freebsd-skq/sbin/newfs/mkfs.c
2003-01-29 22:52:27 +00:00

1046 lines
30 KiB
C

/*
* Copyright (c) 2002 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program
*
* Copyright (c) 1982, 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* Copyright (c) 1980, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
#if 0
static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
#endif
static const char rcsid[] =
"$FreeBSD$";
#endif /* not lint */
#include <err.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ffs/fs.h>
#include <sys/disklabel.h>
#include <sys/file.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include "newfs.h"
/*
* make file system for cylinder-group style file systems
*/
#define UMASK 0755
#define POWEROF2(num) (((num) & ((num) - 1)) == 0)
static union {
struct fs fs;
char pad[SBLOCKSIZE];
} fsun;
#define sblock fsun.fs
static struct csum *fscs;
static union {
struct cg cg;
char pad[MAXBSIZE];
} cgun;
#define acg cgun.cg
union dinode {
struct ufs1_dinode dp1;
struct ufs2_dinode dp2;
};
#define DIP(dp, field) \
((sblock.fs_magic == FS_UFS1_MAGIC) ? \
(dp)->dp1.field : (dp)->dp2.field)
static int randinit;
static caddr_t iobuf;
static long iobufsize;
static ufs2_daddr_t alloc(int size, int mode);
static int charsperline(void);
static void clrblock(struct fs *, unsigned char *, int);
static void fsinit(time_t);
static int ilog2(int);
static void initcg(int, time_t);
static int isblock(struct fs *, unsigned char *, int);
static void iput(union dinode *, ino_t);
static int makedir(struct direct *, int);
static void rdfs(ufs2_daddr_t, int, char *);
static void setblock(struct fs *, unsigned char *, int);
static void wtfs(ufs2_daddr_t, int, char *);
static void wtfsflush(void);
void
mkfs(struct partition *pp, char *fsys)
{
int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
long i, j, cylno, csfrags;
time_t utime;
quad_t sizepb;
int width;
char tmpbuf[100]; /* XXX this will break in about 2,500 years */
if (Rflag)
utime = 1000000000;
else
time(&utime);
if (!Rflag && !randinit) {
randinit = 1;
srandomdev();
}
sblock.fs_old_flags = FS_FLAGS_UPDATED;
sblock.fs_flags = 0;
if (Uflag)
sblock.fs_flags |= FS_DOSOFTDEP;
/*
* Validate the given file system size.
* Verify that its last block can actually be accessed.
* Convert to file system fragment sized units.
*/
if (fssize <= 0) {
printf("preposterous size %jd\n", (intmax_t)fssize);
exit(13);
}
wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
(char *)&sblock);
/*
* collect and verify the file system density info
*/
sblock.fs_avgfilesize = avgfilesize;
sblock.fs_avgfpdir = avgfilesperdir;
if (sblock.fs_avgfilesize <= 0)
printf("illegal expected average file size %d\n",
sblock.fs_avgfilesize), exit(14);
if (sblock.fs_avgfpdir <= 0)
printf("illegal expected number of files per directory %d\n",
sblock.fs_avgfpdir), exit(15);
/*
* collect and verify the block and fragment sizes
*/
sblock.fs_bsize = bsize;
sblock.fs_fsize = fsize;
if (!POWEROF2(sblock.fs_bsize)) {
printf("block size must be a power of 2, not %d\n",
sblock.fs_bsize);
exit(16);
}
if (!POWEROF2(sblock.fs_fsize)) {
printf("fragment size must be a power of 2, not %d\n",
sblock.fs_fsize);
exit(17);
}
if (sblock.fs_fsize < sectorsize) {
printf("increasing fragment size from %d to sector size (%d)\n",
sblock.fs_fsize, sectorsize);
sblock.fs_fsize = sectorsize;
}
if (sblock.fs_bsize > MAXBSIZE) {
printf("decreasing block size from %d to maximum (%d)\n",
sblock.fs_bsize, MAXBSIZE);
sblock.fs_bsize = MAXBSIZE;
}
if (sblock.fs_bsize < MINBSIZE) {
printf("increasing block size from %d to minimum (%d)\n",
sblock.fs_bsize, MINBSIZE);
sblock.fs_bsize = MINBSIZE;
}
if (sblock.fs_fsize > MAXBSIZE) {
printf("decreasing fragment size from %d to maximum (%d)\n",
sblock.fs_fsize, MAXBSIZE);
sblock.fs_fsize = MAXBSIZE;
}
if (sblock.fs_bsize < sblock.fs_fsize) {
printf("increasing block size from %d to fragment size (%d)\n",
sblock.fs_bsize, sblock.fs_fsize);
sblock.fs_bsize = sblock.fs_fsize;
}
if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
printf(
"increasing fragment size from %d to block size / %d (%d)\n",
sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
}
if (maxbsize < bsize || !POWEROF2(maxbsize)) {
sblock.fs_maxbsize = sblock.fs_bsize;
printf("Extent size set to %d\n", sblock.fs_maxbsize);
} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
} else {
sblock.fs_maxbsize = maxbsize;
}
sblock.fs_maxcontig = maxcontig;
if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
}
if (sblock.fs_maxcontig > 1)
sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
sblock.fs_bmask = ~(sblock.fs_bsize - 1);
sblock.fs_fmask = ~(sblock.fs_fsize - 1);
sblock.fs_qbmask = ~sblock.fs_bmask;
sblock.fs_qfmask = ~sblock.fs_fmask;
sblock.fs_bshift = ilog2(sblock.fs_bsize);
sblock.fs_fshift = ilog2(sblock.fs_fsize);
sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
sblock.fs_fragshift = ilog2(sblock.fs_frag);
if (sblock.fs_frag > MAXFRAG) {
printf("fragment size %d is still too small (can't happen)\n",
sblock.fs_bsize / MAXFRAG);
exit(21);
}
sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
if (Oflag == 1) {
sblock.fs_magic = FS_UFS1_MAGIC;
sblock.fs_sblockloc = SBLOCK_UFS1;
sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
sizeof(ufs1_daddr_t));
sblock.fs_old_inodefmt = FS_44INODEFMT;
sblock.fs_old_cgoffset = 0;
sblock.fs_old_cgmask = 0xffffffff;
sblock.fs_old_size = sblock.fs_size;
sblock.fs_old_rotdelay = 0;
sblock.fs_old_rps = 60;
sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
sblock.fs_old_cpg = 1;
sblock.fs_old_interleave = 1;
sblock.fs_old_trackskew = 0;
sblock.fs_old_cpc = 0;
sblock.fs_old_postblformat = 1;
sblock.fs_old_nrpos = 1;
} else {
sblock.fs_magic = FS_UFS2_MAGIC;
sblock.fs_sblockloc = SBLOCK_UFS2;
sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
sizeof(ufs2_daddr_t));
}
sblock.fs_sblkno =
roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
sblock.fs_frag);
sblock.fs_cblkno = sblock.fs_sblkno +
roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
sizepb *= NINDIR(&sblock);
sblock.fs_maxfilesize += sizepb;
}
/*
* Calculate the number of blocks to put into each cylinder group.
*
* This algorithm selects the number of blocks per cylinder
* group. The first goal is to have at least enough data blocks
* in each cylinder group to meet the density requirement. Once
* this goal is achieved we try to expand to have at least
* MINCYLGRPS cylinder groups. Once this goal is achieved, we
* pack as many blocks into each cylinder group map as will fit.
*
* We start by calculating the smallest number of blocks that we
* can put into each cylinder group. If this is too big, we reduce
* the density until it fits.
*/
origdensity = density;
for (;;) {
fragsperinode = MAX(numfrags(&sblock, density), 1);
minfpg = fragsperinode * INOPB(&sblock);
if (minfpg > sblock.fs_size)
minfpg = sblock.fs_size;
sblock.fs_ipg = INOPB(&sblock);
sblock.fs_fpg = roundup(sblock.fs_iblkno +
sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
if (sblock.fs_fpg < minfpg)
sblock.fs_fpg = minfpg;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
sblock.fs_fpg = roundup(sblock.fs_iblkno +
sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
if (sblock.fs_fpg < minfpg)
sblock.fs_fpg = minfpg;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
break;
density -= sblock.fs_fsize;
}
if (density != origdensity)
printf("density reduced from %d to %d\n", origdensity, density);
/*
* Start packing more blocks into the cylinder group until
* it cannot grow any larger, the number of cylinder groups
* drops below MINCYLGRPS, or we reach the size requested.
*/
for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
break;
if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
continue;
if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
break;
sblock.fs_fpg -= sblock.fs_frag;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
break;
}
/*
* Check to be sure that the last cylinder group has enough blocks
* to be viable. If it is too small, reduce the number of blocks
* per cylinder group which will have the effect of moving more
* blocks into the last cylinder group.
*/
optimalfpg = sblock.fs_fpg;
for (;;) {
sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
lastminfpg = roundup(sblock.fs_iblkno +
sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
if (sblock.fs_size < lastminfpg) {
printf("Filesystem size %jd < minimum size of %d\n",
(intmax_t)sblock.fs_size, lastminfpg);
exit(28);
}
if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
sblock.fs_size % sblock.fs_fpg == 0)
break;
sblock.fs_fpg -= sblock.fs_frag;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
}
if (optimalfpg != sblock.fs_fpg)
printf("Reduced frags per cylinder group from %d to %d %s\n",
optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
if (Oflag == 1) {
sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
sblock.fs_old_nsect = sblock.fs_old_spc;
sblock.fs_old_npsect = sblock.fs_old_spc;
sblock.fs_old_ncyl = sblock.fs_ncg;
}
/*
* fill in remaining fields of the super block
*/
sblock.fs_csaddr = cgdmin(&sblock, 0);
sblock.fs_cssize =
fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
fscs = (struct csum *)calloc(1, sblock.fs_cssize);
if (fscs == NULL)
errx(31, "calloc failed");
sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
if (sblock.fs_sbsize > SBLOCKSIZE)
sblock.fs_sbsize = SBLOCKSIZE;
sblock.fs_minfree = minfree;
sblock.fs_maxbpg = maxbpg;
sblock.fs_optim = opt;
sblock.fs_cgrotor = 0;
sblock.fs_pendingblocks = 0;
sblock.fs_pendinginodes = 0;
sblock.fs_fmod = 0;
sblock.fs_ronly = 0;
sblock.fs_state = 0;
sblock.fs_clean = 1;
sblock.fs_id[0] = (long)utime;
sblock.fs_id[1] = random();
sblock.fs_fsmnt[0] = '\0';
csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
sblock.fs_cstotal.cs_nbfree =
fragstoblks(&sblock, sblock.fs_dsize) -
howmany(csfrags, sblock.fs_frag);
sblock.fs_cstotal.cs_nffree =
fragnum(&sblock, sblock.fs_size) +
(fragnum(&sblock, csfrags) > 0 ?
sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
sblock.fs_cstotal.cs_ndir = 0;
sblock.fs_dsize -= csfrags;
sblock.fs_time = utime;
if (Oflag == 1) {
sblock.fs_old_time = utime;
sblock.fs_old_dsize = sblock.fs_dsize;
sblock.fs_old_csaddr = sblock.fs_csaddr;
sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
}
/*
* Dump out summary information about file system.
*/
# define B2MBFACTOR (1 / (1024.0 * 1024.0))
printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
(intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
sblock.fs_fsize);
printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
if (sblock.fs_flags & FS_DOSOFTDEP)
printf("\twith soft updates\n");
# undef B2MBFACTOR
/*
* Now build the cylinders group blocks and
* then print out indices of cylinder groups.
*/
printf("super-block backups (for fsck -b #) at:\n");
i = 0;
width = charsperline();
/*
* allocate space for superblock, cylinder group map, and
* two sets of inode blocks.
*/
if (sblock.fs_bsize < SBLOCKSIZE)
iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
else
iobufsize = 4 * sblock.fs_bsize;
if ((iobuf = malloc(iobufsize)) == 0) {
printf("Cannot allocate I/O buffer\n");
exit(38);
}
bzero(iobuf, iobufsize);
/*
* Make a copy of the superblock into the buffer that we will be
* writing out in each cylinder group.
*/
bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
initcg(cylno, utime);
j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
(intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
cylno < (sblock.fs_ncg-1) ? "," : "");
if (j < 0)
tmpbuf[j = 0] = '\0';
if (i + j >= width) {
printf("\n");
i = 0;
}
i += j;
printf("%s", tmpbuf);
fflush(stdout);
}
printf("\n");
if (Nflag)
exit(0);
/*
* Now construct the initial file system,
* then write out the super-block.
*/
fsinit(utime);
if (Oflag == 1) {
sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
}
wtfs(sblock.fs_sblockloc / sectorsize, SBLOCKSIZE, (char *)&sblock);
for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
sblock.fs_cssize - i < sblock.fs_bsize ?
sblock.fs_cssize - i : sblock.fs_bsize,
((char *)fscs) + i);
wtfsflush();
/*
* Update information about this partion in pack
* label, to that it may be updated on disk.
*/
if (pp != NULL) {
pp->p_fstype = FS_BSDFFS;
pp->p_fsize = sblock.fs_fsize;
pp->p_frag = sblock.fs_frag;
pp->p_cpg = sblock.fs_fpg;
}
}
/*
* Initialize a cylinder group.
*/
void
initcg(int cylno, time_t utime)
{
long i, j, d, dlower, dupper, blkno, start;
ufs2_daddr_t cbase, dmax;
struct ufs1_dinode *dp1;
struct ufs2_dinode *dp2;
struct csum *cs;
/*
* Determine block bounds for cylinder group.
* Allow space for super block summary information in first
* cylinder group.
*/
cbase = cgbase(&sblock, cylno);
dmax = cbase + sblock.fs_fpg;
if (dmax > sblock.fs_size)
dmax = sblock.fs_size;
dlower = cgsblock(&sblock, cylno) - cbase;
dupper = cgdmin(&sblock, cylno) - cbase;
if (cylno == 0)
dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
cs = &fscs[cylno];
memset(&acg, 0, sblock.fs_cgsize);
acg.cg_time = utime;
acg.cg_magic = CG_MAGIC;
acg.cg_cgx = cylno;
acg.cg_niblk = sblock.fs_ipg;
acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
sblock.fs_ipg : 2 * INOPB(&sblock);
acg.cg_ndblk = dmax - cbase;
if (sblock.fs_contigsumsize > 0)
acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
if (Oflag == 2) {
acg.cg_iusedoff = start;
} else {
acg.cg_old_ncyl = sblock.fs_old_cpg;
acg.cg_old_time = acg.cg_time;
acg.cg_time = 0;
acg.cg_old_niblk = acg.cg_niblk;
acg.cg_niblk = 0;
acg.cg_initediblk = 0;
acg.cg_old_btotoff = start;
acg.cg_old_boff = acg.cg_old_btotoff +
sblock.fs_old_cpg * sizeof(int32_t);
acg.cg_iusedoff = acg.cg_old_boff +
sblock.fs_old_cpg * sizeof(u_int16_t);
}
acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
if (sblock.fs_contigsumsize > 0) {
acg.cg_clustersumoff =
roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
acg.cg_clustersumoff -= sizeof(u_int32_t);
acg.cg_clusteroff = acg.cg_clustersumoff +
(sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
acg.cg_nextfreeoff = acg.cg_clusteroff +
howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
}
if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
printf("Panic: cylinder group too big\n");
exit(37);
}
acg.cg_cs.cs_nifree += sblock.fs_ipg;
if (cylno == 0)
for (i = 0; i < (long)ROOTINO; i++) {
setbit(cg_inosused(&acg), i);
acg.cg_cs.cs_nifree--;
}
if (cylno > 0) {
/*
* In cylno 0, beginning space is reserved
* for boot and super blocks.
*/
for (d = 0; d < dlower; d += sblock.fs_frag) {
blkno = d / sblock.fs_frag;
setblock(&sblock, cg_blksfree(&acg), blkno);
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree(&acg), blkno);
acg.cg_cs.cs_nbfree++;
}
}
if ((i = dupper % sblock.fs_frag)) {
acg.cg_frsum[sblock.fs_frag - i]++;
for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
setbit(cg_blksfree(&acg), dupper);
acg.cg_cs.cs_nffree++;
}
}
for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
d += sblock.fs_frag) {
blkno = d / sblock.fs_frag;
setblock(&sblock, cg_blksfree(&acg), blkno);
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree(&acg), blkno);
acg.cg_cs.cs_nbfree++;
}
if (d < acg.cg_ndblk) {
acg.cg_frsum[acg.cg_ndblk - d]++;
for (; d < acg.cg_ndblk; d++) {
setbit(cg_blksfree(&acg), d);
acg.cg_cs.cs_nffree++;
}
}
if (sblock.fs_contigsumsize > 0) {
int32_t *sump = cg_clustersum(&acg);
u_char *mapp = cg_clustersfree(&acg);
int map = *mapp++;
int bit = 1;
int run = 0;
for (i = 0; i < acg.cg_nclusterblks; i++) {
if ((map & bit) != 0)
run++;
else if (run != 0) {
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
run = 0;
}
if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
bit <<= 1;
else {
map = *mapp++;
bit = 1;
}
}
if (run != 0) {
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
}
}
*cs = acg.cg_cs;
/*
* Write out the duplicate super block, the cylinder group map
* and two blocks worth of inodes in a single write.
*/
start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
start += sblock.fs_bsize;
dp1 = (struct ufs1_dinode *)(&iobuf[start]);
dp2 = (struct ufs2_dinode *)(&iobuf[start]);
for (i = 0; i < acg.cg_initediblk; i++) {
if (sblock.fs_magic == FS_UFS1_MAGIC) {
dp1->di_gen = random();
dp1++;
} else {
dp2->di_gen = random();
dp2++;
}
}
wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
/*
* For the old file system, we have to initialize all the inodes.
*/
if (Oflag == 1) {
for (i = 2 * sblock.fs_frag;
i < sblock.fs_ipg / INOPF(&sblock);
i += sblock.fs_frag) {
dp1 = (struct ufs1_dinode *)(&iobuf[start]);
for (j = 0; j < INOPB(&sblock); j++) {
dp1->di_gen = random();
dp1++;
}
wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
sblock.fs_bsize, &iobuf[start]);
}
}
}
/*
* initialize the file system
*/
#define PREDEFDIR 2
struct direct root_dir[] = {
{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
};
void
fsinit(time_t utime)
{
union dinode node;
memset(&node, 0, sizeof node);
if (sblock.fs_magic == FS_UFS1_MAGIC) {
/*
* initialize the node
*/
node.dp1.di_atime = utime;
node.dp1.di_mtime = utime;
node.dp1.di_ctime = utime;
/*
* create the root directory
*/
node.dp1.di_mode = IFDIR | UMASK;
node.dp1.di_nlink = PREDEFDIR;
node.dp1.di_size = makedir(root_dir, PREDEFDIR);
node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
node.dp1.di_blocks =
btodb(fragroundup(&sblock, node.dp1.di_size));
wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
iobuf);
} else {
/*
* initialize the node
*/
node.dp2.di_atime = utime;
node.dp2.di_mtime = utime;
node.dp2.di_ctime = utime;
node.dp2.di_birthtime = utime;
/*
* create the root directory
*/
node.dp2.di_mode = IFDIR | UMASK;
node.dp2.di_nlink = PREDEFDIR;
node.dp2.di_size = makedir(root_dir, PREDEFDIR);
node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
node.dp2.di_blocks =
btodb(fragroundup(&sblock, node.dp2.di_size));
wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
iobuf);
}
iput(&node, ROOTINO);
}
/*
* construct a set of directory entries in "iobuf".
* return size of directory.
*/
int
makedir(struct direct *protodir, int entries)
{
char *cp;
int i, spcleft;
spcleft = DIRBLKSIZ;
memset(iobuf, 0, DIRBLKSIZ);
for (cp = iobuf, i = 0; i < entries - 1; i++) {
protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
memmove(cp, &protodir[i], protodir[i].d_reclen);
cp += protodir[i].d_reclen;
spcleft -= protodir[i].d_reclen;
}
protodir[i].d_reclen = spcleft;
memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
return (DIRBLKSIZ);
}
/*
* allocate a block or frag
*/
ufs2_daddr_t
alloc(int size, int mode)
{
int i, d, blkno, frag;
rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
if (acg.cg_magic != CG_MAGIC) {
printf("cg 0: bad magic number\n");
return (0);
}
if (acg.cg_cs.cs_nbfree == 0) {
printf("first cylinder group ran out of space\n");
return (0);
}
for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
goto goth;
printf("internal error: can't find block in cyl 0\n");
return (0);
goth:
blkno = fragstoblks(&sblock, d);
clrblock(&sblock, cg_blksfree(&acg), blkno);
if (sblock.fs_contigsumsize > 0)
clrbit(cg_clustersfree(&acg), blkno);
acg.cg_cs.cs_nbfree--;
sblock.fs_cstotal.cs_nbfree--;
fscs[0].cs_nbfree--;
if (mode & IFDIR) {
acg.cg_cs.cs_ndir++;
sblock.fs_cstotal.cs_ndir++;
fscs[0].cs_ndir++;
}
if (size != sblock.fs_bsize) {
frag = howmany(size, sblock.fs_fsize);
fscs[0].cs_nffree += sblock.fs_frag - frag;
sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
acg.cg_frsum[sblock.fs_frag - frag]++;
for (i = frag; i < sblock.fs_frag; i++)
setbit(cg_blksfree(&acg), d + i);
}
wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
return ((ufs2_daddr_t)d);
}
/*
* Allocate an inode on the disk
*/
void
iput(union dinode *ip, ino_t ino)
{
ufs2_daddr_t d;
int c;
c = ino_to_cg(&sblock, ino);
rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
if (acg.cg_magic != CG_MAGIC) {
printf("cg 0: bad magic number\n");
exit(31);
}
acg.cg_cs.cs_nifree--;
setbit(cg_inosused(&acg), ino);
wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
sblock.fs_cstotal.cs_nifree--;
fscs[0].cs_nifree--;
if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
printf("fsinit: inode value out of range (%d).\n", ino);
exit(32);
}
d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
rdfs(d, sblock.fs_bsize, (char *)iobuf);
if (sblock.fs_magic == FS_UFS1_MAGIC)
((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
ip->dp1;
else
((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
ip->dp2;
wtfs(d, sblock.fs_bsize, (char *)iobuf);
}
/*
* read a block from the file system
*/
void
rdfs(ufs2_daddr_t bno, int size, char *bf)
{
int n;
wtfsflush();
if (lseek(fso, (off_t)bno * sectorsize, 0) < 0) {
printf("seek error: %ld\n", (long)bno);
err(33, "rdfs");
}
n = read(fso, bf, size);
if (n != size) {
printf("read error: %ld\n", (long)bno);
err(34, "rdfs");
}
}
#define WCSIZE (128 * 1024)
ufs2_daddr_t wc_sect; /* units of sectorsize */
int wc_end; /* bytes */
static char wc[WCSIZE]; /* bytes */
/*
* Flush dirty write behind buffer.
*/
static void
wtfsflush()
{
int n;
if (wc_end) {
if (lseek(fso, (off_t)wc_sect * sectorsize, SEEK_SET) < 0) {
printf("seek error: %ld\n", (long)wc_sect);
err(35, "wtfs - writecombine");
}
n = write(fso, wc, wc_end);
if (n != wc_end) {
printf("write error: %ld\n", (long)wc_sect);
err(36, "wtfs - writecombine");
}
wc_end = 0;
}
}
/*
* write a block to the file system
*/
static void
wtfs(ufs2_daddr_t bno, int size, char *bf)
{
int done, n;
if (Nflag)
return;
done = 0;
if (wc_end == 0 && size <= WCSIZE) {
wc_sect = bno;
bcopy(bf, wc, size);
wc_end = size;
if (wc_end < WCSIZE)
return;
done = 1;
}
if ((off_t)wc_sect * sectorsize + wc_end == (off_t)bno * sectorsize &&
wc_end + size <= WCSIZE) {
bcopy(bf, wc + wc_end, size);
wc_end += size;
if (wc_end < WCSIZE)
return;
done = 1;
}
wtfsflush();
if (done)
return;
if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
printf("seek error: %ld\n", (long)bno);
err(35, "wtfs");
}
n = write(fso, bf, size);
if (n != size) {
printf("write error: %ld\n", (long)bno);
err(36, "wtfs");
}
}
/*
* check if a block is available
*/
static int
isblock(struct fs *fs, unsigned char *cp, int h)
{
unsigned char mask;
switch (fs->fs_frag) {
case 8:
return (cp[h] == 0xff);
case 4:
mask = 0x0f << ((h & 0x1) << 2);
return ((cp[h >> 1] & mask) == mask);
case 2:
mask = 0x03 << ((h & 0x3) << 1);
return ((cp[h >> 2] & mask) == mask);
case 1:
mask = 0x01 << (h & 0x7);
return ((cp[h >> 3] & mask) == mask);
default:
fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
return (0);
}
}
/*
* take a block out of the map
*/
static void
clrblock(struct fs *fs, unsigned char *cp, int h)
{
switch ((fs)->fs_frag) {
case 8:
cp[h] = 0;
return;
case 4:
cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] &= ~(0x01 << (h & 0x7));
return;
default:
fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
return;
}
}
/*
* put a block into the map
*/
static void
setblock(struct fs *fs, unsigned char *cp, int h)
{
switch (fs->fs_frag) {
case 8:
cp[h] = 0xff;
return;
case 4:
cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] |= (0x01 << (h & 0x7));
return;
default:
fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
return;
}
}
/*
* Determine the number of characters in a
* single line.
*/
static int
charsperline(void)
{
int columns;
char *cp;
struct winsize ws;
columns = 0;
if (ioctl(0, TIOCGWINSZ, &ws) != -1)
columns = ws.ws_col;
if (columns == 0 && (cp = getenv("COLUMNS")))
columns = atoi(cp);
if (columns == 0)
columns = 80; /* last resort */
return (columns);
}
static int
ilog2(int val)
{
u_int n;
for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
if (1 << n == val)
return (n);
errx(1, "ilog2: %d is not a power of 2\n", val);
}