af881ec390
Effectively all i386 kernels now have two pmaps compiled in: one managing PAE pagetables, and another non-PAE. The implementation is selected at cold time depending on the CPU features. The vm_paddr_t is always 64bit now. As result, nx bit can be used on all capable CPUs. Option PAE only affects the bus_addr_t: it is still 32bit for non-PAE configs, for drivers compatibility. Kernel layout, esp. max kernel address, low memory PDEs and max user address (same as trampoline start) are now same for PAE and for non-PAE regardless of the type of page tables used. Non-PAE kernel (when using PAE pagetables) can handle physical memory up to 24G now, larger memory requires re-tuning the KVA consumers and instead the code caps the maximum at 24G. Unfortunately, a lot of drivers do not use busdma(9) properly so by default even 4G barrier is not easy. There are two tunables added: hw.above4g_allow and hw.above24g_allow, the first one is kept enabled for now to evaluate the status on HEAD, second is only for dev use. i386 now creates three freelists if there is any memory above 4G, to allow proper bounce pages allocation. Also, VM_KMEM_SIZE_SCALE changed from 3 to 1. The PAE_TABLES kernel config option is retired. In collaboarion with: pho Discussed with: emaste Reviewed by: markj MFC after: 2 weeks Sponsored by: The FreeBSD Foundation Differential revision: https://reviews.freebsd.org/D18894
679 lines
16 KiB
C
679 lines
16 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 1997, Stefan Esser <se@freebsd.org>
|
|
* Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
|
|
* Copyright (c) 2000, BSDi
|
|
* Copyright (c) 2004, Scott Long <scottl@freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sysctl.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcireg.h>
|
|
#include <machine/pci_cfgreg.h>
|
|
#include <machine/pc/bios.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/pmap.h>
|
|
|
|
#define PRVERB(a) do { \
|
|
if (bootverbose) \
|
|
printf a ; \
|
|
} while(0)
|
|
|
|
#define PCIE_CACHE 8
|
|
struct pcie_cfg_elem {
|
|
TAILQ_ENTRY(pcie_cfg_elem) elem;
|
|
vm_offset_t vapage;
|
|
vm_paddr_t papage;
|
|
};
|
|
|
|
enum {
|
|
CFGMECH_NONE = 0,
|
|
CFGMECH_1,
|
|
CFGMECH_2,
|
|
CFGMECH_PCIE,
|
|
};
|
|
|
|
SYSCTL_DECL(_hw_pci);
|
|
|
|
static TAILQ_HEAD(pcie_cfg_list, pcie_cfg_elem) pcie_list[MAXCPU];
|
|
static uint64_t pcie_base;
|
|
static int pcie_minbus, pcie_maxbus;
|
|
static uint32_t pcie_badslots;
|
|
static int cfgmech;
|
|
static int devmax;
|
|
static struct mtx pcicfg_mtx;
|
|
static int mcfg_enable = 1;
|
|
SYSCTL_INT(_hw_pci, OID_AUTO, mcfg, CTLFLAG_RDTUN, &mcfg_enable, 0,
|
|
"Enable support for PCI-e memory mapped config access");
|
|
|
|
static uint32_t pci_docfgregread(int bus, int slot, int func, int reg,
|
|
int bytes);
|
|
static int pcireg_cfgread(int bus, int slot, int func, int reg, int bytes);
|
|
static void pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes);
|
|
static int pcireg_cfgopen(void);
|
|
static int pciereg_cfgread(int bus, unsigned slot, unsigned func,
|
|
unsigned reg, unsigned bytes);
|
|
static void pciereg_cfgwrite(int bus, unsigned slot, unsigned func,
|
|
unsigned reg, int data, unsigned bytes);
|
|
|
|
/*
|
|
* Some BIOS writers seem to want to ignore the spec and put
|
|
* 0 in the intline rather than 255 to indicate none. Some use
|
|
* numbers in the range 128-254 to indicate something strange and
|
|
* apparently undocumented anywhere. Assume these are completely bogus
|
|
* and map them to 255, which means "none".
|
|
*/
|
|
static __inline int
|
|
pci_i386_map_intline(int line)
|
|
{
|
|
if (line == 0 || line >= 128)
|
|
return (PCI_INVALID_IRQ);
|
|
return (line);
|
|
}
|
|
|
|
static u_int16_t
|
|
pcibios_get_version(void)
|
|
{
|
|
struct bios_regs args;
|
|
|
|
if (PCIbios.ventry == 0) {
|
|
PRVERB(("pcibios: No call entry point\n"));
|
|
return (0);
|
|
}
|
|
args.eax = PCIBIOS_BIOS_PRESENT;
|
|
if (bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL))) {
|
|
PRVERB(("pcibios: BIOS_PRESENT call failed\n"));
|
|
return (0);
|
|
}
|
|
if (args.edx != 0x20494350) {
|
|
PRVERB(("pcibios: BIOS_PRESENT didn't return 'PCI ' in edx\n"));
|
|
return (0);
|
|
}
|
|
return (args.ebx & 0xffff);
|
|
}
|
|
|
|
/*
|
|
* Initialise access to PCI configuration space
|
|
*/
|
|
int
|
|
pci_cfgregopen(void)
|
|
{
|
|
static int opened = 0;
|
|
uint64_t pciebar;
|
|
u_int16_t vid, did;
|
|
u_int16_t v;
|
|
|
|
if (opened)
|
|
return (1);
|
|
|
|
if (cfgmech == CFGMECH_NONE && pcireg_cfgopen() == 0)
|
|
return (0);
|
|
|
|
v = pcibios_get_version();
|
|
if (v > 0)
|
|
PRVERB(("pcibios: BIOS version %x.%02x\n", (v & 0xff00) >> 8,
|
|
v & 0xff));
|
|
mtx_init(&pcicfg_mtx, "pcicfg", NULL, MTX_SPIN);
|
|
opened = 1;
|
|
|
|
/* $PIR requires PCI BIOS 2.10 or greater. */
|
|
if (v >= 0x0210)
|
|
pci_pir_open();
|
|
|
|
if (cfgmech == CFGMECH_PCIE)
|
|
return (1);
|
|
|
|
/*
|
|
* Grope around in the PCI config space to see if this is a
|
|
* chipset that is capable of doing memory-mapped config cycles.
|
|
* This also implies that it can do PCIe extended config cycles.
|
|
*/
|
|
|
|
/* Check for supported chipsets */
|
|
vid = pci_cfgregread(0, 0, 0, PCIR_VENDOR, 2);
|
|
did = pci_cfgregread(0, 0, 0, PCIR_DEVICE, 2);
|
|
switch (vid) {
|
|
case 0x8086:
|
|
switch (did) {
|
|
case 0x3590:
|
|
case 0x3592:
|
|
/* Intel 7520 or 7320 */
|
|
pciebar = pci_cfgregread(0, 0, 0, 0xce, 2) << 16;
|
|
pcie_cfgregopen(pciebar, 0, 255);
|
|
break;
|
|
case 0x2580:
|
|
case 0x2584:
|
|
case 0x2590:
|
|
/* Intel 915, 925, or 915GM */
|
|
pciebar = pci_cfgregread(0, 0, 0, 0x48, 4);
|
|
pcie_cfgregopen(pciebar, 0, 255);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
|
|
static uint32_t
|
|
pci_docfgregread(int bus, int slot, int func, int reg, int bytes)
|
|
{
|
|
|
|
if (cfgmech == CFGMECH_PCIE &&
|
|
(bus >= pcie_minbus && bus <= pcie_maxbus) &&
|
|
(bus != 0 || !(1 << slot & pcie_badslots)))
|
|
return (pciereg_cfgread(bus, slot, func, reg, bytes));
|
|
else
|
|
return (pcireg_cfgread(bus, slot, func, reg, bytes));
|
|
}
|
|
|
|
/*
|
|
* Read configuration space register
|
|
*/
|
|
u_int32_t
|
|
pci_cfgregread(int bus, int slot, int func, int reg, int bytes)
|
|
{
|
|
uint32_t line;
|
|
|
|
/*
|
|
* Some BIOS writers seem to want to ignore the spec and put
|
|
* 0 in the intline rather than 255 to indicate none. The rest of
|
|
* the code uses 255 as an invalid IRQ.
|
|
*/
|
|
if (reg == PCIR_INTLINE && bytes == 1) {
|
|
line = pci_docfgregread(bus, slot, func, PCIR_INTLINE, 1);
|
|
return (pci_i386_map_intline(line));
|
|
}
|
|
return (pci_docfgregread(bus, slot, func, reg, bytes));
|
|
}
|
|
|
|
/*
|
|
* Write configuration space register
|
|
*/
|
|
void
|
|
pci_cfgregwrite(int bus, int slot, int func, int reg, u_int32_t data, int bytes)
|
|
{
|
|
|
|
if (cfgmech == CFGMECH_PCIE &&
|
|
(bus >= pcie_minbus && bus <= pcie_maxbus) &&
|
|
(bus != 0 || !(1 << slot & pcie_badslots)))
|
|
pciereg_cfgwrite(bus, slot, func, reg, data, bytes);
|
|
else
|
|
pcireg_cfgwrite(bus, slot, func, reg, data, bytes);
|
|
}
|
|
|
|
/*
|
|
* Configuration space access using direct register operations
|
|
*/
|
|
|
|
/* enable configuration space accesses and return data port address */
|
|
static int
|
|
pci_cfgenable(unsigned bus, unsigned slot, unsigned func, int reg, int bytes)
|
|
{
|
|
int dataport = 0;
|
|
|
|
if (bus <= PCI_BUSMAX
|
|
&& slot < devmax
|
|
&& func <= PCI_FUNCMAX
|
|
&& (unsigned)reg <= PCI_REGMAX
|
|
&& bytes != 3
|
|
&& (unsigned)bytes <= 4
|
|
&& (reg & (bytes - 1)) == 0) {
|
|
switch (cfgmech) {
|
|
case CFGMECH_PCIE:
|
|
case CFGMECH_1:
|
|
outl(CONF1_ADDR_PORT, (1U << 31)
|
|
| (bus << 16) | (slot << 11)
|
|
| (func << 8) | (reg & ~0x03));
|
|
dataport = CONF1_DATA_PORT + (reg & 0x03);
|
|
break;
|
|
case CFGMECH_2:
|
|
outb(CONF2_ENABLE_PORT, 0xf0 | (func << 1));
|
|
outb(CONF2_FORWARD_PORT, bus);
|
|
dataport = 0xc000 | (slot << 8) | reg;
|
|
break;
|
|
}
|
|
}
|
|
return (dataport);
|
|
}
|
|
|
|
/* disable configuration space accesses */
|
|
static void
|
|
pci_cfgdisable(void)
|
|
{
|
|
switch (cfgmech) {
|
|
case CFGMECH_PCIE:
|
|
case CFGMECH_1:
|
|
/*
|
|
* Do nothing for the config mechanism 1 case.
|
|
* Writing a 0 to the address port can apparently
|
|
* confuse some bridges and cause spurious
|
|
* access failures.
|
|
*/
|
|
break;
|
|
case CFGMECH_2:
|
|
outb(CONF2_ENABLE_PORT, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
pcireg_cfgread(int bus, int slot, int func, int reg, int bytes)
|
|
{
|
|
int data = -1;
|
|
int port;
|
|
|
|
mtx_lock_spin(&pcicfg_mtx);
|
|
port = pci_cfgenable(bus, slot, func, reg, bytes);
|
|
if (port != 0) {
|
|
switch (bytes) {
|
|
case 1:
|
|
data = inb(port);
|
|
break;
|
|
case 2:
|
|
data = inw(port);
|
|
break;
|
|
case 4:
|
|
data = inl(port);
|
|
break;
|
|
}
|
|
pci_cfgdisable();
|
|
}
|
|
mtx_unlock_spin(&pcicfg_mtx);
|
|
return (data);
|
|
}
|
|
|
|
static void
|
|
pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes)
|
|
{
|
|
int port;
|
|
|
|
mtx_lock_spin(&pcicfg_mtx);
|
|
port = pci_cfgenable(bus, slot, func, reg, bytes);
|
|
if (port != 0) {
|
|
switch (bytes) {
|
|
case 1:
|
|
outb(port, data);
|
|
break;
|
|
case 2:
|
|
outw(port, data);
|
|
break;
|
|
case 4:
|
|
outl(port, data);
|
|
break;
|
|
}
|
|
pci_cfgdisable();
|
|
}
|
|
mtx_unlock_spin(&pcicfg_mtx);
|
|
}
|
|
|
|
/* check whether the configuration mechanism has been correctly identified */
|
|
static int
|
|
pci_cfgcheck(int maxdev)
|
|
{
|
|
uint32_t id, class;
|
|
uint8_t header;
|
|
uint8_t device;
|
|
int port;
|
|
|
|
if (bootverbose)
|
|
printf("pci_cfgcheck:\tdevice ");
|
|
|
|
for (device = 0; device < maxdev; device++) {
|
|
if (bootverbose)
|
|
printf("%d ", device);
|
|
|
|
port = pci_cfgenable(0, device, 0, 0, 4);
|
|
id = inl(port);
|
|
if (id == 0 || id == 0xffffffff)
|
|
continue;
|
|
|
|
port = pci_cfgenable(0, device, 0, 8, 4);
|
|
class = inl(port) >> 8;
|
|
if (bootverbose)
|
|
printf("[class=%06x] ", class);
|
|
if (class == 0 || (class & 0xf870ff) != 0)
|
|
continue;
|
|
|
|
port = pci_cfgenable(0, device, 0, 14, 1);
|
|
header = inb(port);
|
|
if (bootverbose)
|
|
printf("[hdr=%02x] ", header);
|
|
if ((header & 0x7e) != 0)
|
|
continue;
|
|
|
|
if (bootverbose)
|
|
printf("is there (id=%08x)\n", id);
|
|
|
|
pci_cfgdisable();
|
|
return (1);
|
|
}
|
|
if (bootverbose)
|
|
printf("-- nothing found\n");
|
|
|
|
pci_cfgdisable();
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
pcireg_cfgopen(void)
|
|
{
|
|
uint32_t mode1res, oldval1;
|
|
uint8_t mode2res, oldval2;
|
|
|
|
/* Check for type #1 first. */
|
|
oldval1 = inl(CONF1_ADDR_PORT);
|
|
|
|
if (bootverbose) {
|
|
printf("pci_open(1):\tmode 1 addr port (0x0cf8) is 0x%08x\n",
|
|
oldval1);
|
|
}
|
|
|
|
cfgmech = CFGMECH_1;
|
|
devmax = 32;
|
|
|
|
outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK);
|
|
DELAY(1);
|
|
mode1res = inl(CONF1_ADDR_PORT);
|
|
outl(CONF1_ADDR_PORT, oldval1);
|
|
|
|
if (bootverbose)
|
|
printf("pci_open(1a):\tmode1res=0x%08x (0x%08lx)\n", mode1res,
|
|
CONF1_ENABLE_CHK);
|
|
|
|
if (mode1res) {
|
|
if (pci_cfgcheck(32))
|
|
return (cfgmech);
|
|
}
|
|
|
|
outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK1);
|
|
mode1res = inl(CONF1_ADDR_PORT);
|
|
outl(CONF1_ADDR_PORT, oldval1);
|
|
|
|
if (bootverbose)
|
|
printf("pci_open(1b):\tmode1res=0x%08x (0x%08lx)\n", mode1res,
|
|
CONF1_ENABLE_CHK1);
|
|
|
|
if ((mode1res & CONF1_ENABLE_MSK1) == CONF1_ENABLE_RES1) {
|
|
if (pci_cfgcheck(32))
|
|
return (cfgmech);
|
|
}
|
|
|
|
/* Type #1 didn't work, so try type #2. */
|
|
oldval2 = inb(CONF2_ENABLE_PORT);
|
|
|
|
if (bootverbose) {
|
|
printf("pci_open(2):\tmode 2 enable port (0x0cf8) is 0x%02x\n",
|
|
oldval2);
|
|
}
|
|
|
|
if ((oldval2 & 0xf0) == 0) {
|
|
|
|
cfgmech = CFGMECH_2;
|
|
devmax = 16;
|
|
|
|
outb(CONF2_ENABLE_PORT, CONF2_ENABLE_CHK);
|
|
mode2res = inb(CONF2_ENABLE_PORT);
|
|
outb(CONF2_ENABLE_PORT, oldval2);
|
|
|
|
if (bootverbose)
|
|
printf("pci_open(2a):\tmode2res=0x%02x (0x%02x)\n",
|
|
mode2res, CONF2_ENABLE_CHK);
|
|
|
|
if (mode2res == CONF2_ENABLE_RES) {
|
|
if (bootverbose)
|
|
printf("pci_open(2a):\tnow trying mechanism 2\n");
|
|
|
|
if (pci_cfgcheck(16))
|
|
return (cfgmech);
|
|
}
|
|
}
|
|
|
|
/* Nothing worked, so punt. */
|
|
cfgmech = CFGMECH_NONE;
|
|
devmax = 0;
|
|
return (cfgmech);
|
|
}
|
|
|
|
int
|
|
pcie_cfgregopen(uint64_t base, uint8_t minbus, uint8_t maxbus)
|
|
{
|
|
struct pcie_cfg_list *pcielist;
|
|
struct pcie_cfg_elem *pcie_array, *elem;
|
|
#ifdef SMP
|
|
struct pcpu *pc;
|
|
#endif
|
|
vm_offset_t va;
|
|
uint32_t val1, val2;
|
|
int i, slot;
|
|
|
|
if (!mcfg_enable)
|
|
return (0);
|
|
|
|
if (minbus != 0)
|
|
return (0);
|
|
|
|
if (!pae_mode && base >= 0x100000000) {
|
|
if (bootverbose)
|
|
printf(
|
|
"PCI: Memory Mapped PCI configuration area base 0x%jx too high\n",
|
|
(uintmax_t)base);
|
|
return (0);
|
|
}
|
|
|
|
if (bootverbose)
|
|
printf("PCIe: Memory Mapped configuration base @ 0x%jx\n",
|
|
(uintmax_t)base);
|
|
|
|
#ifdef SMP
|
|
STAILQ_FOREACH(pc, &cpuhead, pc_allcpu)
|
|
#endif
|
|
{
|
|
|
|
pcie_array = malloc(sizeof(struct pcie_cfg_elem) * PCIE_CACHE,
|
|
M_DEVBUF, M_NOWAIT);
|
|
if (pcie_array == NULL)
|
|
return (0);
|
|
|
|
va = kva_alloc(PCIE_CACHE * PAGE_SIZE);
|
|
if (va == 0) {
|
|
free(pcie_array, M_DEVBUF);
|
|
return (0);
|
|
}
|
|
|
|
#ifdef SMP
|
|
pcielist = &pcie_list[pc->pc_cpuid];
|
|
#else
|
|
pcielist = &pcie_list[0];
|
|
#endif
|
|
TAILQ_INIT(pcielist);
|
|
for (i = 0; i < PCIE_CACHE; i++) {
|
|
elem = &pcie_array[i];
|
|
elem->vapage = va + (i * PAGE_SIZE);
|
|
elem->papage = 0;
|
|
TAILQ_INSERT_HEAD(pcielist, elem, elem);
|
|
}
|
|
}
|
|
|
|
pcie_base = base;
|
|
pcie_minbus = minbus;
|
|
pcie_maxbus = maxbus;
|
|
cfgmech = CFGMECH_PCIE;
|
|
devmax = 32;
|
|
|
|
/*
|
|
* On some AMD systems, some of the devices on bus 0 are
|
|
* inaccessible using memory-mapped PCI config access. Walk
|
|
* bus 0 looking for such devices. For these devices, we will
|
|
* fall back to using type 1 config access instead.
|
|
*/
|
|
if (pci_cfgregopen() != 0) {
|
|
for (slot = 0; slot <= PCI_SLOTMAX; slot++) {
|
|
val1 = pcireg_cfgread(0, slot, 0, 0, 4);
|
|
if (val1 == 0xffffffff)
|
|
continue;
|
|
|
|
val2 = pciereg_cfgread(0, slot, 0, 0, 4);
|
|
if (val2 != val1)
|
|
pcie_badslots |= (1 << slot);
|
|
}
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
#define PCIE_PADDR(base, reg, bus, slot, func) \
|
|
((base) + \
|
|
((((bus) & 0xff) << 20) | \
|
|
(((slot) & 0x1f) << 15) | \
|
|
(((func) & 0x7) << 12) | \
|
|
((reg) & 0xfff)))
|
|
|
|
static __inline vm_offset_t
|
|
pciereg_findaddr(int bus, unsigned slot, unsigned func, unsigned reg)
|
|
{
|
|
struct pcie_cfg_list *pcielist;
|
|
struct pcie_cfg_elem *elem;
|
|
vm_paddr_t pa, papage;
|
|
|
|
pa = PCIE_PADDR(pcie_base, reg, bus, slot, func);
|
|
papage = pa & ~PAGE_MASK;
|
|
|
|
/*
|
|
* Find an element in the cache that matches the physical page desired,
|
|
* or create a new mapping from the least recently used element.
|
|
* A very simple LRU algorithm is used here, does it need to be more
|
|
* efficient?
|
|
*/
|
|
pcielist = &pcie_list[PCPU_GET(cpuid)];
|
|
TAILQ_FOREACH(elem, pcielist, elem) {
|
|
if (elem->papage == papage)
|
|
break;
|
|
}
|
|
|
|
if (elem == NULL) {
|
|
elem = TAILQ_LAST(pcielist, pcie_cfg_list);
|
|
if (elem->papage != 0) {
|
|
pmap_kremove(elem->vapage);
|
|
invlpg(elem->vapage);
|
|
}
|
|
pmap_kenter(elem->vapage, papage);
|
|
elem->papage = papage;
|
|
}
|
|
|
|
if (elem != TAILQ_FIRST(pcielist)) {
|
|
TAILQ_REMOVE(pcielist, elem, elem);
|
|
TAILQ_INSERT_HEAD(pcielist, elem, elem);
|
|
}
|
|
return (elem->vapage | (pa & PAGE_MASK));
|
|
}
|
|
|
|
/*
|
|
* AMD BIOS And Kernel Developer's Guides for CPU families starting with 10h
|
|
* have a requirement that all accesses to the memory mapped PCI configuration
|
|
* space are done using AX class of registers.
|
|
* Since other vendors do not currently have any contradicting requirements
|
|
* the AMD access pattern is applied universally.
|
|
*/
|
|
|
|
static int
|
|
pciereg_cfgread(int bus, unsigned slot, unsigned func, unsigned reg,
|
|
unsigned bytes)
|
|
{
|
|
vm_offset_t va;
|
|
int data = -1;
|
|
|
|
if (bus < pcie_minbus || bus > pcie_maxbus || slot > PCI_SLOTMAX ||
|
|
func > PCI_FUNCMAX || reg > PCIE_REGMAX)
|
|
return (-1);
|
|
|
|
critical_enter();
|
|
va = pciereg_findaddr(bus, slot, func, reg);
|
|
|
|
switch (bytes) {
|
|
case 4:
|
|
__asm("movl %1, %0" : "=a" (data)
|
|
: "m" (*(volatile uint32_t *)va));
|
|
break;
|
|
case 2:
|
|
__asm("movzwl %1, %0" : "=a" (data)
|
|
: "m" (*(volatile uint16_t *)va));
|
|
break;
|
|
case 1:
|
|
__asm("movzbl %1, %0" : "=a" (data)
|
|
: "m" (*(volatile uint8_t *)va));
|
|
break;
|
|
}
|
|
|
|
critical_exit();
|
|
return (data);
|
|
}
|
|
|
|
static void
|
|
pciereg_cfgwrite(int bus, unsigned slot, unsigned func, unsigned reg, int data,
|
|
unsigned bytes)
|
|
{
|
|
vm_offset_t va;
|
|
|
|
if (bus < pcie_minbus || bus > pcie_maxbus || slot > PCI_SLOTMAX ||
|
|
func > PCI_FUNCMAX || reg > PCIE_REGMAX)
|
|
return;
|
|
|
|
critical_enter();
|
|
va = pciereg_findaddr(bus, slot, func, reg);
|
|
|
|
switch (bytes) {
|
|
case 4:
|
|
__asm("movl %1, %0" : "=m" (*(volatile uint32_t *)va)
|
|
: "a" (data));
|
|
break;
|
|
case 2:
|
|
__asm("movw %1, %0" : "=m" (*(volatile uint16_t *)va)
|
|
: "a" ((uint16_t)data));
|
|
break;
|
|
case 1:
|
|
__asm("movb %1, %0" : "=m" (*(volatile uint8_t *)va)
|
|
: "a" ((uint8_t)data));
|
|
break;
|
|
}
|
|
|
|
critical_exit();
|
|
}
|