freebsd-skq/sbin/hastd/proto_uds.c
Pawel Jakub Dawidek 32115b105a Please welcome HAST - Highly Avalable Storage.
HAST allows to transparently store data on two physically separated machines
connected over the TCP/IP network. HAST works in Primary-Secondary
(Master-Backup, Master-Slave) configuration, which means that only one of the
cluster nodes can be active at any given time. Only Primary node is able to
handle I/O requests to HAST-managed devices. Currently HAST is limited to two
cluster nodes in total.

HAST operates on block level - it provides disk-like devices in /dev/hast/
directory for use by file systems and/or applications. Working on block level
makes it transparent for file systems and applications. There in no difference
between using HAST-provided device and raw disk, partition, etc. All of them
are just regular GEOM providers in FreeBSD.

For more information please consult hastd(8), hastctl(8) and hast.conf(5)
manual pages, as well as http://wiki.FreeBSD.org/HAST.

Sponsored by:	FreeBSD Foundation
Sponsored by:	OMCnet Internet Service GmbH
Sponsored by:	TransIP BV
2010-02-18 23:16:19 +00:00

331 lines
7.2 KiB
C

/*-
* Copyright (c) 2009-2010 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Pawel Jakub Dawidek under sponsorship from
* the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/* UDS - UNIX Domain Socket */
#include <sys/un.h>
#include <assert.h>
#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "hast.h"
#include "proto_impl.h"
#define UDS_CTX_MAGIC 0xd541c
struct uds_ctx {
int uc_magic;
struct sockaddr_un uc_sun;
int uc_fd;
int uc_side;
#define UDS_SIDE_CLIENT 0
#define UDS_SIDE_SERVER_LISTEN 1
#define UDS_SIDE_SERVER_WORK 2
};
static void uds_close(void *ctx);
static int
uds_addr(const char *addr, struct sockaddr_un *sunp)
{
if (addr == NULL)
return (-1);
if (strncasecmp(addr, "uds://", 6) == 0)
addr += 6;
else if (strncasecmp(addr, "unix://", 7) == 0)
addr += 7;
else if (addr[0] == '/' && /* If it starts from /... */
strstr(addr, "://") == NULL)/* ...and there is no prefix... */
; /* ...we assume its us. */
else
return (-1);
sunp->sun_family = AF_UNIX;
if (strlcpy(sunp->sun_path, addr, sizeof(sunp->sun_path)) >=
sizeof(sunp->sun_path)) {
return (ENAMETOOLONG);
}
sunp->sun_len = SUN_LEN(sunp);
return (0);
}
static int
uds_common_setup(const char *addr, void **ctxp, int side)
{
struct uds_ctx *uctx;
int ret;
uctx = malloc(sizeof(*uctx));
if (uctx == NULL)
return (errno);
/* Parse given address. */
if ((ret = uds_addr(addr, &uctx->uc_sun)) != 0) {
free(uctx);
return (ret);
}
uctx->uc_fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (uctx->uc_fd == -1) {
ret = errno;
free(uctx);
return (ret);
}
uctx->uc_side = side;
uctx->uc_magic = UDS_CTX_MAGIC;
*ctxp = uctx;
return (0);
}
static int
uds_client(const char *addr, void **ctxp)
{
return (uds_common_setup(addr, ctxp, UDS_SIDE_CLIENT));
}
static int
uds_connect(void *ctx)
{
struct uds_ctx *uctx = ctx;
assert(uctx != NULL);
assert(uctx->uc_magic == UDS_CTX_MAGIC);
assert(uctx->uc_side == UDS_SIDE_CLIENT);
assert(uctx->uc_fd >= 0);
if (connect(uctx->uc_fd, (struct sockaddr *)&uctx->uc_sun,
sizeof(uctx->uc_sun)) < 0) {
return (errno);
}
return (0);
}
static int
uds_server(const char *addr, void **ctxp)
{
struct uds_ctx *uctx;
int ret;
ret = uds_common_setup(addr, ctxp, UDS_SIDE_SERVER_LISTEN);
if (ret != 0)
return (ret);
uctx = *ctxp;
unlink(uctx->uc_sun.sun_path);
if (bind(uctx->uc_fd, (struct sockaddr *)&uctx->uc_sun,
sizeof(uctx->uc_sun)) < 0) {
ret = errno;
uds_close(uctx);
return (ret);
}
if (listen(uctx->uc_fd, 8) < 0) {
ret = errno;
uds_close(uctx);
return (ret);
}
return (0);
}
static int
uds_accept(void *ctx, void **newctxp)
{
struct uds_ctx *uctx = ctx;
struct uds_ctx *newuctx;
socklen_t fromlen;
int ret;
assert(uctx != NULL);
assert(uctx->uc_magic == UDS_CTX_MAGIC);
assert(uctx->uc_side == UDS_SIDE_SERVER_LISTEN);
assert(uctx->uc_fd >= 0);
newuctx = malloc(sizeof(*newuctx));
if (newuctx == NULL)
return (errno);
fromlen = sizeof(uctx->uc_sun);
newuctx->uc_fd = accept(uctx->uc_fd, (struct sockaddr *)&uctx->uc_sun,
&fromlen);
if (newuctx->uc_fd < 0) {
ret = errno;
free(newuctx);
return (ret);
}
newuctx->uc_side = UDS_SIDE_SERVER_WORK;
newuctx->uc_magic = UDS_CTX_MAGIC;
*newctxp = newuctx;
return (0);
}
static int
uds_send(void *ctx, const unsigned char *data, size_t size)
{
struct uds_ctx *uctx = ctx;
assert(uctx != NULL);
assert(uctx->uc_magic == UDS_CTX_MAGIC);
assert(uctx->uc_fd >= 0);
return (proto_common_send(uctx->uc_fd, data, size));
}
static int
uds_recv(void *ctx, unsigned char *data, size_t size)
{
struct uds_ctx *uctx = ctx;
assert(uctx != NULL);
assert(uctx->uc_magic == UDS_CTX_MAGIC);
assert(uctx->uc_fd >= 0);
return (proto_common_recv(uctx->uc_fd, data, size));
}
static int
uds_descriptor(const void *ctx)
{
const struct uds_ctx *uctx = ctx;
assert(uctx != NULL);
assert(uctx->uc_magic == UDS_CTX_MAGIC);
return (uctx->uc_fd);
}
static bool
uds_address_match(const void *ctx __unused, const char *addr __unused)
{
assert(!"proto_address_match() not supported on UNIX domain sockets");
abort();
}
static void
uds_local_address(const void *ctx, char *addr, size_t size)
{
const struct uds_ctx *uctx = ctx;
struct sockaddr_un sun;
socklen_t sunlen;
assert(uctx != NULL);
assert(uctx->uc_magic == UDS_CTX_MAGIC);
assert(addr != NULL);
sunlen = sizeof(sun);
if (getsockname(uctx->uc_fd, (struct sockaddr *)&sun, &sunlen) < 0) {
strlcpy(addr, "N/A", size);
return;
}
assert(sun.sun_family == AF_UNIX);
if (sun.sun_path[0] == '\0') {
strlcpy(addr, "N/A", size);
return;
}
snprintf(addr, size, "uds://%s", sun.sun_path);
}
static void
uds_remote_address(const void *ctx, char *addr, size_t size)
{
const struct uds_ctx *uctx = ctx;
struct sockaddr_un sun;
socklen_t sunlen;
assert(uctx != NULL);
assert(uctx->uc_magic == UDS_CTX_MAGIC);
assert(addr != NULL);
sunlen = sizeof(sun);
if (getpeername(uctx->uc_fd, (struct sockaddr *)&sun, &sunlen) < 0) {
strlcpy(addr, "N/A", size);
return;
}
assert(sun.sun_family == AF_UNIX);
if (sun.sun_path[0] == '\0') {
strlcpy(addr, "N/A", size);
return;
}
snprintf(addr, size, "uds://%s", sun.sun_path);
}
static void
uds_close(void *ctx)
{
struct uds_ctx *uctx = ctx;
assert(uctx != NULL);
assert(uctx->uc_magic == UDS_CTX_MAGIC);
if (uctx->uc_fd >= 0)
close(uctx->uc_fd);
unlink(uctx->uc_sun.sun_path);
uctx->uc_magic = 0;
free(uctx);
}
static struct hast_proto uds_proto = {
.hp_name = "uds",
.hp_client = uds_client,
.hp_connect = uds_connect,
.hp_server = uds_server,
.hp_accept = uds_accept,
.hp_send = uds_send,
.hp_recv = uds_recv,
.hp_descriptor = uds_descriptor,
.hp_address_match = uds_address_match,
.hp_local_address = uds_local_address,
.hp_remote_address = uds_remote_address,
.hp_close = uds_close
};
static __constructor void
uds_ctor(void)
{
proto_register(&uds_proto);
}