freebsd-skq/sys/netpfil/ipfw/ip_fw_private.h
melifaro 9f3d7ccd07 Make rule table kernel-index rewriting support any kind of objects.
Currently we have tables identified by their names in userland
with internal kernel-assigned indices. This works the following way:

When userland wishes to communicate with kernel to add or change rule(s),
it makes indexed sorted array of table names
(internally ipfw_obj_ntlv entries), and refer to indices in that
array in rule manipulation.
Prior to committing new rule to the ruleset kernel
a) finds all referenced tables, bump their refcounts and change
 values inside the opcodes to be real kernel indices
b) auto-creates all referenced but not existing tables and then
 do a) for them.

Kernel does almost the same when exporting rules to userland:
 prepares array of used tables in all rules in range, and
 prepends it before the actual ruleset retaining actual in-kernel
 indexes for that.

There is also special translation layer for legacy clients which is
able to provide 'real' indices for table names (basically doing atoi()).

While it is arguable that every subsystem really needs names instead of
numbers, there are several things that should be noted:

1) every non-singleton subsystem needs to store its runtime state
somewhere inside ipfw chain (and be able to get it fast)
2) we can't assume object numbers provided by humans will be dense.

Existing nat implementation (O(n) access and LIST inside chain) is a
good example.

Hence the following:
* Convert table-centric rewrite code to be more generic, callback-based
* Move most of the code from ip_fw_table.c to ip_fw_sockopt.c
* Provide abstract API to permit subsystems convert their objects
  between userland string identifier and in-kernel index.
  (See struct opcode_obj_rewrite) for more details
* Create another per-chain index (in next commit) shared among all subsystems
* Convert current NAT44 implementation to use new API, O(1) lookups,
 shared index and names instead of numbers (in next commit).

Sponsored by:	Yandex LLC
2015-04-27 08:29:39 +00:00

730 lines
24 KiB
C

/*-
* Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _IPFW2_PRIVATE_H
#define _IPFW2_PRIVATE_H
/*
* Internal constants and data structures used by ipfw components
* and not meant to be exported outside the kernel.
*/
#ifdef _KERNEL
/*
* For platforms that do not have SYSCTL support, we wrap the
* SYSCTL_* into a function (one per file) to collect the values
* into an array at module initialization. The wrapping macros,
* SYSBEGIN() and SYSEND, are empty in the default case.
*/
#ifndef SYSBEGIN
#define SYSBEGIN(x)
#endif
#ifndef SYSEND
#define SYSEND
#endif
/* Return values from ipfw_chk() */
enum {
IP_FW_PASS = 0,
IP_FW_DENY,
IP_FW_DIVERT,
IP_FW_TEE,
IP_FW_DUMMYNET,
IP_FW_NETGRAPH,
IP_FW_NGTEE,
IP_FW_NAT,
IP_FW_REASS,
};
/*
* Structure for collecting parameters to dummynet for ip6_output forwarding
*/
struct _ip6dn_args {
struct ip6_pktopts *opt_or;
int flags_or;
struct ip6_moptions *im6o_or;
struct ifnet *origifp_or;
struct ifnet *ifp_or;
struct sockaddr_in6 dst_or;
u_long mtu_or;
};
/*
* Arguments for calling ipfw_chk() and dummynet_io(). We put them
* all into a structure because this way it is easier and more
* efficient to pass variables around and extend the interface.
*/
struct ip_fw_args {
struct mbuf *m; /* the mbuf chain */
struct ifnet *oif; /* output interface */
struct sockaddr_in *next_hop; /* forward address */
struct sockaddr_in6 *next_hop6; /* ipv6 forward address */
/*
* On return, it points to the matching rule.
* On entry, rule.slot > 0 means the info is valid and
* contains the starting rule for an ipfw search.
* If chain_id == chain->id && slot >0 then jump to that slot.
* Otherwise, we locate the first rule >= rulenum:rule_id
*/
struct ipfw_rule_ref rule; /* match/restart info */
struct ether_header *eh; /* for bridged packets */
struct ipfw_flow_id f_id; /* grabbed from IP header */
//uint32_t cookie; /* a cookie depending on rule action */
struct inpcb *inp;
struct _ip6dn_args dummypar; /* dummynet->ip6_output */
union { /* store here if cannot use a pointer */
struct sockaddr_in hopstore;
struct sockaddr_in6 hopstore6;
};
};
MALLOC_DECLARE(M_IPFW);
/*
* Hooks sometime need to know the direction of the packet
* (divert, dummynet, netgraph, ...)
* We use a generic definition here, with bit0-1 indicating the
* direction, bit 2 indicating layer2 or 3, bit 3-4 indicating the
* specific protocol
* indicating the protocol (if necessary)
*/
enum {
DIR_MASK = 0x3,
DIR_OUT = 0,
DIR_IN = 1,
DIR_FWD = 2,
DIR_DROP = 3,
PROTO_LAYER2 = 0x4, /* set for layer 2 */
/* PROTO_DEFAULT = 0, */
PROTO_IPV4 = 0x08,
PROTO_IPV6 = 0x10,
PROTO_IFB = 0x0c, /* layer2 + ifbridge */
/* PROTO_OLDBDG = 0x14, unused, old bridge */
};
/* wrapper for freeing a packet, in case we need to do more work */
#ifndef FREE_PKT
#if defined(__linux__) || defined(_WIN32)
#define FREE_PKT(m) netisr_dispatch(-1, m)
#else
#define FREE_PKT(m) m_freem(m)
#endif
#endif /* !FREE_PKT */
/*
* Function definitions.
*/
/* attach (arg = 1) or detach (arg = 0) hooks */
int ipfw_attach_hooks(int);
#ifdef NOTYET
void ipfw_nat_destroy(void);
#endif
/* In ip_fw_log.c */
struct ip;
struct ip_fw_chain;
void ipfw_log_bpf(int);
void ipfw_log(struct ip_fw_chain *chain, struct ip_fw *f, u_int hlen,
struct ip_fw_args *args, struct mbuf *m, struct ifnet *oif,
u_short offset, uint32_t tablearg, struct ip *ip);
VNET_DECLARE(u_int64_t, norule_counter);
#define V_norule_counter VNET(norule_counter)
VNET_DECLARE(int, verbose_limit);
#define V_verbose_limit VNET(verbose_limit)
/* In ip_fw_dynamic.c */
enum { /* result for matching dynamic rules */
MATCH_REVERSE = 0,
MATCH_FORWARD,
MATCH_NONE,
MATCH_UNKNOWN,
};
/*
* The lock for dynamic rules is only used once outside the file,
* and only to release the result of lookup_dyn_rule().
* Eventually we may implement it with a callback on the function.
*/
struct ip_fw_chain;
struct sockopt_data;
int ipfw_is_dyn_rule(struct ip_fw *rule);
void ipfw_expire_dyn_rules(struct ip_fw_chain *, ipfw_range_tlv *);
void ipfw_dyn_unlock(ipfw_dyn_rule *q);
struct tcphdr;
struct mbuf *ipfw_send_pkt(struct mbuf *, struct ipfw_flow_id *,
u_int32_t, u_int32_t, int);
int ipfw_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
ipfw_insn_limit *cmd, struct ip_fw_args *args, uint32_t tablearg);
ipfw_dyn_rule *ipfw_lookup_dyn_rule(struct ipfw_flow_id *pkt,
int *match_direction, struct tcphdr *tcp);
void ipfw_remove_dyn_children(struct ip_fw *rule);
void ipfw_get_dynamic(struct ip_fw_chain *chain, char **bp, const char *ep);
int ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd);
void ipfw_dyn_init(struct ip_fw_chain *); /* per-vnet initialization */
void ipfw_dyn_uninit(int); /* per-vnet deinitialization */
int ipfw_dyn_len(void);
int ipfw_dyn_get_count(void);
/* common variables */
VNET_DECLARE(int, fw_one_pass);
#define V_fw_one_pass VNET(fw_one_pass)
VNET_DECLARE(int, fw_verbose);
#define V_fw_verbose VNET(fw_verbose)
VNET_DECLARE(struct ip_fw_chain, layer3_chain);
#define V_layer3_chain VNET(layer3_chain)
VNET_DECLARE(int, ipfw_vnet_ready);
#define V_ipfw_vnet_ready VNET(ipfw_vnet_ready)
VNET_DECLARE(u_int32_t, set_disable);
#define V_set_disable VNET(set_disable)
VNET_DECLARE(int, autoinc_step);
#define V_autoinc_step VNET(autoinc_step)
VNET_DECLARE(unsigned int, fw_tables_max);
#define V_fw_tables_max VNET(fw_tables_max)
VNET_DECLARE(unsigned int, fw_tables_sets);
#define V_fw_tables_sets VNET(fw_tables_sets)
struct tables_config;
#ifdef _KERNEL
/*
* Here we have the structure representing an ipfw rule.
*
* It starts with a general area
* followed by an array of one or more instructions, which the code
* accesses as an array of 32-bit values.
*
* Given a rule pointer r:
*
* r->cmd is the start of the first instruction.
* ACTION_PTR(r) is the start of the first action (things to do
* once a rule matched).
*/
struct ip_fw {
uint16_t act_ofs; /* offset of action in 32-bit units */
uint16_t cmd_len; /* # of 32-bit words in cmd */
uint16_t rulenum; /* rule number */
uint8_t set; /* rule set (0..31) */
uint8_t flags; /* currently unused */
counter_u64_t cntr; /* Pointer to rule counters */
uint32_t timestamp; /* tv_sec of last match */
uint32_t id; /* rule id */
uint32_t cached_id; /* used by jump_fast */
uint32_t cached_pos; /* used by jump_fast */
ipfw_insn cmd[1]; /* storage for commands */
};
#define IPFW_RULE_CNTR_SIZE (2 * sizeof(counter_u64_t))
#endif
struct ip_fw_chain {
struct ip_fw **map; /* array of rule ptrs to ease lookup */
uint32_t id; /* ruleset id */
int n_rules; /* number of static rules */
void *tablestate; /* runtime table info */
void *valuestate; /* runtime table value info */
int *idxmap; /* skipto array of rules */
void **srvstate; /* runtime service mappings */
#if defined( __linux__ ) || defined( _WIN32 )
spinlock_t rwmtx;
#else
struct rmlock rwmtx;
#endif
int static_len; /* total len of static rules (v0) */
uint32_t gencnt; /* NAT generation count */
LIST_HEAD(nat_list, cfg_nat) nat; /* list of nat entries */
struct ip_fw *default_rule;
struct tables_config *tblcfg; /* tables module data */
void *ifcfg; /* interface module data */
int *idxmap_back; /* standby skipto array of rules */
struct namedobj_instance *srvmap; /* cfg name->number mappings */
#if defined( __linux__ ) || defined( _WIN32 )
spinlock_t uh_lock;
#else
struct rwlock uh_lock; /* lock for upper half */
#endif
};
/* 64-byte structure representing multi-field table value */
struct table_value {
uint32_t tag; /* O_TAG/O_TAGGED */
uint32_t pipe; /* O_PIPE/O_QUEUE */
uint16_t divert; /* O_DIVERT/O_TEE */
uint16_t skipto; /* skipto, CALLRET */
uint32_t netgraph; /* O_NETGRAPH/O_NGTEE */
uint32_t fib; /* O_SETFIB */
uint32_t nat; /* O_NAT */
uint32_t nh4;
uint8_t dscp;
uint8_t spare0;
uint16_t spare1;
/* -- 32 bytes -- */
struct in6_addr nh6;
uint32_t limit; /* O_LIMIT */
uint32_t zoneid; /* scope zone id for nh6 */
uint64_t refcnt; /* Number of references */
};
struct named_object {
TAILQ_ENTRY(named_object) nn_next; /* namehash */
TAILQ_ENTRY(named_object) nv_next; /* valuehash */
char *name; /* object name */
uint8_t subtype; /* object subtype within class */
uint8_t etlv; /* Export TLV id */
uint16_t spare[2];
uint16_t kidx; /* object kernel index */
uint32_t set; /* set object belongs to */
uint32_t refcnt; /* number of references */
};
TAILQ_HEAD(namedobjects_head, named_object);
struct sockopt; /* used by tcp_var.h */
struct sockopt_data {
caddr_t kbuf; /* allocated buffer */
size_t ksize; /* given buffer size */
size_t koff; /* data already used */
size_t kavail; /* number of bytes available */
size_t ktotal; /* total bytes pushed */
struct sockopt *sopt; /* socket data */
caddr_t sopt_val; /* sopt user buffer */
size_t valsize; /* original data size */
};
struct ipfw_ifc;
typedef void (ipfw_ifc_cb)(struct ip_fw_chain *ch, void *cbdata,
uint16_t ifindex);
struct ipfw_iface {
struct named_object no;
char ifname[64];
int resolved;
uint16_t ifindex;
uint16_t spare;
uint64_t gencnt;
TAILQ_HEAD(, ipfw_ifc) consumers;
};
struct ipfw_ifc {
TAILQ_ENTRY(ipfw_ifc) next;
struct ipfw_iface *iface;
ipfw_ifc_cb *cb;
void *cbdata;
};
/* Macro for working with various counters */
#define IPFW_INC_RULE_COUNTER(_cntr, _bytes) do { \
counter_u64_add((_cntr)->cntr, 1); \
counter_u64_add((_cntr)->cntr + 1, _bytes); \
if ((_cntr)->timestamp != time_uptime) \
(_cntr)->timestamp = time_uptime; \
} while (0)
#define IPFW_INC_DYN_COUNTER(_cntr, _bytes) do { \
(_cntr)->pcnt++; \
(_cntr)->bcnt += _bytes; \
} while (0)
#define IPFW_ZERO_RULE_COUNTER(_cntr) do { \
counter_u64_zero((_cntr)->cntr); \
counter_u64_zero((_cntr)->cntr + 1); \
(_cntr)->timestamp = 0; \
} while (0)
#define IPFW_ZERO_DYN_COUNTER(_cntr) do { \
(_cntr)->pcnt = 0; \
(_cntr)->bcnt = 0; \
} while (0)
#define TARG_VAL(ch, k, f) ((struct table_value *)((ch)->valuestate))[k].f
#define IP_FW_ARG_TABLEARG(ch, a, f) \
(((a) == IP_FW_TARG) ? TARG_VAL(ch, tablearg, f) : (a))
/*
* The lock is heavily used by ip_fw2.c (the main file) and ip_fw_nat.c
* so the variable and the macros must be here.
*/
#if defined( __linux__ ) || defined( _WIN32 )
#define IPFW_LOCK_INIT(_chain) do { \
rw_init(&(_chain)->rwmtx, "IPFW static rules"); \
rw_init(&(_chain)->uh_lock, "IPFW UH lock"); \
} while (0)
#define IPFW_LOCK_DESTROY(_chain) do { \
rw_destroy(&(_chain)->rwmtx); \
rw_destroy(&(_chain)->uh_lock); \
} while (0)
#define IPFW_RLOCK_ASSERT(_chain) rw_assert(&(_chain)->rwmtx, RA_RLOCKED)
#define IPFW_WLOCK_ASSERT(_chain) rw_assert(&(_chain)->rwmtx, RA_WLOCKED)
#define IPFW_RLOCK_TRACKER
#define IPFW_RLOCK(p) rw_rlock(&(p)->rwmtx)
#define IPFW_RUNLOCK(p) rw_runlock(&(p)->rwmtx)
#define IPFW_WLOCK(p) rw_wlock(&(p)->rwmtx)
#define IPFW_WUNLOCK(p) rw_wunlock(&(p)->rwmtx)
#define IPFW_PF_RLOCK(p) IPFW_RLOCK(p)
#define IPFW_PF_RUNLOCK(p) IPFW_RUNLOCK(p)
#else /* FreeBSD */
#define IPFW_LOCK_INIT(_chain) do { \
rm_init(&(_chain)->rwmtx, "IPFW static rules"); \
rw_init(&(_chain)->uh_lock, "IPFW UH lock"); \
} while (0)
#define IPFW_LOCK_DESTROY(_chain) do { \
rm_destroy(&(_chain)->rwmtx); \
rw_destroy(&(_chain)->uh_lock); \
} while (0)
#define IPFW_RLOCK_ASSERT(_chain) rm_assert(&(_chain)->rwmtx, RA_RLOCKED)
#define IPFW_WLOCK_ASSERT(_chain) rm_assert(&(_chain)->rwmtx, RA_WLOCKED)
#define IPFW_RLOCK_TRACKER struct rm_priotracker _tracker
#define IPFW_RLOCK(p) rm_rlock(&(p)->rwmtx, &_tracker)
#define IPFW_RUNLOCK(p) rm_runlock(&(p)->rwmtx, &_tracker)
#define IPFW_WLOCK(p) rm_wlock(&(p)->rwmtx)
#define IPFW_WUNLOCK(p) rm_wunlock(&(p)->rwmtx)
#define IPFW_PF_RLOCK(p) IPFW_RLOCK(p)
#define IPFW_PF_RUNLOCK(p) IPFW_RUNLOCK(p)
#endif
#define IPFW_UH_RLOCK_ASSERT(_chain) rw_assert(&(_chain)->uh_lock, RA_RLOCKED)
#define IPFW_UH_WLOCK_ASSERT(_chain) rw_assert(&(_chain)->uh_lock, RA_WLOCKED)
#define IPFW_UH_UNLOCK_ASSERT(_chain) rw_assert(&(_chain)->uh_lock, RA_UNLOCKED)
#define IPFW_UH_RLOCK(p) rw_rlock(&(p)->uh_lock)
#define IPFW_UH_RUNLOCK(p) rw_runlock(&(p)->uh_lock)
#define IPFW_UH_WLOCK(p) rw_wlock(&(p)->uh_lock)
#define IPFW_UH_WUNLOCK(p) rw_wunlock(&(p)->uh_lock)
struct obj_idx {
uint16_t uidx; /* internal index supplied by userland */
uint16_t kidx; /* kernel object index */
uint16_t off; /* tlv offset from rule end in 4-byte words */
uint8_t spare;
uint8_t type; /* object type within its category */
};
struct rule_check_info {
uint16_t flags; /* rule-specific check flags */
uint16_t object_opcodes; /* num of opcodes referencing objects */
uint16_t urule_numoff; /* offset of rulenum in bytes */
uint8_t version; /* rule version */
uint8_t spare;
ipfw_obj_ctlv *ctlv; /* name TLV containter */
struct ip_fw *krule; /* resulting rule pointer */
caddr_t urule; /* original rule pointer */
struct obj_idx obuf[8]; /* table references storage */
};
/* Legacy interface support */
/*
* FreeBSD 8 export rule format
*/
struct ip_fw_rule0 {
struct ip_fw *x_next; /* linked list of rules */
struct ip_fw *next_rule; /* ptr to next [skipto] rule */
/* 'next_rule' is used to pass up 'set_disable' status */
uint16_t act_ofs; /* offset of action in 32-bit units */
uint16_t cmd_len; /* # of 32-bit words in cmd */
uint16_t rulenum; /* rule number */
uint8_t set; /* rule set (0..31) */
uint8_t _pad; /* padding */
uint32_t id; /* rule id */
/* These fields are present in all rules. */
uint64_t pcnt; /* Packet counter */
uint64_t bcnt; /* Byte counter */
uint32_t timestamp; /* tv_sec of last match */
ipfw_insn cmd[1]; /* storage for commands */
};
struct ip_fw_bcounter0 {
uint64_t pcnt; /* Packet counter */
uint64_t bcnt; /* Byte counter */
uint32_t timestamp; /* tv_sec of last match */
};
/* Kernel rule length */
/*
* RULE _K_ SIZE _V_ ->
* get kernel size from userland rool version _V_.
* RULE _U_ SIZE _V_ ->
* get user size version _V_ from kernel rule
* RULESIZE _V_ ->
* get user size rule length
*/
/* FreeBSD8 <> current kernel format */
#define RULEUSIZE0(r) (sizeof(struct ip_fw_rule0) + (r)->cmd_len * 4 - 4)
#define RULEKSIZE0(r) roundup2((sizeof(struct ip_fw) + (r)->cmd_len*4 - 4), 8)
/* FreeBSD11 <> current kernel format */
#define RULEUSIZE1(r) (roundup2(sizeof(struct ip_fw_rule) + \
(r)->cmd_len * 4 - 4, 8))
#define RULEKSIZE1(r) roundup2((sizeof(struct ip_fw) + (r)->cmd_len*4 - 4), 8)
/*
* Tables/Objects index rewriting code
*/
/* Default and maximum number of ipfw tables/objects. */
#define IPFW_TABLES_MAX 65536
#define IPFW_TABLES_DEFAULT 128
#define IPFW_OBJECTS_MAX 65536
#define IPFW_OBJECTS_DEFAULT 128
#define CHAIN_TO_SRV(ch) ((ch)->srvmap)
struct tid_info {
uint32_t set; /* table set */
uint16_t uidx; /* table index */
uint8_t type; /* table type */
uint8_t atype;
uint8_t spare;
int tlen; /* Total TLV size block */
void *tlvs; /* Pointer to first TLV */
};
/*
* Classifier callback. Checks if @cmd opcode contains kernel object reference.
* If true, returns its index and type.
* Returns 0 if match is found, 1 overwise.
*/
typedef int (ipfw_obj_rw_cl)(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype);
/*
* Updater callback. Sets kernel object reference index to @puidx
*/
typedef void (ipfw_obj_rw_upd)(ipfw_insn *cmd, uint16_t puidx);
/*
* Finder callback. Tries to find named object by name (specified via @ti).
* Stores found named object pointer in @pno.
* If object was not found, NULL is stored.
*
* Return 0 if input data was valid.
*/
typedef int (ipfw_obj_fname_cb)(struct ip_fw_chain *ch,
struct tid_info *ti, struct named_object **pno);
/*
* Another finder callback. Tries to findex named object by kernel index.
*
* Returns pointer to named object or NULL.
*/
typedef struct named_object *(ipfw_obj_fidx_cb)(struct ip_fw_chain *ch,
uint16_t kidx);
/*
* Object creator callback. Tries to create object specified by @ti.
* Stores newly-allocated object index in @pkidx.
*
* Returns 0 on success.
*/
typedef int (ipfw_obj_create_cb)(struct ip_fw_chain *ch, struct tid_info *ti,
uint16_t *pkidx);
struct opcode_obj_rewrite {
uint32_t opcode; /* Opcode to act upon */
uint32_t etlv; /* Relevant export TLV id */
ipfw_obj_rw_cl *classifier; /* Check if rewrite is needed */
ipfw_obj_rw_upd *update; /* update cmd with new value */
ipfw_obj_fname_cb *find_byname; /* Find named object by name */
ipfw_obj_fidx_cb *find_bykidx; /* Find named object by kidx */
ipfw_obj_create_cb *create_object; /* Create named object */
};
#define IPFW_ADD_OBJ_REWRITER(f, c) do { \
if ((f) != 0) \
ipfw_add_obj_rewriter(c, \
sizeof(c) / sizeof(c[0])); \
} while(0)
#define IPFW_DEL_OBJ_REWRITER(l, c) do { \
if ((l) != 0) \
ipfw_del_obj_rewriter(c, \
sizeof(c) / sizeof(c[0])); \
} while(0)
/* In ip_fw_iface.c */
int ipfw_iface_init(void);
void ipfw_iface_destroy(void);
void vnet_ipfw_iface_destroy(struct ip_fw_chain *ch);
int ipfw_iface_ref(struct ip_fw_chain *ch, char *name,
struct ipfw_ifc *ic);
void ipfw_iface_unref(struct ip_fw_chain *ch, struct ipfw_ifc *ic);
void ipfw_iface_add_notify(struct ip_fw_chain *ch, struct ipfw_ifc *ic);
void ipfw_iface_del_notify(struct ip_fw_chain *ch, struct ipfw_ifc *ic);
/* In ip_fw_sockopt.c */
void ipfw_init_skipto_cache(struct ip_fw_chain *chain);
void ipfw_destroy_skipto_cache(struct ip_fw_chain *chain);
int ipfw_find_rule(struct ip_fw_chain *chain, uint32_t key, uint32_t id);
int ipfw_ctl3(struct sockopt *sopt);
int ipfw_chk(struct ip_fw_args *args);
void ipfw_reap_add(struct ip_fw_chain *chain, struct ip_fw **head,
struct ip_fw *rule);
void ipfw_reap_rules(struct ip_fw *head);
void ipfw_init_counters(void);
void ipfw_destroy_counters(void);
struct ip_fw *ipfw_alloc_rule(struct ip_fw_chain *chain, size_t rulesize);
int ipfw_match_range(struct ip_fw *rule, ipfw_range_tlv *rt);
typedef int (sopt_handler_f)(struct ip_fw_chain *ch,
ip_fw3_opheader *op3, struct sockopt_data *sd);
struct ipfw_sopt_handler {
uint16_t opcode;
uint8_t version;
uint8_t dir;
sopt_handler_f *handler;
uint64_t refcnt;
};
#define HDIR_SET 0x01 /* Handler is used to set some data */
#define HDIR_GET 0x02 /* Handler is used to retrieve data */
#define HDIR_BOTH HDIR_GET|HDIR_SET
void ipfw_init_sopt_handler(void);
void ipfw_destroy_sopt_handler(void);
void ipfw_add_sopt_handler(struct ipfw_sopt_handler *sh, size_t count);
int ipfw_del_sopt_handler(struct ipfw_sopt_handler *sh, size_t count);
caddr_t ipfw_get_sopt_space(struct sockopt_data *sd, size_t needed);
caddr_t ipfw_get_sopt_header(struct sockopt_data *sd, size_t needed);
#define IPFW_ADD_SOPT_HANDLER(f, c) do { \
if ((f) != 0) \
ipfw_add_sopt_handler(c, \
sizeof(c) / sizeof(c[0])); \
} while(0)
#define IPFW_DEL_SOPT_HANDLER(l, c) do { \
if ((l) != 0) \
ipfw_del_sopt_handler(c, \
sizeof(c) / sizeof(c[0])); \
} while(0)
struct namedobj_instance;
typedef void (objhash_cb_t)(struct namedobj_instance *ni, struct named_object *,
void *arg);
typedef uint32_t (objhash_hash_f)(struct namedobj_instance *ni, void *key,
uint32_t kopt);
typedef int (objhash_cmp_f)(struct named_object *no, void *key, uint32_t kopt);
struct namedobj_instance *ipfw_objhash_create(uint32_t items);
void ipfw_objhash_destroy(struct namedobj_instance *);
void ipfw_objhash_bitmap_alloc(uint32_t items, void **idx, int *pblocks);
void ipfw_objhash_bitmap_merge(struct namedobj_instance *ni,
void **idx, int *blocks);
void ipfw_objhash_bitmap_swap(struct namedobj_instance *ni,
void **idx, int *blocks);
void ipfw_objhash_bitmap_free(void *idx, int blocks);
void ipfw_objhash_set_hashf(struct namedobj_instance *ni, objhash_hash_f *f);
struct named_object *ipfw_objhash_lookup_name(struct namedobj_instance *ni,
uint32_t set, char *name);
struct named_object *ipfw_objhash_lookup_name_type(struct namedobj_instance *ni,
uint32_t set, uint32_t type, char *name);
struct named_object *ipfw_objhash_lookup_kidx(struct namedobj_instance *ni,
uint16_t idx);
int ipfw_objhash_same_name(struct namedobj_instance *ni, struct named_object *a,
struct named_object *b);
void ipfw_objhash_add(struct namedobj_instance *ni, struct named_object *no);
void ipfw_objhash_del(struct namedobj_instance *ni, struct named_object *no);
uint32_t ipfw_objhash_count(struct namedobj_instance *ni);
void ipfw_objhash_foreach(struct namedobj_instance *ni, objhash_cb_t *f,
void *arg);
int ipfw_objhash_free_idx(struct namedobj_instance *ni, uint16_t idx);
int ipfw_objhash_alloc_idx(void *n, uint16_t *pidx);
void ipfw_objhash_set_funcs(struct namedobj_instance *ni,
objhash_hash_f *hash_f, objhash_cmp_f *cmp_f);
void ipfw_init_obj_rewriter(void);
void ipfw_destroy_obj_rewriter(void);
void ipfw_add_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count);
int ipfw_del_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count);
int ipfw_rewrite_rule_uidx(struct ip_fw_chain *chain,
struct rule_check_info *ci);
int ipfw_mark_object_kidx(struct ip_fw_chain *chain, struct ip_fw *rule,
uint32_t *bmask);
int ref_opcode_object(struct ip_fw_chain *ch, ipfw_insn *cmd, struct tid_info *ti,
struct obj_idx *pidx, int *found, int *unresolved);
void unref_oib_objects(struct ip_fw_chain *ch, ipfw_insn *cmd,
struct obj_idx *oib, struct obj_idx *end);
int create_objects_compat(struct ip_fw_chain *ch, ipfw_insn *cmd,
struct obj_idx *oib, struct obj_idx *pidx, struct tid_info *ti);
void update_opcode_kidx(ipfw_insn *cmd, uint16_t idx);
int classify_opcode_kidx(ipfw_insn *cmd, uint16_t *puidx);
void ipfw_init_srv(struct ip_fw_chain *ch);
void ipfw_destroy_srv(struct ip_fw_chain *ch);
/* In ip_fw_table.c */
struct table_info;
typedef int (table_lookup_t)(struct table_info *ti, void *key, uint32_t keylen,
uint32_t *val);
int ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
uint32_t *val);
int ipfw_lookup_table_extended(struct ip_fw_chain *ch, uint16_t tbl, uint16_t plen,
void *paddr, uint32_t *val);
int ipfw_init_tables(struct ip_fw_chain *ch, int first);
int ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables);
int ipfw_switch_tables_namespace(struct ip_fw_chain *ch, unsigned int nsets);
void ipfw_destroy_tables(struct ip_fw_chain *ch, int last);
/* In ip_fw_nat.c -- XXX to be moved to ip_var.h */
extern struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
typedef int ipfw_nat_t(struct ip_fw_args *, struct cfg_nat *, struct mbuf *);
typedef int ipfw_nat_cfg_t(struct sockopt *);
VNET_DECLARE(int, ipfw_nat_ready);
#define V_ipfw_nat_ready VNET(ipfw_nat_ready)
#define IPFW_NAT_LOADED (V_ipfw_nat_ready)
extern ipfw_nat_t *ipfw_nat_ptr;
extern ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
extern ipfw_nat_cfg_t *ipfw_nat_del_ptr;
extern ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
extern ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
#endif /* _KERNEL */
#endif /* _IPFW2_PRIVATE_H */