freebsd-skq/sys/dev/vge/if_vge.c
Gleb Smirnoff 1bffa9511f Use define from if_var.h to access a field inside struct if_data,
that resides in struct ifnet.

Sponsored by:	Nginx, Inc.
2014-08-30 19:55:54 +00:00

2930 lines
79 KiB
C

/*-
* Copyright (c) 2004
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
*
* Written by Bill Paul <wpaul@windriver.com>
* Senior Networking Software Engineer
* Wind River Systems
*/
/*
* The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
* combines a tri-speed ethernet MAC and PHY, with the following
* features:
*
* o Jumbo frame support up to 16K
* o Transmit and receive flow control
* o IPv4 checksum offload
* o VLAN tag insertion and stripping
* o TCP large send
* o 64-bit multicast hash table filter
* o 64 entry CAM filter
* o 16K RX FIFO and 48K TX FIFO memory
* o Interrupt moderation
*
* The VT6122 supports up to four transmit DMA queues. The descriptors
* in the transmit ring can address up to 7 data fragments; frames which
* span more than 7 data buffers must be coalesced, but in general the
* BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
* long. The receive descriptors address only a single buffer.
*
* There are two peculiar design issues with the VT6122. One is that
* receive data buffers must be aligned on a 32-bit boundary. This is
* not a problem where the VT6122 is used as a LOM device in x86-based
* systems, but on architectures that generate unaligned access traps, we
* have to do some copying.
*
* The other issue has to do with the way 64-bit addresses are handled.
* The DMA descriptors only allow you to specify 48 bits of addressing
* information. The remaining 16 bits are specified using one of the
* I/O registers. If you only have a 32-bit system, then this isn't
* an issue, but if you have a 64-bit system and more than 4GB of
* memory, you must have to make sure your network data buffers reside
* in the same 48-bit 'segment.'
*
* Special thanks to Ryan Fu at VIA Networking for providing documentation
* and sample NICs for testing.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
MODULE_DEPEND(vge, pci, 1, 1, 1);
MODULE_DEPEND(vge, ether, 1, 1, 1);
MODULE_DEPEND(vge, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#include <dev/vge/if_vgereg.h>
#include <dev/vge/if_vgevar.h>
#define VGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
/* Tunables */
static int msi_disable = 0;
TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
/*
* The SQE error counter of MIB seems to report bogus value.
* Vendor's workaround does not seem to work on PCIe based
* controllers. Disable it until we find better workaround.
*/
#undef VGE_ENABLE_SQEERR
/*
* Various supported device vendors/types and their names.
*/
static struct vge_type vge_devs[] = {
{ VIA_VENDORID, VIA_DEVICEID_61XX,
"VIA Networking Velocity Gigabit Ethernet" },
{ 0, 0, NULL }
};
static int vge_attach(device_t);
static int vge_detach(device_t);
static int vge_probe(device_t);
static int vge_resume(device_t);
static int vge_shutdown(device_t);
static int vge_suspend(device_t);
static void vge_cam_clear(struct vge_softc *);
static int vge_cam_set(struct vge_softc *, uint8_t *);
static void vge_clrwol(struct vge_softc *);
static void vge_discard_rxbuf(struct vge_softc *, int);
static int vge_dma_alloc(struct vge_softc *);
static void vge_dma_free(struct vge_softc *);
static void vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
#ifdef VGE_EEPROM
static void vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
#endif
static int vge_encap(struct vge_softc *, struct mbuf **);
#ifndef __NO_STRICT_ALIGNMENT
static __inline void
vge_fixup_rx(struct mbuf *);
#endif
static void vge_freebufs(struct vge_softc *);
static void vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int vge_ifmedia_upd(struct ifnet *);
static int vge_ifmedia_upd_locked(struct vge_softc *);
static void vge_init(void *);
static void vge_init_locked(struct vge_softc *);
static void vge_intr(void *);
static void vge_intr_holdoff(struct vge_softc *);
static int vge_ioctl(struct ifnet *, u_long, caddr_t);
static void vge_link_statchg(void *);
static int vge_miibus_readreg(device_t, int, int);
static int vge_miibus_writereg(device_t, int, int, int);
static void vge_miipoll_start(struct vge_softc *);
static void vge_miipoll_stop(struct vge_softc *);
static int vge_newbuf(struct vge_softc *, int);
static void vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
static void vge_reset(struct vge_softc *);
static int vge_rx_list_init(struct vge_softc *);
static int vge_rxeof(struct vge_softc *, int);
static void vge_rxfilter(struct vge_softc *);
static void vge_setmedia(struct vge_softc *);
static void vge_setvlan(struct vge_softc *);
static void vge_setwol(struct vge_softc *);
static void vge_start(struct ifnet *);
static void vge_start_locked(struct ifnet *);
static void vge_stats_clear(struct vge_softc *);
static void vge_stats_update(struct vge_softc *);
static void vge_stop(struct vge_softc *);
static void vge_sysctl_node(struct vge_softc *);
static int vge_tx_list_init(struct vge_softc *);
static void vge_txeof(struct vge_softc *);
static void vge_watchdog(void *);
static device_method_t vge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, vge_probe),
DEVMETHOD(device_attach, vge_attach),
DEVMETHOD(device_detach, vge_detach),
DEVMETHOD(device_suspend, vge_suspend),
DEVMETHOD(device_resume, vge_resume),
DEVMETHOD(device_shutdown, vge_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, vge_miibus_readreg),
DEVMETHOD(miibus_writereg, vge_miibus_writereg),
DEVMETHOD_END
};
static driver_t vge_driver = {
"vge",
vge_methods,
sizeof(struct vge_softc)
};
static devclass_t vge_devclass;
DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
#ifdef VGE_EEPROM
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void
vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
{
int i;
uint16_t word = 0;
/*
* Enter EEPROM embedded programming mode. In order to
* access the EEPROM at all, we first have to set the
* EELOAD bit in the CHIPCFG2 register.
*/
CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
/* Select the address of the word we want to read */
CSR_WRITE_1(sc, VGE_EEADDR, addr);
/* Issue read command */
CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
/* Wait for the done bit to be set. */
for (i = 0; i < VGE_TIMEOUT; i++) {
if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
break;
}
if (i == VGE_TIMEOUT) {
device_printf(sc->vge_dev, "EEPROM read timed out\n");
*dest = 0;
return;
}
/* Read the result */
word = CSR_READ_2(sc, VGE_EERDDAT);
/* Turn off EEPROM access mode. */
CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
*dest = word;
}
#endif
/*
* Read a sequence of words from the EEPROM.
*/
static void
vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
{
int i;
#ifdef VGE_EEPROM
uint16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
vge_eeprom_getword(sc, off + i, &word);
ptr = (uint16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
#else
for (i = 0; i < ETHER_ADDR_LEN; i++)
dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
#endif
}
static void
vge_miipoll_stop(struct vge_softc *sc)
{
int i;
CSR_WRITE_1(sc, VGE_MIICMD, 0);
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
break;
}
if (i == VGE_TIMEOUT)
device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
}
static void
vge_miipoll_start(struct vge_softc *sc)
{
int i;
/* First, make sure we're idle. */
CSR_WRITE_1(sc, VGE_MIICMD, 0);
CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
break;
}
if (i == VGE_TIMEOUT) {
device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
return;
}
/* Now enable auto poll mode. */
CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
/* And make sure it started. */
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
break;
}
if (i == VGE_TIMEOUT)
device_printf(sc->vge_dev, "failed to start MII autopoll\n");
}
static int
vge_miibus_readreg(device_t dev, int phy, int reg)
{
struct vge_softc *sc;
int i;
uint16_t rval = 0;
sc = device_get_softc(dev);
vge_miipoll_stop(sc);
/* Specify the register we want to read. */
CSR_WRITE_1(sc, VGE_MIIADDR, reg);
/* Issue read command. */
CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
/* Wait for the read command bit to self-clear. */
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
break;
}
if (i == VGE_TIMEOUT)
device_printf(sc->vge_dev, "MII read timed out\n");
else
rval = CSR_READ_2(sc, VGE_MIIDATA);
vge_miipoll_start(sc);
return (rval);
}
static int
vge_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct vge_softc *sc;
int i, rval = 0;
sc = device_get_softc(dev);
vge_miipoll_stop(sc);
/* Specify the register we want to write. */
CSR_WRITE_1(sc, VGE_MIIADDR, reg);
/* Specify the data we want to write. */
CSR_WRITE_2(sc, VGE_MIIDATA, data);
/* Issue write command. */
CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
/* Wait for the write command bit to self-clear. */
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
break;
}
if (i == VGE_TIMEOUT) {
device_printf(sc->vge_dev, "MII write timed out\n");
rval = EIO;
}
vge_miipoll_start(sc);
return (rval);
}
static void
vge_cam_clear(struct vge_softc *sc)
{
int i;
/*
* Turn off all the mask bits. This tells the chip
* that none of the entries in the CAM filter are valid.
* desired entries will be enabled as we fill the filter in.
*/
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
for (i = 0; i < 8; i++)
CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
/* Clear the VLAN filter too. */
CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
for (i = 0; i < 8; i++)
CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
CSR_WRITE_1(sc, VGE_CAMADDR, 0);
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
sc->vge_camidx = 0;
}
static int
vge_cam_set(struct vge_softc *sc, uint8_t *addr)
{
int i, error = 0;
if (sc->vge_camidx == VGE_CAM_MAXADDRS)
return (ENOSPC);
/* Select the CAM data page. */
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
/* Set the filter entry we want to update and enable writing. */
CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
/* Write the address to the CAM registers */
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
/* Issue a write command. */
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
/* Wake for it to clear. */
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
break;
}
if (i == VGE_TIMEOUT) {
device_printf(sc->vge_dev, "setting CAM filter failed\n");
error = EIO;
goto fail;
}
/* Select the CAM mask page. */
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
/* Set the mask bit that enables this filter. */
CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
1<<(sc->vge_camidx & 7));
sc->vge_camidx++;
fail:
/* Turn off access to CAM. */
CSR_WRITE_1(sc, VGE_CAMADDR, 0);
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
return (error);
}
static void
vge_setvlan(struct vge_softc *sc)
{
struct ifnet *ifp;
uint8_t cfg;
VGE_LOCK_ASSERT(sc);
ifp = sc->vge_ifp;
cfg = CSR_READ_1(sc, VGE_RXCFG);
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
cfg |= VGE_VTAG_OPT2;
else
cfg &= ~VGE_VTAG_OPT2;
CSR_WRITE_1(sc, VGE_RXCFG, cfg);
}
/*
* Program the multicast filter. We use the 64-entry CAM filter
* for perfect filtering. If there's more than 64 multicast addresses,
* we use the hash filter instead.
*/
static void
vge_rxfilter(struct vge_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t h, hashes[2];
uint8_t rxcfg;
int error = 0;
VGE_LOCK_ASSERT(sc);
/* First, zot all the multicast entries. */
hashes[0] = 0;
hashes[1] = 0;
rxcfg = CSR_READ_1(sc, VGE_RXCTL);
rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
VGE_RXCTL_RX_PROMISC);
/*
* Always allow VLAN oversized frames and frames for
* this host.
*/
rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
ifp = sc->vge_ifp;
if ((ifp->if_flags & IFF_BROADCAST) != 0)
rxcfg |= VGE_RXCTL_RX_BCAST;
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if ((ifp->if_flags & IFF_PROMISC) != 0)
rxcfg |= VGE_RXCTL_RX_PROMISC;
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
hashes[0] = 0xFFFFFFFF;
hashes[1] = 0xFFFFFFFF;
}
goto done;
}
vge_cam_clear(sc);
/* Now program new ones */
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
error = vge_cam_set(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (error)
break;
}
/* If there were too many addresses, use the hash filter. */
if (error) {
vge_cam_clear(sc);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
}
if_maddr_runlock(ifp);
done:
if (hashes[0] != 0 || hashes[1] != 0)
rxcfg |= VGE_RXCTL_RX_MCAST;
CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
}
static void
vge_reset(struct vge_softc *sc)
{
int i;
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(5);
if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
break;
}
if (i == VGE_TIMEOUT) {
device_printf(sc->vge_dev, "soft reset timed out\n");
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
DELAY(2000);
}
DELAY(5000);
}
/*
* Probe for a VIA gigabit chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
vge_probe(device_t dev)
{
struct vge_type *t;
t = vge_devs;
while (t->vge_name != NULL) {
if ((pci_get_vendor(dev) == t->vge_vid) &&
(pci_get_device(dev) == t->vge_did)) {
device_set_desc(dev, t->vge_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
/*
* Map a single buffer address.
*/
struct vge_dmamap_arg {
bus_addr_t vge_busaddr;
};
static void
vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct vge_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
ctx = (struct vge_dmamap_arg *)arg;
ctx->vge_busaddr = segs[0].ds_addr;
}
static int
vge_dma_alloc(struct vge_softc *sc)
{
struct vge_dmamap_arg ctx;
struct vge_txdesc *txd;
struct vge_rxdesc *rxd;
bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
int error, i;
/*
* It seems old PCI controllers do not support DAC. DAC
* configuration can be enabled by accessing VGE_CHIPCFG3
* register but honor EEPROM configuration instead of
* blindly overriding DAC configuration. PCIe based
* controllers are supposed to support 64bit DMA so enable
* 64bit DMA on these controllers.
*/
if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
lowaddr = BUS_SPACE_MAXADDR;
else
lowaddr = BUS_SPACE_MAXADDR_32BIT;
again:
/* Create parent ring tag. */
error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
1, 0, /* algnmnt, boundary */
lowaddr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vge_cdata.vge_ring_tag);
if (error != 0) {
device_printf(sc->vge_dev,
"could not create parent DMA tag.\n");
goto fail;
}
/* Create tag for Tx ring. */
error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
VGE_TX_RING_ALIGN, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
VGE_TX_LIST_SZ, /* maxsize */
1, /* nsegments */
VGE_TX_LIST_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vge_cdata.vge_tx_ring_tag);
if (error != 0) {
device_printf(sc->vge_dev,
"could not allocate Tx ring DMA tag.\n");
goto fail;
}
/* Create tag for Rx ring. */
error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
VGE_RX_RING_ALIGN, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
VGE_RX_LIST_SZ, /* maxsize */
1, /* nsegments */
VGE_RX_LIST_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vge_cdata.vge_rx_ring_tag);
if (error != 0) {
device_printf(sc->vge_dev,
"could not allocate Rx ring DMA tag.\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
(void **)&sc->vge_rdata.vge_tx_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->vge_cdata.vge_tx_ring_map);
if (error != 0) {
device_printf(sc->vge_dev,
"could not allocate DMA'able memory for Tx ring.\n");
goto fail;
}
ctx.vge_busaddr = 0;
error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
if (error != 0 || ctx.vge_busaddr == 0) {
device_printf(sc->vge_dev,
"could not load DMA'able memory for Tx ring.\n");
goto fail;
}
sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
(void **)&sc->vge_rdata.vge_rx_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->vge_cdata.vge_rx_ring_map);
if (error != 0) {
device_printf(sc->vge_dev,
"could not allocate DMA'able memory for Rx ring.\n");
goto fail;
}
ctx.vge_busaddr = 0;
error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
if (error != 0 || ctx.vge_busaddr == 0) {
device_printf(sc->vge_dev,
"could not load DMA'able memory for Rx ring.\n");
goto fail;
}
sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
/* Tx/Rx descriptor queue should reside within 4GB boundary. */
tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
if ((VGE_ADDR_HI(tx_ring_end) !=
VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
(VGE_ADDR_HI(rx_ring_end) !=
VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
device_printf(sc->vge_dev, "4GB boundary crossed, "
"switching to 32bit DMA address mode.\n");
vge_dma_free(sc);
/* Limit DMA address space to 32bit and try again. */
lowaddr = BUS_SPACE_MAXADDR_32BIT;
goto again;
}
if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
lowaddr = VGE_BUF_DMA_MAXADDR;
else
lowaddr = BUS_SPACE_MAXADDR_32BIT;
/* Create parent buffer tag. */
error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
1, 0, /* algnmnt, boundary */
lowaddr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vge_cdata.vge_buffer_tag);
if (error != 0) {
device_printf(sc->vge_dev,
"could not create parent buffer DMA tag.\n");
goto fail;
}
/* Create tag for Tx buffers. */
error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * VGE_MAXTXSEGS, /* maxsize */
VGE_MAXTXSEGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vge_cdata.vge_tx_tag);
if (error != 0) {
device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
goto fail;
}
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
VGE_RX_BUF_ALIGN, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vge_cdata.vge_rx_tag);
if (error != 0) {
device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
goto fail;
}
/* Create DMA maps for Tx buffers. */
for (i = 0; i < VGE_TX_DESC_CNT; i++) {
txd = &sc->vge_cdata.vge_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->vge_dev,
"could not create Tx dmamap.\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
&sc->vge_cdata.vge_rx_sparemap)) != 0) {
device_printf(sc->vge_dev,
"could not create spare Rx dmamap.\n");
goto fail;
}
for (i = 0; i < VGE_RX_DESC_CNT; i++) {
rxd = &sc->vge_cdata.vge_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc->vge_dev,
"could not create Rx dmamap.\n");
goto fail;
}
}
fail:
return (error);
}
static void
vge_dma_free(struct vge_softc *sc)
{
struct vge_txdesc *txd;
struct vge_rxdesc *rxd;
int i;
/* Tx ring. */
if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
if (sc->vge_rdata.vge_tx_ring_paddr)
bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
sc->vge_cdata.vge_tx_ring_map);
if (sc->vge_rdata.vge_tx_ring)
bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
sc->vge_rdata.vge_tx_ring,
sc->vge_cdata.vge_tx_ring_map);
sc->vge_rdata.vge_tx_ring = NULL;
sc->vge_rdata.vge_tx_ring_paddr = 0;
bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
sc->vge_cdata.vge_tx_ring_tag = NULL;
}
/* Rx ring. */
if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
if (sc->vge_rdata.vge_rx_ring_paddr)
bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
sc->vge_cdata.vge_rx_ring_map);
if (sc->vge_rdata.vge_rx_ring)
bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
sc->vge_rdata.vge_rx_ring,
sc->vge_cdata.vge_rx_ring_map);
sc->vge_rdata.vge_rx_ring = NULL;
sc->vge_rdata.vge_rx_ring_paddr = 0;
bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
sc->vge_cdata.vge_rx_ring_tag = NULL;
}
/* Tx buffers. */
if (sc->vge_cdata.vge_tx_tag != NULL) {
for (i = 0; i < VGE_TX_DESC_CNT; i++) {
txd = &sc->vge_cdata.vge_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
sc->vge_cdata.vge_tx_tag = NULL;
}
/* Rx buffers. */
if (sc->vge_cdata.vge_rx_tag != NULL) {
for (i = 0; i < VGE_RX_DESC_CNT; i++) {
rxd = &sc->vge_cdata.vge_rxdesc[i];
if (rxd->rx_dmamap != NULL) {
bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->vge_cdata.vge_rx_sparemap != NULL) {
bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
sc->vge_cdata.vge_rx_sparemap);
sc->vge_cdata.vge_rx_sparemap = NULL;
}
bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
sc->vge_cdata.vge_rx_tag = NULL;
}
if (sc->vge_cdata.vge_buffer_tag != NULL) {
bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
sc->vge_cdata.vge_buffer_tag = NULL;
}
if (sc->vge_cdata.vge_ring_tag != NULL) {
bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
sc->vge_cdata.vge_ring_tag = NULL;
}
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
vge_attach(device_t dev)
{
u_char eaddr[ETHER_ADDR_LEN];
struct vge_softc *sc;
struct ifnet *ifp;
int error = 0, cap, i, msic, rid;
sc = device_get_softc(dev);
sc->vge_dev = dev;
mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
rid = PCIR_BAR(1);
sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->vge_res == NULL) {
device_printf(dev, "couldn't map ports/memory\n");
error = ENXIO;
goto fail;
}
if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
sc->vge_flags |= VGE_FLAG_PCIE;
sc->vge_expcap = cap;
} else
sc->vge_flags |= VGE_FLAG_JUMBO;
if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
sc->vge_flags |= VGE_FLAG_PMCAP;
sc->vge_pmcap = cap;
}
rid = 0;
msic = pci_msi_count(dev);
if (msi_disable == 0 && msic > 0) {
msic = 1;
if (pci_alloc_msi(dev, &msic) == 0) {
if (msic == 1) {
sc->vge_flags |= VGE_FLAG_MSI;
device_printf(dev, "Using %d MSI message\n",
msic);
rid = 1;
} else
pci_release_msi(dev);
}
}
/* Allocate interrupt */
sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
if (sc->vge_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
/* Reset the adapter. */
vge_reset(sc);
/* Reload EEPROM. */
CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(5);
if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
break;
}
if (i == VGE_TIMEOUT)
device_printf(dev, "EEPROM reload timed out\n");
/*
* Clear PACPI as EEPROM reload will set the bit. Otherwise
* MAC will receive magic packet which in turn confuses
* controller.
*/
CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
/*
* Get station address from the EEPROM.
*/
vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
/*
* Save configured PHY address.
* It seems the PHY address of PCIe controllers just
* reflects media jump strapping status so we assume the
* internal PHY address of PCIe controller is at 1.
*/
if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
sc->vge_phyaddr = 1;
else
sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
VGE_MIICFG_PHYADDR;
/* Clear WOL and take hardware from powerdown. */
vge_clrwol(sc);
vge_sysctl_node(sc);
error = vge_dma_alloc(sc);
if (error)
goto fail;
ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
vge_miipoll_start(sc);
/* Do MII setup */
error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
MIIF_DOPAUSE);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = vge_ioctl;
ifp->if_capabilities = IFCAP_VLAN_MTU;
ifp->if_start = vge_start;
ifp->if_hwassist = VGE_CSUM_FEATURES;
ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
IFCAP_VLAN_HWTAGGING;
if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
ifp->if_capabilities |= IFCAP_WOL;
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
ifp->if_init = vge_init;
IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/* Tell the upper layer(s) we support long frames. */
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
NULL, vge_intr, sc, &sc->vge_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
vge_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
vge_detach(device_t dev)
{
struct vge_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
ifp = sc->vge_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
ether_ifdetach(ifp);
VGE_LOCK(sc);
vge_stop(sc);
VGE_UNLOCK(sc);
callout_drain(&sc->vge_watchdog);
}
if (sc->vge_miibus)
device_delete_child(dev, sc->vge_miibus);
bus_generic_detach(dev);
if (sc->vge_intrhand)
bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
if (sc->vge_irq)
bus_release_resource(dev, SYS_RES_IRQ,
sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
if (sc->vge_flags & VGE_FLAG_MSI)
pci_release_msi(dev);
if (sc->vge_res)
bus_release_resource(dev, SYS_RES_MEMORY,
PCIR_BAR(1), sc->vge_res);
if (ifp)
if_free(ifp);
vge_dma_free(sc);
mtx_destroy(&sc->vge_mtx);
return (0);
}
static void
vge_discard_rxbuf(struct vge_softc *sc, int prod)
{
struct vge_rxdesc *rxd;
int i;
rxd = &sc->vge_cdata.vge_rxdesc[prod];
rxd->rx_desc->vge_sts = 0;
rxd->rx_desc->vge_ctl = 0;
/*
* Note: the manual fails to document the fact that for
* proper opration, the driver needs to replentish the RX
* DMA ring 4 descriptors at a time (rather than one at a
* time, like most chips). We can allocate the new buffers
* but we should not set the OWN bits until we're ready
* to hand back 4 of them in one shot.
*/
if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
for (i = VGE_RXCHUNK; i > 0; i--) {
rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
rxd = rxd->rxd_prev;
}
sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
}
}
static int
vge_newbuf(struct vge_softc *sc, int prod)
{
struct vge_rxdesc *rxd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int i, nsegs;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
/*
* This is part of an evil trick to deal with strict-alignment
* architectures. The VIA chip requires RX buffers to be aligned
* on 32-bit boundaries, but that will hose strict-alignment
* architectures. To get around this, we leave some empty space
* at the start of each buffer and for non-strict-alignment hosts,
* we copy the buffer back two bytes to achieve word alignment.
* This is slightly more efficient than allocating a new buffer,
* copying the contents, and discarding the old buffer.
*/
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, VGE_RX_BUF_ALIGN);
if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &sc->vge_cdata.vge_rxdesc[prod];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
sc->vge_cdata.vge_rx_sparemap = map;
bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
rxd->rx_desc->vge_sts = 0;
rxd->rx_desc->vge_ctl = 0;
rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
(VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
/*
* Note: the manual fails to document the fact that for
* proper operation, the driver needs to replenish the RX
* DMA ring 4 descriptors at a time (rather than one at a
* time, like most chips). We can allocate the new buffers
* but we should not set the OWN bits until we're ready
* to hand back 4 of them in one shot.
*/
if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
for (i = VGE_RXCHUNK; i > 0; i--) {
rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
rxd = rxd->rxd_prev;
}
sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
}
return (0);
}
static int
vge_tx_list_init(struct vge_softc *sc)
{
struct vge_ring_data *rd;
struct vge_txdesc *txd;
int i;
VGE_LOCK_ASSERT(sc);
sc->vge_cdata.vge_tx_prodidx = 0;
sc->vge_cdata.vge_tx_considx = 0;
sc->vge_cdata.vge_tx_cnt = 0;
rd = &sc->vge_rdata;
bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
for (i = 0; i < VGE_TX_DESC_CNT; i++) {
txd = &sc->vge_cdata.vge_txdesc[i];
txd->tx_m = NULL;
txd->tx_desc = &rd->vge_tx_ring[i];
}
bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
sc->vge_cdata.vge_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static int
vge_rx_list_init(struct vge_softc *sc)
{
struct vge_ring_data *rd;
struct vge_rxdesc *rxd;
int i;
VGE_LOCK_ASSERT(sc);
sc->vge_cdata.vge_rx_prodidx = 0;
sc->vge_cdata.vge_head = NULL;
sc->vge_cdata.vge_tail = NULL;
sc->vge_cdata.vge_rx_commit = 0;
rd = &sc->vge_rdata;
bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
for (i = 0; i < VGE_RX_DESC_CNT; i++) {
rxd = &sc->vge_cdata.vge_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_desc = &rd->vge_rx_ring[i];
if (i == 0)
rxd->rxd_prev =
&sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
else
rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
if (vge_newbuf(sc, i) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
sc->vge_cdata.vge_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->vge_cdata.vge_rx_commit = 0;
return (0);
}
static void
vge_freebufs(struct vge_softc *sc)
{
struct vge_txdesc *txd;
struct vge_rxdesc *rxd;
struct ifnet *ifp;
int i;
VGE_LOCK_ASSERT(sc);
ifp = sc->vge_ifp;
/*
* Free RX and TX mbufs still in the queues.
*/
for (i = 0; i < VGE_RX_DESC_CNT; i++) {
rxd = &sc->vge_cdata.vge_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < VGE_TX_DESC_CNT; i++) {
txd = &sc->vge_cdata.vge_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
ifp->if_oerrors++;
}
}
}
#ifndef __NO_STRICT_ALIGNMENT
static __inline void
vge_fixup_rx(struct mbuf *m)
{
int i;
uint16_t *src, *dst;
src = mtod(m, uint16_t *);
dst = src - 1;
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= ETHER_ALIGN;
}
#endif
/*
* RX handler. We support the reception of jumbo frames that have
* been fragmented across multiple 2K mbuf cluster buffers.
*/
static int
vge_rxeof(struct vge_softc *sc, int count)
{
struct mbuf *m;
struct ifnet *ifp;
int prod, prog, total_len;
struct vge_rxdesc *rxd;
struct vge_rx_desc *cur_rx;
uint32_t rxstat, rxctl;
VGE_LOCK_ASSERT(sc);
ifp = sc->vge_ifp;
bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
sc->vge_cdata.vge_rx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
prod = sc->vge_cdata.vge_rx_prodidx;
for (prog = 0; count > 0 &&
(ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
VGE_RX_DESC_INC(prod)) {
cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
rxstat = le32toh(cur_rx->vge_sts);
if ((rxstat & VGE_RDSTS_OWN) != 0)
break;
count--;
prog++;
rxctl = le32toh(cur_rx->vge_ctl);
total_len = VGE_RXBYTES(rxstat);
rxd = &sc->vge_cdata.vge_rxdesc[prod];
m = rxd->rx_m;
/*
* If the 'start of frame' bit is set, this indicates
* either the first fragment in a multi-fragment receive,
* or an intermediate fragment. Either way, we want to
* accumulate the buffers.
*/
if ((rxstat & VGE_RXPKT_SOF) != 0) {
if (vge_newbuf(sc, prod) != 0) {
ifp->if_iqdrops++;
VGE_CHAIN_RESET(sc);
vge_discard_rxbuf(sc, prod);
continue;
}
m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
if (sc->vge_cdata.vge_head == NULL) {
sc->vge_cdata.vge_head = m;
sc->vge_cdata.vge_tail = m;
} else {
m->m_flags &= ~M_PKTHDR;
sc->vge_cdata.vge_tail->m_next = m;
sc->vge_cdata.vge_tail = m;
}
continue;
}
/*
* Bad/error frames will have the RXOK bit cleared.
* However, there's one error case we want to allow:
* if a VLAN tagged frame arrives and the chip can't
* match it against the CAM filter, it considers this
* a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
* We don't want to drop the frame though: our VLAN
* filtering is done in software.
* We also want to receive bad-checksummed frames and
* and frames with bad-length.
*/
if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
(rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
VGE_RDSTS_CSUMERR)) == 0) {
ifp->if_ierrors++;
/*
* If this is part of a multi-fragment packet,
* discard all the pieces.
*/
VGE_CHAIN_RESET(sc);
vge_discard_rxbuf(sc, prod);
continue;
}
if (vge_newbuf(sc, prod) != 0) {
ifp->if_iqdrops++;
VGE_CHAIN_RESET(sc);
vge_discard_rxbuf(sc, prod);
continue;
}
/* Chain received mbufs. */
if (sc->vge_cdata.vge_head != NULL) {
m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
/*
* Special case: if there's 4 bytes or less
* in this buffer, the mbuf can be discarded:
* the last 4 bytes is the CRC, which we don't
* care about anyway.
*/
if (m->m_len <= ETHER_CRC_LEN) {
sc->vge_cdata.vge_tail->m_len -=
(ETHER_CRC_LEN - m->m_len);
m_freem(m);
} else {
m->m_len -= ETHER_CRC_LEN;
m->m_flags &= ~M_PKTHDR;
sc->vge_cdata.vge_tail->m_next = m;
}
m = sc->vge_cdata.vge_head;
m->m_flags |= M_PKTHDR;
m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
} else {
m->m_flags |= M_PKTHDR;
m->m_pkthdr.len = m->m_len =
(total_len - ETHER_CRC_LEN);
}
#ifndef __NO_STRICT_ALIGNMENT
vge_fixup_rx(m);
#endif
m->m_pkthdr.rcvif = ifp;
/* Do RX checksumming if enabled */
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
(rxctl & VGE_RDCTL_FRAG) == 0) {
/* Check IP header checksum */
if ((rxctl & VGE_RDCTL_IPPKT) != 0)
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
/* Check TCP/UDP checksum */
if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
rxctl & VGE_RDCTL_PROTOCSUMOK) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
if ((rxstat & VGE_RDSTS_VTAG) != 0) {
/*
* The 32-bit rxctl register is stored in little-endian.
* However, the 16-bit vlan tag is stored in big-endian,
* so we have to byte swap it.
*/
m->m_pkthdr.ether_vtag =
bswap16(rxctl & VGE_RDCTL_VLANID);
m->m_flags |= M_VLANTAG;
}
VGE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
VGE_LOCK(sc);
sc->vge_cdata.vge_head = NULL;
sc->vge_cdata.vge_tail = NULL;
}
if (prog > 0) {
sc->vge_cdata.vge_rx_prodidx = prod;
bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
sc->vge_cdata.vge_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Update residue counter. */
if (sc->vge_cdata.vge_rx_commit != 0) {
CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
sc->vge_cdata.vge_rx_commit);
sc->vge_cdata.vge_rx_commit = 0;
}
}
return (prog);
}
static void
vge_txeof(struct vge_softc *sc)
{
struct ifnet *ifp;
struct vge_tx_desc *cur_tx;
struct vge_txdesc *txd;
uint32_t txstat;
int cons, prod;
VGE_LOCK_ASSERT(sc);
ifp = sc->vge_ifp;
if (sc->vge_cdata.vge_tx_cnt == 0)
return;
bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
sc->vge_cdata.vge_tx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
cons = sc->vge_cdata.vge_tx_considx;
prod = sc->vge_cdata.vge_tx_prodidx;
for (; cons != prod; VGE_TX_DESC_INC(cons)) {
cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
txstat = le32toh(cur_tx->vge_sts);
if ((txstat & VGE_TDSTS_OWN) != 0)
break;
sc->vge_cdata.vge_tx_cnt--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
txd = &sc->vge_cdata.vge_txdesc[cons];
bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
__func__));
m_freem(txd->tx_m);
txd->tx_m = NULL;
txd->tx_desc->vge_frag[0].vge_addrhi = 0;
}
bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
sc->vge_cdata.vge_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->vge_cdata.vge_tx_considx = cons;
if (sc->vge_cdata.vge_tx_cnt == 0)
sc->vge_timer = 0;
}
static void
vge_link_statchg(void *xsc)
{
struct vge_softc *sc;
struct ifnet *ifp;
uint8_t physts;
sc = xsc;
ifp = sc->vge_ifp;
VGE_LOCK_ASSERT(sc);
physts = CSR_READ_1(sc, VGE_PHYSTS0);
if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
if ((physts & VGE_PHYSTS_LINK) == 0) {
sc->vge_flags &= ~VGE_FLAG_LINK;
if_link_state_change(sc->vge_ifp,
LINK_STATE_DOWN);
} else {
sc->vge_flags |= VGE_FLAG_LINK;
if_link_state_change(sc->vge_ifp,
LINK_STATE_UP);
CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
VGE_CR2_FDX_RXFLOWCTL_ENABLE);
if ((physts & VGE_PHYSTS_FDX) != 0) {
if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
CSR_WRITE_1(sc, VGE_CRS2,
VGE_CR2_FDX_TXFLOWCTL_ENABLE);
if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
CSR_WRITE_1(sc, VGE_CRS2,
VGE_CR2_FDX_RXFLOWCTL_ENABLE);
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vge_start_locked(ifp);
}
}
/*
* Restart MII auto-polling because link state change interrupt
* will disable it.
*/
vge_miipoll_start(sc);
}
#ifdef DEVICE_POLLING
static int
vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct vge_softc *sc = ifp->if_softc;
int rx_npkts = 0;
VGE_LOCK(sc);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
goto done;
rx_npkts = vge_rxeof(sc, count);
vge_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vge_start_locked(ifp);
if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
uint32_t status;
status = CSR_READ_4(sc, VGE_ISR);
if (status == 0xFFFFFFFF)
goto done;
if (status)
CSR_WRITE_4(sc, VGE_ISR, status);
/*
* XXX check behaviour on receiver stalls.
*/
if (status & VGE_ISR_TXDMA_STALL ||
status & VGE_ISR_RXDMA_STALL) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vge_init_locked(sc);
}
if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
vge_rxeof(sc, count);
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
}
}
done:
VGE_UNLOCK(sc);
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
static void
vge_intr(void *arg)
{
struct vge_softc *sc;
struct ifnet *ifp;
uint32_t status;
sc = arg;
VGE_LOCK(sc);
ifp = sc->vge_ifp;
if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
(ifp->if_flags & IFF_UP) == 0) {
VGE_UNLOCK(sc);
return;
}
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
status = CSR_READ_4(sc, VGE_ISR);
CSR_WRITE_4(sc, VGE_ISR, status);
if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
vge_link_statchg(sc);
VGE_UNLOCK(sc);
return;
}
#endif
/* Disable interrupts */
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
status = CSR_READ_4(sc, VGE_ISR);
CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
/* If the card has gone away the read returns 0xffff. */
if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
goto done;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
vge_rxeof(sc, VGE_RX_DESC_CNT);
if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
vge_rxeof(sc, VGE_RX_DESC_CNT);
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
}
if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
vge_txeof(sc);
if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vge_init_locked(sc);
}
if (status & VGE_ISR_LINKSTS)
vge_link_statchg(sc);
}
done:
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
/* Re-enable interrupts */
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vge_start_locked(ifp);
}
VGE_UNLOCK(sc);
}
static int
vge_encap(struct vge_softc *sc, struct mbuf **m_head)
{
struct vge_txdesc *txd;
struct vge_tx_frag *frag;
struct mbuf *m;
bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
int error, i, nsegs, padlen;
uint32_t cflags;
VGE_LOCK_ASSERT(sc);
M_ASSERTPKTHDR((*m_head));
/* Argh. This chip does not autopad short frames. */
if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
m = *m_head;
padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
if (M_WRITABLE(m) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_NOWAIT);
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
if (M_TRAILINGSPACE(m) < padlen) {
m = m_defrag(m, M_NOWAIT);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
}
/*
* Manually pad short frames, and zero the pad space
* to avoid leaking data.
*/
bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
m->m_pkthdr.len += padlen;
m->m_len = m->m_pkthdr.len;
*m_head = m;
}
txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_PREWRITE);
m = *m_head;
cflags = 0;
/* Configure checksum offload. */
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
cflags |= VGE_TDCTL_IPCSUM;
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
cflags |= VGE_TDCTL_TCPCSUM;
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
cflags |= VGE_TDCTL_UDPCSUM;
/* Configure VLAN. */
if ((m->m_flags & M_VLANTAG) != 0)
cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
/*
* XXX
* Velocity family seems to support TSO but no information
* for MSS configuration is available. Also the number of
* fragments supported by a descriptor is too small to hold
* entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
* VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
* longer chain of buffers but no additional information is
* available.
*
* When telling the chip how many segments there are, we
* must use nsegs + 1 instead of just nsegs. Darned if I
* know why. This also means we can't use the last fragment
* field of Tx descriptor.
*/
txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
VGE_TD_LS_NORM);
for (i = 0; i < nsegs; i++) {
frag = &txd->tx_desc->vge_frag[i];
frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
(VGE_BUFLEN(txsegs[i].ds_len) << 16));
}
sc->vge_cdata.vge_tx_cnt++;
VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
/*
* Finally request interrupt and give the first descriptor
* ownership to hardware.
*/
txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
txd->tx_m = m;
return (0);
}
/*
* Main transmit routine.
*/
static void
vge_start(struct ifnet *ifp)
{
struct vge_softc *sc;
sc = ifp->if_softc;
VGE_LOCK(sc);
vge_start_locked(ifp);
VGE_UNLOCK(sc);
}
static void
vge_start_locked(struct ifnet *ifp)
{
struct vge_softc *sc;
struct vge_txdesc *txd;
struct mbuf *m_head;
int enq, idx;
sc = ifp->if_softc;
VGE_LOCK_ASSERT(sc);
if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
(ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
idx = sc->vge_cdata.vge_tx_prodidx;
VGE_TX_DESC_DEC(idx);
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (vge_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
txd = &sc->vge_cdata.vge_txdesc[idx];
txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
VGE_TX_DESC_INC(idx);
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
sc->vge_cdata.vge_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Issue a transmit command. */
CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->vge_timer = 5;
}
}
static void
vge_init(void *xsc)
{
struct vge_softc *sc = xsc;
VGE_LOCK(sc);
vge_init_locked(sc);
VGE_UNLOCK(sc);
}
static void
vge_init_locked(struct vge_softc *sc)
{
struct ifnet *ifp = sc->vge_ifp;
int error, i;
VGE_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
vge_stop(sc);
vge_reset(sc);
vge_miipoll_start(sc);
/*
* Initialize the RX and TX descriptors and mbufs.
*/
error = vge_rx_list_init(sc);
if (error != 0) {
device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
return;
}
vge_tx_list_init(sc);
/* Clear MAC statistics. */
vge_stats_clear(sc);
/* Set our station address */
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
/*
* Set receive FIFO threshold. Also allow transmission and
* reception of VLAN tagged frames.
*/
CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
/* Set DMA burst length */
CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
/* Set collision backoff algorithm */
CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
/* Disable LPSEL field in priority resolution */
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
/*
* Load the addresses of the DMA queues into the chip.
* Note that we only use one transmit queue.
*/
CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
/* Configure interrupt moderation. */
vge_intr_holdoff(sc);
/* Enable and wake up the RX descriptor queue */
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
/* Enable the TX descriptor queue */
CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
/* Init the cam filter. */
vge_cam_clear(sc);
/* Set up receiver filter. */
vge_rxfilter(sc);
vge_setvlan(sc);
/* Initialize pause timer. */
CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
/*
* Initialize flow control parameters.
* TX XON high threshold : 48
* TX pause low threshold : 24
* Disable hald-duplex flow control
*/
CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
/* Enable jumbo frame reception (if desired) */
/* Start the MAC. */
CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
CSR_WRITE_1(sc, VGE_CRS0,
VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
#ifdef DEVICE_POLLING
/*
* Disable interrupts except link state change if we are polling.
*/
if (ifp->if_capenable & IFCAP_POLLING) {
CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
} else /* otherwise ... */
#endif
{
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
}
CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
sc->vge_flags &= ~VGE_FLAG_LINK;
vge_ifmedia_upd_locked(sc);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
}
/*
* Set media options.
*/
static int
vge_ifmedia_upd(struct ifnet *ifp)
{
struct vge_softc *sc;
int error;
sc = ifp->if_softc;
VGE_LOCK(sc);
error = vge_ifmedia_upd_locked(sc);
VGE_UNLOCK(sc);
return (error);
}
static int
vge_ifmedia_upd_locked(struct vge_softc *sc)
{
struct mii_data *mii;
struct mii_softc *miisc;
int error;
mii = device_get_softc(sc->vge_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
vge_setmedia(sc);
error = mii_mediachg(mii);
return (error);
}
/*
* Report current media status.
*/
static void
vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct vge_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->vge_miibus);
VGE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0) {
VGE_UNLOCK(sc);
return;
}
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
VGE_UNLOCK(sc);
}
static void
vge_setmedia(struct vge_softc *sc)
{
struct mii_data *mii;
struct ifmedia_entry *ife;
mii = device_get_softc(sc->vge_miibus);
ife = mii->mii_media.ifm_cur;
/*
* If the user manually selects a media mode, we need to turn
* on the forced MAC mode bit in the DIAGCTL register. If the
* user happens to choose a full duplex mode, we also need to
* set the 'force full duplex' bit. This applies only to
* 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
* mode is disabled, and in 1000baseT mode, full duplex is
* always implied, so we turn on the forced mode bit but leave
* the FDX bit cleared.
*/
switch (IFM_SUBTYPE(ife->ifm_media)) {
case IFM_AUTO:
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
break;
case IFM_1000_T:
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
break;
case IFM_100_TX:
case IFM_10_T:
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
} else {
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
}
break;
default:
device_printf(sc->vge_dev, "unknown media type: %x\n",
IFM_SUBTYPE(ife->ifm_media));
break;
}
}
static int
vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct vge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0, mask;
switch (command) {
case SIOCSIFMTU:
VGE_LOCK(sc);
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
error = EINVAL;
else if (ifp->if_mtu != ifr->ifr_mtu) {
if (ifr->ifr_mtu > ETHERMTU &&
(sc->vge_flags & VGE_FLAG_JUMBO) == 0)
error = EINVAL;
else
ifp->if_mtu = ifr->ifr_mtu;
}
VGE_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
VGE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->vge_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) != 0)
vge_rxfilter(sc);
else
vge_init_locked(sc);
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
vge_stop(sc);
sc->vge_if_flags = ifp->if_flags;
VGE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
VGE_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
vge_rxfilter(sc);
VGE_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->vge_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
error = ether_poll_register(vge_poll, ifp);
if (error)
return (error);
VGE_LOCK(sc);
/* Disable interrupts */
CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
ifp->if_capenable |= IFCAP_POLLING;
VGE_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
VGE_LOCK(sc);
CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
ifp->if_capenable &= ~IFCAP_POLLING;
VGE_UNLOCK(sc);
}
}
#endif /* DEVICE_POLLING */
VGE_LOCK(sc);
if ((mask & IFCAP_TXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist |= VGE_CSUM_FEATURES;
else
ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_RXCSUM) != 0)
ifp->if_capenable ^= IFCAP_RXCSUM;
if ((mask & IFCAP_WOL_UCAST) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_UCAST;
if ((mask & IFCAP_WOL_MCAST) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_MCAST;
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
vge_setvlan(sc);
}
VGE_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
vge_watchdog(void *arg)
{
struct vge_softc *sc;
struct ifnet *ifp;
sc = arg;
VGE_LOCK_ASSERT(sc);
vge_stats_update(sc);
callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
if (sc->vge_timer == 0 || --sc->vge_timer > 0)
return;
ifp = sc->vge_ifp;
if_printf(ifp, "watchdog timeout\n");
ifp->if_oerrors++;
vge_txeof(sc);
vge_rxeof(sc, VGE_RX_DESC_CNT);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vge_init_locked(sc);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
vge_stop(struct vge_softc *sc)
{
struct ifnet *ifp;
VGE_LOCK_ASSERT(sc);
ifp = sc->vge_ifp;
sc->vge_timer = 0;
callout_stop(&sc->vge_watchdog);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
vge_stats_update(sc);
VGE_CHAIN_RESET(sc);
vge_txeof(sc);
vge_freebufs(sc);
}
/*
* Device suspend routine. Stop the interface and save some PCI
* settings in case the BIOS doesn't restore them properly on
* resume.
*/
static int
vge_suspend(device_t dev)
{
struct vge_softc *sc;
sc = device_get_softc(dev);
VGE_LOCK(sc);
vge_stop(sc);
vge_setwol(sc);
sc->vge_flags |= VGE_FLAG_SUSPENDED;
VGE_UNLOCK(sc);
return (0);
}
/*
* Device resume routine. Restore some PCI settings in case the BIOS
* doesn't, re-enable busmastering, and restart the interface if
* appropriate.
*/
static int
vge_resume(device_t dev)
{
struct vge_softc *sc;
struct ifnet *ifp;
uint16_t pmstat;
sc = device_get_softc(dev);
VGE_LOCK(sc);
if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
/* Disable PME and clear PME status. */
pmstat = pci_read_config(sc->vge_dev,
sc->vge_pmcap + PCIR_POWER_STATUS, 2);
if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
pmstat &= ~PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->vge_dev,
sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
}
}
vge_clrwol(sc);
/* Restart MII auto-polling. */
vge_miipoll_start(sc);
ifp = sc->vge_ifp;
/* Reinitialize interface if necessary. */
if ((ifp->if_flags & IFF_UP) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vge_init_locked(sc);
}
sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
VGE_UNLOCK(sc);
return (0);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
vge_shutdown(device_t dev)
{
return (vge_suspend(dev));
}
#define VGE_SYSCTL_STAT_ADD32(c, h, n, p, d) \
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
static void
vge_sysctl_node(struct vge_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child, *parent;
struct sysctl_oid *tree;
struct vge_hw_stats *stats;
stats = &sc->vge_stats;
ctx = device_get_sysctl_ctx(sc->vge_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
/* Pull in device tunables. */
sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
resource_int_value(device_get_name(sc->vge_dev),
device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
resource_int_value(device_get_name(sc->vge_dev),
device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
resource_int_value(device_get_name(sc->vge_dev),
device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "VGE statistics");
parent = SYSCTL_CHILDREN(tree);
/* Rx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "RX MAC statistics");
child = SYSCTL_CHILDREN(tree);
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
&stats->rx_frames, "frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->rx_good_frames, "Good frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
&stats->rx_fifo_oflows, "FIFO overflows");
VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
&stats->rx_runts, "Too short frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
&stats->rx_runts_errs, "Too short frames with errors");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
&stats->rx_pkts_64, "64 bytes frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
&stats->rx_pkts_65_127, "65 to 127 bytes frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
&stats->rx_pkts_128_255, "128 to 255 bytes frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
&stats->rx_pkts_256_511, "256 to 511 bytes frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
&stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
&stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
&stats->rx_pkts_1519_max, "1519 to max frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
&stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
&stats->rx_jumbos, "Jumbo frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
&stats->rx_crcerrs, "CRC errors");
VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
&stats->rx_pause_frames, "CRC errors");
VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
&stats->rx_alignerrs, "Alignment errors");
VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
&stats->rx_nobufs, "Frames with no buffer event");
VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
&stats->rx_symerrs, "Frames with symbol errors");
VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
&stats->rx_lenerrs, "Frames with length mismatched");
/* Tx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "TX MAC statistics");
child = SYSCTL_CHILDREN(tree);
VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->tx_good_frames, "Good frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
&stats->tx_pkts_64, "64 bytes frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
&stats->tx_pkts_65_127, "65 to 127 bytes frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
&stats->tx_pkts_128_255, "128 to 255 bytes frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
&stats->tx_pkts_256_511, "256 to 511 bytes frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
&stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
&stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
&stats->tx_jumbos, "Jumbo frames");
VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
&stats->tx_colls, "Collisions");
VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
&stats->tx_latecolls, "Late collisions");
VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
&stats->tx_pause, "Pause frames");
#ifdef VGE_ENABLE_SQEERR
VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
&stats->tx_sqeerrs, "SQE errors");
#endif
/* Clear MAC statistics. */
vge_stats_clear(sc);
}
#undef VGE_SYSCTL_STAT_ADD32
static void
vge_stats_clear(struct vge_softc *sc)
{
int i;
CSR_WRITE_1(sc, VGE_MIBCSR,
CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
CSR_WRITE_1(sc, VGE_MIBCSR,
CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
for (i = VGE_TIMEOUT; i > 0; i--) {
DELAY(1);
if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
break;
}
if (i == 0)
device_printf(sc->vge_dev, "MIB clear timed out!\n");
CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
~VGE_MIBCSR_FREEZE);
}
static void
vge_stats_update(struct vge_softc *sc)
{
struct vge_hw_stats *stats;
struct ifnet *ifp;
uint32_t mib[VGE_MIB_CNT], val;
int i;
VGE_LOCK_ASSERT(sc);
stats = &sc->vge_stats;
ifp = sc->vge_ifp;
CSR_WRITE_1(sc, VGE_MIBCSR,
CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
for (i = VGE_TIMEOUT; i > 0; i--) {
DELAY(1);
if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
break;
}
if (i == 0) {
device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
vge_stats_clear(sc);
return;
}
bzero(mib, sizeof(mib));
reset_idx:
/* Set MIB read index to 0. */
CSR_WRITE_1(sc, VGE_MIBCSR,
CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
for (i = 0; i < VGE_MIB_CNT; i++) {
val = CSR_READ_4(sc, VGE_MIBDATA);
if (i != VGE_MIB_DATA_IDX(val)) {
/* Reading interrupted. */
goto reset_idx;
}
mib[i] = val & VGE_MIB_DATA_MASK;
}
/* Rx stats. */
stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
/* Tx stats. */
stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
stats->tx_colls += mib[VGE_MIB_TX_COLLS];
stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
#ifdef VGE_ENABLE_SQEERR
stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
#endif
stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
/* Update counters in ifnet. */
ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES];
ifp->if_collisions += mib[VGE_MIB_TX_COLLS] +
mib[VGE_MIB_TX_LATECOLLS];
ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] +
mib[VGE_MIB_TX_LATECOLLS];
ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES];
ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] +
mib[VGE_MIB_RX_RUNTS] +
mib[VGE_MIB_RX_RUNTS_ERRS] +
mib[VGE_MIB_RX_CRCERRS] +
mib[VGE_MIB_RX_ALIGNERRS] +
mib[VGE_MIB_RX_NOBUFS] +
mib[VGE_MIB_RX_SYMERRS] +
mib[VGE_MIB_RX_LENERRS];
}
static void
vge_intr_holdoff(struct vge_softc *sc)
{
uint8_t intctl;
VGE_LOCK_ASSERT(sc);
/*
* Set Tx interrupt supression threshold.
* It's possible to use single-shot timer in VGE_CRS1 register
* in Tx path such that driver can remove most of Tx completion
* interrupts. However this requires additional access to
* VGE_CRS1 register to reload the timer in addintion to
* activating Tx kick command. Another downside is we don't know
* what single-shot timer value should be used in advance so
* reclaiming transmitted mbufs could be delayed a lot which in
* turn slows down Tx operation.
*/
CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
/* Set Rx interrupt suppresion threshold. */
CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
intctl = CSR_READ_1(sc, VGE_INTCTL1);
intctl &= ~VGE_INTCTL_SC_RELOAD;
intctl |= VGE_INTCTL_HC_RELOAD;
if (sc->vge_tx_coal_pkt <= 0)
intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
else
intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
if (sc->vge_rx_coal_pkt <= 0)
intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
else
intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
if (sc->vge_int_holdoff > 0) {
/* Set interrupt holdoff timer. */
CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
CSR_WRITE_1(sc, VGE_INTHOLDOFF,
VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
/* Enable holdoff timer. */
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
}
}
static void
vge_setlinkspeed(struct vge_softc *sc)
{
struct mii_data *mii;
int aneg, i;
VGE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->vge_miibus);
mii_pollstat(mii);
aneg = 0;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch IFM_SUBTYPE(mii->mii_media_active) {
case IFM_10_T:
case IFM_100_TX:
return;
case IFM_1000_T:
aneg++;
default:
break;
}
}
/* Clear forced MAC speed/duplex configuration. */
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
BMCR_AUTOEN | BMCR_STARTNEG);
DELAY(1000);
if (aneg != 0) {
/* Poll link state until vge(4) get a 10/100 link. */
for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
mii_pollstat(mii);
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
== (IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
return;
default:
break;
}
}
VGE_UNLOCK(sc);
pause("vgelnk", hz);
VGE_LOCK(sc);
}
if (i == MII_ANEGTICKS_GIGE)
device_printf(sc->vge_dev, "establishing link failed, "
"WOL may not work!");
}
/*
* No link, force MAC to have 100Mbps, full-duplex link.
* This is the last resort and may/may not work.
*/
mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
}
static void
vge_setwol(struct vge_softc *sc)
{
struct ifnet *ifp;
uint16_t pmstat;
uint8_t val;
VGE_LOCK_ASSERT(sc);
if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
/* No PME capability, PHY power down. */
vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
BMCR_PDOWN);
vge_miipoll_stop(sc);
return;
}
ifp = sc->vge_ifp;
/* Clear WOL on pattern match. */
CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
/* Disable WOL on magic/unicast packet. */
CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
VGE_WOLCFG_PMEOVR);
if ((ifp->if_capenable & IFCAP_WOL) != 0) {
vge_setlinkspeed(sc);
val = 0;
if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
val |= VGE_WOLCR1_UCAST;
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
val |= VGE_WOLCR1_MAGIC;
CSR_WRITE_1(sc, VGE_WOLCR1S, val);
val = 0;
if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
/* Disable MII auto-polling. */
vge_miipoll_stop(sc);
}
CSR_SETBIT_1(sc, VGE_DIAGCTL,
VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
/* Clear WOL status on pattern match. */
CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
val = CSR_READ_1(sc, VGE_PWRSTAT);
val |= VGE_STICKHW_SWPTAG;
CSR_WRITE_1(sc, VGE_PWRSTAT, val);
/* Put hardware into sleep. */
val = CSR_READ_1(sc, VGE_PWRSTAT);
val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
CSR_WRITE_1(sc, VGE_PWRSTAT, val);
/* Request PME if WOL is requested. */
pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
pmstat, 2);
}
static void
vge_clrwol(struct vge_softc *sc)
{
uint8_t val;
val = CSR_READ_1(sc, VGE_PWRSTAT);
val &= ~VGE_STICKHW_SWPTAG;
CSR_WRITE_1(sc, VGE_PWRSTAT, val);
/* Disable WOL and clear power state indicator. */
val = CSR_READ_1(sc, VGE_PWRSTAT);
val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
CSR_WRITE_1(sc, VGE_PWRSTAT, val);
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
/* Clear WOL on pattern match. */
CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
/* Disable WOL on magic/unicast packet. */
CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
VGE_WOLCFG_PMEOVR);
/* Clear WOL status on pattern match. */
CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
}