freebsd-skq/sys/vm/uma_int.h
2020-09-01 21:20:45 +00:00

682 lines
22 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
* Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*
*/
#include <sys/counter.h>
#include <sys/_bitset.h>
#include <sys/_domainset.h>
#include <sys/_task.h>
/*
* This file includes definitions, structures, prototypes, and inlines that
* should not be used outside of the actual implementation of UMA.
*/
/*
* The brief summary; Zones describe unique allocation types. Zones are
* organized into per-CPU caches which are filled by buckets. Buckets are
* organized according to memory domains. Buckets are filled from kegs which
* are also organized according to memory domains. Kegs describe a unique
* allocation type, backend memory provider, and layout. Kegs are associated
* with one or more zones and zones reference one or more kegs. Kegs provide
* slabs which are virtually contiguous collections of pages. Each slab is
* broken down int one or more items that will satisfy an individual allocation.
*
* Allocation is satisfied in the following order:
* 1) Per-CPU cache
* 2) Per-domain cache of buckets
* 3) Slab from any of N kegs
* 4) Backend page provider
*
* More detail on individual objects is contained below:
*
* Kegs contain lists of slabs which are stored in either the full bin, empty
* bin, or partially allocated bin, to reduce fragmentation. They also contain
* the user supplied value for size, which is adjusted for alignment purposes
* and rsize is the result of that. The Keg also stores information for
* managing a hash of page addresses that maps pages to uma_slab_t structures
* for pages that don't have embedded uma_slab_t's.
*
* Keg slab lists are organized by memory domain to support NUMA allocation
* policies. By default allocations are spread across domains to reduce the
* potential for hotspots. Special keg creation flags may be specified to
* prefer location allocation. However there is no strict enforcement as frees
* may happen on any CPU and these are returned to the CPU-local cache
* regardless of the originating domain.
*
* The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
* be allocated off the page from a special slab zone. The free list within a
* slab is managed with a bitmask. For item sizes that would yield more than
* 10% memory waste we potentially allocate a separate uma_slab_t if this will
* improve the number of items per slab that will fit.
*
* The only really gross cases, with regards to memory waste, are for those
* items that are just over half the page size. You can get nearly 50% waste,
* so you fall back to the memory footprint of the power of two allocator. I
* have looked at memory allocation sizes on many of the machines available to
* me, and there does not seem to be an abundance of allocations at this range
* so at this time it may not make sense to optimize for it. This can, of
* course, be solved with dynamic slab sizes.
*
* Kegs may serve multiple Zones but by far most of the time they only serve
* one. When a Zone is created, a Keg is allocated and setup for it. While
* the backing Keg stores slabs, the Zone caches Buckets of items allocated
* from the slabs. Each Zone is equipped with an init/fini and ctor/dtor
* pair, as well as with its own set of small per-CPU caches, layered above
* the Zone's general Bucket cache.
*
* The PCPU caches are protected by critical sections, and may be accessed
* safely only from their associated CPU, while the Zones backed by the same
* Keg all share a common Keg lock (to coalesce contention on the backing
* slabs). The backing Keg typically only serves one Zone but in the case of
* multiple Zones, one of the Zones is considered the Primary Zone and all
* Zone-related stats from the Keg are done in the Primary Zone. For an
* example of a Multi-Zone setup, refer to the Mbuf allocation code.
*/
/*
* This is the representation for normal (Non OFFPAGE slab)
*
* i == item
* s == slab pointer
*
* <---------------- Page (UMA_SLAB_SIZE) ------------------>
* ___________________________________________________________
* | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ |
* ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
* ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
* |___________________________________________________________|
*
*
* This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
*
* ___________________________________________________________
* | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
* ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |
* ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |
* |___________________________________________________________|
* ___________ ^
* |slab header| |
* |___________|---*
*
*/
#ifndef VM_UMA_INT_H
#define VM_UMA_INT_H
#define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */
#define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */
#define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */
/* Max waste percentage before going to off page slab management */
#define UMA_MAX_WASTE 10
/* Max size of a CACHESPREAD slab. */
#define UMA_CACHESPREAD_MAX_SIZE (128 * 1024)
/*
* These flags must not overlap with the UMA_ZONE flags specified in uma.h.
*/
#define UMA_ZFLAG_OFFPAGE 0x00200000 /*
* Force the slab structure
* allocation off of the real
* memory.
*/
#define UMA_ZFLAG_HASH 0x00400000 /*
* Use a hash table instead of
* caching information in the
* vm_page.
*/
#define UMA_ZFLAG_VTOSLAB 0x00800000 /*
* Zone uses vtoslab for
* lookup.
*/
#define UMA_ZFLAG_CTORDTOR 0x01000000 /* Zone has ctor/dtor set. */
#define UMA_ZFLAG_LIMIT 0x02000000 /* Zone has limit set. */
#define UMA_ZFLAG_CACHE 0x04000000 /* uma_zcache_create()d it */
#define UMA_ZFLAG_RECLAIMING 0x08000000 /* Running zone_reclaim(). */
#define UMA_ZFLAG_BUCKET 0x10000000 /* Bucket zone. */
#define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */
#define UMA_ZFLAG_TRASH 0x40000000 /* Add trash ctor/dtor. */
#define UMA_ZFLAG_INHERIT \
(UMA_ZFLAG_OFFPAGE | UMA_ZFLAG_HASH | UMA_ZFLAG_VTOSLAB | \
UMA_ZFLAG_BUCKET | UMA_ZFLAG_INTERNAL)
#define PRINT_UMA_ZFLAGS "\20" \
"\37TRASH" \
"\36INTERNAL" \
"\35BUCKET" \
"\34RECLAIMING" \
"\33CACHE" \
"\32LIMIT" \
"\31CTORDTOR" \
"\30VTOSLAB" \
"\27HASH" \
"\26OFFPAGE" \
"\23SMR" \
"\22ROUNDROBIN" \
"\21FIRSTTOUCH" \
"\20PCPU" \
"\17NODUMP" \
"\16CACHESPREAD" \
"\15MINBUCKET" \
"\14MAXBUCKET" \
"\13NOBUCKET" \
"\12SECONDARY" \
"\11NOTPAGE" \
"\10VM" \
"\7MTXCLASS" \
"\6NOFREE" \
"\5MALLOC" \
"\4NOTOUCH" \
"\3CONTIG" \
"\2ZINIT"
/*
* Hash table for freed address -> slab translation.
*
* Only zones with memory not touchable by the allocator use the
* hash table. Otherwise slabs are found with vtoslab().
*/
#define UMA_HASH_SIZE_INIT 32
#define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
#define UMA_HASH_INSERT(h, s, mem) \
LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \
(mem))], slab_tohashslab(s), uhs_hlink)
#define UMA_HASH_REMOVE(h, s) \
LIST_REMOVE(slab_tohashslab(s), uhs_hlink)
LIST_HEAD(slabhashhead, uma_hash_slab);
struct uma_hash {
struct slabhashhead *uh_slab_hash; /* Hash table for slabs */
u_int uh_hashsize; /* Current size of the hash table */
u_int uh_hashmask; /* Mask used during hashing */
};
/*
* Align field or structure to cache 'sector' in intel terminology. This
* is more efficient with adjacent line prefetch.
*/
#if defined(__amd64__) || defined(__powerpc64__)
#define UMA_SUPER_ALIGN (CACHE_LINE_SIZE * 2)
#else
#define UMA_SUPER_ALIGN CACHE_LINE_SIZE
#endif
#define UMA_ALIGN __aligned(UMA_SUPER_ALIGN)
/*
* The uma_bucket structure is used to queue and manage buckets divorced
* from per-cpu caches. They are loaded into uma_cache_bucket structures
* for use.
*/
struct uma_bucket {
STAILQ_ENTRY(uma_bucket) ub_link; /* Link into the zone */
int16_t ub_cnt; /* Count of items in bucket. */
int16_t ub_entries; /* Max items. */
smr_seq_t ub_seq; /* SMR sequence number. */
void *ub_bucket[]; /* actual allocation storage */
};
typedef struct uma_bucket * uma_bucket_t;
/*
* The uma_cache_bucket structure is statically allocated on each per-cpu
* cache. Its use reduces branches and cache misses in the fast path.
*/
struct uma_cache_bucket {
uma_bucket_t ucb_bucket;
int16_t ucb_cnt;
int16_t ucb_entries;
uint32_t ucb_spare;
};
typedef struct uma_cache_bucket * uma_cache_bucket_t;
/*
* The uma_cache structure is allocated for each cpu for every zone
* type. This optimizes synchronization out of the allocator fast path.
*/
struct uma_cache {
struct uma_cache_bucket uc_freebucket; /* Bucket we're freeing to */
struct uma_cache_bucket uc_allocbucket; /* Bucket to allocate from */
struct uma_cache_bucket uc_crossbucket; /* cross domain bucket */
uint64_t uc_allocs; /* Count of allocations */
uint64_t uc_frees; /* Count of frees */
} UMA_ALIGN;
typedef struct uma_cache * uma_cache_t;
LIST_HEAD(slabhead, uma_slab);
/*
* The cache structure pads perfectly into 64 bytes so we use spare
* bits from the embedded cache buckets to store information from the zone
* and keep all fast-path allocations accessing a single per-cpu line.
*/
static inline void
cache_set_uz_flags(uma_cache_t cache, uint32_t flags)
{
cache->uc_freebucket.ucb_spare = flags;
}
static inline void
cache_set_uz_size(uma_cache_t cache, uint32_t size)
{
cache->uc_allocbucket.ucb_spare = size;
}
static inline uint32_t
cache_uz_flags(uma_cache_t cache)
{
return (cache->uc_freebucket.ucb_spare);
}
static inline uint32_t
cache_uz_size(uma_cache_t cache)
{
return (cache->uc_allocbucket.ucb_spare);
}
/*
* Per-domain slab lists. Embedded in the kegs.
*/
struct uma_domain {
struct mtx_padalign ud_lock; /* Lock for the domain lists. */
struct slabhead ud_part_slab; /* partially allocated slabs */
struct slabhead ud_free_slab; /* completely unallocated slabs */
struct slabhead ud_full_slab; /* fully allocated slabs */
uint32_t ud_pages; /* Total page count */
uint32_t ud_free_items; /* Count of items free in all slabs */
uint32_t ud_free_slabs; /* Count of free slabs */
} __aligned(CACHE_LINE_SIZE);
typedef struct uma_domain * uma_domain_t;
/*
* Keg management structure
*
* TODO: Optimize for cache line size
*
*/
struct uma_keg {
struct uma_hash uk_hash;
LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */
struct domainset_ref uk_dr; /* Domain selection policy. */
uint32_t uk_align; /* Alignment mask */
uint32_t uk_reserve; /* Number of reserved items. */
uint32_t uk_size; /* Requested size of each item */
uint32_t uk_rsize; /* Real size of each item */
uma_init uk_init; /* Keg's init routine */
uma_fini uk_fini; /* Keg's fini routine */
uma_alloc uk_allocf; /* Allocation function */
uma_free uk_freef; /* Free routine */
u_long uk_offset; /* Next free offset from base KVA */
vm_offset_t uk_kva; /* Zone base KVA */
uint32_t uk_pgoff; /* Offset to uma_slab struct */
uint16_t uk_ppera; /* pages per allocation from backend */
uint16_t uk_ipers; /* Items per slab */
uint32_t uk_flags; /* Internal flags */
/* Least used fields go to the last cache line. */
const char *uk_name; /* Name of creating zone. */
LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */
/* Must be last, variable sized. */
struct uma_domain uk_domain[]; /* Keg's slab lists. */
};
typedef struct uma_keg * uma_keg_t;
/*
* Free bits per-slab.
*/
#define SLAB_MAX_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT)
#define SLAB_MIN_SETSIZE _BITSET_BITS
BITSET_DEFINE(noslabbits, 0);
/*
* The slab structure manages a single contiguous allocation from backing
* store and subdivides it into individually allocatable items.
*/
struct uma_slab {
LIST_ENTRY(uma_slab) us_link; /* slabs in zone */
uint16_t us_freecount; /* How many are free? */
uint8_t us_flags; /* Page flags see uma.h */
uint8_t us_domain; /* Backing NUMA domain. */
struct noslabbits us_free; /* Free bitmask, flexible. */
};
_Static_assert(sizeof(struct uma_slab) == __offsetof(struct uma_slab, us_free),
"us_free field must be last");
_Static_assert(MAXMEMDOM < 255,
"us_domain field is not wide enough");
typedef struct uma_slab * uma_slab_t;
/*
* Slab structure with a full sized bitset and hash link for both
* HASH and OFFPAGE zones.
*/
struct uma_hash_slab {
LIST_ENTRY(uma_hash_slab) uhs_hlink; /* Link for hash table */
uint8_t *uhs_data; /* First item */
struct uma_slab uhs_slab; /* Must be last. */
};
typedef struct uma_hash_slab * uma_hash_slab_t;
static inline uma_hash_slab_t
slab_tohashslab(uma_slab_t slab)
{
return (__containerof(slab, struct uma_hash_slab, uhs_slab));
}
static inline void *
slab_data(uma_slab_t slab, uma_keg_t keg)
{
if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) == 0)
return ((void *)((uintptr_t)slab - keg->uk_pgoff));
else
return (slab_tohashslab(slab)->uhs_data);
}
static inline void *
slab_item(uma_slab_t slab, uma_keg_t keg, int index)
{
uintptr_t data;
data = (uintptr_t)slab_data(slab, keg);
return ((void *)(data + keg->uk_rsize * index));
}
static inline int
slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item)
{
uintptr_t data;
data = (uintptr_t)slab_data(slab, keg);
return (((uintptr_t)item - data) / keg->uk_rsize);
}
STAILQ_HEAD(uma_bucketlist, uma_bucket);
struct uma_zone_domain {
struct uma_bucketlist uzd_buckets; /* full buckets */
uma_bucket_t uzd_cross; /* Fills from cross buckets. */
long uzd_nitems; /* total item count */
long uzd_imax; /* maximum item count this period */
long uzd_imin; /* minimum item count this period */
long uzd_wss; /* working set size estimate */
smr_seq_t uzd_seq; /* Lowest queued seq. */
struct mtx uzd_lock; /* Lock for the domain */
} __aligned(CACHE_LINE_SIZE);
typedef struct uma_zone_domain * uma_zone_domain_t;
/*
* Zone structure - per memory type.
*/
struct uma_zone {
/* Offset 0, used in alloc/free fast/medium fast path and const. */
uint32_t uz_flags; /* Flags inherited from kegs */
uint32_t uz_size; /* Size inherited from kegs */
uma_ctor uz_ctor; /* Constructor for each allocation */
uma_dtor uz_dtor; /* Destructor */
smr_t uz_smr; /* Safe memory reclaim context. */
uint64_t uz_max_items; /* Maximum number of items to alloc */
uint64_t uz_bucket_max; /* Maximum bucket cache size */
uint16_t uz_bucket_size; /* Number of items in full bucket */
uint16_t uz_bucket_size_max; /* Maximum number of bucket items */
uint32_t uz_sleepers; /* Threads sleeping on limit */
counter_u64_t uz_xdomain; /* Total number of cross-domain frees */
/* Offset 64, used in bucket replenish. */
uma_keg_t uz_keg; /* This zone's keg if !CACHE */
uma_import uz_import; /* Import new memory to cache. */
uma_release uz_release; /* Release memory from cache. */
void *uz_arg; /* Import/release argument. */
uma_init uz_init; /* Initializer for each item */
uma_fini uz_fini; /* Finalizer for each item. */
volatile uint64_t uz_items; /* Total items count & sleepers */
uint64_t uz_sleeps; /* Total number of alloc sleeps */
/* Offset 128 Rare stats, misc read-only. */
LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */
counter_u64_t uz_allocs; /* Total number of allocations */
counter_u64_t uz_frees; /* Total number of frees */
counter_u64_t uz_fails; /* Total number of alloc failures */
const char *uz_name; /* Text name of the zone */
char *uz_ctlname; /* sysctl safe name string. */
int uz_namecnt; /* duplicate name count. */
uint16_t uz_bucket_size_min; /* Min number of items in bucket */
uint16_t uz_pad0;
/* Offset 192, rare read-only. */
struct sysctl_oid *uz_oid; /* sysctl oid pointer. */
const char *uz_warning; /* Warning to print on failure */
struct timeval uz_ratecheck; /* Warnings rate-limiting */
struct task uz_maxaction; /* Task to run when at limit */
/* Offset 256. */
struct mtx uz_cross_lock; /* Cross domain free lock */
/*
* This HAS to be the last item because we adjust the zone size
* based on NCPU and then allocate the space for the zones.
*/
struct uma_cache uz_cpu[]; /* Per cpu caches */
/* domains follow here. */
};
/*
* Macros for interpreting the uz_items field. 20 bits of sleeper count
* and 44 bit of item count.
*/
#define UZ_ITEMS_SLEEPER_SHIFT 44LL
#define UZ_ITEMS_SLEEPERS_MAX ((1 << (64 - UZ_ITEMS_SLEEPER_SHIFT)) - 1)
#define UZ_ITEMS_COUNT_MASK ((1LL << UZ_ITEMS_SLEEPER_SHIFT) - 1)
#define UZ_ITEMS_COUNT(x) ((x) & UZ_ITEMS_COUNT_MASK)
#define UZ_ITEMS_SLEEPERS(x) ((x) >> UZ_ITEMS_SLEEPER_SHIFT)
#define UZ_ITEMS_SLEEPER (1LL << UZ_ITEMS_SLEEPER_SHIFT)
#define ZONE_ASSERT_COLD(z) \
KASSERT(uma_zone_get_allocs((z)) == 0, \
("zone %s initialization after use.", (z)->uz_name))
/* Domains are contiguous after the last CPU */
#define ZDOM_GET(z, n) \
(&((uma_zone_domain_t)&(z)->uz_cpu[mp_maxid + 1])[n])
#undef UMA_ALIGN
#ifdef _KERNEL
/* Internal prototypes */
static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
/* Lock Macros */
#define KEG_LOCKPTR(k, d) (struct mtx *)&(k)->uk_domain[(d)].ud_lock
#define KEG_LOCK_INIT(k, d, lc) \
do { \
if ((lc)) \
mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \
(k)->uk_name, MTX_DEF | MTX_DUPOK); \
else \
mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \
"UMA zone", MTX_DEF | MTX_DUPOK); \
} while (0)
#define KEG_LOCK_FINI(k, d) mtx_destroy(KEG_LOCKPTR(k, d))
#define KEG_LOCK(k, d) \
({ mtx_lock(KEG_LOCKPTR(k, d)); KEG_LOCKPTR(k, d); })
#define KEG_UNLOCK(k, d) mtx_unlock(KEG_LOCKPTR(k, d))
#define KEG_LOCK_ASSERT(k, d) mtx_assert(KEG_LOCKPTR(k, d), MA_OWNED)
#define KEG_GET(zone, keg) do { \
(keg) = (zone)->uz_keg; \
KASSERT((void *)(keg) != NULL, \
("%s: Invalid zone %p type", __func__, (zone))); \
} while (0)
#define KEG_ASSERT_COLD(k) \
KASSERT(uma_keg_get_allocs((k)) == 0, \
("keg %s initialization after use.", (k)->uk_name))
#define ZDOM_LOCK_INIT(z, zdom, lc) \
do { \
if ((lc)) \
mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \
(z)->uz_name, MTX_DEF | MTX_DUPOK); \
else \
mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \
"UMA zone", MTX_DEF | MTX_DUPOK); \
} while (0)
#define ZDOM_LOCK_FINI(z) mtx_destroy(&(z)->uzd_lock)
#define ZDOM_LOCK_ASSERT(z) mtx_assert(&(z)->uzd_lock, MA_OWNED)
#define ZDOM_LOCK(z) mtx_lock(&(z)->uzd_lock)
#define ZDOM_OWNED(z) (mtx_owner(&(z)->uzd_lock) != NULL)
#define ZDOM_UNLOCK(z) mtx_unlock(&(z)->uzd_lock)
#define ZONE_LOCK(z) ZDOM_LOCK(ZDOM_GET((z), 0))
#define ZONE_UNLOCK(z) ZDOM_UNLOCK(ZDOM_GET((z), 0))
#define ZONE_CROSS_LOCK_INIT(z) \
mtx_init(&(z)->uz_cross_lock, "UMA Cross", NULL, MTX_DEF)
#define ZONE_CROSS_LOCK(z) mtx_lock(&(z)->uz_cross_lock)
#define ZONE_CROSS_UNLOCK(z) mtx_unlock(&(z)->uz_cross_lock)
#define ZONE_CROSS_LOCK_FINI(z) mtx_destroy(&(z)->uz_cross_lock)
/*
* Find a slab within a hash table. This is used for OFFPAGE zones to lookup
* the slab structure.
*
* Arguments:
* hash The hash table to search.
* data The base page of the item.
*
* Returns:
* A pointer to a slab if successful, else NULL.
*/
static __inline uma_slab_t
hash_sfind(struct uma_hash *hash, uint8_t *data)
{
uma_hash_slab_t slab;
u_int hval;
hval = UMA_HASH(hash, data);
LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) {
if ((uint8_t *)slab->uhs_data == data)
return (&slab->uhs_slab);
}
return (NULL);
}
static __inline uma_slab_t
vtoslab(vm_offset_t va)
{
vm_page_t p;
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
return (p->plinks.uma.slab);
}
static __inline void
vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab)
{
vm_page_t p;
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
*slab = p->plinks.uma.slab;
*zone = p->plinks.uma.zone;
}
static __inline void
vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab)
{
vm_page_t p;
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
p->plinks.uma.slab = slab;
p->plinks.uma.zone = zone;
}
extern unsigned long uma_kmem_limit;
extern unsigned long uma_kmem_total;
/* Adjust bytes under management by UMA. */
static inline void
uma_total_dec(unsigned long size)
{
atomic_subtract_long(&uma_kmem_total, size);
}
static inline void
uma_total_inc(unsigned long size)
{
if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit)
uma_reclaim_wakeup();
}
/*
* The following two functions may be defined by architecture specific code
* if they can provide more efficient allocation functions. This is useful
* for using direct mapped addresses.
*/
void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
uint8_t *pflag, int wait);
void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
/* Set a global soft limit on UMA managed memory. */
void uma_set_limit(unsigned long limit);
#endif /* _KERNEL */
#endif /* VM_UMA_INT_H */