58c4aee0d7
ELF object files can contain program sections which are not supposed to be loaded into memory (e.g. .comment). Normally the static linker uses these flags to decide which sections are allocated to loadable program segments in ELF binaries and shared objects (including kernels on all architectures and kernel modules on architectures other than amd64). Mapping ELF object files (such as amd64 kernel modules) into memory directly is a bit of a grey area. ELF object files are intended to be used as inputs to the static linker. As a result, there is not a standardized definition for what the memory layout of an ELF object should be (none of the section headers have valid virtual memory addresses for example). The kernel and loader were not checking the SHF_ALLOC flag but loading any program sections with certain types such as SHT_PROGBITS. As a result, the kernel and loader would load into RAM some sections that weren't marked with SHF_ALLOC such as .comment that are not loaded into RAM for kernel modules on other architectures (which are implemented as ELF shared objects). Aside from possibly requiring slightly more RAM to hold a kernel module this does not affect runtime correctness as the kernel relocates symbols based on the layout it uses. Debuggers such as gdb and lldb do not extract symbol tables from a running process or kernel. Instead, they replicate the memory layout of ELF executables and shared objects and use that to construct their own symbol tables. For executables and shared objects this works fine. For ELF objects the current logic in kgdb (and probably lldb based on a simple reading) assumes that only sections with SHF_ALLOC are memory resident when constructing a memory layout. If the debugger constructs a different memory layout than the kernel, then it will compute different addresses for symbols causing symbols in the debugger to appear to have the wrong values (though the kernel itself is working fine). The current port of mdb does not check SHF_ALLOC as it replicates the kernel's logic in its existing kernel support. The bfd linker sorts the sections in ELF object files such that all of the allocated sections (sections with SHF_ALLOCATED) are placed first followed by unallocated sections. As a result, when kgdb composed a memory layout using only the allocated sections, this layout happened to match the layout used by the kernel and loader. The lld linker does not sort the sections in ELF object files and mixed allocated and unallocated sections. This resulted in kgdb composing a different memory layout than the kernel and loader. We could either patch kgdb (and possibly in the future lldb) to use custom handling when generating memory layouts for kernel modules that are ELF objects, or we could change the kernel and loader to check SHF_ALLOCATED. I chose the latter as I feel we shouldn't be loading things into RAM that the module won't use. This should mostly be a NOP when linking with bfd but will allow the existing kgdb to work with amd64 kernel modules linked with lld. Note that we only require SHF_ALLOC for "program" sections for types like SHT_PROGBITS and SHT_NOBITS. Other section types such as symbol tables, string tables, and relocations must also be loaded and are not marked with SHF_ALLOC. Reported by: np Reviewed by: kib, emaste MFC after: 1 month Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D13926
1532 lines
38 KiB
C
1532 lines
38 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 1998-2000 Doug Rabson
|
|
* Copyright (c) 2004 Peter Wemm
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/linker.h>
|
|
|
|
#include <machine/elf.h>
|
|
|
|
#include <net/vnet.h>
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
|
|
#include <sys/link_elf.h>
|
|
|
|
#ifdef DDB_CTF
|
|
#include <sys/zlib.h>
|
|
#endif
|
|
|
|
#include "linker_if.h"
|
|
|
|
typedef struct {
|
|
void *addr;
|
|
Elf_Off size;
|
|
int flags;
|
|
int sec; /* Original section */
|
|
char *name;
|
|
} Elf_progent;
|
|
|
|
typedef struct {
|
|
Elf_Rel *rel;
|
|
int nrel;
|
|
int sec;
|
|
} Elf_relent;
|
|
|
|
typedef struct {
|
|
Elf_Rela *rela;
|
|
int nrela;
|
|
int sec;
|
|
} Elf_relaent;
|
|
|
|
|
|
typedef struct elf_file {
|
|
struct linker_file lf; /* Common fields */
|
|
|
|
int preloaded;
|
|
caddr_t address; /* Relocation address */
|
|
vm_object_t object; /* VM object to hold file pages */
|
|
Elf_Shdr *e_shdr;
|
|
|
|
Elf_progent *progtab;
|
|
int nprogtab;
|
|
|
|
Elf_relaent *relatab;
|
|
int nrelatab;
|
|
|
|
Elf_relent *reltab;
|
|
int nreltab;
|
|
|
|
Elf_Sym *ddbsymtab; /* The symbol table we are using */
|
|
long ddbsymcnt; /* Number of symbols */
|
|
caddr_t ddbstrtab; /* String table */
|
|
long ddbstrcnt; /* number of bytes in string table */
|
|
|
|
caddr_t shstrtab; /* Section name string table */
|
|
long shstrcnt; /* number of bytes in string table */
|
|
|
|
caddr_t ctftab; /* CTF table */
|
|
long ctfcnt; /* number of bytes in CTF table */
|
|
caddr_t ctfoff; /* CTF offset table */
|
|
caddr_t typoff; /* Type offset table */
|
|
long typlen; /* Number of type entries. */
|
|
|
|
} *elf_file_t;
|
|
|
|
#include <kern/kern_ctf.c>
|
|
|
|
static int link_elf_link_preload(linker_class_t cls,
|
|
const char *, linker_file_t *);
|
|
static int link_elf_link_preload_finish(linker_file_t);
|
|
static int link_elf_load_file(linker_class_t, const char *, linker_file_t *);
|
|
static int link_elf_lookup_symbol(linker_file_t, const char *,
|
|
c_linker_sym_t *);
|
|
static int link_elf_symbol_values(linker_file_t, c_linker_sym_t,
|
|
linker_symval_t *);
|
|
static int link_elf_search_symbol(linker_file_t, caddr_t value,
|
|
c_linker_sym_t *sym, long *diffp);
|
|
|
|
static void link_elf_unload_file(linker_file_t);
|
|
static int link_elf_lookup_set(linker_file_t, const char *,
|
|
void ***, void ***, int *);
|
|
static int link_elf_each_function_name(linker_file_t,
|
|
int (*)(const char *, void *), void *);
|
|
static int link_elf_each_function_nameval(linker_file_t,
|
|
linker_function_nameval_callback_t,
|
|
void *);
|
|
static int link_elf_reloc_local(linker_file_t);
|
|
static long link_elf_symtab_get(linker_file_t, const Elf_Sym **);
|
|
static long link_elf_strtab_get(linker_file_t, caddr_t *);
|
|
|
|
static int elf_obj_lookup(linker_file_t lf, Elf_Size symidx, int deps,
|
|
Elf_Addr *);
|
|
|
|
static kobj_method_t link_elf_methods[] = {
|
|
KOBJMETHOD(linker_lookup_symbol, link_elf_lookup_symbol),
|
|
KOBJMETHOD(linker_symbol_values, link_elf_symbol_values),
|
|
KOBJMETHOD(linker_search_symbol, link_elf_search_symbol),
|
|
KOBJMETHOD(linker_unload, link_elf_unload_file),
|
|
KOBJMETHOD(linker_load_file, link_elf_load_file),
|
|
KOBJMETHOD(linker_link_preload, link_elf_link_preload),
|
|
KOBJMETHOD(linker_link_preload_finish, link_elf_link_preload_finish),
|
|
KOBJMETHOD(linker_lookup_set, link_elf_lookup_set),
|
|
KOBJMETHOD(linker_each_function_name, link_elf_each_function_name),
|
|
KOBJMETHOD(linker_each_function_nameval, link_elf_each_function_nameval),
|
|
KOBJMETHOD(linker_ctf_get, link_elf_ctf_get),
|
|
KOBJMETHOD(linker_symtab_get, link_elf_symtab_get),
|
|
KOBJMETHOD(linker_strtab_get, link_elf_strtab_get),
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static struct linker_class link_elf_class = {
|
|
#if ELF_TARG_CLASS == ELFCLASS32
|
|
"elf32_obj",
|
|
#else
|
|
"elf64_obj",
|
|
#endif
|
|
link_elf_methods, sizeof(struct elf_file)
|
|
};
|
|
|
|
static int relocate_file(elf_file_t ef);
|
|
static void elf_obj_cleanup_globals_cache(elf_file_t);
|
|
|
|
static void
|
|
link_elf_error(const char *filename, const char *s)
|
|
{
|
|
if (filename == NULL)
|
|
printf("kldload: %s\n", s);
|
|
else
|
|
printf("kldload: %s: %s\n", filename, s);
|
|
}
|
|
|
|
static void
|
|
link_elf_init(void *arg)
|
|
{
|
|
|
|
linker_add_class(&link_elf_class);
|
|
}
|
|
|
|
SYSINIT(link_elf_obj, SI_SUB_KLD, SI_ORDER_SECOND, link_elf_init, 0);
|
|
|
|
static int
|
|
link_elf_link_preload(linker_class_t cls, const char *filename,
|
|
linker_file_t *result)
|
|
{
|
|
Elf_Ehdr *hdr;
|
|
Elf_Shdr *shdr;
|
|
Elf_Sym *es;
|
|
void *modptr, *baseptr, *sizeptr;
|
|
char *type;
|
|
elf_file_t ef;
|
|
linker_file_t lf;
|
|
Elf_Addr off;
|
|
int error, i, j, pb, ra, rl, shstrindex, symstrindex, symtabindex;
|
|
|
|
/* Look to see if we have the file preloaded */
|
|
modptr = preload_search_by_name(filename);
|
|
if (modptr == NULL)
|
|
return ENOENT;
|
|
|
|
type = (char *)preload_search_info(modptr, MODINFO_TYPE);
|
|
baseptr = preload_search_info(modptr, MODINFO_ADDR);
|
|
sizeptr = preload_search_info(modptr, MODINFO_SIZE);
|
|
hdr = (Elf_Ehdr *)preload_search_info(modptr, MODINFO_METADATA |
|
|
MODINFOMD_ELFHDR);
|
|
shdr = (Elf_Shdr *)preload_search_info(modptr, MODINFO_METADATA |
|
|
MODINFOMD_SHDR);
|
|
if (type == NULL || (strcmp(type, "elf" __XSTRING(__ELF_WORD_SIZE)
|
|
" obj module") != 0 &&
|
|
strcmp(type, "elf obj module") != 0)) {
|
|
return (EFTYPE);
|
|
}
|
|
if (baseptr == NULL || sizeptr == NULL || hdr == NULL ||
|
|
shdr == NULL)
|
|
return (EINVAL);
|
|
|
|
lf = linker_make_file(filename, &link_elf_class);
|
|
if (lf == NULL)
|
|
return (ENOMEM);
|
|
|
|
ef = (elf_file_t)lf;
|
|
ef->preloaded = 1;
|
|
ef->address = *(caddr_t *)baseptr;
|
|
lf->address = *(caddr_t *)baseptr;
|
|
lf->size = *(size_t *)sizeptr;
|
|
|
|
if (hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
|
|
hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
|
|
hdr->e_ident[EI_VERSION] != EV_CURRENT ||
|
|
hdr->e_version != EV_CURRENT ||
|
|
hdr->e_type != ET_REL ||
|
|
hdr->e_machine != ELF_TARG_MACH) {
|
|
error = EFTYPE;
|
|
goto out;
|
|
}
|
|
ef->e_shdr = shdr;
|
|
|
|
/* Scan the section header for information and table sizing. */
|
|
symtabindex = -1;
|
|
symstrindex = -1;
|
|
for (i = 0; i < hdr->e_shnum; i++) {
|
|
switch (shdr[i].sh_type) {
|
|
case SHT_PROGBITS:
|
|
case SHT_NOBITS:
|
|
#ifdef __amd64__
|
|
case SHT_X86_64_UNWIND:
|
|
#endif
|
|
/* Ignore sections not loaded by the loader. */
|
|
if (shdr[i].sh_addr == 0)
|
|
break;
|
|
ef->nprogtab++;
|
|
break;
|
|
case SHT_SYMTAB:
|
|
symtabindex = i;
|
|
symstrindex = shdr[i].sh_link;
|
|
break;
|
|
case SHT_REL:
|
|
ef->nreltab++;
|
|
break;
|
|
case SHT_RELA:
|
|
ef->nrelatab++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
shstrindex = hdr->e_shstrndx;
|
|
if (ef->nprogtab == 0 || symstrindex < 0 ||
|
|
symstrindex >= hdr->e_shnum ||
|
|
shdr[symstrindex].sh_type != SHT_STRTAB || shstrindex == 0 ||
|
|
shstrindex >= hdr->e_shnum ||
|
|
shdr[shstrindex].sh_type != SHT_STRTAB) {
|
|
printf("%s: bad/missing section headers\n", filename);
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
|
|
/* Allocate space for tracking the load chunks */
|
|
if (ef->nprogtab != 0)
|
|
ef->progtab = malloc(ef->nprogtab * sizeof(*ef->progtab),
|
|
M_LINKER, M_WAITOK | M_ZERO);
|
|
if (ef->nreltab != 0)
|
|
ef->reltab = malloc(ef->nreltab * sizeof(*ef->reltab),
|
|
M_LINKER, M_WAITOK | M_ZERO);
|
|
if (ef->nrelatab != 0)
|
|
ef->relatab = malloc(ef->nrelatab * sizeof(*ef->relatab),
|
|
M_LINKER, M_WAITOK | M_ZERO);
|
|
if ((ef->nprogtab != 0 && ef->progtab == NULL) ||
|
|
(ef->nreltab != 0 && ef->reltab == NULL) ||
|
|
(ef->nrelatab != 0 && ef->relatab == NULL)) {
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* XXX, relocate the sh_addr fields saved by the loader. */
|
|
off = 0;
|
|
for (i = 0; i < hdr->e_shnum; i++) {
|
|
if (shdr[i].sh_addr != 0 && (off == 0 || shdr[i].sh_addr < off))
|
|
off = shdr[i].sh_addr;
|
|
}
|
|
for (i = 0; i < hdr->e_shnum; i++) {
|
|
if (shdr[i].sh_addr != 0)
|
|
shdr[i].sh_addr = shdr[i].sh_addr - off +
|
|
(Elf_Addr)ef->address;
|
|
}
|
|
|
|
ef->ddbsymcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
|
|
ef->ddbsymtab = (Elf_Sym *)shdr[symtabindex].sh_addr;
|
|
ef->ddbstrcnt = shdr[symstrindex].sh_size;
|
|
ef->ddbstrtab = (char *)shdr[symstrindex].sh_addr;
|
|
ef->shstrcnt = shdr[shstrindex].sh_size;
|
|
ef->shstrtab = (char *)shdr[shstrindex].sh_addr;
|
|
|
|
/* Now fill out progtab and the relocation tables. */
|
|
pb = 0;
|
|
rl = 0;
|
|
ra = 0;
|
|
for (i = 0; i < hdr->e_shnum; i++) {
|
|
switch (shdr[i].sh_type) {
|
|
case SHT_PROGBITS:
|
|
case SHT_NOBITS:
|
|
#ifdef __amd64__
|
|
case SHT_X86_64_UNWIND:
|
|
#endif
|
|
if (shdr[i].sh_addr == 0)
|
|
break;
|
|
ef->progtab[pb].addr = (void *)shdr[i].sh_addr;
|
|
if (shdr[i].sh_type == SHT_PROGBITS)
|
|
ef->progtab[pb].name = "<<PROGBITS>>";
|
|
#ifdef __amd64__
|
|
else if (shdr[i].sh_type == SHT_X86_64_UNWIND)
|
|
ef->progtab[pb].name = "<<UNWIND>>";
|
|
#endif
|
|
else
|
|
ef->progtab[pb].name = "<<NOBITS>>";
|
|
ef->progtab[pb].size = shdr[i].sh_size;
|
|
ef->progtab[pb].sec = i;
|
|
if (ef->shstrtab && shdr[i].sh_name != 0)
|
|
ef->progtab[pb].name =
|
|
ef->shstrtab + shdr[i].sh_name;
|
|
if (ef->progtab[pb].name != NULL &&
|
|
!strcmp(ef->progtab[pb].name, DPCPU_SETNAME)) {
|
|
void *dpcpu;
|
|
|
|
dpcpu = dpcpu_alloc(shdr[i].sh_size);
|
|
if (dpcpu == NULL) {
|
|
error = ENOSPC;
|
|
goto out;
|
|
}
|
|
memcpy(dpcpu, ef->progtab[pb].addr,
|
|
ef->progtab[pb].size);
|
|
dpcpu_copy(dpcpu, shdr[i].sh_size);
|
|
ef->progtab[pb].addr = dpcpu;
|
|
#ifdef VIMAGE
|
|
} else if (ef->progtab[pb].name != NULL &&
|
|
!strcmp(ef->progtab[pb].name, VNET_SETNAME)) {
|
|
void *vnet_data;
|
|
|
|
vnet_data = vnet_data_alloc(shdr[i].sh_size);
|
|
if (vnet_data == NULL) {
|
|
error = ENOSPC;
|
|
goto out;
|
|
}
|
|
memcpy(vnet_data, ef->progtab[pb].addr,
|
|
ef->progtab[pb].size);
|
|
vnet_data_copy(vnet_data, shdr[i].sh_size);
|
|
ef->progtab[pb].addr = vnet_data;
|
|
#endif
|
|
} else if (ef->progtab[pb].name != NULL &&
|
|
!strcmp(ef->progtab[pb].name, ".ctors")) {
|
|
lf->ctors_addr = ef->progtab[pb].addr;
|
|
lf->ctors_size = shdr[i].sh_size;
|
|
}
|
|
|
|
/* Update all symbol values with the offset. */
|
|
for (j = 0; j < ef->ddbsymcnt; j++) {
|
|
es = &ef->ddbsymtab[j];
|
|
if (es->st_shndx != i)
|
|
continue;
|
|
es->st_value += (Elf_Addr)ef->progtab[pb].addr;
|
|
}
|
|
pb++;
|
|
break;
|
|
case SHT_REL:
|
|
ef->reltab[rl].rel = (Elf_Rel *)shdr[i].sh_addr;
|
|
ef->reltab[rl].nrel = shdr[i].sh_size / sizeof(Elf_Rel);
|
|
ef->reltab[rl].sec = shdr[i].sh_info;
|
|
rl++;
|
|
break;
|
|
case SHT_RELA:
|
|
ef->relatab[ra].rela = (Elf_Rela *)shdr[i].sh_addr;
|
|
ef->relatab[ra].nrela =
|
|
shdr[i].sh_size / sizeof(Elf_Rela);
|
|
ef->relatab[ra].sec = shdr[i].sh_info;
|
|
ra++;
|
|
break;
|
|
}
|
|
}
|
|
if (pb != ef->nprogtab) {
|
|
printf("%s: lost progbits\n", filename);
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
if (rl != ef->nreltab) {
|
|
printf("%s: lost reltab\n", filename);
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
if (ra != ef->nrelatab) {
|
|
printf("%s: lost relatab\n", filename);
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
|
|
/* Local intra-module relocations */
|
|
error = link_elf_reloc_local(lf);
|
|
if (error != 0)
|
|
goto out;
|
|
|
|
*result = lf;
|
|
return (0);
|
|
|
|
out:
|
|
/* preload not done this way */
|
|
linker_file_unload(lf, LINKER_UNLOAD_FORCE);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
link_elf_invoke_ctors(caddr_t addr, size_t size)
|
|
{
|
|
void (**ctor)(void);
|
|
size_t i, cnt;
|
|
|
|
if (addr == NULL || size == 0)
|
|
return;
|
|
cnt = size / sizeof(*ctor);
|
|
ctor = (void *)addr;
|
|
for (i = 0; i < cnt; i++) {
|
|
if (ctor[i] != NULL)
|
|
(*ctor[i])();
|
|
}
|
|
}
|
|
|
|
static int
|
|
link_elf_link_preload_finish(linker_file_t lf)
|
|
{
|
|
elf_file_t ef;
|
|
int error;
|
|
|
|
ef = (elf_file_t)lf;
|
|
error = relocate_file(ef);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Notify MD code that a module is being loaded. */
|
|
error = elf_cpu_load_file(lf);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Invoke .ctors */
|
|
link_elf_invoke_ctors(lf->ctors_addr, lf->ctors_size);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
link_elf_load_file(linker_class_t cls, const char *filename,
|
|
linker_file_t *result)
|
|
{
|
|
struct nameidata *nd;
|
|
struct thread *td = curthread; /* XXX */
|
|
Elf_Ehdr *hdr;
|
|
Elf_Shdr *shdr;
|
|
Elf_Sym *es;
|
|
int nbytes, i, j;
|
|
vm_offset_t mapbase;
|
|
size_t mapsize;
|
|
int error = 0;
|
|
ssize_t resid;
|
|
int flags;
|
|
elf_file_t ef;
|
|
linker_file_t lf;
|
|
int symtabindex;
|
|
int symstrindex;
|
|
int shstrindex;
|
|
int nsym;
|
|
int pb, rl, ra;
|
|
int alignmask;
|
|
|
|
shdr = NULL;
|
|
lf = NULL;
|
|
mapsize = 0;
|
|
hdr = NULL;
|
|
|
|
nd = malloc(sizeof(struct nameidata), M_TEMP, M_WAITOK);
|
|
NDINIT(nd, LOOKUP, FOLLOW, UIO_SYSSPACE, filename, td);
|
|
flags = FREAD;
|
|
error = vn_open(nd, &flags, 0, NULL);
|
|
if (error) {
|
|
free(nd, M_TEMP);
|
|
return error;
|
|
}
|
|
NDFREE(nd, NDF_ONLY_PNBUF);
|
|
if (nd->ni_vp->v_type != VREG) {
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
#ifdef MAC
|
|
error = mac_kld_check_load(td->td_ucred, nd->ni_vp);
|
|
if (error) {
|
|
goto out;
|
|
}
|
|
#endif
|
|
|
|
/* Read the elf header from the file. */
|
|
hdr = malloc(sizeof(*hdr), M_LINKER, M_WAITOK);
|
|
error = vn_rdwr(UIO_READ, nd->ni_vp, (void *)hdr, sizeof(*hdr), 0,
|
|
UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, NOCRED,
|
|
&resid, td);
|
|
if (error)
|
|
goto out;
|
|
if (resid != 0){
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
|
|
if (!IS_ELF(*hdr)) {
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
|
|
if (hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS
|
|
|| hdr->e_ident[EI_DATA] != ELF_TARG_DATA) {
|
|
link_elf_error(filename, "Unsupported file layout");
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
if (hdr->e_ident[EI_VERSION] != EV_CURRENT
|
|
|| hdr->e_version != EV_CURRENT) {
|
|
link_elf_error(filename, "Unsupported file version");
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
if (hdr->e_type != ET_REL) {
|
|
error = ENOSYS;
|
|
goto out;
|
|
}
|
|
if (hdr->e_machine != ELF_TARG_MACH) {
|
|
link_elf_error(filename, "Unsupported machine");
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
|
|
lf = linker_make_file(filename, &link_elf_class);
|
|
if (!lf) {
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
ef = (elf_file_t) lf;
|
|
ef->nprogtab = 0;
|
|
ef->e_shdr = 0;
|
|
ef->nreltab = 0;
|
|
ef->nrelatab = 0;
|
|
|
|
/* Allocate and read in the section header */
|
|
nbytes = hdr->e_shnum * hdr->e_shentsize;
|
|
if (nbytes == 0 || hdr->e_shoff == 0 ||
|
|
hdr->e_shentsize != sizeof(Elf_Shdr)) {
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
shdr = malloc(nbytes, M_LINKER, M_WAITOK);
|
|
ef->e_shdr = shdr;
|
|
error = vn_rdwr(UIO_READ, nd->ni_vp, (caddr_t)shdr, nbytes,
|
|
hdr->e_shoff, UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
|
|
NOCRED, &resid, td);
|
|
if (error)
|
|
goto out;
|
|
if (resid) {
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
|
|
/* Scan the section header for information and table sizing. */
|
|
nsym = 0;
|
|
symtabindex = -1;
|
|
symstrindex = -1;
|
|
for (i = 0; i < hdr->e_shnum; i++) {
|
|
if (shdr[i].sh_size == 0)
|
|
continue;
|
|
switch (shdr[i].sh_type) {
|
|
case SHT_PROGBITS:
|
|
case SHT_NOBITS:
|
|
#ifdef __amd64__
|
|
case SHT_X86_64_UNWIND:
|
|
#endif
|
|
if ((shdr[i].sh_flags & SHF_ALLOC) == 0)
|
|
break;
|
|
ef->nprogtab++;
|
|
break;
|
|
case SHT_SYMTAB:
|
|
nsym++;
|
|
symtabindex = i;
|
|
symstrindex = shdr[i].sh_link;
|
|
break;
|
|
case SHT_REL:
|
|
ef->nreltab++;
|
|
break;
|
|
case SHT_RELA:
|
|
ef->nrelatab++;
|
|
break;
|
|
case SHT_STRTAB:
|
|
break;
|
|
}
|
|
}
|
|
if (ef->nprogtab == 0) {
|
|
link_elf_error(filename, "file has no contents");
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
if (nsym != 1) {
|
|
/* Only allow one symbol table for now */
|
|
link_elf_error(filename, "file has no valid symbol table");
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
|
|
shdr[symstrindex].sh_type != SHT_STRTAB) {
|
|
link_elf_error(filename, "file has invalid symbol strings");
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
|
|
/* Allocate space for tracking the load chunks */
|
|
if (ef->nprogtab != 0)
|
|
ef->progtab = malloc(ef->nprogtab * sizeof(*ef->progtab),
|
|
M_LINKER, M_WAITOK | M_ZERO);
|
|
if (ef->nreltab != 0)
|
|
ef->reltab = malloc(ef->nreltab * sizeof(*ef->reltab),
|
|
M_LINKER, M_WAITOK | M_ZERO);
|
|
if (ef->nrelatab != 0)
|
|
ef->relatab = malloc(ef->nrelatab * sizeof(*ef->relatab),
|
|
M_LINKER, M_WAITOK | M_ZERO);
|
|
|
|
if (symtabindex == -1) {
|
|
link_elf_error(filename, "lost symbol table index");
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
/* Allocate space for and load the symbol table */
|
|
ef->ddbsymcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
|
|
ef->ddbsymtab = malloc(shdr[symtabindex].sh_size, M_LINKER, M_WAITOK);
|
|
error = vn_rdwr(UIO_READ, nd->ni_vp, (void *)ef->ddbsymtab,
|
|
shdr[symtabindex].sh_size, shdr[symtabindex].sh_offset,
|
|
UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, NOCRED,
|
|
&resid, td);
|
|
if (error)
|
|
goto out;
|
|
if (resid != 0){
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (symstrindex == -1) {
|
|
link_elf_error(filename, "lost symbol string index");
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
/* Allocate space for and load the symbol strings */
|
|
ef->ddbstrcnt = shdr[symstrindex].sh_size;
|
|
ef->ddbstrtab = malloc(shdr[symstrindex].sh_size, M_LINKER, M_WAITOK);
|
|
error = vn_rdwr(UIO_READ, nd->ni_vp, ef->ddbstrtab,
|
|
shdr[symstrindex].sh_size, shdr[symstrindex].sh_offset,
|
|
UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, NOCRED,
|
|
&resid, td);
|
|
if (error)
|
|
goto out;
|
|
if (resid != 0){
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Do we have a string table for the section names? */
|
|
shstrindex = -1;
|
|
if (hdr->e_shstrndx != 0 &&
|
|
shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
|
|
shstrindex = hdr->e_shstrndx;
|
|
ef->shstrcnt = shdr[shstrindex].sh_size;
|
|
ef->shstrtab = malloc(shdr[shstrindex].sh_size, M_LINKER,
|
|
M_WAITOK);
|
|
error = vn_rdwr(UIO_READ, nd->ni_vp, ef->shstrtab,
|
|
shdr[shstrindex].sh_size, shdr[shstrindex].sh_offset,
|
|
UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, NOCRED,
|
|
&resid, td);
|
|
if (error)
|
|
goto out;
|
|
if (resid != 0){
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Size up code/data(progbits) and bss(nobits). */
|
|
alignmask = 0;
|
|
for (i = 0; i < hdr->e_shnum; i++) {
|
|
if (shdr[i].sh_size == 0)
|
|
continue;
|
|
switch (shdr[i].sh_type) {
|
|
case SHT_PROGBITS:
|
|
case SHT_NOBITS:
|
|
#ifdef __amd64__
|
|
case SHT_X86_64_UNWIND:
|
|
#endif
|
|
if ((shdr[i].sh_flags & SHF_ALLOC) == 0)
|
|
break;
|
|
alignmask = shdr[i].sh_addralign - 1;
|
|
mapsize += alignmask;
|
|
mapsize &= ~alignmask;
|
|
mapsize += shdr[i].sh_size;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We know how much space we need for the text/data/bss/etc.
|
|
* This stuff needs to be in a single chunk so that profiling etc
|
|
* can get the bounds and gdb can associate offsets with modules
|
|
*/
|
|
ef->object = vm_object_allocate(OBJT_DEFAULT,
|
|
round_page(mapsize) >> PAGE_SHIFT);
|
|
if (ef->object == NULL) {
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
ef->address = (caddr_t) vm_map_min(kernel_map);
|
|
|
|
/*
|
|
* In order to satisfy amd64's architectural requirements on the
|
|
* location of code and data in the kernel's address space, request a
|
|
* mapping that is above the kernel.
|
|
*/
|
|
#ifdef __amd64__
|
|
mapbase = KERNBASE;
|
|
#else
|
|
mapbase = VM_MIN_KERNEL_ADDRESS;
|
|
#endif
|
|
error = vm_map_find(kernel_map, ef->object, 0, &mapbase,
|
|
round_page(mapsize), 0, VMFS_OPTIMAL_SPACE, VM_PROT_ALL,
|
|
VM_PROT_ALL, 0);
|
|
if (error) {
|
|
vm_object_deallocate(ef->object);
|
|
ef->object = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* Wire the pages */
|
|
error = vm_map_wire(kernel_map, mapbase,
|
|
mapbase + round_page(mapsize),
|
|
VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
|
|
if (error != KERN_SUCCESS) {
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* Inform the kld system about the situation */
|
|
lf->address = ef->address = (caddr_t)mapbase;
|
|
lf->size = mapsize;
|
|
|
|
/*
|
|
* Now load code/data(progbits), zero bss(nobits), allocate space for
|
|
* and load relocs
|
|
*/
|
|
pb = 0;
|
|
rl = 0;
|
|
ra = 0;
|
|
alignmask = 0;
|
|
for (i = 0; i < hdr->e_shnum; i++) {
|
|
if (shdr[i].sh_size == 0)
|
|
continue;
|
|
switch (shdr[i].sh_type) {
|
|
case SHT_PROGBITS:
|
|
case SHT_NOBITS:
|
|
#ifdef __amd64__
|
|
case SHT_X86_64_UNWIND:
|
|
#endif
|
|
if ((shdr[i].sh_flags & SHF_ALLOC) == 0)
|
|
break;
|
|
alignmask = shdr[i].sh_addralign - 1;
|
|
mapbase += alignmask;
|
|
mapbase &= ~alignmask;
|
|
if (ef->shstrtab != NULL && shdr[i].sh_name != 0) {
|
|
ef->progtab[pb].name =
|
|
ef->shstrtab + shdr[i].sh_name;
|
|
if (!strcmp(ef->progtab[pb].name, ".ctors")) {
|
|
lf->ctors_addr = (caddr_t)mapbase;
|
|
lf->ctors_size = shdr[i].sh_size;
|
|
}
|
|
} else if (shdr[i].sh_type == SHT_PROGBITS)
|
|
ef->progtab[pb].name = "<<PROGBITS>>";
|
|
#ifdef __amd64__
|
|
else if (shdr[i].sh_type == SHT_X86_64_UNWIND)
|
|
ef->progtab[pb].name = "<<UNWIND>>";
|
|
#endif
|
|
else
|
|
ef->progtab[pb].name = "<<NOBITS>>";
|
|
if (ef->progtab[pb].name != NULL &&
|
|
!strcmp(ef->progtab[pb].name, DPCPU_SETNAME))
|
|
ef->progtab[pb].addr =
|
|
dpcpu_alloc(shdr[i].sh_size);
|
|
#ifdef VIMAGE
|
|
else if (ef->progtab[pb].name != NULL &&
|
|
!strcmp(ef->progtab[pb].name, VNET_SETNAME))
|
|
ef->progtab[pb].addr =
|
|
vnet_data_alloc(shdr[i].sh_size);
|
|
#endif
|
|
else
|
|
ef->progtab[pb].addr =
|
|
(void *)(uintptr_t)mapbase;
|
|
if (ef->progtab[pb].addr == NULL) {
|
|
error = ENOSPC;
|
|
goto out;
|
|
}
|
|
ef->progtab[pb].size = shdr[i].sh_size;
|
|
ef->progtab[pb].sec = i;
|
|
if (shdr[i].sh_type == SHT_PROGBITS
|
|
#ifdef __amd64__
|
|
|| shdr[i].sh_type == SHT_X86_64_UNWIND
|
|
#endif
|
|
) {
|
|
error = vn_rdwr(UIO_READ, nd->ni_vp,
|
|
ef->progtab[pb].addr,
|
|
shdr[i].sh_size, shdr[i].sh_offset,
|
|
UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
|
|
NOCRED, &resid, td);
|
|
if (error)
|
|
goto out;
|
|
if (resid != 0){
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
/* Initialize the per-cpu or vnet area. */
|
|
if (ef->progtab[pb].addr != (void *)mapbase &&
|
|
!strcmp(ef->progtab[pb].name, DPCPU_SETNAME))
|
|
dpcpu_copy(ef->progtab[pb].addr,
|
|
shdr[i].sh_size);
|
|
#ifdef VIMAGE
|
|
else if (ef->progtab[pb].addr !=
|
|
(void *)mapbase &&
|
|
!strcmp(ef->progtab[pb].name, VNET_SETNAME))
|
|
vnet_data_copy(ef->progtab[pb].addr,
|
|
shdr[i].sh_size);
|
|
#endif
|
|
} else
|
|
bzero(ef->progtab[pb].addr, shdr[i].sh_size);
|
|
|
|
/* Update all symbol values with the offset. */
|
|
for (j = 0; j < ef->ddbsymcnt; j++) {
|
|
es = &ef->ddbsymtab[j];
|
|
if (es->st_shndx != i)
|
|
continue;
|
|
es->st_value += (Elf_Addr)ef->progtab[pb].addr;
|
|
}
|
|
mapbase += shdr[i].sh_size;
|
|
pb++;
|
|
break;
|
|
case SHT_REL:
|
|
ef->reltab[rl].rel = malloc(shdr[i].sh_size, M_LINKER,
|
|
M_WAITOK);
|
|
ef->reltab[rl].nrel = shdr[i].sh_size / sizeof(Elf_Rel);
|
|
ef->reltab[rl].sec = shdr[i].sh_info;
|
|
error = vn_rdwr(UIO_READ, nd->ni_vp,
|
|
(void *)ef->reltab[rl].rel,
|
|
shdr[i].sh_size, shdr[i].sh_offset,
|
|
UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, NOCRED,
|
|
&resid, td);
|
|
if (error)
|
|
goto out;
|
|
if (resid != 0){
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
rl++;
|
|
break;
|
|
case SHT_RELA:
|
|
ef->relatab[ra].rela = malloc(shdr[i].sh_size, M_LINKER,
|
|
M_WAITOK);
|
|
ef->relatab[ra].nrela =
|
|
shdr[i].sh_size / sizeof(Elf_Rela);
|
|
ef->relatab[ra].sec = shdr[i].sh_info;
|
|
error = vn_rdwr(UIO_READ, nd->ni_vp,
|
|
(void *)ef->relatab[ra].rela,
|
|
shdr[i].sh_size, shdr[i].sh_offset,
|
|
UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, NOCRED,
|
|
&resid, td);
|
|
if (error)
|
|
goto out;
|
|
if (resid != 0){
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
ra++;
|
|
break;
|
|
}
|
|
}
|
|
if (pb != ef->nprogtab) {
|
|
link_elf_error(filename, "lost progbits");
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
if (rl != ef->nreltab) {
|
|
link_elf_error(filename, "lost reltab");
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
if (ra != ef->nrelatab) {
|
|
link_elf_error(filename, "lost relatab");
|
|
error = ENOEXEC;
|
|
goto out;
|
|
}
|
|
if (mapbase != (vm_offset_t)ef->address + mapsize) {
|
|
printf(
|
|
"%s: mapbase 0x%lx != address %p + mapsize 0x%lx (0x%lx)\n",
|
|
filename != NULL ? filename : "<none>",
|
|
(u_long)mapbase, ef->address, (u_long)mapsize,
|
|
(u_long)(vm_offset_t)ef->address + mapsize);
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* Local intra-module relocations */
|
|
error = link_elf_reloc_local(lf);
|
|
if (error != 0)
|
|
goto out;
|
|
|
|
/* Pull in dependencies */
|
|
VOP_UNLOCK(nd->ni_vp, 0);
|
|
error = linker_load_dependencies(lf);
|
|
vn_lock(nd->ni_vp, LK_EXCLUSIVE | LK_RETRY);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* External relocations */
|
|
error = relocate_file(ef);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* Notify MD code that a module is being loaded. */
|
|
error = elf_cpu_load_file(lf);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* Invoke .ctors */
|
|
link_elf_invoke_ctors(lf->ctors_addr, lf->ctors_size);
|
|
|
|
*result = lf;
|
|
|
|
out:
|
|
VOP_UNLOCK(nd->ni_vp, 0);
|
|
vn_close(nd->ni_vp, FREAD, td->td_ucred, td);
|
|
free(nd, M_TEMP);
|
|
if (error && lf)
|
|
linker_file_unload(lf, LINKER_UNLOAD_FORCE);
|
|
free(hdr, M_LINKER);
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
link_elf_unload_file(linker_file_t file)
|
|
{
|
|
elf_file_t ef = (elf_file_t) file;
|
|
int i;
|
|
|
|
/* Notify MD code that a module is being unloaded. */
|
|
elf_cpu_unload_file(file);
|
|
|
|
if (ef->progtab) {
|
|
for (i = 0; i < ef->nprogtab; i++) {
|
|
if (ef->progtab[i].size == 0)
|
|
continue;
|
|
if (ef->progtab[i].name == NULL)
|
|
continue;
|
|
if (!strcmp(ef->progtab[i].name, DPCPU_SETNAME))
|
|
dpcpu_free(ef->progtab[i].addr,
|
|
ef->progtab[i].size);
|
|
#ifdef VIMAGE
|
|
else if (!strcmp(ef->progtab[i].name, VNET_SETNAME))
|
|
vnet_data_free(ef->progtab[i].addr,
|
|
ef->progtab[i].size);
|
|
#endif
|
|
}
|
|
}
|
|
if (ef->preloaded) {
|
|
free(ef->reltab, M_LINKER);
|
|
free(ef->relatab, M_LINKER);
|
|
free(ef->progtab, M_LINKER);
|
|
free(ef->ctftab, M_LINKER);
|
|
free(ef->ctfoff, M_LINKER);
|
|
free(ef->typoff, M_LINKER);
|
|
if (file->filename != NULL)
|
|
preload_delete_name(file->filename);
|
|
/* XXX reclaim module memory? */
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < ef->nreltab; i++)
|
|
free(ef->reltab[i].rel, M_LINKER);
|
|
for (i = 0; i < ef->nrelatab; i++)
|
|
free(ef->relatab[i].rela, M_LINKER);
|
|
free(ef->reltab, M_LINKER);
|
|
free(ef->relatab, M_LINKER);
|
|
free(ef->progtab, M_LINKER);
|
|
|
|
if (ef->object) {
|
|
vm_map_remove(kernel_map, (vm_offset_t) ef->address,
|
|
(vm_offset_t) ef->address +
|
|
(ef->object->size << PAGE_SHIFT));
|
|
}
|
|
free(ef->e_shdr, M_LINKER);
|
|
free(ef->ddbsymtab, M_LINKER);
|
|
free(ef->ddbstrtab, M_LINKER);
|
|
free(ef->shstrtab, M_LINKER);
|
|
free(ef->ctftab, M_LINKER);
|
|
free(ef->ctfoff, M_LINKER);
|
|
free(ef->typoff, M_LINKER);
|
|
}
|
|
|
|
static const char *
|
|
symbol_name(elf_file_t ef, Elf_Size r_info)
|
|
{
|
|
const Elf_Sym *ref;
|
|
|
|
if (ELF_R_SYM(r_info)) {
|
|
ref = ef->ddbsymtab + ELF_R_SYM(r_info);
|
|
return ef->ddbstrtab + ref->st_name;
|
|
} else
|
|
return NULL;
|
|
}
|
|
|
|
static Elf_Addr
|
|
findbase(elf_file_t ef, int sec)
|
|
{
|
|
int i;
|
|
Elf_Addr base = 0;
|
|
|
|
for (i = 0; i < ef->nprogtab; i++) {
|
|
if (sec == ef->progtab[i].sec) {
|
|
base = (Elf_Addr)ef->progtab[i].addr;
|
|
break;
|
|
}
|
|
}
|
|
return base;
|
|
}
|
|
|
|
static int
|
|
relocate_file(elf_file_t ef)
|
|
{
|
|
const Elf_Rel *rellim;
|
|
const Elf_Rel *rel;
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
const char *symname;
|
|
const Elf_Sym *sym;
|
|
int i;
|
|
Elf_Size symidx;
|
|
Elf_Addr base;
|
|
|
|
|
|
/* Perform relocations without addend if there are any: */
|
|
for (i = 0; i < ef->nreltab; i++) {
|
|
rel = ef->reltab[i].rel;
|
|
if (rel == NULL) {
|
|
link_elf_error(ef->lf.filename, "lost a reltab!");
|
|
return (ENOEXEC);
|
|
}
|
|
rellim = rel + ef->reltab[i].nrel;
|
|
base = findbase(ef, ef->reltab[i].sec);
|
|
if (base == 0) {
|
|
link_elf_error(ef->lf.filename, "lost base for reltab");
|
|
return (ENOEXEC);
|
|
}
|
|
for ( ; rel < rellim; rel++) {
|
|
symidx = ELF_R_SYM(rel->r_info);
|
|
if (symidx >= ef->ddbsymcnt)
|
|
continue;
|
|
sym = ef->ddbsymtab + symidx;
|
|
/* Local relocs are already done */
|
|
if (ELF_ST_BIND(sym->st_info) == STB_LOCAL)
|
|
continue;
|
|
if (elf_reloc(&ef->lf, base, rel, ELF_RELOC_REL,
|
|
elf_obj_lookup)) {
|
|
symname = symbol_name(ef, rel->r_info);
|
|
printf("link_elf_obj: symbol %s undefined\n",
|
|
symname);
|
|
return (ENOENT);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Perform relocations with addend if there are any: */
|
|
for (i = 0; i < ef->nrelatab; i++) {
|
|
rela = ef->relatab[i].rela;
|
|
if (rela == NULL) {
|
|
link_elf_error(ef->lf.filename, "lost a relatab!");
|
|
return (ENOEXEC);
|
|
}
|
|
relalim = rela + ef->relatab[i].nrela;
|
|
base = findbase(ef, ef->relatab[i].sec);
|
|
if (base == 0) {
|
|
link_elf_error(ef->lf.filename,
|
|
"lost base for relatab");
|
|
return (ENOEXEC);
|
|
}
|
|
for ( ; rela < relalim; rela++) {
|
|
symidx = ELF_R_SYM(rela->r_info);
|
|
if (symidx >= ef->ddbsymcnt)
|
|
continue;
|
|
sym = ef->ddbsymtab + symidx;
|
|
/* Local relocs are already done */
|
|
if (ELF_ST_BIND(sym->st_info) == STB_LOCAL)
|
|
continue;
|
|
if (elf_reloc(&ef->lf, base, rela, ELF_RELOC_RELA,
|
|
elf_obj_lookup)) {
|
|
symname = symbol_name(ef, rela->r_info);
|
|
printf("link_elf_obj: symbol %s undefined\n",
|
|
symname);
|
|
return (ENOENT);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Only clean SHN_FBSD_CACHED for successful return. If we
|
|
* modified symbol table for the object but found an
|
|
* unresolved symbol, there is no reason to roll back.
|
|
*/
|
|
elf_obj_cleanup_globals_cache(ef);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
link_elf_lookup_symbol(linker_file_t lf, const char *name, c_linker_sym_t *sym)
|
|
{
|
|
elf_file_t ef = (elf_file_t) lf;
|
|
const Elf_Sym *symp;
|
|
const char *strp;
|
|
int i;
|
|
|
|
for (i = 0, symp = ef->ddbsymtab; i < ef->ddbsymcnt; i++, symp++) {
|
|
strp = ef->ddbstrtab + symp->st_name;
|
|
if (symp->st_shndx != SHN_UNDEF && strcmp(name, strp) == 0) {
|
|
*sym = (c_linker_sym_t) symp;
|
|
return 0;
|
|
}
|
|
}
|
|
return ENOENT;
|
|
}
|
|
|
|
static int
|
|
link_elf_symbol_values(linker_file_t lf, c_linker_sym_t sym,
|
|
linker_symval_t *symval)
|
|
{
|
|
elf_file_t ef = (elf_file_t) lf;
|
|
const Elf_Sym *es = (const Elf_Sym*) sym;
|
|
|
|
if (es >= ef->ddbsymtab && es < (ef->ddbsymtab + ef->ddbsymcnt)) {
|
|
symval->name = ef->ddbstrtab + es->st_name;
|
|
symval->value = (caddr_t)es->st_value;
|
|
symval->size = es->st_size;
|
|
return 0;
|
|
}
|
|
return ENOENT;
|
|
}
|
|
|
|
static int
|
|
link_elf_search_symbol(linker_file_t lf, caddr_t value,
|
|
c_linker_sym_t *sym, long *diffp)
|
|
{
|
|
elf_file_t ef = (elf_file_t) lf;
|
|
u_long off = (uintptr_t) (void *) value;
|
|
u_long diff = off;
|
|
u_long st_value;
|
|
const Elf_Sym *es;
|
|
const Elf_Sym *best = NULL;
|
|
int i;
|
|
|
|
for (i = 0, es = ef->ddbsymtab; i < ef->ddbsymcnt; i++, es++) {
|
|
if (es->st_name == 0)
|
|
continue;
|
|
st_value = es->st_value;
|
|
if (off >= st_value) {
|
|
if (off - st_value < diff) {
|
|
diff = off - st_value;
|
|
best = es;
|
|
if (diff == 0)
|
|
break;
|
|
} else if (off - st_value == diff) {
|
|
best = es;
|
|
}
|
|
}
|
|
}
|
|
if (best == NULL)
|
|
*diffp = off;
|
|
else
|
|
*diffp = diff;
|
|
*sym = (c_linker_sym_t) best;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Look up a linker set on an ELF system.
|
|
*/
|
|
static int
|
|
link_elf_lookup_set(linker_file_t lf, const char *name,
|
|
void ***startp, void ***stopp, int *countp)
|
|
{
|
|
elf_file_t ef = (elf_file_t)lf;
|
|
void **start, **stop;
|
|
int i, count;
|
|
|
|
/* Relative to section number */
|
|
for (i = 0; i < ef->nprogtab; i++) {
|
|
if ((strncmp(ef->progtab[i].name, "set_", 4) == 0) &&
|
|
strcmp(ef->progtab[i].name + 4, name) == 0) {
|
|
start = (void **)ef->progtab[i].addr;
|
|
stop = (void **)((char *)ef->progtab[i].addr +
|
|
ef->progtab[i].size);
|
|
count = stop - start;
|
|
if (startp)
|
|
*startp = start;
|
|
if (stopp)
|
|
*stopp = stop;
|
|
if (countp)
|
|
*countp = count;
|
|
return (0);
|
|
}
|
|
}
|
|
return (ESRCH);
|
|
}
|
|
|
|
static int
|
|
link_elf_each_function_name(linker_file_t file,
|
|
int (*callback)(const char *, void *), void *opaque)
|
|
{
|
|
elf_file_t ef = (elf_file_t)file;
|
|
const Elf_Sym *symp;
|
|
int i, error;
|
|
|
|
/* Exhaustive search */
|
|
for (i = 0, symp = ef->ddbsymtab; i < ef->ddbsymcnt; i++, symp++) {
|
|
if (symp->st_value != 0 &&
|
|
ELF_ST_TYPE(symp->st_info) == STT_FUNC) {
|
|
error = callback(ef->ddbstrtab + symp->st_name, opaque);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
link_elf_each_function_nameval(linker_file_t file,
|
|
linker_function_nameval_callback_t callback, void *opaque)
|
|
{
|
|
linker_symval_t symval;
|
|
elf_file_t ef = (elf_file_t)file;
|
|
const Elf_Sym* symp;
|
|
int i, error;
|
|
|
|
/* Exhaustive search */
|
|
for (i = 0, symp = ef->ddbsymtab; i < ef->ddbsymcnt; i++, symp++) {
|
|
if (symp->st_value != 0 &&
|
|
ELF_ST_TYPE(symp->st_info) == STT_FUNC) {
|
|
error = link_elf_symbol_values(file, (c_linker_sym_t) symp, &symval);
|
|
if (error)
|
|
return (error);
|
|
error = callback(file, i, &symval, opaque);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
elf_obj_cleanup_globals_cache(elf_file_t ef)
|
|
{
|
|
Elf_Sym *sym;
|
|
Elf_Size i;
|
|
|
|
for (i = 0; i < ef->ddbsymcnt; i++) {
|
|
sym = ef->ddbsymtab + i;
|
|
if (sym->st_shndx == SHN_FBSD_CACHED) {
|
|
sym->st_shndx = SHN_UNDEF;
|
|
sym->st_value = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Symbol lookup function that can be used when the symbol index is known (ie
|
|
* in relocations). It uses the symbol index instead of doing a fully fledged
|
|
* hash table based lookup when such is valid. For example for local symbols.
|
|
* This is not only more efficient, it's also more correct. It's not always
|
|
* the case that the symbol can be found through the hash table.
|
|
*/
|
|
static int
|
|
elf_obj_lookup(linker_file_t lf, Elf_Size symidx, int deps, Elf_Addr *res)
|
|
{
|
|
elf_file_t ef = (elf_file_t)lf;
|
|
Elf_Sym *sym;
|
|
const char *symbol;
|
|
Elf_Addr res1;
|
|
|
|
/* Don't even try to lookup the symbol if the index is bogus. */
|
|
if (symidx >= ef->ddbsymcnt) {
|
|
*res = 0;
|
|
return (EINVAL);
|
|
}
|
|
|
|
sym = ef->ddbsymtab + symidx;
|
|
|
|
/* Quick answer if there is a definition included. */
|
|
if (sym->st_shndx != SHN_UNDEF) {
|
|
*res = sym->st_value;
|
|
return (0);
|
|
}
|
|
|
|
/* If we get here, then it is undefined and needs a lookup. */
|
|
switch (ELF_ST_BIND(sym->st_info)) {
|
|
case STB_LOCAL:
|
|
/* Local, but undefined? huh? */
|
|
*res = 0;
|
|
return (EINVAL);
|
|
|
|
case STB_GLOBAL:
|
|
case STB_WEAK:
|
|
/* Relative to Data or Function name */
|
|
symbol = ef->ddbstrtab + sym->st_name;
|
|
|
|
/* Force a lookup failure if the symbol name is bogus. */
|
|
if (*symbol == 0) {
|
|
*res = 0;
|
|
return (EINVAL);
|
|
}
|
|
res1 = (Elf_Addr)linker_file_lookup_symbol(lf, symbol, deps);
|
|
|
|
/*
|
|
* Cache global lookups during module relocation. The failure
|
|
* case is particularly expensive for callers, who must scan
|
|
* through the entire globals table doing strcmp(). Cache to
|
|
* avoid doing such work repeatedly.
|
|
*
|
|
* After relocation is complete, undefined globals will be
|
|
* restored to SHN_UNDEF in elf_obj_cleanup_globals_cache(),
|
|
* above.
|
|
*/
|
|
if (res1 != 0) {
|
|
sym->st_shndx = SHN_FBSD_CACHED;
|
|
sym->st_value = res1;
|
|
*res = res1;
|
|
return (0);
|
|
} else if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
|
|
sym->st_value = 0;
|
|
*res = 0;
|
|
return (0);
|
|
}
|
|
return (EINVAL);
|
|
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
static void
|
|
link_elf_fix_link_set(elf_file_t ef)
|
|
{
|
|
static const char startn[] = "__start_";
|
|
static const char stopn[] = "__stop_";
|
|
Elf_Sym *sym;
|
|
const char *sym_name, *linkset_name;
|
|
Elf_Addr startp, stopp;
|
|
Elf_Size symidx;
|
|
int start, i;
|
|
|
|
startp = stopp = 0;
|
|
for (symidx = 1 /* zero entry is special */;
|
|
symidx < ef->ddbsymcnt; symidx++) {
|
|
sym = ef->ddbsymtab + symidx;
|
|
if (sym->st_shndx != SHN_UNDEF)
|
|
continue;
|
|
|
|
sym_name = ef->ddbstrtab + sym->st_name;
|
|
if (strncmp(sym_name, startn, sizeof(startn) - 1) == 0) {
|
|
start = 1;
|
|
linkset_name = sym_name + sizeof(startn) - 1;
|
|
}
|
|
else if (strncmp(sym_name, stopn, sizeof(stopn) - 1) == 0) {
|
|
start = 0;
|
|
linkset_name = sym_name + sizeof(stopn) - 1;
|
|
}
|
|
else
|
|
continue;
|
|
|
|
for (i = 0; i < ef->nprogtab; i++) {
|
|
if (strcmp(ef->progtab[i].name, linkset_name) == 0) {
|
|
startp = (Elf_Addr)ef->progtab[i].addr;
|
|
stopp = (Elf_Addr)(startp + ef->progtab[i].size);
|
|
break;
|
|
}
|
|
}
|
|
if (i == ef->nprogtab)
|
|
continue;
|
|
|
|
sym->st_value = start ? startp : stopp;
|
|
sym->st_shndx = i;
|
|
}
|
|
}
|
|
|
|
static int
|
|
link_elf_reloc_local(linker_file_t lf)
|
|
{
|
|
elf_file_t ef = (elf_file_t)lf;
|
|
const Elf_Rel *rellim;
|
|
const Elf_Rel *rel;
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
const Elf_Sym *sym;
|
|
Elf_Addr base;
|
|
int i;
|
|
Elf_Size symidx;
|
|
|
|
link_elf_fix_link_set(ef);
|
|
|
|
/* Perform relocations without addend if there are any: */
|
|
for (i = 0; i < ef->nreltab; i++) {
|
|
rel = ef->reltab[i].rel;
|
|
if (rel == NULL) {
|
|
link_elf_error(ef->lf.filename, "lost a reltab");
|
|
return (ENOEXEC);
|
|
}
|
|
rellim = rel + ef->reltab[i].nrel;
|
|
base = findbase(ef, ef->reltab[i].sec);
|
|
if (base == 0) {
|
|
link_elf_error(ef->lf.filename, "lost base for reltab");
|
|
return (ENOEXEC);
|
|
}
|
|
for ( ; rel < rellim; rel++) {
|
|
symidx = ELF_R_SYM(rel->r_info);
|
|
if (symidx >= ef->ddbsymcnt)
|
|
continue;
|
|
sym = ef->ddbsymtab + symidx;
|
|
/* Only do local relocs */
|
|
if (ELF_ST_BIND(sym->st_info) != STB_LOCAL)
|
|
continue;
|
|
elf_reloc_local(lf, base, rel, ELF_RELOC_REL,
|
|
elf_obj_lookup);
|
|
}
|
|
}
|
|
|
|
/* Perform relocations with addend if there are any: */
|
|
for (i = 0; i < ef->nrelatab; i++) {
|
|
rela = ef->relatab[i].rela;
|
|
if (rela == NULL) {
|
|
link_elf_error(ef->lf.filename, "lost a relatab!");
|
|
return (ENOEXEC);
|
|
}
|
|
relalim = rela + ef->relatab[i].nrela;
|
|
base = findbase(ef, ef->relatab[i].sec);
|
|
if (base == 0) {
|
|
link_elf_error(ef->lf.filename, "lost base for reltab");
|
|
return (ENOEXEC);
|
|
}
|
|
for ( ; rela < relalim; rela++) {
|
|
symidx = ELF_R_SYM(rela->r_info);
|
|
if (symidx >= ef->ddbsymcnt)
|
|
continue;
|
|
sym = ef->ddbsymtab + symidx;
|
|
/* Only do local relocs */
|
|
if (ELF_ST_BIND(sym->st_info) != STB_LOCAL)
|
|
continue;
|
|
elf_reloc_local(lf, base, rela, ELF_RELOC_RELA,
|
|
elf_obj_lookup);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static long
|
|
link_elf_symtab_get(linker_file_t lf, const Elf_Sym **symtab)
|
|
{
|
|
elf_file_t ef = (elf_file_t)lf;
|
|
|
|
*symtab = ef->ddbsymtab;
|
|
|
|
if (*symtab == NULL)
|
|
return (0);
|
|
|
|
return (ef->ddbsymcnt);
|
|
}
|
|
|
|
static long
|
|
link_elf_strtab_get(linker_file_t lf, caddr_t *strtab)
|
|
{
|
|
elf_file_t ef = (elf_file_t)lf;
|
|
|
|
*strtab = ef->ddbstrtab;
|
|
|
|
if (*strtab == NULL)
|
|
return (0);
|
|
|
|
return (ef->ddbstrcnt);
|
|
}
|