freebsd-skq/sys/boot/common/disk.c
Zbigniew Bodek bbcfaa4eb8 Implement simple ops for umass_disk
The initial IOCTL implementation supports reading disk physical
geometry.
Two additional functions were added. They allow reading/writing raw
data to the disk (default partition).

Submitted by:  Wojciech Macek <wma@semihalf.com>
Obtained from: Semihalf
Sponsored by:  Juniper Networks Inc.
Differential Revision: https://reviews.freebsd.org/D4143
2015-11-27 18:17:53 +00:00

530 lines
13 KiB
C

/*-
* Copyright (c) 1998 Michael Smith <msmith@freebsd.org>
* Copyright (c) 2012 Andrey V. Elsukov <ae@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/disk.h>
#include <sys/queue.h>
#include <stand.h>
#include <stdarg.h>
#include <bootstrap.h>
#include <part.h>
#include "disk.h"
#ifdef DISK_DEBUG
# define DEBUG(fmt, args...) printf("%s: " fmt "\n" , __func__ , ## args)
#else
# define DEBUG(fmt, args...)
#endif
struct open_disk {
struct ptable *table;
off_t mediasize;
u_int sectorsize;
u_int flags;
int rcnt;
};
struct print_args {
struct disk_devdesc *dev;
const char *prefix;
int verbose;
};
struct dentry {
const struct devsw *d_dev;
int d_unit;
int d_slice;
int d_partition;
struct open_disk *od;
off_t d_offset;
STAILQ_ENTRY(dentry) entry;
#ifdef DISK_DEBUG
uint32_t count;
#endif
};
static STAILQ_HEAD(, dentry) opened_disks =
STAILQ_HEAD_INITIALIZER(opened_disks);
static int
disk_lookup(struct disk_devdesc *dev)
{
struct dentry *entry;
int rc;
rc = ENOENT;
STAILQ_FOREACH(entry, &opened_disks, entry) {
if (entry->d_dev != dev->d_dev ||
entry->d_unit != dev->d_unit)
continue;
dev->d_opendata = entry->od;
if (entry->d_slice == dev->d_slice &&
entry->d_partition == dev->d_partition) {
dev->d_offset = entry->d_offset;
DEBUG("%s offset %lld", disk_fmtdev(dev),
(long long)dev->d_offset);
#ifdef DISK_DEBUG
entry->count++;
#endif
return (0);
}
rc = EAGAIN;
}
return (rc);
}
static void
disk_insert(struct disk_devdesc *dev)
{
struct dentry *entry;
entry = (struct dentry *)malloc(sizeof(struct dentry));
if (entry == NULL) {
DEBUG("no memory");
return;
}
entry->d_dev = dev->d_dev;
entry->d_unit = dev->d_unit;
entry->d_slice = dev->d_slice;
entry->d_partition = dev->d_partition;
entry->od = (struct open_disk *)dev->d_opendata;
entry->od->rcnt++;
entry->d_offset = dev->d_offset;
#ifdef DISK_DEBUG
entry->count = 1;
#endif
STAILQ_INSERT_TAIL(&opened_disks, entry, entry);
DEBUG("%s cached", disk_fmtdev(dev));
}
#ifdef DISK_DEBUG
COMMAND_SET(dcachestat, "dcachestat", "get disk cache stats",
command_dcachestat);
static int
command_dcachestat(int argc, char *argv[])
{
struct disk_devdesc dev;
struct dentry *entry;
STAILQ_FOREACH(entry, &opened_disks, entry) {
dev.d_dev = (struct devsw *)entry->d_dev;
dev.d_unit = entry->d_unit;
dev.d_slice = entry->d_slice;
dev.d_partition = entry->d_partition;
printf("%s %d => %p [%d]\n", disk_fmtdev(&dev), entry->count,
entry->od, entry->od->rcnt);
}
return (CMD_OK);
}
#endif /* DISK_DEBUG */
/* Convert size to a human-readable number. */
static char *
display_size(uint64_t size, u_int sectorsize)
{
static char buf[80];
char unit;
size = size * sectorsize / 1024;
unit = 'K';
if (size >= 10485760000LL) {
size /= 1073741824;
unit = 'T';
} else if (size >= 10240000) {
size /= 1048576;
unit = 'G';
} else if (size >= 10000) {
size /= 1024;
unit = 'M';
}
sprintf(buf, "%ld%cB", (long)size, unit);
return (buf);
}
static int
ptblread(void *d, void *buf, size_t blocks, off_t offset)
{
struct disk_devdesc *dev;
struct open_disk *od;
dev = (struct disk_devdesc *)d;
od = (struct open_disk *)dev->d_opendata;
return (dev->d_dev->dv_strategy(dev, F_READ, offset,
blocks * od->sectorsize, (char *)buf, NULL));
}
#define PWIDTH 35
static void
ptable_print(void *arg, const char *pname, const struct ptable_entry *part)
{
struct print_args *pa, bsd;
struct open_disk *od;
struct ptable *table;
char line[80];
pa = (struct print_args *)arg;
od = (struct open_disk *)pa->dev->d_opendata;
sprintf(line, " %s%s: %s", pa->prefix, pname,
parttype2str(part->type));
if (pa->verbose)
sprintf(line, "%-*s%s", PWIDTH, line,
display_size(part->end - part->start + 1,
od->sectorsize));
strcat(line, "\n");
pager_output(line);
if (part->type == PART_FREEBSD) {
/* Open slice with BSD label */
pa->dev->d_offset = part->start;
table = ptable_open(pa->dev, part->end - part->start + 1,
od->sectorsize, ptblread);
if (table == NULL)
return;
sprintf(line, " %s%s", pa->prefix, pname);
bsd.dev = pa->dev;
bsd.prefix = line;
bsd.verbose = pa->verbose;
ptable_iterate(table, &bsd, ptable_print);
ptable_close(table);
}
}
#undef PWIDTH
void
disk_print(struct disk_devdesc *dev, char *prefix, int verbose)
{
struct open_disk *od;
struct print_args pa;
/* Disk should be opened */
od = (struct open_disk *)dev->d_opendata;
pa.dev = dev;
pa.prefix = prefix;
pa.verbose = verbose;
ptable_iterate(od->table, &pa, ptable_print);
}
int
disk_read(struct disk_devdesc *dev, void *buf, off_t offset, u_int blocks)
{
struct open_disk *od;
int ret;
od = (struct open_disk *)dev->d_opendata;
ret = dev->d_dev->dv_strategy(dev, F_READ, dev->d_offset + offset,
blocks * od->sectorsize, buf, NULL);
return (ret);
}
int
disk_write(struct disk_devdesc *dev, void *buf, off_t offset, u_int blocks)
{
struct open_disk *od;
int ret;
od = (struct open_disk *)dev->d_opendata;
ret = dev->d_dev->dv_strategy(dev, F_WRITE, dev->d_offset + offset,
blocks * od->sectorsize, buf, NULL);
return (ret);
}
int
disk_ioctl(struct disk_devdesc *dev, u_long cmd, void *buf)
{
if (dev->d_dev->dv_ioctl)
return ((*dev->d_dev->dv_ioctl)(dev->d_opendata, cmd, buf));
return (ENXIO);
}
int
disk_open(struct disk_devdesc *dev, off_t mediasize, u_int sectorsize,
u_int flags)
{
struct open_disk *od;
struct ptable *table;
struct ptable_entry part;
int rc, slice, partition;
rc = 0;
if ((flags & DISK_F_NOCACHE) == 0) {
rc = disk_lookup(dev);
if (rc == 0)
return (0);
}
/*
* While we are reading disk metadata, make sure we do it relative
* to the start of the disk
*/
dev->d_offset = 0;
table = NULL;
slice = dev->d_slice;
partition = dev->d_partition;
if (rc == EAGAIN) {
/*
* This entire disk was already opened and there is no
* need to allocate new open_disk structure and open the
* main partition table.
*/
od = (struct open_disk *)dev->d_opendata;
DEBUG("%s unit %d, slice %d, partition %d => %p (cached)",
disk_fmtdev(dev), dev->d_unit, dev->d_slice,
dev->d_partition, od);
goto opened;
} else {
od = (struct open_disk *)malloc(sizeof(struct open_disk));
if (od == NULL) {
DEBUG("no memory");
return (ENOMEM);
}
dev->d_opendata = od;
od->rcnt = 0;
}
od->mediasize = mediasize;
od->sectorsize = sectorsize;
od->flags = flags;
DEBUG("%s unit %d, slice %d, partition %d => %p",
disk_fmtdev(dev), dev->d_unit, dev->d_slice, dev->d_partition, od);
/* Determine disk layout. */
od->table = ptable_open(dev, mediasize / sectorsize, sectorsize,
ptblread);
if (od->table == NULL) {
DEBUG("Can't read partition table");
rc = ENXIO;
goto out;
}
opened:
rc = 0;
if (ptable_gettype(od->table) == PTABLE_BSD &&
partition >= 0) {
/* It doesn't matter what value has d_slice */
rc = ptable_getpart(od->table, &part, partition);
if (rc == 0)
dev->d_offset = part.start;
} else if (slice >= 0) {
/* Try to get information about partition */
if (slice == 0)
rc = ptable_getbestpart(od->table, &part);
else
rc = ptable_getpart(od->table, &part, slice);
if (rc != 0) /* Partition doesn't exist */
goto out;
dev->d_offset = part.start;
slice = part.index;
if (ptable_gettype(od->table) == PTABLE_GPT) {
partition = 255;
goto out; /* Nothing more to do */
} else if (partition == 255) {
/*
* When we try to open GPT partition, but partition
* table isn't GPT, reset d_partition value to -1
* and try to autodetect appropriate value.
*/
partition = -1;
}
/*
* If d_partition < 0 and we are looking at a BSD slice,
* then try to read BSD label, otherwise return the
* whole MBR slice.
*/
if (partition == -1 &&
part.type != PART_FREEBSD)
goto out;
/* Try to read BSD label */
table = ptable_open(dev, part.end - part.start + 1,
od->sectorsize, ptblread);
if (table == NULL) {
DEBUG("Can't read BSD label");
rc = ENXIO;
goto out;
}
/*
* If slice contains BSD label and d_partition < 0, then
* assume the 'a' partition. Otherwise just return the
* whole MBR slice, because it can contain ZFS.
*/
if (partition < 0) {
if (ptable_gettype(table) != PTABLE_BSD)
goto out;
partition = 0;
}
rc = ptable_getpart(table, &part, partition);
if (rc != 0)
goto out;
dev->d_offset += part.start;
}
out:
if (table != NULL)
ptable_close(table);
if (rc != 0) {
if (od->rcnt < 1) {
if (od->table != NULL)
ptable_close(od->table);
free(od);
}
DEBUG("%s could not open", disk_fmtdev(dev));
} else {
if ((flags & DISK_F_NOCACHE) == 0)
disk_insert(dev);
/* Save the slice and partition number to the dev */
dev->d_slice = slice;
dev->d_partition = partition;
DEBUG("%s offset %lld => %p", disk_fmtdev(dev),
(long long)dev->d_offset, od);
}
return (rc);
}
int
disk_close(struct disk_devdesc *dev)
{
struct open_disk *od;
od = (struct open_disk *)dev->d_opendata;
DEBUG("%s closed => %p [%d]", disk_fmtdev(dev), od, od->rcnt);
if (od->flags & DISK_F_NOCACHE) {
ptable_close(od->table);
free(od);
}
return (0);
}
void
disk_cleanup(const struct devsw *d_dev)
{
#ifdef DISK_DEBUG
struct disk_devdesc dev;
#endif
struct dentry *entry, *tmp;
STAILQ_FOREACH_SAFE(entry, &opened_disks, entry, tmp) {
if (entry->d_dev != d_dev)
continue;
entry->od->rcnt--;
#ifdef DISK_DEBUG
dev.d_dev = (struct devsw *)entry->d_dev;
dev.d_unit = entry->d_unit;
dev.d_slice = entry->d_slice;
dev.d_partition = entry->d_partition;
DEBUG("%s was freed => %p [%d]", disk_fmtdev(&dev),
entry->od, entry->od->rcnt);
#endif
STAILQ_REMOVE(&opened_disks, entry, dentry, entry);
if (entry->od->rcnt < 1) {
if (entry->od->table != NULL)
ptable_close(entry->od->table);
free(entry->od);
}
free(entry);
}
}
char*
disk_fmtdev(struct disk_devdesc *dev)
{
static char buf[128];
char *cp;
cp = buf + sprintf(buf, "%s%d", dev->d_dev->dv_name, dev->d_unit);
if (dev->d_slice >= 0) {
#ifdef LOADER_GPT_SUPPORT
if (dev->d_partition == 255) {
sprintf(cp, "p%d:", dev->d_slice);
return (buf);
} else
#endif
#ifdef LOADER_MBR_SUPPORT
cp += sprintf(cp, "s%d", dev->d_slice);
#endif
}
if (dev->d_partition >= 0)
cp += sprintf(cp, "%c", dev->d_partition + 'a');
strcat(cp, ":");
return (buf);
}
int
disk_parsedev(struct disk_devdesc *dev, const char *devspec, const char **path)
{
int unit, slice, partition;
const char *np;
char *cp;
np = devspec;
unit = slice = partition = -1;
if (*np != '\0' && *np != ':') {
unit = strtol(np, &cp, 10);
if (cp == np)
return (EUNIT);
#ifdef LOADER_GPT_SUPPORT
if (*cp == 'p') {
np = cp + 1;
slice = strtol(np, &cp, 10);
if (np == cp)
return (ESLICE);
/* we don't support nested partitions on GPT */
if (*cp != '\0' && *cp != ':')
return (EINVAL);
partition = 255;
} else
#endif
#ifdef LOADER_MBR_SUPPORT
if (*cp == 's') {
np = cp + 1;
slice = strtol(np, &cp, 10);
if (np == cp)
return (ESLICE);
}
#endif
if (*cp != '\0' && *cp != ':') {
partition = *cp - 'a';
if (partition < 0)
return (EPART);
cp++;
}
} else
return (EINVAL);
if (*cp != '\0' && *cp != ':')
return (EINVAL);
dev->d_unit = unit;
dev->d_slice = slice;
dev->d_partition = partition;
if (path != NULL)
*path = (*cp == '\0') ? cp: cp + 1;
return (0);
}