freebsd-skq/sys/vm/vm_page.c
attilio 588d89046c Use an UMA zone for the radix node. This avoids the problem to check
for the kernel_map/kmem_map recursion because it uses direct mapping
provided by amd64 to avoid object and map search and recursion.

Probabilly all the others architectures using UMA_MD_SMALL_ALLOC are also
fixed by this, but other remains, where the most notable case is i386.
For it a solution has still to be determined.  A way to do this would
be to have a reserved map just for radix node and mark all accesses to
its lock to be witness safe, but that would still be unoptimal due to
the large amount of virtual address space needed to cater the whole
tree.
2011-10-28 01:56:36 +00:00

2784 lines
70 KiB
C

/*-
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
* Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
*/
/*-
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* GENERAL RULES ON VM_PAGE MANIPULATION
*
* - a pageq mutex is required when adding or removing a page from a
* page queue (vm_page_queue[]), regardless of other mutexes or the
* busy state of a page.
*
* - The object mutex is held when inserting or removing
* pages from an object (vm_page_insert() or vm_page_remove()).
*
*/
/*
* Resident memory management module.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_vm.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/malloc.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_phys.h>
#include <vm/vm_radix.h>
#include <vm/vm_reserv.h>
#include <vm/vm_extern.h>
#include <vm/uma.h>
#include <vm/uma_int.h>
#include <machine/md_var.h>
/*
* Associated with page of user-allocatable memory is a
* page structure.
*/
struct vpgqueues vm_page_queues[PQ_COUNT];
struct vpglocks vm_page_queue_lock;
struct vpglocks vm_page_queue_free_lock;
struct vpglocks pa_lock[PA_LOCK_COUNT];
vm_page_t vm_page_array = 0;
int vm_page_array_size = 0;
long first_page = 0;
int vm_page_zero_count = 0;
static int boot_pages = UMA_BOOT_PAGES;
TUNABLE_INT("vm.boot_pages", &boot_pages);
SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
"number of pages allocated for bootstrapping the VM system");
static int pa_tryrelock_restart;
SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
&pa_tryrelock_restart, 0, "Number of tryrelock restarts");
static uma_zone_t fakepg_zone;
static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
static void vm_page_queue_remove(int queue, vm_page_t m);
static void vm_page_enqueue(int queue, vm_page_t m);
static void vm_page_init_fakepg(void *dummy);
SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
static void
vm_page_init_fakepg(void *dummy)
{
fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
}
/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
#if PAGE_SIZE == 32768
#ifdef CTASSERT
CTASSERT(sizeof(u_long) >= 8);
#endif
#endif
/*
* Try to acquire a physical address lock while a pmap is locked. If we
* fail to trylock we unlock and lock the pmap directly and cache the
* locked pa in *locked. The caller should then restart their loop in case
* the virtual to physical mapping has changed.
*/
int
vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
{
vm_paddr_t lockpa;
lockpa = *locked;
*locked = pa;
if (lockpa) {
PA_LOCK_ASSERT(lockpa, MA_OWNED);
if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
return (0);
PA_UNLOCK(lockpa);
}
if (PA_TRYLOCK(pa))
return (0);
PMAP_UNLOCK(pmap);
atomic_add_int(&pa_tryrelock_restart, 1);
PA_LOCK(pa);
PMAP_LOCK(pmap);
return (EAGAIN);
}
/*
* vm_set_page_size:
*
* Sets the page size, perhaps based upon the memory
* size. Must be called before any use of page-size
* dependent functions.
*/
void
vm_set_page_size(void)
{
if (cnt.v_page_size == 0)
cnt.v_page_size = PAGE_SIZE;
if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
panic("vm_set_page_size: page size not a power of two");
}
/*
* vm_page_blacklist_lookup:
*
* See if a physical address in this page has been listed
* in the blacklist tunable. Entries in the tunable are
* separated by spaces or commas. If an invalid integer is
* encountered then the rest of the string is skipped.
*/
static int
vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
{
vm_paddr_t bad;
char *cp, *pos;
for (pos = list; *pos != '\0'; pos = cp) {
bad = strtoq(pos, &cp, 0);
if (*cp != '\0') {
if (*cp == ' ' || *cp == ',') {
cp++;
if (cp == pos)
continue;
} else
break;
}
if (pa == trunc_page(bad))
return (1);
}
return (0);
}
/*
* vm_page_startup:
*
* Initializes the resident memory module.
*
* Allocates memory for the page cells, and
* for the object/offset-to-page hash table headers.
* Each page cell is initialized and placed on the free list.
*/
vm_offset_t
vm_page_startup(vm_offset_t vaddr)
{
vm_offset_t mapped;
vm_paddr_t page_range;
vm_paddr_t new_end;
int i;
vm_paddr_t pa;
vm_paddr_t last_pa;
char *list;
/* the biggest memory array is the second group of pages */
vm_paddr_t end;
vm_paddr_t biggestsize;
vm_paddr_t low_water, high_water;
int biggestone;
biggestsize = 0;
biggestone = 0;
vaddr = round_page(vaddr);
for (i = 0; phys_avail[i + 1]; i += 2) {
phys_avail[i] = round_page(phys_avail[i]);
phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
}
low_water = phys_avail[0];
high_water = phys_avail[1];
for (i = 0; phys_avail[i + 1]; i += 2) {
vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
if (size > biggestsize) {
biggestone = i;
biggestsize = size;
}
if (phys_avail[i] < low_water)
low_water = phys_avail[i];
if (phys_avail[i + 1] > high_water)
high_water = phys_avail[i + 1];
}
#ifdef XEN
low_water = 0;
#endif
end = phys_avail[biggestone+1];
/*
* Initialize the locks.
*/
mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
MTX_RECURSE);
mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
MTX_DEF);
/* Setup page locks. */
for (i = 0; i < PA_LOCK_COUNT; i++)
mtx_init(&pa_lock[i].data, "page lock", NULL, MTX_DEF);
/*
* Initialize the queue headers for the hold queue, the active queue,
* and the inactive queue.
*/
for (i = 0; i < PQ_COUNT; i++)
TAILQ_INIT(&vm_page_queues[i].pl);
vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
/*
* Allocate memory for use when boot strapping the kernel memory
* allocator.
*/
new_end = end - (boot_pages * UMA_SLAB_SIZE);
new_end = trunc_page(new_end);
mapped = pmap_map(&vaddr, new_end, end,
VM_PROT_READ | VM_PROT_WRITE);
bzero((void *)mapped, end - new_end);
uma_startup((void *)mapped, boot_pages);
#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
defined(__mips__)
/*
* Allocate a bitmap to indicate that a random physical page
* needs to be included in a minidump.
*
* The amd64 port needs this to indicate which direct map pages
* need to be dumped, via calls to dump_add_page()/dump_drop_page().
*
* However, i386 still needs this workspace internally within the
* minidump code. In theory, they are not needed on i386, but are
* included should the sf_buf code decide to use them.
*/
last_pa = 0;
for (i = 0; dump_avail[i + 1] != 0; i += 2)
if (dump_avail[i + 1] > last_pa)
last_pa = dump_avail[i + 1];
page_range = last_pa / PAGE_SIZE;
vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
new_end -= vm_page_dump_size;
vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
bzero((void *)vm_page_dump, vm_page_dump_size);
#endif
#ifdef __amd64__
/*
* Request that the physical pages underlying the message buffer be
* included in a crash dump. Since the message buffer is accessed
* through the direct map, they are not automatically included.
*/
pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
last_pa = pa + round_page(msgbufsize);
while (pa < last_pa) {
dump_add_page(pa);
pa += PAGE_SIZE;
}
#endif
/*
* Compute the number of pages of memory that will be available for
* use (taking into account the overhead of a page structure per
* page).
*/
first_page = low_water / PAGE_SIZE;
#ifdef VM_PHYSSEG_SPARSE
page_range = 0;
for (i = 0; phys_avail[i + 1] != 0; i += 2)
page_range += atop(phys_avail[i + 1] - phys_avail[i]);
#elif defined(VM_PHYSSEG_DENSE)
page_range = high_water / PAGE_SIZE - first_page;
#else
#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
#endif
end = new_end;
/*
* Reserve an unmapped guard page to trap access to vm_page_array[-1].
*/
vaddr += PAGE_SIZE;
/*
* Initialize the mem entry structures now, and put them in the free
* queue.
*/
new_end = trunc_page(end - page_range * sizeof(struct vm_page));
mapped = pmap_map(&vaddr, new_end, end,
VM_PROT_READ | VM_PROT_WRITE);
vm_page_array = (vm_page_t) mapped;
#if VM_NRESERVLEVEL > 0
/*
* Allocate memory for the reservation management system's data
* structures.
*/
new_end = vm_reserv_startup(&vaddr, new_end, high_water);
#endif
#if defined(__amd64__) || defined(__mips__)
/*
* pmap_map on amd64 and mips can come out of the direct-map, not kvm
* like i386, so the pages must be tracked for a crashdump to include
* this data. This includes the vm_page_array and the early UMA
* bootstrap pages.
*/
for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
dump_add_page(pa);
#endif
phys_avail[biggestone + 1] = new_end;
/*
* Clear all of the page structures
*/
bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
for (i = 0; i < page_range; i++)
vm_page_array[i].order = VM_NFREEORDER;
vm_page_array_size = page_range;
/*
* Initialize the physical memory allocator.
*/
vm_phys_init();
/*
* Add every available physical page that is not blacklisted to
* the free lists.
*/
cnt.v_page_count = 0;
cnt.v_free_count = 0;
list = getenv("vm.blacklist");
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
pa = phys_avail[i];
last_pa = phys_avail[i + 1];
while (pa < last_pa) {
if (list != NULL &&
vm_page_blacklist_lookup(list, pa))
printf("Skipping page with pa 0x%jx\n",
(uintmax_t)pa);
else
vm_phys_add_page(pa);
pa += PAGE_SIZE;
}
}
freeenv(list);
#if VM_NRESERVLEVEL > 0
/*
* Initialize the reservation management system.
*/
vm_reserv_init();
#endif
return (vaddr);
}
CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0);
void
vm_page_aflag_set(vm_page_t m, uint8_t bits)
{
uint32_t *addr, val;
/*
* The PGA_WRITEABLE flag can only be set if the page is managed and
* VPO_BUSY. Currently, this flag is only set by pmap_enter().
*/
KASSERT((bits & PGA_WRITEABLE) == 0 ||
(m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == VPO_BUSY,
("PGA_WRITEABLE and !VPO_BUSY"));
/*
* We want to use atomic updates for m->aflags, which is a
* byte wide. Not all architectures provide atomic operations
* on the single-byte destination. Punt and access the whole
* 4-byte word with an atomic update. Parallel non-atomic
* updates to the fields included in the update by proximity
* are handled properly by atomics.
*/
addr = (void *)&m->aflags;
MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
val = bits;
#if BYTE_ORDER == BIG_ENDIAN
val <<= 24;
#endif
atomic_set_32(addr, val);
}
void
vm_page_aflag_clear(vm_page_t m, uint8_t bits)
{
uint32_t *addr, val;
/*
* The PGA_REFERENCED flag can only be cleared if the object
* containing the page is locked.
*/
KASSERT((bits & PGA_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
("PGA_REFERENCED and !VM_OBJECT_LOCKED"));
/*
* See the comment in vm_page_aflag_set().
*/
addr = (void *)&m->aflags;
MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
val = bits;
#if BYTE_ORDER == BIG_ENDIAN
val <<= 24;
#endif
atomic_clear_32(addr, val);
}
void
vm_page_reference(vm_page_t m)
{
vm_page_aflag_set(m, PGA_REFERENCED);
}
void
vm_page_busy(vm_page_t m)
{
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
KASSERT((m->oflags & VPO_BUSY) == 0,
("vm_page_busy: page already busy!!!"));
m->oflags |= VPO_BUSY;
}
/*
* vm_page_flash:
*
* wakeup anyone waiting for the page.
*/
void
vm_page_flash(vm_page_t m)
{
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if (m->oflags & VPO_WANTED) {
m->oflags &= ~VPO_WANTED;
wakeup(m);
}
}
/*
* vm_page_wakeup:
*
* clear the VPO_BUSY flag and wakeup anyone waiting for the
* page.
*
*/
void
vm_page_wakeup(vm_page_t m)
{
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
m->oflags &= ~VPO_BUSY;
vm_page_flash(m);
}
void
vm_page_io_start(vm_page_t m)
{
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
m->busy++;
}
void
vm_page_io_finish(vm_page_t m)
{
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
m->busy--;
if (m->busy == 0)
vm_page_flash(m);
}
/*
* Keep page from being freed by the page daemon
* much of the same effect as wiring, except much lower
* overhead and should be used only for *very* temporary
* holding ("wiring").
*/
void
vm_page_hold(vm_page_t mem)
{
vm_page_lock_assert(mem, MA_OWNED);
mem->hold_count++;
}
void
vm_page_unhold(vm_page_t mem)
{
vm_page_lock_assert(mem, MA_OWNED);
--mem->hold_count;
KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
vm_page_free_toq(mem);
}
/*
* vm_page_unhold_pages:
*
* Unhold each of the pages that is referenced by the given array.
*/
void
vm_page_unhold_pages(vm_page_t *ma, int count)
{
struct mtx *mtx, *new_mtx;
mtx = NULL;
for (; count != 0; count--) {
/*
* Avoid releasing and reacquiring the same page lock.
*/
new_mtx = vm_page_lockptr(*ma);
if (mtx != new_mtx) {
if (mtx != NULL)
mtx_unlock(mtx);
mtx = new_mtx;
mtx_lock(mtx);
}
vm_page_unhold(*ma);
ma++;
}
if (mtx != NULL)
mtx_unlock(mtx);
}
/*
* vm_page_getfake:
*
* Create a fictitious page with the specified physical address and
* memory attribute. The memory attribute is the only the machine-
* dependent aspect of a fictitious page that must be initialized.
*/
vm_page_t
vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
{
vm_page_t m;
m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
m->phys_addr = paddr;
m->queue = PQ_NONE;
/* Fictitious pages don't use "segind". */
m->flags = PG_FICTITIOUS;
/* Fictitious pages don't use "order" or "pool". */
m->oflags = VPO_BUSY | VPO_UNMANAGED;
m->wire_count = 1;
pmap_page_set_memattr(m, memattr);
return (m);
}
/*
* vm_page_putfake:
*
* Release a fictitious page.
*/
void
vm_page_putfake(vm_page_t m)
{
KASSERT((m->flags & PG_FICTITIOUS) != 0,
("vm_page_putfake: bad page %p", m));
uma_zfree(fakepg_zone, m);
}
/*
* vm_page_updatefake:
*
* Update the given fictitious page to the specified physical address and
* memory attribute.
*/
void
vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
{
KASSERT((m->flags & PG_FICTITIOUS) != 0,
("vm_page_updatefake: bad page %p", m));
m->phys_addr = paddr;
pmap_page_set_memattr(m, memattr);
}
/*
* vm_page_free:
*
* Free a page.
*/
void
vm_page_free(vm_page_t m)
{
m->flags &= ~PG_ZERO;
vm_page_free_toq(m);
}
/*
* vm_page_free_zero:
*
* Free a page to the zerod-pages queue
*/
void
vm_page_free_zero(vm_page_t m)
{
m->flags |= PG_ZERO;
vm_page_free_toq(m);
}
/*
* vm_page_sleep:
*
* Sleep and release the page and page queues locks.
*
* The object containing the given page must be locked.
*/
void
vm_page_sleep(vm_page_t m, const char *msg)
{
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if (mtx_owned(&vm_page_queue_mtx))
vm_page_unlock_queues();
if (mtx_owned(vm_page_lockptr(m)))
vm_page_unlock(m);
/*
* It's possible that while we sleep, the page will get
* unbusied and freed. If we are holding the object
* lock, we will assume we hold a reference to the object
* such that even if m->object changes, we can re-lock
* it.
*/
m->oflags |= VPO_WANTED;
msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
}
/*
* vm_page_dirty:
*
* Set all bits in the page's dirty field.
*
* The object containing the specified page must be locked if the
* call is made from the machine-independent layer.
*
* See vm_page_clear_dirty_mask().
*/
void
vm_page_dirty(vm_page_t m)
{
KASSERT((m->flags & PG_CACHED) == 0,
("vm_page_dirty: page in cache!"));
KASSERT(!VM_PAGE_IS_FREE(m),
("vm_page_dirty: page is free!"));
KASSERT(m->valid == VM_PAGE_BITS_ALL,
("vm_page_dirty: page is invalid!"));
m->dirty = VM_PAGE_BITS_ALL;
}
/*
* vm_page_splay:
*
* Implements Sleator and Tarjan's top-down splay algorithm. Returns
* the vm_page containing the given pindex. If, however, that
* pindex is not found in the vm_object, returns a vm_page that is
* adjacent to the pindex, coming before or after it.
*/
vm_page_t
vm_page_splay(vm_pindex_t pindex, vm_page_t root)
{
struct vm_page dummy;
vm_page_t lefttreemax, righttreemin, y;
if (root == NULL)
return (root);
lefttreemax = righttreemin = &dummy;
for (;; root = y) {
if (pindex < root->pindex) {
if ((y = root->left) == NULL)
break;
if (pindex < y->pindex) {
/* Rotate right. */
root->left = y->right;
y->right = root;
root = y;
if ((y = root->left) == NULL)
break;
}
/* Link into the new root's right tree. */
righttreemin->left = root;
righttreemin = root;
} else if (pindex > root->pindex) {
if ((y = root->right) == NULL)
break;
if (pindex > y->pindex) {
/* Rotate left. */
root->right = y->left;
y->left = root;
root = y;
if ((y = root->right) == NULL)
break;
}
/* Link into the new root's left tree. */
lefttreemax->right = root;
lefttreemax = root;
} else
break;
}
/* Assemble the new root. */
lefttreemax->right = root->left;
righttreemin->left = root->right;
root->left = dummy.right;
root->right = dummy.left;
return (root);
}
/*
* vm_page_insert: [ internal use only ]
*
* Inserts the given mem entry into the object and object list.
*
* The pagetables are not updated but will presumably fault the page
* in if necessary, or if a kernel page the caller will at some point
* enter the page into the kernel's pmap. We are not allowed to block
* here so we *can't* do this anyway.
*
* The object and page must be locked.
* This routine may not block.
*/
void
vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
{
#ifdef VM_RADIX
vm_page_t neighbor;
#else
vm_page_t root;
#endif
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
if (m->object != NULL)
panic("vm_page_insert: page already inserted");
/*
* Record the object/offset pair in this page
*/
m->object = object;
m->pindex = pindex;
#ifdef VM_RADIX
if (object->resident_page_count == 0) {
TAILQ_INSERT_TAIL(&object->memq, m, listq);
} else {
neighbor = vm_radix_lookup_ge(&object->rtree, pindex);
if (neighbor != NULL) {
KASSERT(pindex != neighbor->pindex,
("vm_page_insert: offset already allocated"));
TAILQ_INSERT_BEFORE(neighbor, m, listq);
} else
TAILQ_INSERT_TAIL(&object->memq, m, listq);
}
if (vm_radix_insert(&object->rtree, pindex, m) != 0)
panic("vm_page_insert: unable to insert the new page");
#else
/*
* Now link into the object's ordered list of backed pages.
*/
root = object->root;
if (root == NULL) {
m->left = NULL;
m->right = NULL;
TAILQ_INSERT_TAIL(&object->memq, m, listq);
} else {
root = vm_page_splay(pindex, root);
if (pindex < root->pindex) {
m->left = root->left;
m->right = root;
root->left = NULL;
TAILQ_INSERT_BEFORE(root, m, listq);
} else if (pindex == root->pindex)
panic("vm_page_insert: offset already allocated");
else {
m->right = root->right;
m->left = root;
root->right = NULL;
TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
}
}
object->root = m;
#endif
/*
* show that the object has one more resident page.
*/
object->resident_page_count++;
/*
* Hold the vnode until the last page is released.
*/
if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
vhold((struct vnode *)object->handle);
/*
* Since we are inserting a new and possibly dirty page,
* update the object's OBJ_MIGHTBEDIRTY flag.
*/
if (m->aflags & PGA_WRITEABLE)
vm_object_set_writeable_dirty(object);
}
/*
* vm_page_remove:
* NOTE: used by device pager as well -wfj
*
* Removes the given mem entry from the object/offset-page
* table and the object page list, but do not invalidate/terminate
* the backing store.
*
* The object and page must be locked.
* The underlying pmap entry (if any) is NOT removed here.
* This routine may not block.
*/
void
vm_page_remove(vm_page_t m)
{
vm_object_t object;
#ifndef VM_RADIX
vm_page_t root;
#endif
if ((m->oflags & VPO_UNMANAGED) == 0)
vm_page_lock_assert(m, MA_OWNED);
if ((object = m->object) == NULL)
return;
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
if (m->oflags & VPO_BUSY) {
m->oflags &= ~VPO_BUSY;
vm_page_flash(m);
}
#ifdef VM_RADIX
vm_radix_remove(&object->rtree, m->pindex);
#else
/*
* Now remove from the object's list of backed pages.
*/
if (m != object->root)
vm_page_splay(m->pindex, object->root);
if (m->left == NULL)
root = m->right;
else {
root = vm_page_splay(m->pindex, m->left);
root->right = m->right;
}
object->root = root;
#endif
TAILQ_REMOVE(&object->memq, m, listq);
/*
* And show that the object has one fewer resident page.
*/
object->resident_page_count--;
/*
* The vnode may now be recycled.
*/
if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
vdrop((struct vnode *)object->handle);
m->object = NULL;
}
/*
* vm_page_lookup:
*
* Returns the page associated with the object/offset
* pair specified; if none is found, NULL is returned.
*
* The object must be locked.
* This routine may not block.
* This is a critical path routine
*/
vm_page_t
vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
{
vm_page_t m;
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
#ifdef VM_RADIX
m = vm_radix_lookup(&object->rtree, pindex);
#else
if ((m = object->root) != NULL && m->pindex != pindex) {
m = vm_page_splay(pindex, m);
if ((object->root = m)->pindex != pindex)
m = NULL;
}
#endif
return (m);
}
/*
* vm_page_find_least:
*
* Returns the page associated with the object with least pindex
* greater than or equal to the parameter pindex, or NULL.
*
* The object must be locked.
* The routine may not block.
*/
vm_page_t
vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
{
vm_page_t m;
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
#ifdef VM_RADIX
if ((m = TAILQ_FIRST(&object->memq)) != NULL)
m = vm_radix_lookup_ge(&object->rtree, pindex);
#else
if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
if (m->pindex < pindex) {
m = vm_page_splay(pindex, object->root);
if ((object->root = m)->pindex < pindex)
m = TAILQ_NEXT(m, listq);
}
}
#endif
return (m);
}
/*
* Returns the given page's successor (by pindex) within the object if it is
* resident; if none is found, NULL is returned.
*
* The object must be locked.
*/
vm_page_t
vm_page_next(vm_page_t m)
{
vm_page_t next;
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if ((next = TAILQ_NEXT(m, listq)) != NULL &&
next->pindex != m->pindex + 1)
next = NULL;
return (next);
}
/*
* Returns the given page's predecessor (by pindex) within the object if it is
* resident; if none is found, NULL is returned.
*
* The object must be locked.
*/
vm_page_t
vm_page_prev(vm_page_t m)
{
vm_page_t prev;
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
prev->pindex != m->pindex - 1)
prev = NULL;
return (prev);
}
/*
* vm_page_rename:
*
* Move the given memory entry from its
* current object to the specified target object/offset.
*
* The object must be locked.
* This routine may not block.
*
* Note: swap associated with the page must be invalidated by the move. We
* have to do this for several reasons: (1) we aren't freeing the
* page, (2) we are dirtying the page, (3) the VM system is probably
* moving the page from object A to B, and will then later move
* the backing store from A to B and we can't have a conflict.
*
* Note: we *always* dirty the page. It is necessary both for the
* fact that we moved it, and because we may be invalidating
* swap. If the page is on the cache, we have to deactivate it
* or vm_page_dirty() will panic. Dirty pages are not allowed
* on the cache.
*/
void
vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
{
vm_page_remove(m);
vm_page_insert(m, new_object, new_pindex);
vm_page_dirty(m);
}
/*
* Convert all of the given object's cached pages that have a
* pindex within the given range into free pages. If the value
* zero is given for "end", then the range's upper bound is
* infinity. If the given object is backed by a vnode and it
* transitions from having one or more cached pages to none, the
* vnode's hold count is reduced.
*/
void
vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
{
vm_page_t m, m_next;
boolean_t empty;
mtx_lock(&vm_page_queue_free_mtx);
if (__predict_false(object->cache == NULL)) {
mtx_unlock(&vm_page_queue_free_mtx);
return;
}
m = object->cache = vm_page_splay(start, object->cache);
if (m->pindex < start) {
if (m->right == NULL)
m = NULL;
else {
m_next = vm_page_splay(start, m->right);
m_next->left = m;
m->right = NULL;
m = object->cache = m_next;
}
}
/*
* At this point, "m" is either (1) a reference to the page
* with the least pindex that is greater than or equal to
* "start" or (2) NULL.
*/
for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
/*
* Find "m"'s successor and remove "m" from the
* object's cache.
*/
if (m->right == NULL) {
object->cache = m->left;
m_next = NULL;
} else {
m_next = vm_page_splay(start, m->right);
m_next->left = m->left;
object->cache = m_next;
}
/* Convert "m" to a free page. */
m->object = NULL;
m->valid = 0;
/* Clear PG_CACHED and set PG_FREE. */
m->flags ^= PG_CACHED | PG_FREE;
KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
("vm_page_cache_free: page %p has inconsistent flags", m));
cnt.v_cache_count--;
cnt.v_free_count++;
}
empty = object->cache == NULL;
mtx_unlock(&vm_page_queue_free_mtx);
if (object->type == OBJT_VNODE && empty)
vdrop(object->handle);
}
/*
* Returns the cached page that is associated with the given
* object and offset. If, however, none exists, returns NULL.
*
* The free page queue must be locked.
*/
static inline vm_page_t
vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
{
vm_page_t m;
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
if ((m = object->cache) != NULL && m->pindex != pindex) {
m = vm_page_splay(pindex, m);
if ((object->cache = m)->pindex != pindex)
m = NULL;
}
return (m);
}
/*
* Remove the given cached page from its containing object's
* collection of cached pages.
*
* The free page queue must be locked.
*/
void
vm_page_cache_remove(vm_page_t m)
{
vm_object_t object;
vm_page_t root;
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
KASSERT((m->flags & PG_CACHED) != 0,
("vm_page_cache_remove: page %p is not cached", m));
object = m->object;
if (m != object->cache) {
root = vm_page_splay(m->pindex, object->cache);
KASSERT(root == m,
("vm_page_cache_remove: page %p is not cached in object %p",
m, object));
}
if (m->left == NULL)
root = m->right;
else if (m->right == NULL)
root = m->left;
else {
root = vm_page_splay(m->pindex, m->left);
root->right = m->right;
}
object->cache = root;
m->object = NULL;
cnt.v_cache_count--;
}
/*
* Transfer all of the cached pages with offset greater than or
* equal to 'offidxstart' from the original object's cache to the
* new object's cache. However, any cached pages with offset
* greater than or equal to the new object's size are kept in the
* original object. Initially, the new object's cache must be
* empty. Offset 'offidxstart' in the original object must
* correspond to offset zero in the new object.
*
* The new object must be locked.
*/
void
vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
vm_object_t new_object)
{
vm_page_t m, m_next;
/*
* Insertion into an object's collection of cached pages
* requires the object to be locked. In contrast, removal does
* not.
*/
VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
KASSERT(new_object->cache == NULL,
("vm_page_cache_transfer: object %p has cached pages",
new_object));
mtx_lock(&vm_page_queue_free_mtx);
if ((m = orig_object->cache) != NULL) {
/*
* Transfer all of the pages with offset greater than or
* equal to 'offidxstart' from the original object's
* cache to the new object's cache.
*/
m = vm_page_splay(offidxstart, m);
if (m->pindex < offidxstart) {
orig_object->cache = m;
new_object->cache = m->right;
m->right = NULL;
} else {
orig_object->cache = m->left;
new_object->cache = m;
m->left = NULL;
}
while ((m = new_object->cache) != NULL) {
if ((m->pindex - offidxstart) >= new_object->size) {
/*
* Return all of the cached pages with
* offset greater than or equal to the
* new object's size to the original
* object's cache.
*/
new_object->cache = m->left;
m->left = orig_object->cache;
orig_object->cache = m;
break;
}
m_next = vm_page_splay(m->pindex, m->right);
/* Update the page's object and offset. */
m->object = new_object;
m->pindex -= offidxstart;
if (m_next == NULL)
break;
m->right = NULL;
m_next->left = m;
new_object->cache = m_next;
}
KASSERT(new_object->cache == NULL ||
new_object->type == OBJT_SWAP,
("vm_page_cache_transfer: object %p's type is incompatible"
" with cached pages", new_object));
}
mtx_unlock(&vm_page_queue_free_mtx);
}
/*
* vm_page_alloc:
*
* Allocate and return a memory cell associated
* with this VM object/offset pair.
*
* The caller must always specify an allocation class.
*
* allocation classes:
* VM_ALLOC_NORMAL normal process request
* VM_ALLOC_SYSTEM system *really* needs a page
* VM_ALLOC_INTERRUPT interrupt time request
*
* optional allocation flags:
* VM_ALLOC_ZERO prefer a zeroed page
* VM_ALLOC_WIRED wire the allocated page
* VM_ALLOC_NOOBJ page is not associated with a vm object
* VM_ALLOC_NOBUSY do not set the page busy
* VM_ALLOC_IFCACHED return page only if it is cached
* VM_ALLOC_IFNOTCACHED return NULL, do not reactivate if the page
* is cached
*
* This routine may not sleep.
*/
vm_page_t
vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
{
struct vnode *vp = NULL;
vm_object_t m_object;
vm_page_t m;
int flags, page_req;
if ((req & VM_ALLOC_NOOBJ) == 0) {
KASSERT(object != NULL,
("vm_page_alloc: NULL object."));
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
}
page_req = req & VM_ALLOC_CLASS_MASK;
/*
* The pager is allowed to eat deeper into the free page list.
*/
if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT))
page_req = VM_ALLOC_SYSTEM;
mtx_lock(&vm_page_queue_free_mtx);
if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
(page_req == VM_ALLOC_SYSTEM &&
cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
(page_req == VM_ALLOC_INTERRUPT &&
cnt.v_free_count + cnt.v_cache_count > 0)) {
/*
* Allocate from the free queue if the number of free pages
* exceeds the minimum for the request class.
*/
if (object != NULL &&
(m = vm_page_cache_lookup(object, pindex)) != NULL) {
if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
mtx_unlock(&vm_page_queue_free_mtx);
return (NULL);
}
if (vm_phys_unfree_page(m))
vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
#if VM_NRESERVLEVEL > 0
else if (!vm_reserv_reactivate_page(m))
#else
else
#endif
panic("vm_page_alloc: cache page %p is missing"
" from the free queue", m);
} else if ((req & VM_ALLOC_IFCACHED) != 0) {
mtx_unlock(&vm_page_queue_free_mtx);
return (NULL);
#if VM_NRESERVLEVEL > 0
} else if (object == NULL || object->type == OBJT_DEVICE ||
object->type == OBJT_SG ||
(object->flags & OBJ_COLORED) == 0 ||
(m = vm_reserv_alloc_page(object, pindex)) == NULL) {
#else
} else {
#endif
m = vm_phys_alloc_pages(object != NULL ?
VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
#if VM_NRESERVLEVEL > 0
if (m == NULL && vm_reserv_reclaim_inactive()) {
m = vm_phys_alloc_pages(object != NULL ?
VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
0);
}
#endif
}
} else {
/*
* Not allocatable, give up.
*/
mtx_unlock(&vm_page_queue_free_mtx);
atomic_add_int(&vm_pageout_deficit,
MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
pagedaemon_wakeup();
return (NULL);
}
/*
* At this point we had better have found a good page.
*/
KASSERT(m != NULL, ("vm_page_alloc: missing page"));
KASSERT(m->queue == PQ_NONE,
("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
("vm_page_alloc: page %p has unexpected memattr %d", m,
pmap_page_get_memattr(m)));
if ((m->flags & PG_CACHED) != 0) {
KASSERT(m->valid != 0,
("vm_page_alloc: cached page %p is invalid", m));
if (m->object == object && m->pindex == pindex)
cnt.v_reactivated++;
else
m->valid = 0;
m_object = m->object;
vm_page_cache_remove(m);
if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
vp = m_object->handle;
} else {
KASSERT(VM_PAGE_IS_FREE(m),
("vm_page_alloc: page %p is not free", m));
KASSERT(m->valid == 0,
("vm_page_alloc: free page %p is valid", m));
cnt.v_free_count--;
}
/*
* Only the PG_ZERO flag is inherited. The PG_CACHED or PG_FREE flag
* must be cleared before the free page queues lock is released.
*/
flags = 0;
if (m->flags & PG_ZERO) {
vm_page_zero_count--;
if (req & VM_ALLOC_ZERO)
flags = PG_ZERO;
}
m->flags = flags;
mtx_unlock(&vm_page_queue_free_mtx);
m->aflags = 0;
if (object == NULL || object->type == OBJT_PHYS)
m->oflags = VPO_UNMANAGED;
else
m->oflags = 0;
if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
m->oflags |= VPO_BUSY;
if (req & VM_ALLOC_WIRED) {
/*
* The page lock is not required for wiring a page until that
* page is inserted into the object.
*/
atomic_add_int(&cnt.v_wire_count, 1);
m->wire_count = 1;
}
m->act_count = 0;
if (object != NULL) {
/* Ignore device objects; the pager sets "memattr" for them. */
if (object->memattr != VM_MEMATTR_DEFAULT &&
object->type != OBJT_DEVICE && object->type != OBJT_SG)
pmap_page_set_memattr(m, object->memattr);
vm_page_insert(m, object, pindex);
} else
m->pindex = pindex;
/*
* The following call to vdrop() must come after the above call
* to vm_page_insert() in case both affect the same object and
* vnode. Otherwise, the affected vnode's hold count could
* temporarily become zero.
*/
if (vp != NULL)
vdrop(vp);
/*
* Don't wakeup too often - wakeup the pageout daemon when
* we would be nearly out of memory.
*/
if (vm_paging_needed())
pagedaemon_wakeup();
return (m);
}
/*
* Initialize a page that has been freshly dequeued from a freelist.
* The caller has to drop the vnode returned, if it is not NULL.
*
* To be called with vm_page_queue_free_mtx held.
*/
struct vnode *
vm_page_alloc_init(vm_page_t m)
{
struct vnode *drop;
vm_object_t m_object;
KASSERT(m->queue == PQ_NONE,
("vm_page_alloc_init: page %p has unexpected queue %d",
m, m->queue));
KASSERT(m->wire_count == 0,
("vm_page_alloc_init: page %p is wired", m));
KASSERT(m->hold_count == 0,
("vm_page_alloc_init: page %p is held", m));
KASSERT(m->busy == 0,
("vm_page_alloc_init: page %p is busy", m));
KASSERT(m->dirty == 0,
("vm_page_alloc_init: page %p is dirty", m));
KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
("vm_page_alloc_init: page %p has unexpected memattr %d",
m, pmap_page_get_memattr(m)));
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
drop = NULL;
if ((m->flags & PG_CACHED) != 0) {
m->valid = 0;
m_object = m->object;
vm_page_cache_remove(m);
if (m_object->type == OBJT_VNODE &&
m_object->cache == NULL)
drop = m_object->handle;
} else {
KASSERT(VM_PAGE_IS_FREE(m),
("vm_page_alloc_init: page %p is not free", m));
KASSERT(m->valid == 0,
("vm_page_alloc_init: free page %p is valid", m));
cnt.v_free_count--;
}
if (m->flags & PG_ZERO)
vm_page_zero_count--;
/* Don't clear the PG_ZERO flag; we'll need it later. */
m->flags &= PG_ZERO;
m->aflags = 0;
m->oflags = VPO_UNMANAGED;
/* Unmanaged pages don't use "act_count". */
return (drop);
}
/*
* vm_page_alloc_freelist:
*
* Allocate a page from the specified freelist.
* Only the ALLOC_CLASS values in req are honored, other request flags
* are ignored.
*/
vm_page_t
vm_page_alloc_freelist(int flind, int req)
{
struct vnode *drop;
vm_page_t m;
int page_req;
m = NULL;
page_req = req & VM_ALLOC_CLASS_MASK;
mtx_lock(&vm_page_queue_free_mtx);
/*
* Do not allocate reserved pages unless the req has asked for it.
*/
if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
(page_req == VM_ALLOC_SYSTEM &&
cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
(page_req == VM_ALLOC_INTERRUPT &&
cnt.v_free_count + cnt.v_cache_count > 0)) {
m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
}
if (m == NULL) {
mtx_unlock(&vm_page_queue_free_mtx);
return (NULL);
}
drop = vm_page_alloc_init(m);
mtx_unlock(&vm_page_queue_free_mtx);
if (drop)
vdrop(drop);
return (m);
}
/*
* vm_wait: (also see VM_WAIT macro)
*
* Block until free pages are available for allocation
* - Called in various places before memory allocations.
*/
void
vm_wait(void)
{
mtx_lock(&vm_page_queue_free_mtx);
if (curproc == pageproc) {
vm_pageout_pages_needed = 1;
msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
PDROP | PSWP, "VMWait", 0);
} else {
if (!vm_pages_needed) {
vm_pages_needed = 1;
wakeup(&vm_pages_needed);
}
msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
"vmwait", 0);
}
}
/*
* vm_waitpfault: (also see VM_WAITPFAULT macro)
*
* Block until free pages are available for allocation
* - Called only in vm_fault so that processes page faulting
* can be easily tracked.
* - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
* processes will be able to grab memory first. Do not change
* this balance without careful testing first.
*/
void
vm_waitpfault(void)
{
mtx_lock(&vm_page_queue_free_mtx);
if (!vm_pages_needed) {
vm_pages_needed = 1;
wakeup(&vm_pages_needed);
}
msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
"pfault", 0);
}
/*
* vm_page_requeue:
*
* Move the given page to the tail of its present page queue.
*
* The page queues must be locked.
*/
void
vm_page_requeue(vm_page_t m)
{
struct vpgqueues *vpq;
int queue;
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
queue = m->queue;
KASSERT(queue != PQ_NONE,
("vm_page_requeue: page %p is not queued", m));
vpq = &vm_page_queues[queue];
TAILQ_REMOVE(&vpq->pl, m, pageq);
TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
}
/*
* vm_page_queue_remove:
*
* Remove the given page from the specified queue.
*
* The page and page queues must be locked.
*/
static __inline void
vm_page_queue_remove(int queue, vm_page_t m)
{
struct vpgqueues *pq;
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
vm_page_lock_assert(m, MA_OWNED);
pq = &vm_page_queues[queue];
TAILQ_REMOVE(&pq->pl, m, pageq);
(*pq->cnt)--;
}
/*
* vm_pageq_remove:
*
* Remove a page from its queue.
*
* The given page must be locked.
* This routine may not block.
*/
void
vm_pageq_remove(vm_page_t m)
{
int queue;
vm_page_lock_assert(m, MA_OWNED);
if ((queue = m->queue) != PQ_NONE) {
vm_page_lock_queues();
m->queue = PQ_NONE;
vm_page_queue_remove(queue, m);
vm_page_unlock_queues();
}
}
/*
* vm_page_enqueue:
*
* Add the given page to the specified queue.
*
* The page queues must be locked.
*/
static void
vm_page_enqueue(int queue, vm_page_t m)
{
struct vpgqueues *vpq;
vpq = &vm_page_queues[queue];
m->queue = queue;
TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
++*vpq->cnt;
}
/*
* vm_page_activate:
*
* Put the specified page on the active list (if appropriate).
* Ensure that act_count is at least ACT_INIT but do not otherwise
* mess with it.
*
* The page must be locked.
* This routine may not block.
*/
void
vm_page_activate(vm_page_t m)
{
int queue;
vm_page_lock_assert(m, MA_OWNED);
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if ((queue = m->queue) != PQ_ACTIVE) {
if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
if (m->act_count < ACT_INIT)
m->act_count = ACT_INIT;
vm_page_lock_queues();
if (queue != PQ_NONE)
vm_page_queue_remove(queue, m);
vm_page_enqueue(PQ_ACTIVE, m);
vm_page_unlock_queues();
} else
KASSERT(queue == PQ_NONE,
("vm_page_activate: wired page %p is queued", m));
} else {
if (m->act_count < ACT_INIT)
m->act_count = ACT_INIT;
}
}
/*
* vm_page_free_wakeup:
*
* Helper routine for vm_page_free_toq() and vm_page_cache(). This
* routine is called when a page has been added to the cache or free
* queues.
*
* The page queues must be locked.
* This routine may not block.
*/
static inline void
vm_page_free_wakeup(void)
{
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
/*
* if pageout daemon needs pages, then tell it that there are
* some free.
*/
if (vm_pageout_pages_needed &&
cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
wakeup(&vm_pageout_pages_needed);
vm_pageout_pages_needed = 0;
}
/*
* wakeup processes that are waiting on memory if we hit a
* high water mark. And wakeup scheduler process if we have
* lots of memory. this process will swapin processes.
*/
if (vm_pages_needed && !vm_page_count_min()) {
vm_pages_needed = 0;
wakeup(&cnt.v_free_count);
}
}
/*
* vm_page_free_toq:
*
* Returns the given page to the free list,
* disassociating it with any VM object.
*
* Object and page must be locked prior to entry.
* This routine may not block.
*/
void
vm_page_free_toq(vm_page_t m)
{
if ((m->oflags & VPO_UNMANAGED) == 0) {
vm_page_lock_assert(m, MA_OWNED);
KASSERT(!pmap_page_is_mapped(m),
("vm_page_free_toq: freeing mapped page %p", m));
}
PCPU_INC(cnt.v_tfree);
if (VM_PAGE_IS_FREE(m))
panic("vm_page_free: freeing free page %p", m);
else if (m->busy != 0)
panic("vm_page_free: freeing busy page %p", m);
/*
* unqueue, then remove page. Note that we cannot destroy
* the page here because we do not want to call the pager's
* callback routine until after we've put the page on the
* appropriate free queue.
*/
if ((m->oflags & VPO_UNMANAGED) == 0)
vm_pageq_remove(m);
vm_page_remove(m);
/*
* If fictitious remove object association and
* return, otherwise delay object association removal.
*/
if ((m->flags & PG_FICTITIOUS) != 0) {
return;
}
m->valid = 0;
vm_page_undirty(m);
if (m->wire_count != 0)
panic("vm_page_free: freeing wired page %p", m);
if (m->hold_count != 0) {
m->flags &= ~PG_ZERO;
vm_page_lock_queues();
vm_page_enqueue(PQ_HOLD, m);
vm_page_unlock_queues();
} else {
/*
* Restore the default memory attribute to the page.
*/
if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
/*
* Insert the page into the physical memory allocator's
* cache/free page queues.
*/
mtx_lock(&vm_page_queue_free_mtx);
m->flags |= PG_FREE;
cnt.v_free_count++;
#if VM_NRESERVLEVEL > 0
if (!vm_reserv_free_page(m))
#else
if (TRUE)
#endif
vm_phys_free_pages(m, 0);
if ((m->flags & PG_ZERO) != 0)
++vm_page_zero_count;
else
vm_page_zero_idle_wakeup();
vm_page_free_wakeup();
mtx_unlock(&vm_page_queue_free_mtx);
}
}
/*
* vm_page_wire:
*
* Mark this page as wired down by yet
* another map, removing it from paging queues
* as necessary.
*
* If the page is fictitious, then its wire count must remain one.
*
* The page must be locked.
* This routine may not block.
*/
void
vm_page_wire(vm_page_t m)
{
/*
* Only bump the wire statistics if the page is not already wired,
* and only unqueue the page if it is on some queue (if it is unmanaged
* it is already off the queues).
*/
vm_page_lock_assert(m, MA_OWNED);
if ((m->flags & PG_FICTITIOUS) != 0) {
KASSERT(m->wire_count == 1,
("vm_page_wire: fictitious page %p's wire count isn't one",
m));
return;
}
if (m->wire_count == 0) {
if ((m->oflags & VPO_UNMANAGED) == 0)
vm_pageq_remove(m);
atomic_add_int(&cnt.v_wire_count, 1);
}
m->wire_count++;
KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
}
/*
* vm_page_unwire:
*
* Release one wiring of the specified page, potentially enabling it to be
* paged again. If paging is enabled, then the value of the parameter
* "activate" determines to which queue the page is added. If "activate" is
* non-zero, then the page is added to the active queue. Otherwise, it is
* added to the inactive queue.
*
* However, unless the page belongs to an object, it is not enqueued because
* it cannot be paged out.
*
* If a page is fictitious, then its wire count must alway be one.
*
* A managed page must be locked.
*/
void
vm_page_unwire(vm_page_t m, int activate)
{
if ((m->oflags & VPO_UNMANAGED) == 0)
vm_page_lock_assert(m, MA_OWNED);
if ((m->flags & PG_FICTITIOUS) != 0) {
KASSERT(m->wire_count == 1,
("vm_page_unwire: fictitious page %p's wire count isn't one", m));
return;
}
if (m->wire_count > 0) {
m->wire_count--;
if (m->wire_count == 0) {
atomic_subtract_int(&cnt.v_wire_count, 1);
if ((m->oflags & VPO_UNMANAGED) != 0 ||
m->object == NULL)
return;
vm_page_lock_queues();
if (activate)
vm_page_enqueue(PQ_ACTIVE, m);
else {
m->flags &= ~PG_WINATCFLS;
vm_page_enqueue(PQ_INACTIVE, m);
}
vm_page_unlock_queues();
}
} else
panic("vm_page_unwire: page %p's wire count is zero", m);
}
/*
* Move the specified page to the inactive queue.
*
* Many pages placed on the inactive queue should actually go
* into the cache, but it is difficult to figure out which. What
* we do instead, if the inactive target is well met, is to put
* clean pages at the head of the inactive queue instead of the tail.
* This will cause them to be moved to the cache more quickly and
* if not actively re-referenced, reclaimed more quickly. If we just
* stick these pages at the end of the inactive queue, heavy filesystem
* meta-data accesses can cause an unnecessary paging load on memory bound
* processes. This optimization causes one-time-use metadata to be
* reused more quickly.
*
* Normally athead is 0 resulting in LRU operation. athead is set
* to 1 if we want this page to be 'as if it were placed in the cache',
* except without unmapping it from the process address space.
*
* This routine may not block.
*/
static inline void
_vm_page_deactivate(vm_page_t m, int athead)
{
int queue;
vm_page_lock_assert(m, MA_OWNED);
/*
* Ignore if already inactive.
*/
if ((queue = m->queue) == PQ_INACTIVE)
return;
if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
vm_page_lock_queues();
m->flags &= ~PG_WINATCFLS;
if (queue != PQ_NONE)
vm_page_queue_remove(queue, m);
if (athead)
TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
pageq);
else
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
pageq);
m->queue = PQ_INACTIVE;
cnt.v_inactive_count++;
vm_page_unlock_queues();
}
}
/*
* Move the specified page to the inactive queue.
*
* The page must be locked.
*/
void
vm_page_deactivate(vm_page_t m)
{
_vm_page_deactivate(m, 0);
}
/*
* vm_page_try_to_cache:
*
* Returns 0 on failure, 1 on success
*/
int
vm_page_try_to_cache(vm_page_t m)
{
vm_page_lock_assert(m, MA_OWNED);
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if (m->dirty || m->hold_count || m->busy || m->wire_count ||
(m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
return (0);
pmap_remove_all(m);
if (m->dirty)
return (0);
vm_page_cache(m);
return (1);
}
/*
* vm_page_try_to_free()
*
* Attempt to free the page. If we cannot free it, we do nothing.
* 1 is returned on success, 0 on failure.
*/
int
vm_page_try_to_free(vm_page_t m)
{
vm_page_lock_assert(m, MA_OWNED);
if (m->object != NULL)
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if (m->dirty || m->hold_count || m->busy || m->wire_count ||
(m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
return (0);
pmap_remove_all(m);
if (m->dirty)
return (0);
vm_page_free(m);
return (1);
}
/*
* vm_page_cache
*
* Put the specified page onto the page cache queue (if appropriate).
*
* This routine may not block.
*/
void
vm_page_cache(vm_page_t m)
{
vm_object_t object;
vm_page_t root;
vm_page_lock_assert(m, MA_OWNED);
object = m->object;
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
m->hold_count || m->wire_count)
panic("vm_page_cache: attempting to cache busy page");
pmap_remove_all(m);
if (m->dirty != 0)
panic("vm_page_cache: page %p is dirty", m);
if (m->valid == 0 || object->type == OBJT_DEFAULT ||
(object->type == OBJT_SWAP &&
!vm_pager_has_page(object, m->pindex, NULL, NULL))) {
/*
* Hypothesis: A cache-elgible page belonging to a
* default object or swap object but without a backing
* store must be zero filled.
*/
vm_page_free(m);
return;
}
KASSERT((m->flags & PG_CACHED) == 0,
("vm_page_cache: page %p is already cached", m));
PCPU_INC(cnt.v_tcached);
/*
* Remove the page from the paging queues.
*/
vm_pageq_remove(m);
#ifdef VM_RADIX
vm_radix_remove(&object->rtree, m->pindex);
#else
/*
* Remove the page from the object's collection of resident
* pages.
*/
if (m != object->root)
vm_page_splay(m->pindex, object->root);
if (m->left == NULL)
root = m->right;
else {
root = vm_page_splay(m->pindex, m->left);
root->right = m->right;
}
object->root = root;
#endif
TAILQ_REMOVE(&object->memq, m, listq);
object->resident_page_count--;
/*
* Restore the default memory attribute to the page.
*/
if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
/*
* Insert the page into the object's collection of cached pages
* and the physical memory allocator's cache/free page queues.
*/
m->flags &= ~PG_ZERO;
mtx_lock(&vm_page_queue_free_mtx);
m->flags |= PG_CACHED;
cnt.v_cache_count++;
root = object->cache;
if (root == NULL) {
m->left = NULL;
m->right = NULL;
} else {
root = vm_page_splay(m->pindex, root);
if (m->pindex < root->pindex) {
m->left = root->left;
m->right = root;
root->left = NULL;
} else if (__predict_false(m->pindex == root->pindex))
panic("vm_page_cache: offset already cached");
else {
m->right = root->right;
m->left = root;
root->right = NULL;
}
}
object->cache = m;
#if VM_NRESERVLEVEL > 0
if (!vm_reserv_free_page(m)) {
#else
if (TRUE) {
#endif
vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
vm_phys_free_pages(m, 0);
}
vm_page_free_wakeup();
mtx_unlock(&vm_page_queue_free_mtx);
/*
* Increment the vnode's hold count if this is the object's only
* cached page. Decrement the vnode's hold count if this was
* the object's only resident page.
*/
if (object->type == OBJT_VNODE) {
if (root == NULL && object->resident_page_count != 0)
vhold(object->handle);
else if (root != NULL && object->resident_page_count == 0)
vdrop(object->handle);
}
}
/*
* vm_page_dontneed
*
* Cache, deactivate, or do nothing as appropriate. This routine
* is typically used by madvise() MADV_DONTNEED.
*
* Generally speaking we want to move the page into the cache so
* it gets reused quickly. However, this can result in a silly syndrome
* due to the page recycling too quickly. Small objects will not be
* fully cached. On the otherhand, if we move the page to the inactive
* queue we wind up with a problem whereby very large objects
* unnecessarily blow away our inactive and cache queues.
*
* The solution is to move the pages based on a fixed weighting. We
* either leave them alone, deactivate them, or move them to the cache,
* where moving them to the cache has the highest weighting.
* By forcing some pages into other queues we eventually force the
* system to balance the queues, potentially recovering other unrelated
* space from active. The idea is to not force this to happen too
* often.
*/
void
vm_page_dontneed(vm_page_t m)
{
int dnw;
int head;
vm_page_lock_assert(m, MA_OWNED);
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
dnw = PCPU_GET(dnweight);
PCPU_INC(dnweight);
/*
* Occasionally leave the page alone.
*/
if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
if (m->act_count >= ACT_INIT)
--m->act_count;
return;
}
/*
* Clear any references to the page. Otherwise, the page daemon will
* immediately reactivate the page.
*
* Perform the pmap_clear_reference() first. Otherwise, a concurrent
* pmap operation, such as pmap_remove(), could clear a reference in
* the pmap and set PGA_REFERENCED on the page before the
* pmap_clear_reference() had completed. Consequently, the page would
* appear referenced based upon an old reference that occurred before
* this function ran.
*/
pmap_clear_reference(m);
vm_page_aflag_clear(m, PGA_REFERENCED);
if (m->dirty == 0 && pmap_is_modified(m))
vm_page_dirty(m);
if (m->dirty || (dnw & 0x0070) == 0) {
/*
* Deactivate the page 3 times out of 32.
*/
head = 0;
} else {
/*
* Cache the page 28 times out of every 32. Note that
* the page is deactivated instead of cached, but placed
* at the head of the queue instead of the tail.
*/
head = 1;
}
_vm_page_deactivate(m, head);
}
/*
* Grab a page, waiting until we are waken up due to the page
* changing state. We keep on waiting, if the page continues
* to be in the object. If the page doesn't exist, first allocate it
* and then conditionally zero it.
*
* The caller must always specify the VM_ALLOC_RETRY flag. This is intended
* to facilitate its eventual removal.
*
* This routine may block.
*/
vm_page_t
vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
{
vm_page_t m;
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
("vm_page_grab: VM_ALLOC_RETRY is required"));
retrylookup:
if ((m = vm_page_lookup(object, pindex)) != NULL) {
if ((m->oflags & VPO_BUSY) != 0 ||
((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
/*
* Reference the page before unlocking and
* sleeping so that the page daemon is less
* likely to reclaim it.
*/
vm_page_aflag_set(m, PGA_REFERENCED);
vm_page_sleep(m, "pgrbwt");
goto retrylookup;
} else {
if ((allocflags & VM_ALLOC_WIRED) != 0) {
vm_page_lock(m);
vm_page_wire(m);
vm_page_unlock(m);
}
if ((allocflags & VM_ALLOC_NOBUSY) == 0)
vm_page_busy(m);
return (m);
}
}
m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
VM_ALLOC_IGN_SBUSY));
if (m == NULL) {
VM_OBJECT_UNLOCK(object);
VM_WAIT;
VM_OBJECT_LOCK(object);
goto retrylookup;
} else if (m->valid != 0)
return (m);
if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
return (m);
}
/*
* Mapping function for valid bits or for dirty bits in
* a page. May not block.
*
* Inputs are required to range within a page.
*/
int
vm_page_bits(int base, int size)
{
int first_bit;
int last_bit;
KASSERT(
base + size <= PAGE_SIZE,
("vm_page_bits: illegal base/size %d/%d", base, size)
);
if (size == 0) /* handle degenerate case */
return (0);
first_bit = base >> DEV_BSHIFT;
last_bit = (base + size - 1) >> DEV_BSHIFT;
return ((2 << last_bit) - (1 << first_bit));
}
/*
* vm_page_set_valid:
*
* Sets portions of a page valid. The arguments are expected
* to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
* of any partial chunks touched by the range. The invalid portion of
* such chunks will be zeroed.
*
* (base + size) must be less then or equal to PAGE_SIZE.
*/
void
vm_page_set_valid(vm_page_t m, int base, int size)
{
int endoff, frag;
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if (size == 0) /* handle degenerate case */
return;
/*
* If the base is not DEV_BSIZE aligned and the valid
* bit is clear, we have to zero out a portion of the
* first block.
*/
if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
(m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
pmap_zero_page_area(m, frag, base - frag);
/*
* If the ending offset is not DEV_BSIZE aligned and the
* valid bit is clear, we have to zero out a portion of
* the last block.
*/
endoff = base + size;
if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
(m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
pmap_zero_page_area(m, endoff,
DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
/*
* Assert that no previously invalid block that is now being validated
* is already dirty.
*/
KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
("vm_page_set_valid: page %p is dirty", m));
/*
* Set valid bits inclusive of any overlap.
*/
m->valid |= vm_page_bits(base, size);
}
/*
* Clear the given bits from the specified page's dirty field.
*/
static __inline void
vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
{
uintptr_t addr;
#if PAGE_SIZE < 16384
int shift;
#endif
/*
* If the object is locked and the page is neither VPO_BUSY nor
* PGA_WRITEABLE, then the page's dirty field cannot possibly be
* set by a concurrent pmap operation.
*/
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if ((m->oflags & VPO_BUSY) == 0 && (m->aflags & PGA_WRITEABLE) == 0)
m->dirty &= ~pagebits;
else {
/*
* The pmap layer can call vm_page_dirty() without
* holding a distinguished lock. The combination of
* the object's lock and an atomic operation suffice
* to guarantee consistency of the page dirty field.
*
* For PAGE_SIZE == 32768 case, compiler already
* properly aligns the dirty field, so no forcible
* alignment is needed. Only require existence of
* atomic_clear_64 when page size is 32768.
*/
addr = (uintptr_t)&m->dirty;
#if PAGE_SIZE == 32768
#error pagebits too short
atomic_clear_64((uint64_t *)addr, pagebits);
#elif PAGE_SIZE == 16384
atomic_clear_32((uint32_t *)addr, pagebits);
#else /* PAGE_SIZE <= 8192 */
/*
* Use a trick to perform a 32-bit atomic on the
* containing aligned word, to not depend on the existence
* of atomic_clear_{8, 16}.
*/
shift = addr & (sizeof(uint32_t) - 1);
#if BYTE_ORDER == BIG_ENDIAN
shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
#else
shift *= NBBY;
#endif
addr &= ~(sizeof(uint32_t) - 1);
atomic_clear_32((uint32_t *)addr, pagebits << shift);
#endif /* PAGE_SIZE */
}
}
/*
* vm_page_set_validclean:
*
* Sets portions of a page valid and clean. The arguments are expected
* to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
* of any partial chunks touched by the range. The invalid portion of
* such chunks will be zero'd.
*
* This routine may not block.
*
* (base + size) must be less then or equal to PAGE_SIZE.
*/
void
vm_page_set_validclean(vm_page_t m, int base, int size)
{
u_long oldvalid;
int endoff, frag, pagebits;
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if (size == 0) /* handle degenerate case */
return;
/*
* If the base is not DEV_BSIZE aligned and the valid
* bit is clear, we have to zero out a portion of the
* first block.
*/
if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
(m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
pmap_zero_page_area(m, frag, base - frag);
/*
* If the ending offset is not DEV_BSIZE aligned and the
* valid bit is clear, we have to zero out a portion of
* the last block.
*/
endoff = base + size;
if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
(m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
pmap_zero_page_area(m, endoff,
DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
/*
* Set valid, clear dirty bits. If validating the entire
* page we can safely clear the pmap modify bit. We also
* use this opportunity to clear the VPO_NOSYNC flag. If a process
* takes a write fault on a MAP_NOSYNC memory area the flag will
* be set again.
*
* We set valid bits inclusive of any overlap, but we can only
* clear dirty bits for DEV_BSIZE chunks that are fully within
* the range.
*/
oldvalid = m->valid;
pagebits = vm_page_bits(base, size);
m->valid |= pagebits;
#if 0 /* NOT YET */
if ((frag = base & (DEV_BSIZE - 1)) != 0) {
frag = DEV_BSIZE - frag;
base += frag;
size -= frag;
if (size < 0)
size = 0;
}
pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
#endif
if (base == 0 && size == PAGE_SIZE) {
/*
* The page can only be modified within the pmap if it is
* mapped, and it can only be mapped if it was previously
* fully valid.
*/
if (oldvalid == VM_PAGE_BITS_ALL)
/*
* Perform the pmap_clear_modify() first. Otherwise,
* a concurrent pmap operation, such as
* pmap_protect(), could clear a modification in the
* pmap and set the dirty field on the page before
* pmap_clear_modify() had begun and after the dirty
* field was cleared here.
*/
pmap_clear_modify(m);
m->dirty = 0;
m->oflags &= ~VPO_NOSYNC;
} else if (oldvalid != VM_PAGE_BITS_ALL)
m->dirty &= ~pagebits;
else
vm_page_clear_dirty_mask(m, pagebits);
}
void
vm_page_clear_dirty(vm_page_t m, int base, int size)
{
vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
}
/*
* vm_page_set_invalid:
*
* Invalidates DEV_BSIZE'd chunks within a page. Both the
* valid and dirty bits for the effected areas are cleared.
*
* May not block.
*/
void
vm_page_set_invalid(vm_page_t m, int base, int size)
{
int bits;
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
KASSERT((m->oflags & VPO_BUSY) == 0,
("vm_page_set_invalid: page %p is busy", m));
bits = vm_page_bits(base, size);
if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
pmap_remove_all(m);
KASSERT(!pmap_page_is_mapped(m),
("vm_page_set_invalid: page %p is mapped", m));
m->valid &= ~bits;
m->dirty &= ~bits;
}
/*
* vm_page_zero_invalid()
*
* The kernel assumes that the invalid portions of a page contain
* garbage, but such pages can be mapped into memory by user code.
* When this occurs, we must zero out the non-valid portions of the
* page so user code sees what it expects.
*
* Pages are most often semi-valid when the end of a file is mapped
* into memory and the file's size is not page aligned.
*/
void
vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
{
int b;
int i;
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
/*
* Scan the valid bits looking for invalid sections that
* must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
* valid bit may be set ) have already been zerod by
* vm_page_set_validclean().
*/
for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
if (i == (PAGE_SIZE / DEV_BSIZE) ||
(m->valid & (1 << i))
) {
if (i > b) {
pmap_zero_page_area(m,
b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
}
b = i + 1;
}
}
/*
* setvalid is TRUE when we can safely set the zero'd areas
* as being valid. We can do this if there are no cache consistancy
* issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
*/
if (setvalid)
m->valid = VM_PAGE_BITS_ALL;
}
/*
* vm_page_is_valid:
*
* Is (partial) page valid? Note that the case where size == 0
* will return FALSE in the degenerate case where the page is
* entirely invalid, and TRUE otherwise.
*
* May not block.
*/
int
vm_page_is_valid(vm_page_t m, int base, int size)
{
int bits = vm_page_bits(base, size);
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if (m->valid && ((m->valid & bits) == bits))
return 1;
else
return 0;
}
/*
* update dirty bits from pmap/mmu. May not block.
*/
void
vm_page_test_dirty(vm_page_t m)
{
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
vm_page_dirty(m);
}
int so_zerocp_fullpage = 0;
/*
* Replace the given page with a copy. The copied page assumes
* the portion of the given page's "wire_count" that is not the
* responsibility of this copy-on-write mechanism.
*
* The object containing the given page must have a non-zero
* paging-in-progress count and be locked.
*/
void
vm_page_cowfault(vm_page_t m)
{
vm_page_t mnew;
vm_object_t object;
vm_pindex_t pindex;
mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
vm_page_lock_assert(m, MA_OWNED);
object = m->object;
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
KASSERT(object->paging_in_progress != 0,
("vm_page_cowfault: object %p's paging-in-progress count is zero.",
object));
pindex = m->pindex;
retry_alloc:
pmap_remove_all(m);
vm_page_remove(m);
mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
if (mnew == NULL) {
vm_page_insert(m, object, pindex);
vm_page_unlock(m);
VM_OBJECT_UNLOCK(object);
VM_WAIT;
VM_OBJECT_LOCK(object);
if (m == vm_page_lookup(object, pindex)) {
vm_page_lock(m);
goto retry_alloc;
} else {
/*
* Page disappeared during the wait.
*/
return;
}
}
if (m->cow == 0) {
/*
* check to see if we raced with an xmit complete when
* waiting to allocate a page. If so, put things back
* the way they were
*/
vm_page_unlock(m);
vm_page_lock(mnew);
vm_page_free(mnew);
vm_page_unlock(mnew);
vm_page_insert(m, object, pindex);
} else { /* clear COW & copy page */
if (!so_zerocp_fullpage)
pmap_copy_page(m, mnew);
mnew->valid = VM_PAGE_BITS_ALL;
vm_page_dirty(mnew);
mnew->wire_count = m->wire_count - m->cow;
m->wire_count = m->cow;
vm_page_unlock(m);
}
}
void
vm_page_cowclear(vm_page_t m)
{
vm_page_lock_assert(m, MA_OWNED);
if (m->cow) {
m->cow--;
/*
* let vm_fault add back write permission lazily
*/
}
/*
* sf_buf_free() will free the page, so we needn't do it here
*/
}
int
vm_page_cowsetup(vm_page_t m)
{
vm_page_lock_assert(m, MA_OWNED);
if ((m->flags & PG_FICTITIOUS) != 0 ||
(m->oflags & VPO_UNMANAGED) != 0 ||
m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
return (EBUSY);
m->cow++;
pmap_remove_write(m);
VM_OBJECT_UNLOCK(m->object);
return (0);
}
#ifdef INVARIANTS
void
vm_page_object_lock_assert(vm_page_t m)
{
/*
* Certain of the page's fields may only be modified by the
* holder of the containing object's lock or the setter of the
* page's VPO_BUSY flag. Unfortunately, the setter of the
* VPO_BUSY flag is not recorded, and thus cannot be checked
* here.
*/
if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
}
#endif
#include "opt_ddb.h"
#ifdef DDB
#include <sys/kernel.h>
#include <ddb/ddb.h>
DB_SHOW_COMMAND(page, vm_page_print_page_info)
{
db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
}
DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
{
db_printf("PQ_FREE:");
db_printf(" %d", cnt.v_free_count);
db_printf("\n");
db_printf("PQ_CACHE:");
db_printf(" %d", cnt.v_cache_count);
db_printf("\n");
db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
*vm_page_queues[PQ_ACTIVE].cnt,
*vm_page_queues[PQ_INACTIVE].cnt);
}
#endif /* DDB */