freebsd-skq/usr.bin/top/machine.c
jhb 8629e7f8c8 Cap the percent CPU of individual threads at 100% to fix some of the
more obvious imprecision in the previous top changes.

Specifically, top uses a delta of clock_gettime() calls right after
invoking the kern.proc sysctl to fetch the process/thread list to
compute the time delta between the fetches.  However, the kern.proc
sysctl handler does not run in constant time.  It can spin on locks,
be preempted by an interrupt handler, etc.  As a result, the time
between the gathering of stats for individual processes or threads
between subsequent kern.proc handlers can vary.  If a "slow" kern.proc
run is followed by a "fast" kern.proc run, then the threads/processes
at the start of the "slow" run will have a longer time delta than the
threads/processes at the end.  If the clock_gettime() time delta is
not itself skewed by preemption, then the delta may be too short for
a given thread/process resulting in a higher percent CPU than actual.
However, there is no good way to calculate the exact amount of overage,
nor to know which threads to subtract the overage from.  Instead, just
punt and fix the definitely-wrong case of an individual thread having
more than 100% CPU.

Discussed with:	zonk
2014-06-20 19:54:23 +00:00

1603 lines
40 KiB
C

/*
* top - a top users display for Unix
*
* SYNOPSIS: For FreeBSD-2.x and later
*
* DESCRIPTION:
* Originally written for BSD4.4 system by Christos Zoulas.
* Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
* Order support hacked in from top-3.5beta6/machine/m_aix41.c
* by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
*
* This is the machine-dependent module for FreeBSD 2.2
* Works for:
* FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
*
* LIBS: -lkvm
*
* AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
* Steven Wallace <swallace@freebsd.org>
* Wolfram Schneider <wosch@FreeBSD.org>
* Thomas Moestl <tmoestl@gmx.net>
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/rtprio.h>
#include <sys/signal.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/user.h>
#include <sys/vmmeter.h>
#include <err.h>
#include <kvm.h>
#include <math.h>
#include <nlist.h>
#include <paths.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <vis.h>
#include "top.h"
#include "machine.h"
#include "screen.h"
#include "utils.h"
#include "layout.h"
#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
#define SMPUNAMELEN 13
#define UPUNAMELEN 15
extern struct process_select ps;
extern char* printable(char *);
static int smpmode;
enum displaymodes displaymode;
#ifdef TOP_USERNAME_LEN
static int namelength = TOP_USERNAME_LEN;
#else
static int namelength = 8;
#endif
/* TOP_JID_LEN based on max of 999999 */
#define TOP_JID_LEN 7
static int jidlength;
static int cmdlengthdelta;
/* Prototypes for top internals */
void quit(int);
/* get_process_info passes back a handle. This is what it looks like: */
struct handle {
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
};
/* declarations for load_avg */
#include "loadavg.h"
/* define what weighted cpu is. */
#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
/* what we consider to be process size: */
#define PROCSIZE(pp) ((pp)->ki_size / 1024)
#define RU(pp) (&(pp)->ki_rusage)
#define RUTOT(pp) \
(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
#define PCTCPU(pp) (pcpu[pp - pbase])
/* definitions for indices in the nlist array */
/*
* These definitions control the format of the per-process area
*/
static char io_header[] =
" PID%*s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND";
#define io_Proc_format \
"%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
static char smp_header_thr[] =
" PID%*s %-*.*s THR PRI NICE SIZE RES STATE C TIME %7s COMMAND";
static char smp_header[] =
" PID%*s %-*.*s " "PRI NICE SIZE RES STATE C TIME %7s COMMAND";
#define smp_Proc_format \
"%5d%*s %-*.*s %s%3d %4s%7s %6s %-6.6s %2d%7s %6.2f%% %.*s"
static char up_header_thr[] =
" PID%*s %-*.*s THR PRI NICE SIZE RES STATE TIME %7s COMMAND";
static char up_header[] =
" PID%*s %-*.*s " "PRI NICE SIZE RES STATE TIME %7s COMMAND";
#define up_Proc_format \
"%5d%*s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %6.2f%% %.*s"
/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
the processor number when needed */
char *state_abbrev[] = {
"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
};
static kvm_t *kd;
/* values that we stash away in _init and use in later routines */
static double logcpu;
/* these are retrieved from the kernel in _init */
static load_avg ccpu;
/* these are used in the get_ functions */
static int lastpid;
/* these are for calculating cpu state percentages */
static long cp_time[CPUSTATES];
static long cp_old[CPUSTATES];
static long cp_diff[CPUSTATES];
/* these are for detailing the process states */
int process_states[8];
char *procstatenames[] = {
"", " starting, ", " running, ", " sleeping, ", " stopped, ",
" zombie, ", " waiting, ", " lock, ",
NULL
};
/* these are for detailing the cpu states */
int cpu_states[CPUSTATES];
char *cpustatenames[] = {
"user", "nice", "system", "interrupt", "idle", NULL
};
/* these are for detailing the memory statistics */
int memory_stats[7];
char *memorynames[] = {
"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ",
"K Free", NULL
};
int arc_stats[7];
char *arcnames[] = {
"K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other",
NULL
};
int swap_stats[7];
char *swapnames[] = {
"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
NULL
};
/* these are for keeping track of the proc array */
static int nproc;
static int onproc = -1;
static int pref_len;
static struct kinfo_proc *pbase;
static struct kinfo_proc **pref;
static struct kinfo_proc *previous_procs;
static struct kinfo_proc **previous_pref;
static int previous_proc_count = 0;
static int previous_proc_count_max = 0;
static int previous_thread;
/* data used for recalculating pctcpu */
static double *pcpu;
static struct timespec proc_uptime;
static struct timeval proc_wall_time;
static struct timeval previous_wall_time;
static uint64_t previous_interval = 0;
/* total number of io operations */
static long total_inblock;
static long total_oublock;
static long total_majflt;
/* these are for getting the memory statistics */
static int arc_enabled;
static int pageshift; /* log base 2 of the pagesize */
/* define pagetok in terms of pageshift */
#define pagetok(size) ((size) << pageshift)
/* useful externals */
long percentages();
#ifdef ORDER
/*
* Sorting orders. The first element is the default.
*/
char *ordernames[] = {
"cpu", "size", "res", "time", "pri", "threads",
"total", "read", "write", "fault", "vcsw", "ivcsw",
"jid", "pid", NULL
};
#endif
/* Per-cpu time states */
static int maxcpu;
static int maxid;
static int ncpus;
static u_long cpumask;
static long *times;
static long *pcpu_cp_time;
static long *pcpu_cp_old;
static long *pcpu_cp_diff;
static int *pcpu_cpu_states;
static int compare_jid(const void *a, const void *b);
static int compare_pid(const void *a, const void *b);
static int compare_tid(const void *a, const void *b);
static const char *format_nice(const struct kinfo_proc *pp);
static void getsysctl(const char *name, void *ptr, size_t len);
static int swapmode(int *retavail, int *retfree);
static void update_layout(void);
void
toggle_pcpustats(void)
{
if (ncpus == 1)
return;
update_layout();
}
/* Adjust display based on ncpus and the ARC state. */
static void
update_layout(void)
{
y_mem = 3;
y_arc = 4;
y_swap = 4 + arc_enabled;
y_idlecursor = 5 + arc_enabled;
y_message = 5 + arc_enabled;
y_header = 6 + arc_enabled;
y_procs = 7 + arc_enabled;
Header_lines = 7 + arc_enabled;
if (pcpu_stats) {
y_mem += ncpus - 1;
y_arc += ncpus - 1;
y_swap += ncpus - 1;
y_idlecursor += ncpus - 1;
y_message += ncpus - 1;
y_header += ncpus - 1;
y_procs += ncpus - 1;
Header_lines += ncpus - 1;
}
}
int
machine_init(struct statics *statics, char do_unames)
{
int i, j, empty, pagesize;
uint64_t arc_size;
size_t size;
struct passwd *pw;
size = sizeof(smpmode);
if ((sysctlbyname("machdep.smp_active", &smpmode, &size,
NULL, 0) != 0 &&
sysctlbyname("kern.smp.active", &smpmode, &size,
NULL, 0) != 0) ||
size != sizeof(smpmode))
smpmode = 0;
size = sizeof(arc_size);
if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size,
NULL, 0) == 0 && arc_size != 0)
arc_enabled = 1;
if (do_unames) {
while ((pw = getpwent()) != NULL) {
if (strlen(pw->pw_name) > namelength)
namelength = strlen(pw->pw_name);
}
}
if (smpmode && namelength > SMPUNAMELEN)
namelength = SMPUNAMELEN;
else if (namelength > UPUNAMELEN)
namelength = UPUNAMELEN;
kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
if (kd == NULL)
return (-1);
GETSYSCTL("kern.ccpu", ccpu);
/* this is used in calculating WCPU -- calculate it ahead of time */
logcpu = log(loaddouble(ccpu));
pbase = NULL;
pref = NULL;
pcpu = NULL;
nproc = 0;
onproc = -1;
/* get the page size and calculate pageshift from it */
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1) {
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
if (arc_enabled)
statics->arc_names = arcnames;
else
statics->arc_names = NULL;
statics->swap_names = swapnames;
#ifdef ORDER
statics->order_names = ordernames;
#endif
/* Allocate state for per-CPU stats. */
cpumask = 0;
ncpus = 0;
GETSYSCTL("kern.smp.maxcpus", maxcpu);
size = sizeof(long) * maxcpu * CPUSTATES;
times = malloc(size);
if (times == NULL)
err(1, "malloc %zd bytes", size);
if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1)
err(1, "sysctlbyname kern.cp_times");
pcpu_cp_time = calloc(1, size);
maxid = (size / CPUSTATES / sizeof(long)) - 1;
for (i = 0; i <= maxid; i++) {
empty = 1;
for (j = 0; empty && j < CPUSTATES; j++) {
if (times[i * CPUSTATES + j] != 0)
empty = 0;
}
if (!empty) {
cpumask |= (1ul << i);
ncpus++;
}
}
size = sizeof(long) * ncpus * CPUSTATES;
pcpu_cp_old = calloc(1, size);
pcpu_cp_diff = calloc(1, size);
pcpu_cpu_states = calloc(1, size);
statics->ncpus = ncpus;
update_layout();
/* all done! */
return (0);
}
char *
format_header(char *uname_field)
{
static char Header[128];
const char *prehead;
if (ps.jail)
jidlength = TOP_JID_LEN + 1; /* +1 for extra left space. */
else
jidlength = 0;
switch (displaymode) {
case DISP_CPU:
/*
* The logic of picking the right header format seems reverse
* here because we only want to display a THR column when
* "thread mode" is off (and threads are not listed as
* separate lines).
*/
prehead = smpmode ?
(ps.thread ? smp_header : smp_header_thr) :
(ps.thread ? up_header : up_header_thr);
snprintf(Header, sizeof(Header), prehead,
jidlength, ps.jail ? " JID" : "",
namelength, namelength, uname_field,
ps.wcpu ? "WCPU" : "CPU");
break;
case DISP_IO:
prehead = io_header;
snprintf(Header, sizeof(Header), prehead,
jidlength, ps.jail ? " JID" : "",
namelength, namelength, uname_field);
break;
}
cmdlengthdelta = strlen(Header) - 7;
return (Header);
}
static int swappgsin = -1;
static int swappgsout = -1;
extern struct timeval timeout;
void
get_system_info(struct system_info *si)
{
long total;
struct loadavg sysload;
int mib[2];
struct timeval boottime;
uint64_t arc_stat, arc_stat2;
int i, j;
size_t size;
/* get the CPU stats */
size = (maxid + 1) * CPUSTATES * sizeof(long);
if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1)
err(1, "sysctlbyname kern.cp_times");
GETSYSCTL("kern.cp_time", cp_time);
GETSYSCTL("vm.loadavg", sysload);
GETSYSCTL("kern.lastpid", lastpid);
/* convert load averages to doubles */
for (i = 0; i < 3; i++)
si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
/* convert cp_time counts to percentages */
for (i = j = 0; i <= maxid; i++) {
if ((cpumask & (1ul << i)) == 0)
continue;
percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES],
&pcpu_cp_time[j * CPUSTATES],
&pcpu_cp_old[j * CPUSTATES],
&pcpu_cp_diff[j * CPUSTATES]);
j++;
}
percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
/* sum memory & swap statistics */
{
static unsigned int swap_delay = 0;
static int swapavail = 0;
static int swapfree = 0;
static long bufspace = 0;
static int nspgsin, nspgsout;
GETSYSCTL("vfs.bufspace", bufspace);
GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(memory_stats[0]);
memory_stats[1] = pagetok(memory_stats[1]);
memory_stats[2] = pagetok(memory_stats[2]);
memory_stats[3] = pagetok(memory_stats[3]);
memory_stats[4] = bufspace / 1024;
memory_stats[5] = pagetok(memory_stats[5]);
memory_stats[6] = -1;
/* first interval */
if (swappgsin < 0) {
swap_stats[4] = 0;
swap_stats[5] = 0;
}
/* compute differences between old and new swap statistic */
else {
swap_stats[4] = pagetok(((nspgsin - swappgsin)));
swap_stats[5] = pagetok(((nspgsout - swappgsout)));
}
swappgsin = nspgsin;
swappgsout = nspgsout;
/* call CPU heavy swapmode() only for changes */
if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
swap_stats[3] = swapmode(&swapavail, &swapfree);
swap_stats[0] = swapavail;
swap_stats[1] = swapavail - swapfree;
swap_stats[2] = swapfree;
}
swap_delay = 1;
swap_stats[6] = -1;
}
if (arc_enabled) {
GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat);
arc_stats[0] = arc_stat >> 10;
GETSYSCTL("vfs.zfs.mfu_size", arc_stat);
arc_stats[1] = arc_stat >> 10;
GETSYSCTL("vfs.zfs.mru_size", arc_stat);
arc_stats[2] = arc_stat >> 10;
GETSYSCTL("vfs.zfs.anon_size", arc_stat);
arc_stats[3] = arc_stat >> 10;
GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat);
GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2);
arc_stats[4] = arc_stat + arc_stat2 >> 10;
GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat);
arc_stats[5] = arc_stat >> 10;
si->arc = arc_stats;
}
/* set arrays and strings */
if (pcpu_stats) {
si->cpustates = pcpu_cpu_states;
si->ncpus = ncpus;
} else {
si->cpustates = cpu_states;
si->ncpus = 1;
}
si->memory = memory_stats;
si->swap = swap_stats;
if (lastpid > 0) {
si->last_pid = lastpid;
} else {
si->last_pid = -1;
}
/*
* Print how long system has been up.
* (Found by looking getting "boottime" from the kernel)
*/
mib[0] = CTL_KERN;
mib[1] = KERN_BOOTTIME;
size = sizeof(boottime);
if (sysctl(mib, 2, &boottime, &size, NULL, 0) != -1 &&
boottime.tv_sec != 0) {
si->boottime = boottime;
} else {
si->boottime.tv_sec = -1;
}
}
#define NOPROC ((void *)-1)
/*
* We need to compare data from the old process entry with the new
* process entry.
* To facilitate doing this quickly we stash a pointer in the kinfo_proc
* structure to cache the mapping. We also use a negative cache pointer
* of NOPROC to avoid duplicate lookups.
* XXX: this could be done when the actual processes are fetched, we do
* it here out of laziness.
*/
const struct kinfo_proc *
get_old_proc(struct kinfo_proc *pp)
{
struct kinfo_proc **oldpp, *oldp;
/*
* If this is the first fetch of the kinfo_procs then we don't have
* any previous entries.
*/
if (previous_proc_count == 0)
return (NULL);
/* negative cache? */
if (pp->ki_udata == NOPROC)
return (NULL);
/* cached? */
if (pp->ki_udata != NULL)
return (pp->ki_udata);
/*
* Not cached,
* 1) look up based on pid.
* 2) compare process start.
* If we fail here, then setup a negative cache entry, otherwise
* cache it.
*/
oldpp = bsearch(&pp, previous_pref, previous_proc_count,
sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid);
if (oldpp == NULL) {
pp->ki_udata = NOPROC;
return (NULL);
}
oldp = *oldpp;
if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
pp->ki_udata = NOPROC;
return (NULL);
}
pp->ki_udata = oldp;
return (oldp);
}
/*
* Return the total amount of IO done in blocks in/out and faults.
* store the values individually in the pointers passed in.
*/
long
get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
long *vcsw, long *ivcsw)
{
const struct kinfo_proc *oldp;
static struct kinfo_proc dummy;
long ret;
oldp = get_old_proc(pp);
if (oldp == NULL) {
bzero(&dummy, sizeof(dummy));
oldp = &dummy;
}
*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
ret =
(RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
(RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
(RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
return (ret);
}
/*
* If there was a previous update, use the delta in ki_runtime over
* the previous interval to calculate pctcpu. Otherwise, fall back
* to using the kernel's ki_pctcpu.
*/
static double
proc_calc_pctcpu(struct kinfo_proc *pp)
{
const struct kinfo_proc *oldp;
if (previous_interval != 0) {
oldp = get_old_proc(pp);
if (oldp != NULL)
return ((double)(pp->ki_runtime - oldp->ki_runtime)
/ previous_interval);
/*
* If this process/thread was created during the previous
* interval, charge it's total runtime to the previous
* interval.
*/
else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec ||
(pp->ki_start.tv_sec == previous_wall_time.tv_sec &&
pp->ki_start.tv_usec >= previous_wall_time.tv_usec))
return ((double)pp->ki_runtime / previous_interval);
}
return (pctdouble(pp->ki_pctcpu));
}
/*
* Return true if this process has used any CPU time since the
* previous update.
*/
static int
proc_used_cpu(struct kinfo_proc *pp)
{
const struct kinfo_proc *oldp;
oldp = get_old_proc(pp);
if (oldp == NULL)
return (PCTCPU(pp) != 0);
return (pp->ki_runtime != oldp->ki_runtime ||
RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw ||
RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw);
}
/*
* Return the total number of block in/out and faults by a process.
*/
long
get_io_total(struct kinfo_proc *pp)
{
long dummy;
return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
}
static struct handle handle;
caddr_t
get_process_info(struct system_info *si, struct process_select *sel,
int (*compare)(const void *, const void *))
{
int i;
int total_procs;
long p_io;
long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
long nsec;
int active_procs;
struct kinfo_proc **prefp;
struct kinfo_proc *pp;
struct timespec previous_proc_uptime;
/* these are copied out of sel for speed */
int show_idle;
int show_jid;
int show_self;
int show_system;
int show_uid;
int show_command;
int show_kidle;
/*
* If thread state was toggled, don't cache the previous processes.
*/
if (previous_thread != sel->thread)
nproc = 0;
previous_thread = sel->thread;
/*
* Save the previous process info.
*/
if (previous_proc_count_max < nproc) {
free(previous_procs);
previous_procs = malloc(nproc * sizeof(*previous_procs));
free(previous_pref);
previous_pref = malloc(nproc * sizeof(*previous_pref));
if (previous_procs == NULL || previous_pref == NULL) {
(void) fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
previous_proc_count_max = nproc;
}
if (nproc) {
for (i = 0; i < nproc; i++)
previous_pref[i] = &previous_procs[i];
bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
qsort(previous_pref, nproc, sizeof(*previous_pref),
ps.thread ? compare_tid : compare_pid);
}
previous_proc_count = nproc;
previous_proc_uptime = proc_uptime;
previous_wall_time = proc_wall_time;
previous_interval = 0;
pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC,
0, &nproc);
(void)gettimeofday(&proc_wall_time, NULL);
if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0)
memset(&proc_uptime, 0, sizeof(proc_uptime));
else if (previous_proc_uptime.tv_sec != 0 &&
previous_proc_uptime.tv_nsec != 0) {
previous_interval = (proc_uptime.tv_sec -
previous_proc_uptime.tv_sec) * 1000000;
nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec;
if (nsec < 0) {
previous_interval -= 1000000;
nsec += 1000000000;
}
previous_interval += nsec / 1000;
}
if (nproc > onproc) {
pref = realloc(pref, sizeof(*pref) * nproc);
pcpu = realloc(pcpu, sizeof(*pcpu) * nproc);
onproc = nproc;
}
if (pref == NULL || pbase == NULL || pcpu == NULL) {
(void) fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_jid = sel->jid != -1;
show_self = sel->self == -1;
show_system = sel->system;
show_uid = sel->uid != -1;
show_command = sel->command != NULL;
show_kidle = sel->kidle;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
total_inblock = 0;
total_oublock = 0;
total_majflt = 0;
memset((char *)process_states, 0, sizeof(process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++) {
if (pp->ki_stat == 0)
/* not in use */
continue;
if (!show_self && pp->ki_pid == sel->self)
/* skip self */
continue;
if (!show_system && (pp->ki_flag & P_SYSTEM))
/* skip system process */
continue;
p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
&p_vcsw, &p_ivcsw);
total_inblock += p_inblock;
total_oublock += p_oublock;
total_majflt += p_majflt;
total_procs++;
process_states[pp->ki_stat]++;
if (pp->ki_stat == SZOMB)
/* skip zombies */
continue;
if (!show_kidle && pp->ki_tdflags & TDF_IDLETD)
/* skip kernel idle process */
continue;
PCTCPU(pp) = proc_calc_pctcpu(pp);
if (sel->thread && PCTCPU(pp) > 1.0)
PCTCPU(pp) = 1.0;
if (displaymode == DISP_CPU && !show_idle &&
(!proc_used_cpu(pp) ||
pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
/* skip idle or non-running processes */
continue;
if (displaymode == DISP_IO && !show_idle && p_io == 0)
/* skip processes that aren't doing I/O */
continue;
if (show_jid && pp->ki_jid != sel->jid)
/* skip proc. that don't belong to the selected JID */
continue;
if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
/* skip proc. that don't belong to the selected UID */
continue;
*prefp++ = pp;
active_procs++;
}
/* if requested, sort the "interesting" processes */
if (compare != NULL)
qsort(pref, active_procs, sizeof(*pref), compare);
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_len = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return ((caddr_t)&handle);
}
static char fmt[512]; /* static area where result is built */
char *
format_next_process(caddr_t handle, char *(*get_userid)(int), int flags)
{
struct kinfo_proc *pp;
const struct kinfo_proc *oldp;
long cputime;
double pct;
struct handle *hp;
char status[16];
int cpu, state;
struct rusage ru, *rup;
long p_tot, s_tot;
char *proc_fmt, thr_buf[6], jid_buf[TOP_JID_LEN + 1];
char *cmdbuf = NULL;
char **args;
const int cmdlen = 128;
/* find and remember the next proc structure */
hp = (struct handle *)handle;
pp = *(hp->next_proc++);
hp->remaining--;
/* get the process's command name */
if ((pp->ki_flag & P_INMEM) == 0) {
/*
* Print swapped processes as <pname>
*/
size_t len;
len = strlen(pp->ki_comm);
if (len > sizeof(pp->ki_comm) - 3)
len = sizeof(pp->ki_comm) - 3;
memmove(pp->ki_comm + 1, pp->ki_comm, len);
pp->ki_comm[0] = '<';
pp->ki_comm[len + 1] = '>';
pp->ki_comm[len + 2] = '\0';
}
/*
* Convert the process's runtime from microseconds to seconds. This
* time includes the interrupt time although that is not wanted here.
* ps(1) is similarly sloppy.
*/
cputime = (pp->ki_runtime + 500000) / 1000000;
/* calculate the base for cpu percentages */
pct = PCTCPU(pp);
/* generate "STATE" field */
switch (state = pp->ki_stat) {
case SRUN:
if (smpmode && pp->ki_oncpu != 0xff)
sprintf(status, "CPU%d", pp->ki_oncpu);
else
strcpy(status, "RUN");
break;
case SLOCK:
if (pp->ki_kiflag & KI_LOCKBLOCK) {
sprintf(status, "*%.6s", pp->ki_lockname);
break;
}
/* fall through */
case SSLEEP:
if (pp->ki_wmesg != NULL) {
sprintf(status, "%.6s", pp->ki_wmesg);
break;
}
/* FALLTHROUGH */
default:
if (state >= 0 &&
state < sizeof(state_abbrev) / sizeof(*state_abbrev))
sprintf(status, "%.6s", state_abbrev[state]);
else
sprintf(status, "?%5d", state);
break;
}
cmdbuf = (char *)malloc(cmdlen + 1);
if (cmdbuf == NULL) {
warn("malloc(%d)", cmdlen + 1);
return NULL;
}
if (!(flags & FMT_SHOWARGS)) {
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
pp->ki_tdname[0]) {
snprintf(cmdbuf, cmdlen, "%s{%s}", pp->ki_comm,
pp->ki_tdname);
} else {
snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm);
}
} else {
if (pp->ki_flag & P_SYSTEM ||
pp->ki_args == NULL ||
(args = kvm_getargv(kd, pp, cmdlen)) == NULL ||
!(*args)) {
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
pp->ki_tdname[0]) {
snprintf(cmdbuf, cmdlen,
"[%s{%s}]", pp->ki_comm, pp->ki_tdname);
} else {
snprintf(cmdbuf, cmdlen,
"[%s]", pp->ki_comm);
}
} else {
char *src, *dst, *argbuf;
char *cmd;
size_t argbuflen;
size_t len;
argbuflen = cmdlen * 4;
argbuf = (char *)malloc(argbuflen + 1);
if (argbuf == NULL) {
warn("malloc(%zd)", argbuflen + 1);
free(cmdbuf);
return NULL;
}
dst = argbuf;
/* Extract cmd name from argv */
cmd = strrchr(*args, '/');
if (cmd == NULL)
cmd = *args;
else
cmd++;
for (; (src = *args++) != NULL; ) {
if (*src == '\0')
continue;
len = (argbuflen - (dst - argbuf) - 1) / 4;
strvisx(dst, src,
strlen(src) < len ? strlen(src) : len,
VIS_NL | VIS_CSTYLE);
while (*dst != '\0')
dst++;
if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
*dst++ = ' '; /* add delimiting space */
}
if (dst != argbuf && dst[-1] == ' ')
dst--;
*dst = '\0';
if (strcmp(cmd, pp->ki_comm) != 0) {
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
pp->ki_tdname[0])
snprintf(cmdbuf, cmdlen,
"%s (%s){%s}", argbuf, pp->ki_comm,
pp->ki_tdname);
else
snprintf(cmdbuf, cmdlen,
"%s (%s)", argbuf, pp->ki_comm);
} else {
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
pp->ki_tdname[0])
snprintf(cmdbuf, cmdlen,
"%s{%s}", argbuf, pp->ki_tdname);
else
strlcpy(cmdbuf, argbuf, cmdlen);
}
free(argbuf);
}
}
if (ps.jail == 0)
jid_buf[0] = '\0';
else
snprintf(jid_buf, sizeof(jid_buf), "%*d",
jidlength - 1, pp->ki_jid);
if (displaymode == DISP_IO) {
oldp = get_old_proc(pp);
if (oldp != NULL) {
ru.ru_inblock = RU(pp)->ru_inblock -
RU(oldp)->ru_inblock;
ru.ru_oublock = RU(pp)->ru_oublock -
RU(oldp)->ru_oublock;
ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
rup = &ru;
} else {
rup = RU(pp);
}
p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
s_tot = total_inblock + total_oublock + total_majflt;
snprintf(fmt, sizeof(fmt), io_Proc_format,
pp->ki_pid,
jidlength, jid_buf,
namelength, namelength, (*get_userid)(pp->ki_ruid),
rup->ru_nvcsw,
rup->ru_nivcsw,
rup->ru_inblock,
rup->ru_oublock,
rup->ru_majflt,
p_tot,
s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
screen_width > cmdlengthdelta ?
screen_width - cmdlengthdelta : 0,
printable(cmdbuf));
free(cmdbuf);
return (fmt);
}
/* format this entry */
if (smpmode) {
if (state == SRUN && pp->ki_oncpu != 0xff)
cpu = pp->ki_oncpu;
else
cpu = pp->ki_lastcpu;
} else
cpu = 0;
proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
if (ps.thread != 0)
thr_buf[0] = '\0';
else
snprintf(thr_buf, sizeof(thr_buf), "%*d ",
(int)(sizeof(thr_buf) - 2), pp->ki_numthreads);
snprintf(fmt, sizeof(fmt), proc_fmt,
pp->ki_pid,
jidlength, jid_buf,
namelength, namelength, (*get_userid)(pp->ki_ruid),
thr_buf,
pp->ki_pri.pri_level - PZERO,
format_nice(pp),
format_k2(PROCSIZE(pp)),
format_k2(pagetok(pp->ki_rssize)),
status,
cpu,
format_time(cputime),
ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
printable(cmdbuf));
free(cmdbuf);
/* return the result */
return (fmt);
}
static void
getsysctl(const char *name, void *ptr, size_t len)
{
size_t nlen = len;
if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
strerror(errno));
quit(23);
}
if (nlen != len) {
fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
name, (unsigned long)len, (unsigned long)nlen);
quit(23);
}
}
static const char *
format_nice(const struct kinfo_proc *pp)
{
const char *fifo, *kthread;
int rtpri;
static char nicebuf[4 + 1];
fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
kthread = (pp->ki_flag & P_KTHREAD) ? "k" : "";
switch (PRI_BASE(pp->ki_pri.pri_class)) {
case PRI_ITHD:
return ("-");
case PRI_REALTIME:
/*
* XXX: the kernel doesn't tell us the original rtprio and
* doesn't really know what it was, so to recover it we
* must be more chummy with the implementation than the
* implementation is with itself. pri_user gives a
* constant "base" priority, but is only initialized
* properly for user threads. pri_native gives what the
* kernel calls the "base" priority, but it isn't constant
* since it is changed by priority propagation. pri_native
* also isn't properly initialized for all threads, but it
* is properly initialized for kernel realtime and idletime
* threads. Thus we use pri_user for the base priority of
* user threads (it is always correct) and pri_native for
* the base priority of kernel realtime and idletime threads
* (there is nothing better, and it is usually correct).
*
* The field width and thus the buffer are too small for
* values like "kr31F", but such values shouldn't occur,
* and if they do then the tailing "F" is not displayed.
*/
rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
kthread, rtpri, fifo);
break;
case PRI_TIMESHARE:
if (pp->ki_flag & P_KTHREAD)
return ("-");
snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
break;
case PRI_IDLE:
/* XXX: as above. */
rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
pp->ki_pri.pri_user) - PRI_MIN_IDLE;
snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
kthread, rtpri, fifo);
break;
default:
return ("?");
}
return (nicebuf);
}
/* comparison routines for qsort */
static int
compare_pid(const void *p1, const void *p2)
{
const struct kinfo_proc * const *pp1 = p1;
const struct kinfo_proc * const *pp2 = p2;
if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
abort();
return ((*pp1)->ki_pid - (*pp2)->ki_pid);
}
static int
compare_tid(const void *p1, const void *p2)
{
const struct kinfo_proc * const *pp1 = p1;
const struct kinfo_proc * const *pp2 = p2;
if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0)
abort();
return ((*pp1)->ki_tid - (*pp2)->ki_tid);
}
/*
* proc_compare - comparison function for "qsort"
* Compares the resource consumption of two processes using five
* distinct keys. The keys (in descending order of importance) are:
* percent cpu, cpu ticks, state, resident set size, total virtual
* memory usage. The process states are ordered as follows (from least
* to most important): WAIT, zombie, sleep, stop, start, run. The
* array declaration below maps a process state index into a number
* that reflects this ordering.
*/
static int sorted_state[] = {
0, /* not used */
3, /* sleep */
1, /* ABANDONED (WAIT) */
6, /* run */
5, /* start */
2, /* zombie */
4 /* stop */
};
#define ORDERKEY_PCTCPU(a, b) do { \
double diff; \
if (ps.wcpu) \
diff = weighted_cpu(PCTCPU((b)), (b)) - \
weighted_cpu(PCTCPU((a)), (a)); \
else \
diff = PCTCPU((b)) - PCTCPU((a)); \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_CPTICKS(a, b) do { \
int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_STATE(a, b) do { \
int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_PRIO(a, b) do { \
int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_THREADS(a, b) do { \
int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_RSSIZE(a, b) do { \
long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_MEM(a, b) do { \
long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_JID(a, b) do { \
int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
/* compare_cpu - the comparison function for sorting by cpu percentage */
int
#ifdef ORDER
compare_cpu(void *arg1, void *arg2)
#else
proc_compare(void *arg1, void *arg2)
#endif
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
#ifdef ORDER
/* "cpu" compare routines */
int compare_size(), compare_res(), compare_time(), compare_prio(),
compare_threads();
/*
* "io" compare routines. Context switches aren't i/o, but are displayed
* on the "io" display.
*/
int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
compare_vcsw(), compare_ivcsw();
int (*compares[])() = {
compare_cpu,
compare_size,
compare_res,
compare_time,
compare_prio,
compare_threads,
compare_iototal,
compare_ioread,
compare_iowrite,
compare_iofault,
compare_vcsw,
compare_ivcsw,
compare_jid,
NULL
};
/* compare_size - the comparison function for sorting by total memory usage */
int
compare_size(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
ORDERKEY_MEM(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
return (0);
}
/* compare_res - the comparison function for sorting by resident set size */
int
compare_res(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
return (0);
}
/* compare_time - the comparison function for sorting by total cpu time */
int
compare_time(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
/* compare_prio - the comparison function for sorting by priority */
int
compare_prio(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
ORDERKEY_PRIO(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
/* compare_threads - the comparison function for sorting by threads */
int
compare_threads(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
ORDERKEY_THREADS(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
/* compare_jid - the comparison function for sorting by jid */
static int
compare_jid(const void *arg1, const void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
ORDERKEY_JID(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
#endif /* ORDER */
/* assorted comparison functions for sorting by i/o */
int
#ifdef ORDER
compare_iototal(void *arg1, void *arg2)
#else
io_compare(void *arg1, void *arg2)
#endif
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
return (get_io_total(p2) - get_io_total(p1));
}
#ifdef ORDER
int
compare_ioread(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
long dummy, inp1, inp2;
(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
return (inp2 - inp1);
}
int
compare_iowrite(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
long dummy, oup1, oup2;
(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
return (oup2 - oup1);
}
int
compare_iofault(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
long dummy, flp1, flp2;
(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
return (flp2 - flp1);
}
int
compare_vcsw(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
long dummy, flp1, flp2;
(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
return (flp2 - flp1);
}
int
compare_ivcsw(void *arg1, void *arg2)
{
struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
long dummy, flp1, flp2;
(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
return (flp2 - flp1);
}
#endif /* ORDER */
/*
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
* the process does not exist.
* It is EXTREMELY IMPORTANT that this function work correctly.
* If top runs setuid root (as in SVR4), then this function
* is the only thing that stands in the way of a serious
* security problem. It validates requests for the "kill"
* and "renice" commands.
*/
int
proc_owner(int pid)
{
int cnt;
struct kinfo_proc **prefp;
struct kinfo_proc *pp;
prefp = pref;
cnt = pref_len;
while (--cnt >= 0) {
pp = *prefp++;
if (pp->ki_pid == (pid_t)pid)
return ((int)pp->ki_ruid);
}
return (-1);
}
static int
swapmode(int *retavail, int *retfree)
{
int n;
int pagesize = getpagesize();
struct kvm_swap swapary[1];
*retavail = 0;
*retfree = 0;
#define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
n = kvm_getswapinfo(kd, swapary, 1, 0);
if (n < 0 || swapary[0].ksw_total == 0)
return (0);
*retavail = CONVERT(swapary[0].ksw_total);
*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
return (n);
}