
void
isci_allocate_dma_buffer_callback(void *arg, bus_dma_segment_t *seg,
int nseg, int error)
{
struct ISCI_MEMORY *memory = (struct ISCI_MEMORY *)arg;
memory->error = error;
if (nseg != 1 || error != 0)
isci_log_message(0, "ISCI",
"Failed to allocate physically contiguous memory!\n");
else
memory->physical_address = seg->ds_addr;
}
int
isci_allocate_dma_buffer(device_t device, struct ISCI_MEMORY *memory)
{
uint32_t status;
status = bus_dma_tag_create(bus_get_dma_tag(device),
0x40 /* cacheline alignment */, 0x0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, memory->size,
0x1 /* we want physically contiguous */,
memory->size, 0, NULL, NULL, &memory->dma_tag);
if(status == ENOMEM) {
isci_log_message(0, "ISCI", "bus_dma_tag_create failed\n");
return (status);
}
status = bus_dmamem_alloc(memory->dma_tag,
(void **)&memory->virtual_address, BUS_DMA_ZERO, &memory->dma_map);
if(status == ENOMEM)
{
isci_log_message(0, "ISCI", "bus_dmamem_alloc failed\n");
return (status);
}
status = bus_dmamap_load(memory->dma_tag, memory->dma_map,
(void *)memory->virtual_address, memory->size,
isci_allocate_dma_buffer_callback, memory, 0);
if(status == EINVAL)
{
isci_log_message(0, "ISCI", "bus_dmamap_load failed\n");
return (status);
}
return (0);
}
/**
* @brief This callback method asks the user to associate the supplied
* lock with an operating environment specific locking construct.
*
* @param[in] controller This parameter specifies the controller with
* which this lock is to be associated.
* @param[in] lock This parameter specifies the lock for which the
* user should associate an operating environment specific
* locking object.
*
* @see The SCI_LOCK_LEVEL enumeration for more information.
*
* @return none.
*/
void
scif_cb_lock_associate(SCI_CONTROLLER_HANDLE_T controller,
SCI_LOCK_HANDLE_T lock)
{
}
/**
* @brief This callback method asks the user to de-associate the supplied
* lock with an operating environment specific locking construct.
*
* @param[in] controller This parameter specifies the controller with
* which this lock is to be de-associated.
* @param[in] lock This parameter specifies the lock for which the
* user should de-associate an operating environment specific
* locking object.
*
* @see The SCI_LOCK_LEVEL enumeration for more information.
*
* @return none.
*/
void
scif_cb_lock_disassociate(SCI_CONTROLLER_HANDLE_T controller,
SCI_LOCK_HANDLE_T lock)
{
}
/**
* @brief This callback method asks the user to acquire/get the lock.
* This method should pend until the lock has been acquired.
*
* @param[in] controller This parameter specifies the controller with
* which this lock is associated.
* @param[in] lock This parameter specifies the lock to be acquired.
*
* @return none
*/
void
scif_cb_lock_acquire(SCI_CONTROLLER_HANDLE_T controller,
SCI_LOCK_HANDLE_T lock)
{
}
/**
* @brief This callback method asks the user to release a lock.
*
* @param[in] controller This parameter specifies the controller with
* which this lock is associated.
* @param[in] lock This parameter specifies the lock to be released.
*
* @return none
*/
void
scif_cb_lock_release(SCI_CONTROLLER_HANDLE_T controller,
SCI_LOCK_HANDLE_T lock)
{
}
/**
* @brief This callback method creates an OS specific deferred task
* for internal usage. The handler to deferred task is stored by OS
* driver.
*
* @param[in] controller This parameter specifies the controller object
* with which this callback is associated.
*
* @return none
*/
void
scif_cb_start_internal_io_task_create(SCI_CONTROLLER_HANDLE_T controller)
{
}
/**
* @brief This callback method schedules a OS specific deferred task.
*
* @param[in] controller This parameter specifies the controller
* object with which this callback is associated.
* @param[in] start_internal_io_task_routine This parameter specifies the
* sci start_internal_io routine.
* @param[in] context This parameter specifies a handle to a parameter
* that will be passed into the "start_internal_io_task_routine"
* when it is invoked.
*
* @return none
*/
void
scif_cb_start_internal_io_task_schedule(SCI_CONTROLLER_HANDLE_T scif_controller,
FUNCPTR start_internal_io_task_routine, void *context)
{
/** @todo Use FreeBSD tasklet to defer this routine to a later time,
* rather than calling the routine inline.
*/
SCI_START_INTERNAL_IO_ROUTINE sci_start_internal_io_routine =
(SCI_START_INTERNAL_IO_ROUTINE)start_internal_io_task_routine;
sci_start_internal_io_routine(context);
}
/**
* @brief In this method the user must write to PCI memory via access.
* This method is used for access to memory space and IO space.
*
* @param[in] controller The controller for which to read a DWORD.
* @param[in] address This parameter depicts the address into
* which to write.
* @param[out] write_value This parameter depicts the value being written
* into the PCI memory location.
*
* @todo These PCI memory access calls likely needs to be optimized into macros?
*/
void
scic_cb_pci_write_dword(SCI_CONTROLLER_HANDLE_T scic_controller,
void *address, uint32_t write_value)
{
SCI_CONTROLLER_HANDLE_T scif_controller =
(SCI_CONTROLLER_HANDLE_T) sci_object_get_association(scic_controller);
struct ISCI_CONTROLLER *isci_controller =
(struct ISCI_CONTROLLER *) sci_object_get_association(scif_controller);
struct isci_softc *isci = isci_controller->isci;
uint32_t bar = (uint32_t)(((POINTER_UINT)address & 0xF0000000) >> 28);
bus_size_t offset = (bus_size_t)((POINTER_UINT)address & 0x0FFFFFFF);
bus_space_write_4(isci->pci_bar[bar].bus_tag,
isci->pci_bar[bar].bus_handle, offset, write_value);
}
/**
* @brief In this method the user must read from PCI memory via access.
* This method is used for access to memory space and IO space.
*
* @param[in] controller The controller for which to read a DWORD.
* @param[in] address This parameter depicts the address from
* which to read.
*
* @return The value being returned from the PCI memory location.
*
* @todo This PCI memory access calls likely need to be optimized into macro?
*/
uint32_t
scic_cb_pci_read_dword(SCI_CONTROLLER_HANDLE_T scic_controller, void *address)
{
SCI_CONTROLLER_HANDLE_T scif_controller =
(SCI_CONTROLLER_HANDLE_T)sci_object_get_association(scic_controller);
struct ISCI_CONTROLLER *isci_controller =
(struct ISCI_CONTROLLER *)sci_object_get_association(scif_controller);
struct isci_softc *isci = isci_controller->isci;
uint32_t bar = (uint32_t)(((POINTER_UINT)address & 0xF0000000) >> 28);
bus_size_t offset = (bus_size_t)((POINTER_UINT)address & 0x0FFFFFFF);
return (bus_space_read_4(isci->pci_bar[bar].bus_tag,
isci->pci_bar[bar].bus_handle, offset));
}
/**
* @brief This method is called when the core requires the OS driver
* to stall execution. This method is utilized during initialization
* or non-performance paths only.
*
* @param[in] microseconds This parameter specifies the number of
* microseconds for which to stall. The operating system driver
* is allowed to round this value up where necessary.
*
* @return none.
*/
void
scic_cb_stall_execution(uint32_t microseconds)
{
DELAY(microseconds);
}
/**
* @brief In this method the user must return the base address register (BAR)
* value for the supplied base address register number.
*
* @param[in] controller The controller for which to retrieve the bar number.
* @param[in] bar_number This parameter depicts the BAR index/number to be read.
*
* @return Return a pointer value indicating the contents of the BAR.
* @retval NULL indicates an invalid BAR index/number was specified.
* @retval All other values indicate a valid VIRTUAL address from the BAR.
*/
void *
scic_cb_pci_get_bar(SCI_CONTROLLER_HANDLE_T controller,
uint16_t bar_number)
{
return ((void *)(POINTER_UINT)((uint32_t)bar_number << 28));
}
/**
* @brief This method informs the SCI Core user that a phy/link became
* ready, but the phy is not allowed in the port. In some
* situations the underlying hardware only allows for certain phy
* to port mappings. If these mappings are violated, then this
* API is invoked.
*
* @param[in] controller This parameter represents the controller which
* contains the port.
* @param[in] port This parameter specifies the SCI port object for which
* the callback is being invoked.
* @param[in] phy This parameter specifies the phy that came ready, but the
* phy can't be a valid member of the port.
*
* @return none
*/
void
scic_cb_port_invalid_link_up(SCI_CONTROLLER_HANDLE_T controller,
SCI_PORT_HANDLE_T port, SCI_PHY_HANDLE_T phy)
{
}