2797 lines
71 KiB
C
2797 lines
71 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2009, Oleksandr Tymoshenko
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* AR71XX gigabit ethernet driver
|
|
*/
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_device_polling.h"
|
|
#endif
|
|
|
|
#include "opt_arge.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_media.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_types.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/cache.h>
|
|
#include <machine/resource.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include "opt_arge.h"
|
|
|
|
#if defined(ARGE_MDIO)
|
|
#include <dev/mdio/mdio.h>
|
|
#include <dev/etherswitch/miiproxy.h>
|
|
#include "mdio_if.h"
|
|
#endif
|
|
|
|
MODULE_DEPEND(arge, ether, 1, 1, 1);
|
|
MODULE_DEPEND(arge, miibus, 1, 1, 1);
|
|
MODULE_VERSION(arge, 1);
|
|
|
|
#include "miibus_if.h"
|
|
|
|
#include <net/ethernet.h>
|
|
|
|
#include <mips/atheros/ar71xxreg.h>
|
|
#include <mips/atheros/ar934xreg.h> /* XXX tsk! */
|
|
#include <mips/atheros/qca953xreg.h> /* XXX tsk! */
|
|
#include <mips/atheros/qca955xreg.h> /* XXX tsk! */
|
|
#include <mips/atheros/if_argevar.h>
|
|
#include <mips/atheros/ar71xx_setup.h>
|
|
#include <mips/atheros/ar71xx_cpudef.h>
|
|
#include <mips/atheros/ar71xx_macaddr.h>
|
|
|
|
typedef enum {
|
|
ARGE_DBG_MII = 0x00000001,
|
|
ARGE_DBG_INTR = 0x00000002,
|
|
ARGE_DBG_TX = 0x00000004,
|
|
ARGE_DBG_RX = 0x00000008,
|
|
ARGE_DBG_ERR = 0x00000010,
|
|
ARGE_DBG_RESET = 0x00000020,
|
|
ARGE_DBG_PLL = 0x00000040,
|
|
ARGE_DBG_ANY = 0xffffffff,
|
|
} arge_debug_flags;
|
|
|
|
static const char * arge_miicfg_str[] = {
|
|
"NONE",
|
|
"GMII",
|
|
"MII",
|
|
"RGMII",
|
|
"RMII",
|
|
"SGMII"
|
|
};
|
|
|
|
#ifdef ARGE_DEBUG
|
|
#define ARGEDEBUG(_sc, _m, ...) \
|
|
do { \
|
|
if (((_m) & (_sc)->arge_debug) || ((_m) == ARGE_DBG_ANY)) \
|
|
device_printf((_sc)->arge_dev, __VA_ARGS__); \
|
|
} while (0)
|
|
#else
|
|
#define ARGEDEBUG(_sc, _m, ...)
|
|
#endif
|
|
|
|
static int arge_attach(device_t);
|
|
static int arge_detach(device_t);
|
|
static void arge_flush_ddr(struct arge_softc *);
|
|
static int arge_ifmedia_upd(struct ifnet *);
|
|
static void arge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
static int arge_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void arge_init(void *);
|
|
static void arge_init_locked(struct arge_softc *);
|
|
static void arge_link_task(void *, int);
|
|
static void arge_update_link_locked(struct arge_softc *sc);
|
|
static void arge_set_pll(struct arge_softc *, int, int);
|
|
static int arge_miibus_readreg(device_t, int, int);
|
|
static void arge_miibus_statchg(device_t);
|
|
static int arge_miibus_writereg(device_t, int, int, int);
|
|
static int arge_probe(device_t);
|
|
static void arge_reset_dma(struct arge_softc *);
|
|
static int arge_resume(device_t);
|
|
static int arge_rx_ring_init(struct arge_softc *);
|
|
static void arge_rx_ring_free(struct arge_softc *sc);
|
|
static int arge_tx_ring_init(struct arge_softc *);
|
|
static void arge_tx_ring_free(struct arge_softc *);
|
|
#ifdef DEVICE_POLLING
|
|
static int arge_poll(struct ifnet *, enum poll_cmd, int);
|
|
#endif
|
|
static int arge_shutdown(device_t);
|
|
static void arge_start(struct ifnet *);
|
|
static void arge_start_locked(struct ifnet *);
|
|
static void arge_stop(struct arge_softc *);
|
|
static int arge_suspend(device_t);
|
|
|
|
static int arge_rx_locked(struct arge_softc *);
|
|
static void arge_tx_locked(struct arge_softc *);
|
|
static void arge_intr(void *);
|
|
static int arge_intr_filter(void *);
|
|
static void arge_tick(void *);
|
|
|
|
static void arge_hinted_child(device_t bus, const char *dname, int dunit);
|
|
|
|
/*
|
|
* ifmedia callbacks for multiPHY MAC
|
|
*/
|
|
void arge_multiphy_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
int arge_multiphy_mediachange(struct ifnet *);
|
|
|
|
static void arge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
|
|
static int arge_dma_alloc(struct arge_softc *);
|
|
static void arge_dma_free(struct arge_softc *);
|
|
static int arge_newbuf(struct arge_softc *, int);
|
|
static __inline void arge_fixup_rx(struct mbuf *);
|
|
|
|
static device_method_t arge_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, arge_probe),
|
|
DEVMETHOD(device_attach, arge_attach),
|
|
DEVMETHOD(device_detach, arge_detach),
|
|
DEVMETHOD(device_suspend, arge_suspend),
|
|
DEVMETHOD(device_resume, arge_resume),
|
|
DEVMETHOD(device_shutdown, arge_shutdown),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, arge_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, arge_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, arge_miibus_statchg),
|
|
|
|
/* bus interface */
|
|
DEVMETHOD(bus_add_child, device_add_child_ordered),
|
|
DEVMETHOD(bus_hinted_child, arge_hinted_child),
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t arge_driver = {
|
|
"arge",
|
|
arge_methods,
|
|
sizeof(struct arge_softc)
|
|
};
|
|
|
|
static devclass_t arge_devclass;
|
|
|
|
DRIVER_MODULE(arge, nexus, arge_driver, arge_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, arge, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
#if defined(ARGE_MDIO)
|
|
static int argemdio_probe(device_t);
|
|
static int argemdio_attach(device_t);
|
|
static int argemdio_detach(device_t);
|
|
|
|
/*
|
|
* Declare an additional, separate driver for accessing the MDIO bus.
|
|
*/
|
|
static device_method_t argemdio_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, argemdio_probe),
|
|
DEVMETHOD(device_attach, argemdio_attach),
|
|
DEVMETHOD(device_detach, argemdio_detach),
|
|
|
|
/* bus interface */
|
|
DEVMETHOD(bus_add_child, device_add_child_ordered),
|
|
|
|
/* MDIO access */
|
|
DEVMETHOD(mdio_readreg, arge_miibus_readreg),
|
|
DEVMETHOD(mdio_writereg, arge_miibus_writereg),
|
|
};
|
|
|
|
DEFINE_CLASS_0(argemdio, argemdio_driver, argemdio_methods,
|
|
sizeof(struct arge_softc));
|
|
static devclass_t argemdio_devclass;
|
|
|
|
DRIVER_MODULE(miiproxy, arge, miiproxy_driver, miiproxy_devclass, 0, 0);
|
|
DRIVER_MODULE(argemdio, nexus, argemdio_driver, argemdio_devclass, 0, 0);
|
|
DRIVER_MODULE(mdio, argemdio, mdio_driver, mdio_devclass, 0, 0);
|
|
#endif
|
|
|
|
static struct mtx miibus_mtx;
|
|
|
|
MTX_SYSINIT(miibus_mtx, &miibus_mtx, "arge mii lock", MTX_DEF);
|
|
|
|
/*
|
|
* Flushes all
|
|
*
|
|
* XXX this needs to be done at interrupt time! Grr!
|
|
*/
|
|
static void
|
|
arge_flush_ddr(struct arge_softc *sc)
|
|
{
|
|
switch (sc->arge_mac_unit) {
|
|
case 0:
|
|
ar71xx_device_flush_ddr(AR71XX_CPU_DDR_FLUSH_GE0);
|
|
break;
|
|
case 1:
|
|
ar71xx_device_flush_ddr(AR71XX_CPU_DDR_FLUSH_GE1);
|
|
break;
|
|
default:
|
|
device_printf(sc->arge_dev, "%s: unknown unit (%d)\n",
|
|
__func__,
|
|
sc->arge_mac_unit);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
arge_probe(device_t dev)
|
|
{
|
|
|
|
device_set_desc(dev, "Atheros AR71xx built-in ethernet interface");
|
|
return (BUS_PROBE_NOWILDCARD);
|
|
}
|
|
|
|
#ifdef ARGE_DEBUG
|
|
static void
|
|
arge_attach_intr_sysctl(device_t dev, struct sysctl_oid_list *parent)
|
|
{
|
|
struct arge_softc *sc = device_get_softc(dev);
|
|
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
|
|
struct sysctl_oid *tree = device_get_sysctl_tree(dev);
|
|
struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
|
|
char sn[8];
|
|
int i;
|
|
|
|
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "intr",
|
|
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt statistics");
|
|
child = SYSCTL_CHILDREN(tree);
|
|
for (i = 0; i < 32; i++) {
|
|
snprintf(sn, sizeof(sn), "%d", i);
|
|
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, sn, CTLFLAG_RD,
|
|
&sc->intr_stats.count[i], 0, "");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
arge_attach_sysctl(device_t dev)
|
|
{
|
|
struct arge_softc *sc = device_get_softc(dev);
|
|
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
|
|
struct sysctl_oid *tree = device_get_sysctl_tree(dev);
|
|
|
|
#ifdef ARGE_DEBUG
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"debug", CTLFLAG_RW, &sc->arge_debug, 0,
|
|
"arge interface debugging flags");
|
|
arge_attach_intr_sysctl(dev, SYSCTL_CHILDREN(tree));
|
|
#endif
|
|
|
|
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"tx_pkts_aligned", CTLFLAG_RW, &sc->stats.tx_pkts_aligned, 0,
|
|
"number of TX aligned packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"tx_pkts_unaligned", CTLFLAG_RW, &sc->stats.tx_pkts_unaligned,
|
|
0, "number of TX unaligned packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"tx_pkts_unaligned_start", CTLFLAG_RW, &sc->stats.tx_pkts_unaligned_start,
|
|
0, "number of TX unaligned packets (start)");
|
|
|
|
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"tx_pkts_unaligned_len", CTLFLAG_RW, &sc->stats.tx_pkts_unaligned_len,
|
|
0, "number of TX unaligned packets (len)");
|
|
|
|
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"tx_pkts_unaligned_tooshort", CTLFLAG_RW,
|
|
&sc->stats.tx_pkts_unaligned_tooshort,
|
|
0, "number of TX unaligned packets (mbuf length < 4 bytes)");
|
|
|
|
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"tx_pkts_nosegs", CTLFLAG_RW, &sc->stats.tx_pkts_nosegs,
|
|
0, "number of TX packets fail with no ring slots avail");
|
|
|
|
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"intr_stray_filter", CTLFLAG_RW, &sc->stats.intr_stray,
|
|
0, "number of stray interrupts (filter)");
|
|
|
|
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"intr_stray_intr", CTLFLAG_RW, &sc->stats.intr_stray2,
|
|
0, "number of stray interrupts (intr)");
|
|
|
|
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"intr_ok", CTLFLAG_RW, &sc->stats.intr_ok,
|
|
0, "number of OK interrupts");
|
|
|
|
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"tx_underflow", CTLFLAG_RW, &sc->stats.tx_underflow,
|
|
0, "Number of TX underflows");
|
|
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"rx_overflow", CTLFLAG_RW, &sc->stats.rx_overflow,
|
|
0, "Number of RX overflows");
|
|
#ifdef ARGE_DEBUG
|
|
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_prod",
|
|
CTLFLAG_RW, &sc->arge_cdata.arge_tx_prod, 0, "");
|
|
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_cons",
|
|
CTLFLAG_RW, &sc->arge_cdata.arge_tx_cons, 0, "");
|
|
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_cnt",
|
|
CTLFLAG_RW, &sc->arge_cdata.arge_tx_cnt, 0, "");
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
arge_reset_mac(struct arge_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
uint32_t reset_reg;
|
|
|
|
ARGEDEBUG(sc, ARGE_DBG_RESET, "%s called\n", __func__);
|
|
|
|
/* Step 1. Soft-reset MAC */
|
|
ARGE_SET_BITS(sc, AR71XX_MAC_CFG1, MAC_CFG1_SOFT_RESET);
|
|
DELAY(20);
|
|
|
|
/* Step 2. Punt the MAC core from the central reset register */
|
|
/*
|
|
* XXX TODO: migrate this (and other) chip specific stuff into
|
|
* a chipdef method.
|
|
*/
|
|
if (sc->arge_mac_unit == 0) {
|
|
reset_reg = RST_RESET_GE0_MAC;
|
|
} else {
|
|
reset_reg = RST_RESET_GE1_MAC;
|
|
}
|
|
|
|
/*
|
|
* AR934x (and later) also needs the MDIO block reset.
|
|
* XXX should methodize this!
|
|
*/
|
|
if (ar71xx_soc == AR71XX_SOC_AR9341 ||
|
|
ar71xx_soc == AR71XX_SOC_AR9342 ||
|
|
ar71xx_soc == AR71XX_SOC_AR9344) {
|
|
if (sc->arge_mac_unit == 0) {
|
|
reset_reg |= AR934X_RESET_GE0_MDIO;
|
|
} else {
|
|
reset_reg |= AR934X_RESET_GE1_MDIO;
|
|
}
|
|
}
|
|
|
|
if (ar71xx_soc == AR71XX_SOC_QCA9556 ||
|
|
ar71xx_soc == AR71XX_SOC_QCA9558) {
|
|
if (sc->arge_mac_unit == 0) {
|
|
reset_reg |= QCA955X_RESET_GE0_MDIO;
|
|
} else {
|
|
reset_reg |= QCA955X_RESET_GE1_MDIO;
|
|
}
|
|
}
|
|
|
|
if (ar71xx_soc == AR71XX_SOC_QCA9533 ||
|
|
ar71xx_soc == AR71XX_SOC_QCA9533_V2) {
|
|
if (sc->arge_mac_unit == 0) {
|
|
reset_reg |= QCA953X_RESET_GE0_MDIO;
|
|
} else {
|
|
reset_reg |= QCA953X_RESET_GE1_MDIO;
|
|
}
|
|
}
|
|
|
|
ar71xx_device_stop(reset_reg);
|
|
DELAY(100);
|
|
ar71xx_device_start(reset_reg);
|
|
|
|
/* Step 3. Reconfigure MAC block */
|
|
ARGE_WRITE(sc, AR71XX_MAC_CFG1,
|
|
MAC_CFG1_SYNC_RX | MAC_CFG1_RX_ENABLE |
|
|
MAC_CFG1_SYNC_TX | MAC_CFG1_TX_ENABLE);
|
|
|
|
reg = ARGE_READ(sc, AR71XX_MAC_CFG2);
|
|
reg |= MAC_CFG2_ENABLE_PADCRC | MAC_CFG2_LENGTH_FIELD ;
|
|
ARGE_WRITE(sc, AR71XX_MAC_CFG2, reg);
|
|
|
|
ARGE_WRITE(sc, AR71XX_MAC_MAX_FRAME_LEN, 1536);
|
|
}
|
|
|
|
/*
|
|
* These values map to the divisor values programmed into
|
|
* AR71XX_MAC_MII_CFG.
|
|
*
|
|
* The index of each value corresponds to the divisor section
|
|
* value in AR71XX_MAC_MII_CFG (ie, table[0] means '0' in
|
|
* AR71XX_MAC_MII_CFG, table[1] means '1', etc.)
|
|
*/
|
|
static const uint32_t ar71xx_mdio_div_table[] = {
|
|
4, 4, 6, 8, 10, 14, 20, 28,
|
|
};
|
|
|
|
static const uint32_t ar7240_mdio_div_table[] = {
|
|
2, 2, 4, 6, 8, 12, 18, 26, 32, 40, 48, 56, 62, 70, 78, 96,
|
|
};
|
|
|
|
static const uint32_t ar933x_mdio_div_table[] = {
|
|
4, 4, 6, 8, 10, 14, 20, 28, 34, 42, 50, 58, 66, 74, 82, 98,
|
|
};
|
|
|
|
/*
|
|
* Lookup the divisor to use based on the given frequency.
|
|
*
|
|
* Returns the divisor to use, or -ve on error.
|
|
*/
|
|
static int
|
|
arge_mdio_get_divider(struct arge_softc *sc, unsigned long mdio_clock)
|
|
{
|
|
unsigned long ref_clock, t;
|
|
const uint32_t *table;
|
|
int ndivs;
|
|
int i;
|
|
|
|
/*
|
|
* This is the base MDIO frequency on the SoC.
|
|
* The dividers .. well, divide. Duh.
|
|
*/
|
|
ref_clock = ar71xx_mdio_freq();
|
|
|
|
/*
|
|
* If either clock is undefined, just tell the
|
|
* caller to fall through to the defaults.
|
|
*/
|
|
if (ref_clock == 0 || mdio_clock == 0)
|
|
return (-EINVAL);
|
|
|
|
/*
|
|
* Pick the correct table!
|
|
*/
|
|
switch (ar71xx_soc) {
|
|
case AR71XX_SOC_AR9330:
|
|
case AR71XX_SOC_AR9331:
|
|
case AR71XX_SOC_AR9341:
|
|
case AR71XX_SOC_AR9342:
|
|
case AR71XX_SOC_AR9344:
|
|
case AR71XX_SOC_QCA9533:
|
|
case AR71XX_SOC_QCA9533_V2:
|
|
case AR71XX_SOC_QCA9556:
|
|
case AR71XX_SOC_QCA9558:
|
|
table = ar933x_mdio_div_table;
|
|
ndivs = nitems(ar933x_mdio_div_table);
|
|
break;
|
|
|
|
case AR71XX_SOC_AR7240:
|
|
case AR71XX_SOC_AR7241:
|
|
case AR71XX_SOC_AR7242:
|
|
table = ar7240_mdio_div_table;
|
|
ndivs = nitems(ar7240_mdio_div_table);
|
|
break;
|
|
|
|
default:
|
|
table = ar71xx_mdio_div_table;
|
|
ndivs = nitems(ar71xx_mdio_div_table);
|
|
}
|
|
|
|
/*
|
|
* Now, walk through the list and find the first divisor
|
|
* that falls under the target MDIO frequency.
|
|
*
|
|
* The divisors go up, but the corresponding frequencies
|
|
* are actually decreasing.
|
|
*/
|
|
for (i = 0; i < ndivs; i++) {
|
|
t = ref_clock / table[i];
|
|
if (t <= mdio_clock) {
|
|
return (i);
|
|
}
|
|
}
|
|
|
|
ARGEDEBUG(sc, ARGE_DBG_RESET,
|
|
"No divider found; MDIO=%lu Hz; target=%lu Hz\n",
|
|
ref_clock, mdio_clock);
|
|
return (-ENOENT);
|
|
}
|
|
|
|
/*
|
|
* Fetch the MDIO bus clock rate.
|
|
*
|
|
* For now, the default is DIV_28 for everything
|
|
* bar AR934x, which will be DIV_58.
|
|
*
|
|
* It will definitely need updating to take into account
|
|
* the MDIO bus core clock rate and the target clock
|
|
* rate for the chip.
|
|
*/
|
|
static uint32_t
|
|
arge_fetch_mdiobus_clock_rate(struct arge_softc *sc)
|
|
{
|
|
int mdio_freq, div;
|
|
|
|
/*
|
|
* Is the MDIO frequency defined? If so, find a divisor that
|
|
* makes reasonable sense. Don't overshoot the frequency.
|
|
*/
|
|
if (resource_int_value(device_get_name(sc->arge_dev),
|
|
device_get_unit(sc->arge_dev),
|
|
"mdio_freq",
|
|
&mdio_freq) == 0) {
|
|
sc->arge_mdiofreq = mdio_freq;
|
|
div = arge_mdio_get_divider(sc, sc->arge_mdiofreq);
|
|
if (bootverbose)
|
|
device_printf(sc->arge_dev,
|
|
"%s: mdio ref freq=%llu Hz, target freq=%llu Hz,"
|
|
" divisor index=%d\n",
|
|
__func__,
|
|
(unsigned long long) ar71xx_mdio_freq(),
|
|
(unsigned long long) mdio_freq,
|
|
div);
|
|
if (div >= 0)
|
|
return (div);
|
|
}
|
|
|
|
/*
|
|
* Default value(s).
|
|
*
|
|
* XXX obviously these need .. fixing.
|
|
*
|
|
* From Linux/OpenWRT:
|
|
*
|
|
* + 7240? DIV_6
|
|
* + Builtin-switch port and not 934x? DIV_10
|
|
* + Not built-in switch port and 934x? DIV_58
|
|
* + .. else DIV_28.
|
|
*/
|
|
switch (ar71xx_soc) {
|
|
case AR71XX_SOC_AR9341:
|
|
case AR71XX_SOC_AR9342:
|
|
case AR71XX_SOC_AR9344:
|
|
case AR71XX_SOC_QCA9533:
|
|
case AR71XX_SOC_QCA9533_V2:
|
|
case AR71XX_SOC_QCA9556:
|
|
case AR71XX_SOC_QCA9558:
|
|
return (MAC_MII_CFG_CLOCK_DIV_58);
|
|
break;
|
|
default:
|
|
return (MAC_MII_CFG_CLOCK_DIV_28);
|
|
}
|
|
}
|
|
|
|
static void
|
|
arge_reset_miibus(struct arge_softc *sc)
|
|
{
|
|
uint32_t mdio_div;
|
|
|
|
mdio_div = arge_fetch_mdiobus_clock_rate(sc);
|
|
|
|
/*
|
|
* XXX AR934x and later; should we be also resetting the
|
|
* MDIO block(s) using the reset register block?
|
|
*/
|
|
|
|
/* Reset MII bus; program in the default divisor */
|
|
ARGE_WRITE(sc, AR71XX_MAC_MII_CFG, MAC_MII_CFG_RESET | mdio_div);
|
|
DELAY(100);
|
|
ARGE_WRITE(sc, AR71XX_MAC_MII_CFG, mdio_div);
|
|
DELAY(100);
|
|
}
|
|
|
|
static void
|
|
arge_fetch_pll_config(struct arge_softc *sc)
|
|
{
|
|
long int val;
|
|
|
|
if (resource_long_value(device_get_name(sc->arge_dev),
|
|
device_get_unit(sc->arge_dev),
|
|
"pll_10", &val) == 0) {
|
|
sc->arge_pllcfg.pll_10 = val;
|
|
device_printf(sc->arge_dev, "%s: pll_10 = 0x%x\n",
|
|
__func__, (int) val);
|
|
}
|
|
if (resource_long_value(device_get_name(sc->arge_dev),
|
|
device_get_unit(sc->arge_dev),
|
|
"pll_100", &val) == 0) {
|
|
sc->arge_pllcfg.pll_100 = val;
|
|
device_printf(sc->arge_dev, "%s: pll_100 = 0x%x\n",
|
|
__func__, (int) val);
|
|
}
|
|
if (resource_long_value(device_get_name(sc->arge_dev),
|
|
device_get_unit(sc->arge_dev),
|
|
"pll_1000", &val) == 0) {
|
|
sc->arge_pllcfg.pll_1000 = val;
|
|
device_printf(sc->arge_dev, "%s: pll_1000 = 0x%x\n",
|
|
__func__, (int) val);
|
|
}
|
|
}
|
|
|
|
static int
|
|
arge_attach(device_t dev)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct arge_softc *sc;
|
|
int error = 0, rid, i;
|
|
uint32_t hint;
|
|
long eeprom_mac_addr = 0;
|
|
int miicfg = 0;
|
|
int readascii = 0;
|
|
int local_mac = 0;
|
|
uint8_t local_macaddr[ETHER_ADDR_LEN];
|
|
char * local_macstr;
|
|
char devid_str[32];
|
|
int count;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->arge_dev = dev;
|
|
sc->arge_mac_unit = device_get_unit(dev);
|
|
|
|
/*
|
|
* See if there's a "board" MAC address hint available for
|
|
* this particular device.
|
|
*
|
|
* This is in the environment - it'd be nice to use the resource_*()
|
|
* routines, but at the moment the system is booting, the resource hints
|
|
* are set to the 'static' map so they're not pulling from kenv.
|
|
*/
|
|
snprintf(devid_str, 32, "hint.%s.%d.macaddr",
|
|
device_get_name(dev),
|
|
device_get_unit(dev));
|
|
if ((local_macstr = kern_getenv(devid_str)) != NULL) {
|
|
uint32_t tmpmac[ETHER_ADDR_LEN];
|
|
|
|
/* Have a MAC address; should use it */
|
|
device_printf(dev, "Overriding MAC address from environment: '%s'\n",
|
|
local_macstr);
|
|
|
|
/* Extract out the MAC address */
|
|
/* XXX this should all be a generic method */
|
|
count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x",
|
|
&tmpmac[0], &tmpmac[1],
|
|
&tmpmac[2], &tmpmac[3],
|
|
&tmpmac[4], &tmpmac[5]);
|
|
if (count == 6) {
|
|
/* Valid! */
|
|
local_mac = 1;
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
local_macaddr[i] = tmpmac[i];
|
|
}
|
|
/* Done! */
|
|
freeenv(local_macstr);
|
|
local_macstr = NULL;
|
|
}
|
|
|
|
/*
|
|
* Hardware workarounds.
|
|
*/
|
|
switch (ar71xx_soc) {
|
|
case AR71XX_SOC_AR9330:
|
|
case AR71XX_SOC_AR9331:
|
|
case AR71XX_SOC_AR9341:
|
|
case AR71XX_SOC_AR9342:
|
|
case AR71XX_SOC_AR9344:
|
|
case AR71XX_SOC_QCA9533:
|
|
case AR71XX_SOC_QCA9533_V2:
|
|
case AR71XX_SOC_QCA9556:
|
|
case AR71XX_SOC_QCA9558:
|
|
/* Arbitrary alignment */
|
|
sc->arge_hw_flags |= ARGE_HW_FLG_TX_DESC_ALIGN_1BYTE;
|
|
sc->arge_hw_flags |= ARGE_HW_FLG_RX_DESC_ALIGN_1BYTE;
|
|
break;
|
|
default:
|
|
sc->arge_hw_flags |= ARGE_HW_FLG_TX_DESC_ALIGN_4BYTE;
|
|
sc->arge_hw_flags |= ARGE_HW_FLG_RX_DESC_ALIGN_4BYTE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Some units (eg the TP-Link WR-1043ND) do not have a convenient
|
|
* EEPROM location to read the ethernet MAC address from.
|
|
* OpenWRT simply snaffles it from a fixed location.
|
|
*
|
|
* Since multiple units seem to use this feature, include
|
|
* a method of setting the MAC address based on an flash location
|
|
* in CPU address space.
|
|
*
|
|
* Some vendors have decided to store the mac address as a literal
|
|
* string of 18 characters in xx:xx:xx:xx:xx:xx format instead of
|
|
* an array of numbers. Expose a hint to turn on this conversion
|
|
* feature via strtol()
|
|
*/
|
|
if (local_mac == 0 && resource_long_value(device_get_name(dev),
|
|
device_get_unit(dev), "eeprommac", &eeprom_mac_addr) == 0) {
|
|
local_mac = 1;
|
|
int i;
|
|
const char *mac =
|
|
(const char *) MIPS_PHYS_TO_KSEG1(eeprom_mac_addr);
|
|
device_printf(dev, "Overriding MAC from EEPROM\n");
|
|
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"readascii", &readascii) == 0) {
|
|
device_printf(dev, "Vendor stores MAC in ASCII format\n");
|
|
for (i = 0; i < 6; i++) {
|
|
local_macaddr[i] = strtol(&(mac[i*3]), NULL, 16);
|
|
}
|
|
} else {
|
|
for (i = 0; i < 6; i++) {
|
|
local_macaddr[i] = mac[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
KASSERT(((sc->arge_mac_unit == 0) || (sc->arge_mac_unit == 1)),
|
|
("if_arge: Only MAC0 and MAC1 supported"));
|
|
|
|
/*
|
|
* Fetch the PLL configuration.
|
|
*/
|
|
arge_fetch_pll_config(sc);
|
|
|
|
/*
|
|
* Get the MII configuration, if applicable.
|
|
*/
|
|
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"miimode", &miicfg) == 0) {
|
|
/* XXX bounds check? */
|
|
device_printf(dev, "%s: overriding MII mode to '%s'\n",
|
|
__func__, arge_miicfg_str[miicfg]);
|
|
sc->arge_miicfg = miicfg;
|
|
}
|
|
|
|
/*
|
|
* Get which PHY of 5 available we should use for this unit
|
|
*/
|
|
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"phymask", &sc->arge_phymask) != 0) {
|
|
/*
|
|
* Use port 4 (WAN) for GE0. For any other port use
|
|
* its PHY the same as its unit number
|
|
*/
|
|
if (sc->arge_mac_unit == 0)
|
|
sc->arge_phymask = (1 << 4);
|
|
else
|
|
/* Use all phys up to 4 */
|
|
sc->arge_phymask = (1 << 4) - 1;
|
|
|
|
device_printf(dev, "No PHY specified, using mask %d\n", sc->arge_phymask);
|
|
}
|
|
|
|
/*
|
|
* Get default/hard-coded media & duplex mode.
|
|
*/
|
|
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"media", &hint) != 0)
|
|
hint = 0;
|
|
|
|
if (hint == 1000)
|
|
sc->arge_media_type = IFM_1000_T;
|
|
else if (hint == 100)
|
|
sc->arge_media_type = IFM_100_TX;
|
|
else if (hint == 10)
|
|
sc->arge_media_type = IFM_10_T;
|
|
else
|
|
sc->arge_media_type = 0;
|
|
|
|
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"fduplex", &hint) != 0)
|
|
hint = 1;
|
|
|
|
if (hint)
|
|
sc->arge_duplex_mode = IFM_FDX;
|
|
else
|
|
sc->arge_duplex_mode = 0;
|
|
|
|
mtx_init(&sc->arge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
callout_init_mtx(&sc->arge_stat_callout, &sc->arge_mtx, 0);
|
|
TASK_INIT(&sc->arge_link_task, 0, arge_link_task, sc);
|
|
|
|
/* Map control/status registers. */
|
|
sc->arge_rid = 0;
|
|
sc->arge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
|
|
&sc->arge_rid, RF_ACTIVE | RF_SHAREABLE);
|
|
|
|
if (sc->arge_res == NULL) {
|
|
device_printf(dev, "couldn't map memory\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate interrupts */
|
|
rid = 0;
|
|
sc->arge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
|
|
if (sc->arge_irq == NULL) {
|
|
device_printf(dev, "couldn't map interrupt\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate ifnet structure. */
|
|
ifp = sc->arge_ifp = if_alloc(IFT_ETHER);
|
|
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "couldn't allocate ifnet structure\n");
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = arge_ioctl;
|
|
ifp->if_start = arge_start;
|
|
ifp->if_init = arge_init;
|
|
sc->arge_if_flags = ifp->if_flags;
|
|
|
|
/* XXX: add real size */
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
|
|
ifp->if_snd.ifq_maxlen = ifqmaxlen;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/* Tell the upper layer(s) we support long frames. */
|
|
ifp->if_capabilities |= IFCAP_VLAN_MTU;
|
|
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
#ifdef DEVICE_POLLING
|
|
ifp->if_capabilities |= IFCAP_POLLING;
|
|
#endif
|
|
|
|
/* If there's a local mac defined, copy that in */
|
|
if (local_mac == 1) {
|
|
(void) ar71xx_mac_addr_init(sc->arge_eaddr,
|
|
local_macaddr, 0, 0);
|
|
} else {
|
|
/*
|
|
* No MAC address configured. Generate the random one.
|
|
*/
|
|
if (bootverbose)
|
|
device_printf(dev,
|
|
"Generating random ethernet address.\n");
|
|
if (ar71xx_mac_addr_random_init(ifp, (void *) sc->arge_eaddr) < 0) {
|
|
device_printf(dev, "Failed to choose random MAC address\n");
|
|
error = EINVAL;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (arge_dma_alloc(sc) != 0) {
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Don't do this for the MDIO bus case - it's already done
|
|
* as part of the MDIO bus attachment.
|
|
*
|
|
* XXX TODO: if we don't do this, we don't ever release the MAC
|
|
* from reset and we can't use the port. Now, if we define ARGE_MDIO
|
|
* but we /don't/ define two MDIO busses, then we can't actually
|
|
* use both MACs.
|
|
*/
|
|
#if !defined(ARGE_MDIO)
|
|
/* Initialize the MAC block */
|
|
arge_reset_mac(sc);
|
|
arge_reset_miibus(sc);
|
|
#endif
|
|
|
|
/* Configure MII mode, just for convienence */
|
|
if (sc->arge_miicfg != 0)
|
|
ar71xx_device_set_mii_if(sc->arge_mac_unit, sc->arge_miicfg);
|
|
|
|
/*
|
|
* Set all Ethernet address registers to the same initial values
|
|
* set all four addresses to 66-88-aa-cc-dd-ee
|
|
*/
|
|
ARGE_WRITE(sc, AR71XX_MAC_STA_ADDR1, (sc->arge_eaddr[2] << 24)
|
|
| (sc->arge_eaddr[3] << 16) | (sc->arge_eaddr[4] << 8)
|
|
| sc->arge_eaddr[5]);
|
|
ARGE_WRITE(sc, AR71XX_MAC_STA_ADDR2, (sc->arge_eaddr[0] << 8)
|
|
| sc->arge_eaddr[1]);
|
|
|
|
ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG0,
|
|
FIFO_CFG0_ALL << FIFO_CFG0_ENABLE_SHIFT);
|
|
|
|
/*
|
|
* SoC specific bits.
|
|
*/
|
|
switch (ar71xx_soc) {
|
|
case AR71XX_SOC_AR7240:
|
|
case AR71XX_SOC_AR7241:
|
|
case AR71XX_SOC_AR7242:
|
|
case AR71XX_SOC_AR9330:
|
|
case AR71XX_SOC_AR9331:
|
|
case AR71XX_SOC_AR9341:
|
|
case AR71XX_SOC_AR9342:
|
|
case AR71XX_SOC_AR9344:
|
|
case AR71XX_SOC_QCA9533:
|
|
case AR71XX_SOC_QCA9533_V2:
|
|
case AR71XX_SOC_QCA9556:
|
|
case AR71XX_SOC_QCA9558:
|
|
ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG1, 0x0010ffff);
|
|
ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG2, 0x015500aa);
|
|
break;
|
|
/* AR71xx, AR913x */
|
|
default:
|
|
ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG1, 0x0fff0000);
|
|
ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG2, 0x00001fff);
|
|
}
|
|
|
|
ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMATCH,
|
|
FIFO_RX_FILTMATCH_DEFAULT);
|
|
|
|
ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMASK,
|
|
FIFO_RX_FILTMASK_DEFAULT);
|
|
|
|
#if defined(ARGE_MDIO)
|
|
sc->arge_miiproxy = mii_attach_proxy(sc->arge_dev);
|
|
#endif
|
|
|
|
device_printf(sc->arge_dev, "finishing attachment, phymask %04x"
|
|
", proxy %s \n", sc->arge_phymask, sc->arge_miiproxy == NULL ?
|
|
"null" : "set");
|
|
for (i = 0; i < ARGE_NPHY; i++) {
|
|
if (((1 << i) & sc->arge_phymask) != 0) {
|
|
error = mii_attach(sc->arge_miiproxy != NULL ?
|
|
sc->arge_miiproxy : sc->arge_dev,
|
|
&sc->arge_miibus, sc->arge_ifp,
|
|
arge_ifmedia_upd, arge_ifmedia_sts,
|
|
BMSR_DEFCAPMASK, i, MII_OFFSET_ANY, 0);
|
|
if (error != 0) {
|
|
device_printf(sc->arge_dev, "unable to attach"
|
|
" PHY %d: %d\n", i, error);
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sc->arge_miibus == NULL) {
|
|
/* no PHY, so use hard-coded values */
|
|
ifmedia_init(&sc->arge_ifmedia, 0,
|
|
arge_multiphy_mediachange,
|
|
arge_multiphy_mediastatus);
|
|
ifmedia_add(&sc->arge_ifmedia,
|
|
IFM_ETHER | sc->arge_media_type | sc->arge_duplex_mode,
|
|
0, NULL);
|
|
ifmedia_set(&sc->arge_ifmedia,
|
|
IFM_ETHER | sc->arge_media_type | sc->arge_duplex_mode);
|
|
arge_set_pll(sc, sc->arge_media_type, sc->arge_duplex_mode);
|
|
}
|
|
|
|
/* Call MI attach routine. */
|
|
ether_ifattach(sc->arge_ifp, sc->arge_eaddr);
|
|
|
|
/* Hook interrupt last to avoid having to lock softc */
|
|
error = bus_setup_intr(sc->arge_dev, sc->arge_irq, INTR_TYPE_NET | INTR_MPSAFE,
|
|
arge_intr_filter, arge_intr, sc, &sc->arge_intrhand);
|
|
|
|
if (error) {
|
|
device_printf(sc->arge_dev, "couldn't set up irq\n");
|
|
ether_ifdetach(sc->arge_ifp);
|
|
goto fail;
|
|
}
|
|
|
|
/* setup sysctl variables */
|
|
arge_attach_sysctl(sc->arge_dev);
|
|
|
|
fail:
|
|
if (error)
|
|
arge_detach(dev);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
arge_detach(device_t dev)
|
|
{
|
|
struct arge_softc *sc = device_get_softc(dev);
|
|
struct ifnet *ifp = sc->arge_ifp;
|
|
|
|
KASSERT(mtx_initialized(&sc->arge_mtx),
|
|
("arge mutex not initialized"));
|
|
|
|
/* These should only be active if attach succeeded */
|
|
if (device_is_attached(dev)) {
|
|
ARGE_LOCK(sc);
|
|
sc->arge_detach = 1;
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING)
|
|
ether_poll_deregister(ifp);
|
|
#endif
|
|
|
|
arge_stop(sc);
|
|
ARGE_UNLOCK(sc);
|
|
taskqueue_drain(taskqueue_swi, &sc->arge_link_task);
|
|
ether_ifdetach(ifp);
|
|
}
|
|
|
|
if (sc->arge_miibus)
|
|
device_delete_child(dev, sc->arge_miibus);
|
|
|
|
if (sc->arge_miiproxy)
|
|
device_delete_child(dev, sc->arge_miiproxy);
|
|
|
|
bus_generic_detach(dev);
|
|
|
|
if (sc->arge_intrhand)
|
|
bus_teardown_intr(dev, sc->arge_irq, sc->arge_intrhand);
|
|
|
|
if (sc->arge_res)
|
|
bus_release_resource(dev, SYS_RES_MEMORY, sc->arge_rid,
|
|
sc->arge_res);
|
|
|
|
if (ifp)
|
|
if_free(ifp);
|
|
|
|
arge_dma_free(sc);
|
|
|
|
mtx_destroy(&sc->arge_mtx);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
static int
|
|
arge_suspend(device_t dev)
|
|
{
|
|
|
|
panic("%s", __func__);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
arge_resume(device_t dev)
|
|
{
|
|
|
|
panic("%s", __func__);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
arge_shutdown(device_t dev)
|
|
{
|
|
struct arge_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
ARGE_LOCK(sc);
|
|
arge_stop(sc);
|
|
ARGE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
arge_hinted_child(device_t bus, const char *dname, int dunit)
|
|
{
|
|
BUS_ADD_CHILD(bus, 0, dname, dunit);
|
|
device_printf(bus, "hinted child %s%d\n", dname, dunit);
|
|
}
|
|
|
|
static int
|
|
arge_mdio_busy(struct arge_softc *sc)
|
|
{
|
|
int i,result;
|
|
|
|
for (i = 0; i < ARGE_MII_TIMEOUT; i++) {
|
|
DELAY(5);
|
|
ARGE_MDIO_BARRIER_READ(sc);
|
|
result = ARGE_MDIO_READ(sc, AR71XX_MAC_MII_INDICATOR);
|
|
if (! result)
|
|
return (0);
|
|
DELAY(5);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
static int
|
|
arge_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct arge_softc * sc = device_get_softc(dev);
|
|
int result;
|
|
uint32_t addr = (phy << MAC_MII_PHY_ADDR_SHIFT)
|
|
| (reg & MAC_MII_REG_MASK);
|
|
|
|
mtx_lock(&miibus_mtx);
|
|
ARGE_MDIO_BARRIER_RW(sc);
|
|
ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_CMD, MAC_MII_CMD_WRITE);
|
|
ARGE_MDIO_BARRIER_WRITE(sc);
|
|
ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_ADDR, addr);
|
|
ARGE_MDIO_BARRIER_WRITE(sc);
|
|
ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_CMD, MAC_MII_CMD_READ);
|
|
|
|
if (arge_mdio_busy(sc) != 0) {
|
|
mtx_unlock(&miibus_mtx);
|
|
ARGEDEBUG(sc, ARGE_DBG_ANY, "%s timedout\n", __func__);
|
|
/* XXX: return ERRNO istead? */
|
|
return (-1);
|
|
}
|
|
|
|
ARGE_MDIO_BARRIER_READ(sc);
|
|
result = ARGE_MDIO_READ(sc, AR71XX_MAC_MII_STATUS) & MAC_MII_STATUS_MASK;
|
|
ARGE_MDIO_BARRIER_RW(sc);
|
|
ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_CMD, MAC_MII_CMD_WRITE);
|
|
mtx_unlock(&miibus_mtx);
|
|
|
|
ARGEDEBUG(sc, ARGE_DBG_MII,
|
|
"%s: phy=%d, reg=%02x, value[%08x]=%04x\n",
|
|
__func__, phy, reg, addr, result);
|
|
|
|
return (result);
|
|
}
|
|
|
|
static int
|
|
arge_miibus_writereg(device_t dev, int phy, int reg, int data)
|
|
{
|
|
struct arge_softc * sc = device_get_softc(dev);
|
|
uint32_t addr =
|
|
(phy << MAC_MII_PHY_ADDR_SHIFT) | (reg & MAC_MII_REG_MASK);
|
|
|
|
ARGEDEBUG(sc, ARGE_DBG_MII, "%s: phy=%d, reg=%02x, value=%04x\n", __func__,
|
|
phy, reg, data);
|
|
|
|
mtx_lock(&miibus_mtx);
|
|
ARGE_MDIO_BARRIER_RW(sc);
|
|
ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_ADDR, addr);
|
|
ARGE_MDIO_BARRIER_WRITE(sc);
|
|
ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_CONTROL, data);
|
|
ARGE_MDIO_BARRIER_WRITE(sc);
|
|
|
|
if (arge_mdio_busy(sc) != 0) {
|
|
mtx_unlock(&miibus_mtx);
|
|
ARGEDEBUG(sc, ARGE_DBG_ANY, "%s timedout\n", __func__);
|
|
/* XXX: return ERRNO istead? */
|
|
return (-1);
|
|
}
|
|
|
|
mtx_unlock(&miibus_mtx);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
arge_miibus_statchg(device_t dev)
|
|
{
|
|
struct arge_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
taskqueue_enqueue(taskqueue_swi, &sc->arge_link_task);
|
|
}
|
|
|
|
static void
|
|
arge_link_task(void *arg, int pending)
|
|
{
|
|
struct arge_softc *sc;
|
|
sc = (struct arge_softc *)arg;
|
|
|
|
ARGE_LOCK(sc);
|
|
arge_update_link_locked(sc);
|
|
ARGE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
arge_update_link_locked(struct arge_softc *sc)
|
|
{
|
|
struct mii_data *mii;
|
|
struct ifnet *ifp;
|
|
uint32_t media, duplex;
|
|
|
|
mii = device_get_softc(sc->arge_miibus);
|
|
ifp = sc->arge_ifp;
|
|
if (mii == NULL || ifp == NULL ||
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we have a static media type configured, then
|
|
* use that. Some PHY configurations (eg QCA955x -> AR8327)
|
|
* use a static speed/duplex between the SoC and switch,
|
|
* even though the front-facing PHY speed changes.
|
|
*/
|
|
if (sc->arge_media_type != 0) {
|
|
ARGEDEBUG(sc, ARGE_DBG_MII, "%s: fixed; media=%d, duplex=%d\n",
|
|
__func__,
|
|
sc->arge_media_type,
|
|
sc->arge_duplex_mode);
|
|
if (mii->mii_media_status & IFM_ACTIVE) {
|
|
sc->arge_link_status = 1;
|
|
} else {
|
|
sc->arge_link_status = 0;
|
|
}
|
|
arge_set_pll(sc, sc->arge_media_type, sc->arge_duplex_mode);
|
|
}
|
|
|
|
if (mii->mii_media_status & IFM_ACTIVE) {
|
|
media = IFM_SUBTYPE(mii->mii_media_active);
|
|
if (media != IFM_NONE) {
|
|
sc->arge_link_status = 1;
|
|
duplex = mii->mii_media_active & IFM_GMASK;
|
|
ARGEDEBUG(sc, ARGE_DBG_MII, "%s: media=%d, duplex=%d\n",
|
|
__func__,
|
|
media,
|
|
duplex);
|
|
arge_set_pll(sc, media, duplex);
|
|
}
|
|
} else {
|
|
sc->arge_link_status = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
arge_set_pll(struct arge_softc *sc, int media, int duplex)
|
|
{
|
|
uint32_t cfg, ifcontrol, rx_filtmask;
|
|
uint32_t fifo_tx, pll;
|
|
int if_speed;
|
|
|
|
/*
|
|
* XXX Verify - is this valid for all chips?
|
|
* QCA955x (and likely some of the earlier chips!) define
|
|
* this as nibble mode and byte mode, and those have to do
|
|
* with the interface type (MII/SMII versus GMII/RGMII.)
|
|
*/
|
|
ARGEDEBUG(sc, ARGE_DBG_PLL, "set_pll(%04x, %s)\n", media,
|
|
duplex == IFM_FDX ? "full" : "half");
|
|
cfg = ARGE_READ(sc, AR71XX_MAC_CFG2);
|
|
cfg &= ~(MAC_CFG2_IFACE_MODE_1000
|
|
| MAC_CFG2_IFACE_MODE_10_100
|
|
| MAC_CFG2_FULL_DUPLEX);
|
|
|
|
if (duplex == IFM_FDX)
|
|
cfg |= MAC_CFG2_FULL_DUPLEX;
|
|
|
|
ifcontrol = ARGE_READ(sc, AR71XX_MAC_IFCONTROL);
|
|
ifcontrol &= ~MAC_IFCONTROL_SPEED;
|
|
rx_filtmask =
|
|
ARGE_READ(sc, AR71XX_MAC_FIFO_RX_FILTMASK);
|
|
rx_filtmask &= ~FIFO_RX_MASK_BYTE_MODE;
|
|
|
|
switch(media) {
|
|
case IFM_10_T:
|
|
cfg |= MAC_CFG2_IFACE_MODE_10_100;
|
|
if_speed = 10;
|
|
break;
|
|
case IFM_100_TX:
|
|
cfg |= MAC_CFG2_IFACE_MODE_10_100;
|
|
ifcontrol |= MAC_IFCONTROL_SPEED;
|
|
if_speed = 100;
|
|
break;
|
|
case IFM_1000_T:
|
|
case IFM_1000_SX:
|
|
cfg |= MAC_CFG2_IFACE_MODE_1000;
|
|
rx_filtmask |= FIFO_RX_MASK_BYTE_MODE;
|
|
if_speed = 1000;
|
|
break;
|
|
default:
|
|
if_speed = 100;
|
|
device_printf(sc->arge_dev,
|
|
"Unknown media %d\n", media);
|
|
}
|
|
|
|
ARGEDEBUG(sc, ARGE_DBG_PLL, "%s: if_speed=%d\n", __func__, if_speed);
|
|
|
|
switch (ar71xx_soc) {
|
|
case AR71XX_SOC_AR7240:
|
|
case AR71XX_SOC_AR7241:
|
|
case AR71XX_SOC_AR7242:
|
|
case AR71XX_SOC_AR9330:
|
|
case AR71XX_SOC_AR9331:
|
|
case AR71XX_SOC_AR9341:
|
|
case AR71XX_SOC_AR9342:
|
|
case AR71XX_SOC_AR9344:
|
|
case AR71XX_SOC_QCA9533:
|
|
case AR71XX_SOC_QCA9533_V2:
|
|
case AR71XX_SOC_QCA9556:
|
|
case AR71XX_SOC_QCA9558:
|
|
fifo_tx = 0x01f00140;
|
|
break;
|
|
case AR71XX_SOC_AR9130:
|
|
case AR71XX_SOC_AR9132:
|
|
fifo_tx = 0x00780fff;
|
|
break;
|
|
/* AR71xx */
|
|
default:
|
|
fifo_tx = 0x008001ff;
|
|
}
|
|
|
|
ARGE_WRITE(sc, AR71XX_MAC_CFG2, cfg);
|
|
ARGE_WRITE(sc, AR71XX_MAC_IFCONTROL, ifcontrol);
|
|
ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMASK,
|
|
rx_filtmask);
|
|
ARGE_WRITE(sc, AR71XX_MAC_FIFO_TX_THRESHOLD, fifo_tx);
|
|
|
|
/* fetch PLL registers */
|
|
pll = ar71xx_device_get_eth_pll(sc->arge_mac_unit, if_speed);
|
|
ARGEDEBUG(sc, ARGE_DBG_PLL, "%s: pll=0x%x\n", __func__, pll);
|
|
|
|
/* Override if required by platform data */
|
|
if (if_speed == 10 && sc->arge_pllcfg.pll_10 != 0)
|
|
pll = sc->arge_pllcfg.pll_10;
|
|
else if (if_speed == 100 && sc->arge_pllcfg.pll_100 != 0)
|
|
pll = sc->arge_pllcfg.pll_100;
|
|
else if (if_speed == 1000 && sc->arge_pllcfg.pll_1000 != 0)
|
|
pll = sc->arge_pllcfg.pll_1000;
|
|
ARGEDEBUG(sc, ARGE_DBG_PLL, "%s: final pll=0x%x\n", __func__, pll);
|
|
|
|
/* XXX ensure pll != 0 */
|
|
ar71xx_device_set_pll_ge(sc->arge_mac_unit, if_speed, pll);
|
|
|
|
/* set MII registers */
|
|
/*
|
|
* This was introduced to match what the Linux ag71xx ethernet
|
|
* driver does. For the AR71xx case, it does set the port
|
|
* MII speed. However, if this is done, non-gigabit speeds
|
|
* are not at all reliable when speaking via RGMII through
|
|
* 'bridge' PHY port that's pretending to be a local PHY.
|
|
*
|
|
* Until that gets root caused, and until an AR71xx + normal
|
|
* PHY board is tested, leave this disabled.
|
|
*/
|
|
#if 0
|
|
ar71xx_device_set_mii_speed(sc->arge_mac_unit, if_speed);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
arge_reset_dma(struct arge_softc *sc)
|
|
{
|
|
uint32_t val;
|
|
|
|
ARGEDEBUG(sc, ARGE_DBG_RESET, "%s: called\n", __func__);
|
|
|
|
ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, 0);
|
|
ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL, 0);
|
|
|
|
/* Give hardware a chance to finish */
|
|
DELAY(1000);
|
|
|
|
ARGE_WRITE(sc, AR71XX_DMA_RX_DESC, 0);
|
|
ARGE_WRITE(sc, AR71XX_DMA_TX_DESC, 0);
|
|
|
|
ARGEDEBUG(sc, ARGE_DBG_RESET, "%s: RX_STATUS=%08x, TX_STATUS=%08x\n",
|
|
__func__,
|
|
ARGE_READ(sc, AR71XX_DMA_RX_STATUS),
|
|
ARGE_READ(sc, AR71XX_DMA_TX_STATUS));
|
|
|
|
/* Clear all possible RX interrupts */
|
|
while(ARGE_READ(sc, AR71XX_DMA_RX_STATUS) & DMA_RX_STATUS_PKT_RECVD)
|
|
ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_PKT_RECVD);
|
|
|
|
/*
|
|
* Clear all possible TX interrupts
|
|
*/
|
|
while(ARGE_READ(sc, AR71XX_DMA_TX_STATUS) & DMA_TX_STATUS_PKT_SENT)
|
|
ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_PKT_SENT);
|
|
|
|
/*
|
|
* Now Rx/Tx errors
|
|
*/
|
|
ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS,
|
|
DMA_RX_STATUS_BUS_ERROR | DMA_RX_STATUS_OVERFLOW);
|
|
ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS,
|
|
DMA_TX_STATUS_BUS_ERROR | DMA_TX_STATUS_UNDERRUN);
|
|
|
|
/*
|
|
* Force a DDR flush so any pending data is properly
|
|
* flushed to RAM before underlying buffers are freed.
|
|
*/
|
|
arge_flush_ddr(sc);
|
|
|
|
/* Check if we cleared RX status */
|
|
val = ARGE_READ(sc, AR71XX_DMA_RX_STATUS);
|
|
if (val != 0) {
|
|
device_printf(sc->arge_dev,
|
|
"%s: unable to clear DMA_RX_STATUS: %08x\n",
|
|
__func__, val);
|
|
}
|
|
|
|
/* Check if we cleared TX status */
|
|
val = ARGE_READ(sc, AR71XX_DMA_TX_STATUS);
|
|
/* Mask out reserved bits */
|
|
val = val & 0x00ffffff;
|
|
if (val != 0) {
|
|
device_printf(sc->arge_dev,
|
|
"%s: unable to clear DMA_TX_STATUS: %08x\n",
|
|
__func__, val);
|
|
}
|
|
}
|
|
|
|
static void
|
|
arge_init(void *xsc)
|
|
{
|
|
struct arge_softc *sc = xsc;
|
|
|
|
ARGE_LOCK(sc);
|
|
arge_init_locked(sc);
|
|
ARGE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
arge_init_locked(struct arge_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->arge_ifp;
|
|
struct mii_data *mii;
|
|
|
|
ARGE_LOCK_ASSERT(sc);
|
|
|
|
ARGEDEBUG(sc, ARGE_DBG_RESET, "%s: called\n", __func__);
|
|
|
|
if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
return;
|
|
|
|
ARGEDEBUG(sc, ARGE_DBG_RESET, "%s: init'ing\n", __func__);
|
|
|
|
/* Init circular RX list. */
|
|
if (arge_rx_ring_init(sc) != 0) {
|
|
device_printf(sc->arge_dev,
|
|
"initialization failed: no memory for rx buffers\n");
|
|
arge_stop(sc);
|
|
return;
|
|
}
|
|
|
|
/* Init tx descriptors. */
|
|
arge_tx_ring_init(sc);
|
|
|
|
/* Restart DMA */
|
|
arge_reset_dma(sc);
|
|
|
|
if (sc->arge_miibus) {
|
|
mii = device_get_softc(sc->arge_miibus);
|
|
mii_mediachg(mii);
|
|
}
|
|
else {
|
|
/*
|
|
* Sun always shines over multiPHY interface
|
|
*/
|
|
sc->arge_link_status = 1;
|
|
}
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
if (sc->arge_miibus) {
|
|
callout_reset(&sc->arge_stat_callout, hz, arge_tick, sc);
|
|
arge_update_link_locked(sc);
|
|
}
|
|
|
|
ARGEDEBUG(sc, ARGE_DBG_RESET, "%s: desc ring; TX=0x%x, RX=0x%x\n",
|
|
__func__,
|
|
ARGE_TX_RING_ADDR(sc, 0),
|
|
ARGE_RX_RING_ADDR(sc, 0));
|
|
|
|
ARGE_WRITE(sc, AR71XX_DMA_TX_DESC, ARGE_TX_RING_ADDR(sc, 0));
|
|
ARGE_WRITE(sc, AR71XX_DMA_RX_DESC, ARGE_RX_RING_ADDR(sc, 0));
|
|
|
|
/* Start listening */
|
|
ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, DMA_RX_CONTROL_EN);
|
|
|
|
/* Enable interrupts */
|
|
ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL);
|
|
}
|
|
|
|
/*
|
|
* Return whether the mbuf chain is correctly aligned
|
|
* for the arge TX engine.
|
|
*
|
|
* All the MACs have a length requirement: any non-final
|
|
* fragment (ie, descriptor with MORE bit set) needs to have
|
|
* a length divisible by 4.
|
|
*
|
|
* The AR71xx, AR913x require the start address also be
|
|
* DWORD aligned. The later MACs don't.
|
|
*/
|
|
static int
|
|
arge_mbuf_chain_is_tx_aligned(struct arge_softc *sc, struct mbuf *m0)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
for (m = m0; m != NULL; m = m->m_next) {
|
|
/*
|
|
* Only do this for chips that require it.
|
|
*/
|
|
if ((sc->arge_hw_flags & ARGE_HW_FLG_TX_DESC_ALIGN_4BYTE) &&
|
|
(mtod(m, intptr_t) & 3) != 0) {
|
|
sc->stats.tx_pkts_unaligned_start++;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* All chips have this requirement for length.
|
|
*/
|
|
if ((m->m_next != NULL) && ((m->m_len & 0x03) != 0)) {
|
|
sc->stats.tx_pkts_unaligned_len++;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* All chips have this requirement for length being greater
|
|
* than 4.
|
|
*/
|
|
if ((m->m_next != NULL) && ((m->m_len < 4))) {
|
|
sc->stats.tx_pkts_unaligned_tooshort++;
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
|
|
* pointers to the fragment pointers.
|
|
*/
|
|
static int
|
|
arge_encap(struct arge_softc *sc, struct mbuf **m_head)
|
|
{
|
|
struct arge_txdesc *txd;
|
|
struct arge_desc *desc, *prev_desc;
|
|
bus_dma_segment_t txsegs[ARGE_MAXFRAGS];
|
|
int error, i, nsegs, prod, prev_prod;
|
|
struct mbuf *m;
|
|
|
|
ARGE_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* Fix mbuf chain based on hardware alignment constraints.
|
|
*/
|
|
m = *m_head;
|
|
if (! arge_mbuf_chain_is_tx_aligned(sc, m)) {
|
|
sc->stats.tx_pkts_unaligned++;
|
|
m = m_defrag(*m_head, M_NOWAIT);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
} else
|
|
sc->stats.tx_pkts_aligned++;
|
|
|
|
prod = sc->arge_cdata.arge_tx_prod;
|
|
txd = &sc->arge_cdata.arge_txdesc[prod];
|
|
error = bus_dmamap_load_mbuf_sg(sc->arge_cdata.arge_tx_tag,
|
|
txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
if (error == EFBIG) {
|
|
panic("EFBIG");
|
|
} else if (error != 0)
|
|
return (error);
|
|
|
|
if (nsegs == 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (EIO);
|
|
}
|
|
|
|
/* Check number of available descriptors. */
|
|
if (sc->arge_cdata.arge_tx_cnt + nsegs >= (ARGE_TX_RING_COUNT - 2)) {
|
|
bus_dmamap_unload(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap);
|
|
sc->stats.tx_pkts_nosegs++;
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
txd->tx_m = *m_head;
|
|
bus_dmamap_sync(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Make a list of descriptors for this packet. DMA controller will
|
|
* walk through it while arge_link is not zero.
|
|
*
|
|
* Since we're in a endless circular buffer, ensure that
|
|
* the first descriptor in a multi-descriptor ring is always
|
|
* set to EMPTY, then un-do it when we're done populating.
|
|
*/
|
|
prev_prod = prod;
|
|
desc = prev_desc = NULL;
|
|
for (i = 0; i < nsegs; i++) {
|
|
uint32_t tmp;
|
|
|
|
desc = &sc->arge_rdata.arge_tx_ring[prod];
|
|
|
|
/*
|
|
* Set DESC_EMPTY so the hardware (hopefully) stops at this
|
|
* point. We don't want it to start transmitting descriptors
|
|
* before we've finished fleshing this out.
|
|
*/
|
|
tmp = ARGE_DMASIZE(txsegs[i].ds_len);
|
|
if (i == 0)
|
|
tmp |= ARGE_DESC_EMPTY;
|
|
desc->packet_ctrl = tmp;
|
|
|
|
ARGEDEBUG(sc, ARGE_DBG_TX, " [%d / %d] addr=0x%x, len=%d\n",
|
|
i,
|
|
prod,
|
|
(uint32_t) txsegs[i].ds_addr, (int) txsegs[i].ds_len);
|
|
|
|
/* XXX Note: only relevant for older MACs; but check length! */
|
|
if ((sc->arge_hw_flags & ARGE_HW_FLG_TX_DESC_ALIGN_4BYTE) &&
|
|
(txsegs[i].ds_addr & 3))
|
|
panic("TX packet address unaligned\n");
|
|
|
|
desc->packet_addr = txsegs[i].ds_addr;
|
|
|
|
/* link with previous descriptor */
|
|
if (prev_desc)
|
|
prev_desc->packet_ctrl |= ARGE_DESC_MORE;
|
|
|
|
sc->arge_cdata.arge_tx_cnt++;
|
|
prev_desc = desc;
|
|
ARGE_INC(prod, ARGE_TX_RING_COUNT);
|
|
}
|
|
|
|
/* Update producer index. */
|
|
sc->arge_cdata.arge_tx_prod = prod;
|
|
|
|
/*
|
|
* The descriptors are updated, so enable the first one.
|
|
*/
|
|
desc = &sc->arge_rdata.arge_tx_ring[prev_prod];
|
|
desc->packet_ctrl &= ~ ARGE_DESC_EMPTY;
|
|
|
|
/* Sync descriptors. */
|
|
bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
|
|
sc->arge_cdata.arge_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Flush writes */
|
|
ARGE_BARRIER_WRITE(sc);
|
|
|
|
/* Start transmitting */
|
|
ARGEDEBUG(sc, ARGE_DBG_TX, "%s: setting DMA_TX_CONTROL_EN\n",
|
|
__func__);
|
|
ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL, DMA_TX_CONTROL_EN);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
arge_start(struct ifnet *ifp)
|
|
{
|
|
struct arge_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
ARGE_LOCK(sc);
|
|
arge_start_locked(ifp);
|
|
ARGE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
arge_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct arge_softc *sc;
|
|
struct mbuf *m_head;
|
|
int enq = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
ARGE_LOCK_ASSERT(sc);
|
|
|
|
ARGEDEBUG(sc, ARGE_DBG_TX, "%s: beginning\n", __func__);
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING || sc->arge_link_status == 0 )
|
|
return;
|
|
|
|
/*
|
|
* Before we go any further, check whether we're already full.
|
|
* The below check errors out immediately if the ring is full
|
|
* and never gets a chance to set this flag. Although it's
|
|
* likely never needed, this at least avoids an unexpected
|
|
* situation.
|
|
*/
|
|
if (sc->arge_cdata.arge_tx_cnt >= ARGE_TX_RING_COUNT - 2) {
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
ARGEDEBUG(sc, ARGE_DBG_ERR,
|
|
"%s: tx_cnt %d >= max %d; setting IFF_DRV_OACTIVE\n",
|
|
__func__, sc->arge_cdata.arge_tx_cnt,
|
|
ARGE_TX_RING_COUNT - 2);
|
|
return;
|
|
}
|
|
|
|
arge_flush_ddr(sc);
|
|
|
|
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
|
|
sc->arge_cdata.arge_tx_cnt < ARGE_TX_RING_COUNT - 2; ) {
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Pack the data into the transmit ring.
|
|
*/
|
|
if (arge_encap(sc, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
enq++;
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
}
|
|
ARGEDEBUG(sc, ARGE_DBG_TX, "%s: finished; queued %d packets\n",
|
|
__func__, enq);
|
|
}
|
|
|
|
static void
|
|
arge_stop(struct arge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
ARGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->arge_ifp;
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
if (sc->arge_miibus)
|
|
callout_stop(&sc->arge_stat_callout);
|
|
|
|
/* mask out interrupts */
|
|
ARGE_WRITE(sc, AR71XX_DMA_INTR, 0);
|
|
|
|
arge_reset_dma(sc);
|
|
|
|
/* Flush FIFO and free any existing mbufs */
|
|
arge_flush_ddr(sc);
|
|
arge_rx_ring_free(sc);
|
|
arge_tx_ring_free(sc);
|
|
}
|
|
|
|
static int
|
|
arge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct arge_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
struct mii_data *mii;
|
|
int error;
|
|
#ifdef DEVICE_POLLING
|
|
int mask;
|
|
#endif
|
|
|
|
switch (command) {
|
|
case SIOCSIFFLAGS:
|
|
ARGE_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) != 0) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
|
|
if (((ifp->if_flags ^ sc->arge_if_flags)
|
|
& (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
|
|
/* XXX: handle promisc & multi flags */
|
|
}
|
|
|
|
} else {
|
|
if (!sc->arge_detach)
|
|
arge_init_locked(sc);
|
|
}
|
|
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
arge_stop(sc);
|
|
}
|
|
sc->arge_if_flags = ifp->if_flags;
|
|
ARGE_UNLOCK(sc);
|
|
error = 0;
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
/* XXX: implement SIOCDELMULTI */
|
|
error = 0;
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
if (sc->arge_miibus) {
|
|
mii = device_get_softc(sc->arge_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
|
|
command);
|
|
}
|
|
else
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->arge_ifmedia,
|
|
command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
/* XXX: Check other capabilities */
|
|
#ifdef DEVICE_POLLING
|
|
mask = ifp->if_capenable ^ ifr->ifr_reqcap;
|
|
if (mask & IFCAP_POLLING) {
|
|
if (ifr->ifr_reqcap & IFCAP_POLLING) {
|
|
ARGE_WRITE(sc, AR71XX_DMA_INTR, 0);
|
|
error = ether_poll_register(arge_poll, ifp);
|
|
if (error)
|
|
return error;
|
|
ARGE_LOCK(sc);
|
|
ifp->if_capenable |= IFCAP_POLLING;
|
|
ARGE_UNLOCK(sc);
|
|
} else {
|
|
ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL);
|
|
error = ether_poll_deregister(ifp);
|
|
ARGE_LOCK(sc);
|
|
ifp->if_capenable &= ~IFCAP_POLLING;
|
|
ARGE_UNLOCK(sc);
|
|
}
|
|
}
|
|
error = 0;
|
|
break;
|
|
#endif
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
arge_ifmedia_upd(struct ifnet *ifp)
|
|
{
|
|
struct arge_softc *sc;
|
|
struct mii_data *mii;
|
|
struct mii_softc *miisc;
|
|
int error;
|
|
|
|
sc = ifp->if_softc;
|
|
ARGE_LOCK(sc);
|
|
mii = device_get_softc(sc->arge_miibus);
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
PHY_RESET(miisc);
|
|
error = mii_mediachg(mii);
|
|
ARGE_UNLOCK(sc);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
arge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct arge_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii;
|
|
|
|
mii = device_get_softc(sc->arge_miibus);
|
|
ARGE_LOCK(sc);
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
ARGE_UNLOCK(sc);
|
|
}
|
|
|
|
struct arge_dmamap_arg {
|
|
bus_addr_t arge_busaddr;
|
|
};
|
|
|
|
static void
|
|
arge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct arge_dmamap_arg *ctx;
|
|
|
|
if (error != 0)
|
|
return;
|
|
ctx = arg;
|
|
ctx->arge_busaddr = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
arge_dma_alloc(struct arge_softc *sc)
|
|
{
|
|
struct arge_dmamap_arg ctx;
|
|
struct arge_txdesc *txd;
|
|
struct arge_rxdesc *rxd;
|
|
int error, i;
|
|
int arge_tx_align, arge_rx_align;
|
|
|
|
/* Assume 4 byte alignment by default */
|
|
arge_tx_align = 4;
|
|
arge_rx_align = 4;
|
|
|
|
if (sc->arge_hw_flags & ARGE_HW_FLG_TX_DESC_ALIGN_1BYTE)
|
|
arge_tx_align = 1;
|
|
if (sc->arge_hw_flags & ARGE_HW_FLG_RX_DESC_ALIGN_1BYTE)
|
|
arge_rx_align = 1;
|
|
|
|
/* Create parent DMA tag. */
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(sc->arge_dev), /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
0, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->arge_cdata.arge_parent_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->arge_dev,
|
|
"failed to create parent DMA tag\n");
|
|
goto fail;
|
|
}
|
|
/* Create tag for Tx ring. */
|
|
error = bus_dma_tag_create(
|
|
sc->arge_cdata.arge_parent_tag, /* parent */
|
|
ARGE_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
ARGE_TX_DMA_SIZE, /* maxsize */
|
|
1, /* nsegments */
|
|
ARGE_TX_DMA_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->arge_cdata.arge_tx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->arge_dev,
|
|
"failed to create Tx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Rx ring. */
|
|
error = bus_dma_tag_create(
|
|
sc->arge_cdata.arge_parent_tag, /* parent */
|
|
ARGE_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
ARGE_RX_DMA_SIZE, /* maxsize */
|
|
1, /* nsegments */
|
|
ARGE_RX_DMA_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->arge_cdata.arge_rx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->arge_dev,
|
|
"failed to create Rx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Tx buffers. */
|
|
error = bus_dma_tag_create(
|
|
sc->arge_cdata.arge_parent_tag, /* parent */
|
|
arge_tx_align, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES * ARGE_MAXFRAGS, /* maxsize */
|
|
ARGE_MAXFRAGS, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->arge_cdata.arge_tx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->arge_dev, "failed to create Tx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Rx buffers. */
|
|
error = bus_dma_tag_create(
|
|
sc->arge_cdata.arge_parent_tag, /* parent */
|
|
arge_rx_align, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, /* maxsize */
|
|
ARGE_MAXFRAGS, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->arge_cdata.arge_rx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->arge_dev, "failed to create Rx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
|
|
error = bus_dmamem_alloc(sc->arge_cdata.arge_tx_ring_tag,
|
|
(void **)&sc->arge_rdata.arge_tx_ring, BUS_DMA_WAITOK |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO,
|
|
&sc->arge_cdata.arge_tx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->arge_dev,
|
|
"failed to allocate DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.arge_busaddr = 0;
|
|
error = bus_dmamap_load(sc->arge_cdata.arge_tx_ring_tag,
|
|
sc->arge_cdata.arge_tx_ring_map, sc->arge_rdata.arge_tx_ring,
|
|
ARGE_TX_DMA_SIZE, arge_dmamap_cb, &ctx, 0);
|
|
if (error != 0 || ctx.arge_busaddr == 0) {
|
|
device_printf(sc->arge_dev,
|
|
"failed to load DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
sc->arge_rdata.arge_tx_ring_paddr = ctx.arge_busaddr;
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
|
|
error = bus_dmamem_alloc(sc->arge_cdata.arge_rx_ring_tag,
|
|
(void **)&sc->arge_rdata.arge_rx_ring, BUS_DMA_WAITOK |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO,
|
|
&sc->arge_cdata.arge_rx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->arge_dev,
|
|
"failed to allocate DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.arge_busaddr = 0;
|
|
error = bus_dmamap_load(sc->arge_cdata.arge_rx_ring_tag,
|
|
sc->arge_cdata.arge_rx_ring_map, sc->arge_rdata.arge_rx_ring,
|
|
ARGE_RX_DMA_SIZE, arge_dmamap_cb, &ctx, 0);
|
|
if (error != 0 || ctx.arge_busaddr == 0) {
|
|
device_printf(sc->arge_dev,
|
|
"failed to load DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
sc->arge_rdata.arge_rx_ring_paddr = ctx.arge_busaddr;
|
|
|
|
/* Create DMA maps for Tx buffers. */
|
|
for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
|
|
txd = &sc->arge_cdata.arge_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->arge_cdata.arge_tx_tag, 0,
|
|
&txd->tx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->arge_dev,
|
|
"failed to create Tx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
/* Create DMA maps for Rx buffers. */
|
|
if ((error = bus_dmamap_create(sc->arge_cdata.arge_rx_tag, 0,
|
|
&sc->arge_cdata.arge_rx_sparemap)) != 0) {
|
|
device_printf(sc->arge_dev,
|
|
"failed to create spare Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
|
|
rxd = &sc->arge_cdata.arge_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->arge_cdata.arge_rx_tag, 0,
|
|
&rxd->rx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->arge_dev,
|
|
"failed to create Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
arge_dma_free(struct arge_softc *sc)
|
|
{
|
|
struct arge_txdesc *txd;
|
|
struct arge_rxdesc *rxd;
|
|
int i;
|
|
|
|
/* Tx ring. */
|
|
if (sc->arge_cdata.arge_tx_ring_tag) {
|
|
if (sc->arge_rdata.arge_tx_ring_paddr)
|
|
bus_dmamap_unload(sc->arge_cdata.arge_tx_ring_tag,
|
|
sc->arge_cdata.arge_tx_ring_map);
|
|
if (sc->arge_rdata.arge_tx_ring)
|
|
bus_dmamem_free(sc->arge_cdata.arge_tx_ring_tag,
|
|
sc->arge_rdata.arge_tx_ring,
|
|
sc->arge_cdata.arge_tx_ring_map);
|
|
sc->arge_rdata.arge_tx_ring = NULL;
|
|
sc->arge_rdata.arge_tx_ring_paddr = 0;
|
|
bus_dma_tag_destroy(sc->arge_cdata.arge_tx_ring_tag);
|
|
sc->arge_cdata.arge_tx_ring_tag = NULL;
|
|
}
|
|
/* Rx ring. */
|
|
if (sc->arge_cdata.arge_rx_ring_tag) {
|
|
if (sc->arge_rdata.arge_rx_ring_paddr)
|
|
bus_dmamap_unload(sc->arge_cdata.arge_rx_ring_tag,
|
|
sc->arge_cdata.arge_rx_ring_map);
|
|
if (sc->arge_rdata.arge_rx_ring)
|
|
bus_dmamem_free(sc->arge_cdata.arge_rx_ring_tag,
|
|
sc->arge_rdata.arge_rx_ring,
|
|
sc->arge_cdata.arge_rx_ring_map);
|
|
sc->arge_rdata.arge_rx_ring = NULL;
|
|
sc->arge_rdata.arge_rx_ring_paddr = 0;
|
|
bus_dma_tag_destroy(sc->arge_cdata.arge_rx_ring_tag);
|
|
sc->arge_cdata.arge_rx_ring_tag = NULL;
|
|
}
|
|
/* Tx buffers. */
|
|
if (sc->arge_cdata.arge_tx_tag) {
|
|
for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
|
|
txd = &sc->arge_cdata.arge_txdesc[i];
|
|
if (txd->tx_dmamap) {
|
|
bus_dmamap_destroy(sc->arge_cdata.arge_tx_tag,
|
|
txd->tx_dmamap);
|
|
txd->tx_dmamap = NULL;
|
|
}
|
|
}
|
|
bus_dma_tag_destroy(sc->arge_cdata.arge_tx_tag);
|
|
sc->arge_cdata.arge_tx_tag = NULL;
|
|
}
|
|
/* Rx buffers. */
|
|
if (sc->arge_cdata.arge_rx_tag) {
|
|
for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
|
|
rxd = &sc->arge_cdata.arge_rxdesc[i];
|
|
if (rxd->rx_dmamap) {
|
|
bus_dmamap_destroy(sc->arge_cdata.arge_rx_tag,
|
|
rxd->rx_dmamap);
|
|
rxd->rx_dmamap = NULL;
|
|
}
|
|
}
|
|
if (sc->arge_cdata.arge_rx_sparemap) {
|
|
bus_dmamap_destroy(sc->arge_cdata.arge_rx_tag,
|
|
sc->arge_cdata.arge_rx_sparemap);
|
|
sc->arge_cdata.arge_rx_sparemap = 0;
|
|
}
|
|
bus_dma_tag_destroy(sc->arge_cdata.arge_rx_tag);
|
|
sc->arge_cdata.arge_rx_tag = NULL;
|
|
}
|
|
|
|
if (sc->arge_cdata.arge_parent_tag) {
|
|
bus_dma_tag_destroy(sc->arge_cdata.arge_parent_tag);
|
|
sc->arge_cdata.arge_parent_tag = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
static int
|
|
arge_tx_ring_init(struct arge_softc *sc)
|
|
{
|
|
struct arge_ring_data *rd;
|
|
struct arge_txdesc *txd;
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
sc->arge_cdata.arge_tx_prod = 0;
|
|
sc->arge_cdata.arge_tx_cons = 0;
|
|
sc->arge_cdata.arge_tx_cnt = 0;
|
|
|
|
rd = &sc->arge_rdata;
|
|
bzero(rd->arge_tx_ring, sizeof(*rd->arge_tx_ring));
|
|
for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
|
|
if (i == ARGE_TX_RING_COUNT - 1)
|
|
addr = ARGE_TX_RING_ADDR(sc, 0);
|
|
else
|
|
addr = ARGE_TX_RING_ADDR(sc, i + 1);
|
|
rd->arge_tx_ring[i].packet_ctrl = ARGE_DESC_EMPTY;
|
|
rd->arge_tx_ring[i].next_desc = addr;
|
|
txd = &sc->arge_cdata.arge_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
|
|
sc->arge_cdata.arge_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free the Tx ring, unload any pending dma transaction and free the mbuf.
|
|
*/
|
|
static void
|
|
arge_tx_ring_free(struct arge_softc *sc)
|
|
{
|
|
struct arge_txdesc *txd;
|
|
int i;
|
|
|
|
/* Free the Tx buffers. */
|
|
for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
|
|
txd = &sc->arge_cdata.arge_txdesc[i];
|
|
if (txd->tx_dmamap) {
|
|
bus_dmamap_sync(sc->arge_cdata.arge_tx_tag,
|
|
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->arge_cdata.arge_tx_tag,
|
|
txd->tx_dmamap);
|
|
}
|
|
if (txd->tx_m)
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the RX descriptors and allocate mbufs for them. Note that
|
|
* we arrange the descriptors in a closed ring, so that the last descriptor
|
|
* points back to the first.
|
|
*/
|
|
static int
|
|
arge_rx_ring_init(struct arge_softc *sc)
|
|
{
|
|
struct arge_ring_data *rd;
|
|
struct arge_rxdesc *rxd;
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
sc->arge_cdata.arge_rx_cons = 0;
|
|
|
|
rd = &sc->arge_rdata;
|
|
bzero(rd->arge_rx_ring, sizeof(*rd->arge_rx_ring));
|
|
for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
|
|
rxd = &sc->arge_cdata.arge_rxdesc[i];
|
|
if (rxd->rx_m != NULL) {
|
|
device_printf(sc->arge_dev,
|
|
"%s: ring[%d] rx_m wasn't free?\n",
|
|
__func__,
|
|
i);
|
|
}
|
|
rxd->rx_m = NULL;
|
|
rxd->desc = &rd->arge_rx_ring[i];
|
|
if (i == ARGE_RX_RING_COUNT - 1)
|
|
addr = ARGE_RX_RING_ADDR(sc, 0);
|
|
else
|
|
addr = ARGE_RX_RING_ADDR(sc, i + 1);
|
|
rd->arge_rx_ring[i].next_desc = addr;
|
|
if (arge_newbuf(sc, i) != 0) {
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
|
|
bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
|
|
sc->arge_cdata.arge_rx_ring_map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free all the buffers in the RX ring.
|
|
*
|
|
* TODO: ensure that DMA is disabled and no pending DMA
|
|
* is lurking in the FIFO.
|
|
*/
|
|
static void
|
|
arge_rx_ring_free(struct arge_softc *sc)
|
|
{
|
|
int i;
|
|
struct arge_rxdesc *rxd;
|
|
|
|
ARGE_LOCK_ASSERT(sc);
|
|
|
|
for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
|
|
rxd = &sc->arge_cdata.arge_rxdesc[i];
|
|
/* Unmap the mbuf */
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_unload(sc->arge_cdata.arge_rx_tag,
|
|
rxd->rx_dmamap);
|
|
m_free(rxd->rx_m);
|
|
rxd->rx_m = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize an RX descriptor and attach an MBUF cluster.
|
|
*/
|
|
static int
|
|
arge_newbuf(struct arge_softc *sc, int idx)
|
|
{
|
|
struct arge_desc *desc;
|
|
struct arge_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
|
|
/* XXX TODO: should just allocate an explicit 2KiB buffer */
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
|
|
/*
|
|
* Add extra space to "adjust" (copy) the packet back to be aligned
|
|
* for purposes of IPv4/IPv6 header contents.
|
|
*/
|
|
if (sc->arge_hw_flags & ARGE_HW_FLG_RX_DESC_ALIGN_4BYTE)
|
|
m_adj(m, sizeof(uint64_t));
|
|
/*
|
|
* If it's a 1-byte aligned buffer, then just offset it two bytes
|
|
* and that will give us a hopefully correctly DWORD aligned
|
|
* L3 payload - and we won't have to undo it afterwards.
|
|
*/
|
|
else if (sc->arge_hw_flags & ARGE_HW_FLG_RX_DESC_ALIGN_1BYTE)
|
|
m_adj(m, sizeof(uint16_t));
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc->arge_cdata.arge_rx_tag,
|
|
sc->arge_cdata.arge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
rxd = &sc->arge_cdata.arge_rxdesc[idx];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_unload(sc->arge_cdata.arge_rx_tag, rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = sc->arge_cdata.arge_rx_sparemap;
|
|
sc->arge_cdata.arge_rx_sparemap = map;
|
|
rxd->rx_m = m;
|
|
desc = rxd->desc;
|
|
if ((sc->arge_hw_flags & ARGE_HW_FLG_RX_DESC_ALIGN_4BYTE) &&
|
|
segs[0].ds_addr & 3)
|
|
panic("RX packet address unaligned");
|
|
desc->packet_addr = segs[0].ds_addr;
|
|
desc->packet_ctrl = ARGE_DESC_EMPTY | ARGE_DMASIZE(segs[0].ds_len);
|
|
|
|
bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
|
|
sc->arge_cdata.arge_rx_ring_map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Move the data backwards 16 bits to (hopefully!) ensure the
|
|
* IPv4/IPv6 payload is aligned.
|
|
*
|
|
* This is required for earlier hardware where the RX path
|
|
* requires DWORD aligned buffers.
|
|
*/
|
|
static __inline void
|
|
arge_fixup_rx(struct mbuf *m)
|
|
{
|
|
int i;
|
|
uint16_t *src, *dst;
|
|
|
|
src = mtod(m, uint16_t *);
|
|
dst = src - 1;
|
|
|
|
for (i = 0; i < m->m_len / sizeof(uint16_t); i++) {
|
|
*dst++ = *src++;
|
|
}
|
|
|
|
if (m->m_len % sizeof(uint16_t))
|
|
*(uint8_t *)dst = *(uint8_t *)src;
|
|
|
|
m->m_data -= ETHER_ALIGN;
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static int
|
|
arge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct arge_softc *sc = ifp->if_softc;
|
|
int rx_npkts = 0;
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
ARGE_LOCK(sc);
|
|
arge_tx_locked(sc);
|
|
rx_npkts = arge_rx_locked(sc);
|
|
ARGE_UNLOCK(sc);
|
|
}
|
|
|
|
return (rx_npkts);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
static void
|
|
arge_tx_locked(struct arge_softc *sc)
|
|
{
|
|
struct arge_txdesc *txd;
|
|
struct arge_desc *cur_tx;
|
|
struct ifnet *ifp;
|
|
uint32_t ctrl;
|
|
int cons, prod;
|
|
|
|
ARGE_LOCK_ASSERT(sc);
|
|
|
|
cons = sc->arge_cdata.arge_tx_cons;
|
|
prod = sc->arge_cdata.arge_tx_prod;
|
|
|
|
ARGEDEBUG(sc, ARGE_DBG_TX, "%s: cons=%d, prod=%d\n", __func__, cons,
|
|
prod);
|
|
|
|
if (cons == prod)
|
|
return;
|
|
|
|
bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
|
|
sc->arge_cdata.arge_tx_ring_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
ifp = sc->arge_ifp;
|
|
/*
|
|
* Go through our tx list and free mbufs for those
|
|
* frames that have been transmitted.
|
|
*/
|
|
for (; cons != prod; ARGE_INC(cons, ARGE_TX_RING_COUNT)) {
|
|
cur_tx = &sc->arge_rdata.arge_tx_ring[cons];
|
|
ctrl = cur_tx->packet_ctrl;
|
|
/* Check if descriptor has "finished" flag */
|
|
if ((ctrl & ARGE_DESC_EMPTY) == 0)
|
|
break;
|
|
|
|
ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_PKT_SENT);
|
|
|
|
sc->arge_cdata.arge_tx_cnt--;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
txd = &sc->arge_cdata.arge_txdesc[cons];
|
|
|
|
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
|
|
|
|
bus_dmamap_sync(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap);
|
|
|
|
/* Free only if it's first descriptor in list */
|
|
if (txd->tx_m)
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
|
|
/* reset descriptor */
|
|
cur_tx->packet_addr = 0;
|
|
}
|
|
|
|
sc->arge_cdata.arge_tx_cons = cons;
|
|
|
|
bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
|
|
sc->arge_cdata.arge_tx_ring_map, BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static int
|
|
arge_rx_locked(struct arge_softc *sc)
|
|
{
|
|
struct arge_rxdesc *rxd;
|
|
struct ifnet *ifp = sc->arge_ifp;
|
|
int cons, prog, packet_len, i;
|
|
struct arge_desc *cur_rx;
|
|
struct mbuf *m;
|
|
int rx_npkts = 0;
|
|
|
|
ARGE_LOCK_ASSERT(sc);
|
|
|
|
cons = sc->arge_cdata.arge_rx_cons;
|
|
|
|
bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
|
|
sc->arge_cdata.arge_rx_ring_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
for (prog = 0; prog < ARGE_RX_RING_COUNT;
|
|
ARGE_INC(cons, ARGE_RX_RING_COUNT)) {
|
|
cur_rx = &sc->arge_rdata.arge_rx_ring[cons];
|
|
rxd = &sc->arge_cdata.arge_rxdesc[cons];
|
|
m = rxd->rx_m;
|
|
|
|
if ((cur_rx->packet_ctrl & ARGE_DESC_EMPTY) != 0)
|
|
break;
|
|
|
|
ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_PKT_RECVD);
|
|
|
|
prog++;
|
|
|
|
packet_len = ARGE_DMASIZE(cur_rx->packet_ctrl);
|
|
bus_dmamap_sync(sc->arge_cdata.arge_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
m = rxd->rx_m;
|
|
|
|
/*
|
|
* If the MAC requires 4 byte alignment then the RX setup
|
|
* routine will have pre-offset things; so un-offset it here.
|
|
*/
|
|
if (sc->arge_hw_flags & ARGE_HW_FLG_RX_DESC_ALIGN_4BYTE)
|
|
arge_fixup_rx(m);
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
/* Skip 4 bytes of CRC */
|
|
m->m_pkthdr.len = m->m_len = packet_len - ETHER_CRC_LEN;
|
|
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
|
|
rx_npkts++;
|
|
|
|
ARGE_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
ARGE_LOCK(sc);
|
|
cur_rx->packet_addr = 0;
|
|
}
|
|
|
|
if (prog > 0) {
|
|
i = sc->arge_cdata.arge_rx_cons;
|
|
for (; prog > 0 ; prog--) {
|
|
if (arge_newbuf(sc, i) != 0) {
|
|
device_printf(sc->arge_dev,
|
|
"Failed to allocate buffer\n");
|
|
break;
|
|
}
|
|
ARGE_INC(i, ARGE_RX_RING_COUNT);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
|
|
sc->arge_cdata.arge_rx_ring_map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
sc->arge_cdata.arge_rx_cons = cons;
|
|
}
|
|
|
|
return (rx_npkts);
|
|
}
|
|
|
|
static int
|
|
arge_intr_filter(void *arg)
|
|
{
|
|
struct arge_softc *sc = arg;
|
|
uint32_t status, ints;
|
|
|
|
status = ARGE_READ(sc, AR71XX_DMA_INTR_STATUS);
|
|
ints = ARGE_READ(sc, AR71XX_DMA_INTR);
|
|
|
|
ARGEDEBUG(sc, ARGE_DBG_INTR, "int mask(filter) = %b\n", ints,
|
|
"\20\10RX_BUS_ERROR\7RX_OVERFLOW\5RX_PKT_RCVD"
|
|
"\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT");
|
|
ARGEDEBUG(sc, ARGE_DBG_INTR, "status(filter) = %b\n", status,
|
|
"\20\10RX_BUS_ERROR\7RX_OVERFLOW\5RX_PKT_RCVD"
|
|
"\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT");
|
|
|
|
if (status & DMA_INTR_ALL) {
|
|
sc->arge_intr_status |= status;
|
|
ARGE_WRITE(sc, AR71XX_DMA_INTR, 0);
|
|
sc->stats.intr_ok++;
|
|
return (FILTER_SCHEDULE_THREAD);
|
|
}
|
|
|
|
sc->arge_intr_status = 0;
|
|
sc->stats.intr_stray++;
|
|
return (FILTER_STRAY);
|
|
}
|
|
|
|
static void
|
|
arge_intr(void *arg)
|
|
{
|
|
struct arge_softc *sc = arg;
|
|
uint32_t status;
|
|
struct ifnet *ifp = sc->arge_ifp;
|
|
#ifdef ARGE_DEBUG
|
|
int i;
|
|
#endif
|
|
|
|
status = ARGE_READ(sc, AR71XX_DMA_INTR_STATUS);
|
|
status |= sc->arge_intr_status;
|
|
|
|
ARGEDEBUG(sc, ARGE_DBG_INTR, "int status(intr) = %b\n", status,
|
|
"\20\10\7RX_OVERFLOW\5RX_PKT_RCVD"
|
|
"\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT");
|
|
|
|
/*
|
|
* Is it our interrupt at all?
|
|
*/
|
|
if (status == 0) {
|
|
sc->stats.intr_stray2++;
|
|
return;
|
|
}
|
|
|
|
#ifdef ARGE_DEBUG
|
|
for (i = 0; i < 32; i++) {
|
|
if (status & (1U << i)) {
|
|
sc->intr_stats.count[i]++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (status & DMA_INTR_RX_BUS_ERROR) {
|
|
ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_BUS_ERROR);
|
|
device_printf(sc->arge_dev, "RX bus error");
|
|
return;
|
|
}
|
|
|
|
if (status & DMA_INTR_TX_BUS_ERROR) {
|
|
ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_BUS_ERROR);
|
|
device_printf(sc->arge_dev, "TX bus error");
|
|
return;
|
|
}
|
|
|
|
ARGE_LOCK(sc);
|
|
arge_flush_ddr(sc);
|
|
|
|
if (status & DMA_INTR_RX_PKT_RCVD)
|
|
arge_rx_locked(sc);
|
|
|
|
/*
|
|
* RX overrun disables the receiver.
|
|
* Clear indication and re-enable rx.
|
|
*/
|
|
if ( status & DMA_INTR_RX_OVERFLOW) {
|
|
ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_OVERFLOW);
|
|
ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, DMA_RX_CONTROL_EN);
|
|
sc->stats.rx_overflow++;
|
|
}
|
|
|
|
if (status & DMA_INTR_TX_PKT_SENT)
|
|
arge_tx_locked(sc);
|
|
/*
|
|
* Underrun turns off TX. Clear underrun indication.
|
|
* If there's anything left in the ring, reactivate the tx.
|
|
*/
|
|
if (status & DMA_INTR_TX_UNDERRUN) {
|
|
ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_UNDERRUN);
|
|
sc->stats.tx_underflow++;
|
|
ARGEDEBUG(sc, ARGE_DBG_TX, "%s: TX underrun; tx_cnt=%d\n",
|
|
__func__, sc->arge_cdata.arge_tx_cnt);
|
|
if (sc->arge_cdata.arge_tx_cnt > 0 ) {
|
|
ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL,
|
|
DMA_TX_CONTROL_EN);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we've finished RX /or/ TX and there's space for more packets
|
|
* to be queued for TX, do so. Otherwise we may end up in a
|
|
* situation where the interface send queue was filled
|
|
* whilst the hardware queue was full, then the hardware
|
|
* queue was drained by the interface send queue wasn't,
|
|
* and thus if_start() is never called to kick-start
|
|
* the send process (and all subsequent packets are simply
|
|
* discarded.
|
|
*
|
|
* XXX TODO: make sure that the hardware deals nicely
|
|
* with the possibility of the queue being enabled above
|
|
* after a TX underrun, then having the hardware queue added
|
|
* to below.
|
|
*/
|
|
if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
|
|
if (!IFQ_IS_EMPTY(&ifp->if_snd))
|
|
arge_start_locked(ifp);
|
|
}
|
|
|
|
/*
|
|
* We handled all bits, clear status
|
|
*/
|
|
sc->arge_intr_status = 0;
|
|
ARGE_UNLOCK(sc);
|
|
/*
|
|
* re-enable all interrupts
|
|
*/
|
|
ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL);
|
|
}
|
|
|
|
static void
|
|
arge_tick(void *xsc)
|
|
{
|
|
struct arge_softc *sc = xsc;
|
|
struct mii_data *mii;
|
|
|
|
ARGE_LOCK_ASSERT(sc);
|
|
|
|
if (sc->arge_miibus) {
|
|
mii = device_get_softc(sc->arge_miibus);
|
|
mii_tick(mii);
|
|
callout_reset(&sc->arge_stat_callout, hz, arge_tick, sc);
|
|
}
|
|
}
|
|
|
|
int
|
|
arge_multiphy_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct arge_softc *sc = ifp->if_softc;
|
|
struct ifmedia *ifm = &sc->arge_ifmedia;
|
|
struct ifmedia_entry *ife = ifm->ifm_cur;
|
|
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return (EINVAL);
|
|
|
|
if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
|
|
device_printf(sc->arge_dev,
|
|
"AUTO is not supported for multiphy MAC");
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Ignore everything
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
arge_multiphy_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct arge_softc *sc = ifp->if_softc;
|
|
|
|
ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
|
|
ifmr->ifm_active = IFM_ETHER | sc->arge_media_type |
|
|
sc->arge_duplex_mode;
|
|
}
|
|
|
|
#if defined(ARGE_MDIO)
|
|
static int
|
|
argemdio_probe(device_t dev)
|
|
{
|
|
device_set_desc(dev, "Atheros AR71xx built-in ethernet interface, MDIO controller");
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
argemdio_attach(device_t dev)
|
|
{
|
|
struct arge_softc *sc;
|
|
int error = 0;
|
|
#ifdef ARGE_DEBUG
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid *tree;
|
|
#endif
|
|
sc = device_get_softc(dev);
|
|
sc->arge_dev = dev;
|
|
sc->arge_mac_unit = device_get_unit(dev);
|
|
sc->arge_rid = 0;
|
|
sc->arge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
|
|
&sc->arge_rid, RF_ACTIVE | RF_SHAREABLE);
|
|
if (sc->arge_res == NULL) {
|
|
device_printf(dev, "couldn't map memory\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
#ifdef ARGE_DEBUG
|
|
ctx = device_get_sysctl_ctx(dev);
|
|
tree = device_get_sysctl_tree(dev);
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"debug", CTLFLAG_RW, &sc->arge_debug, 0,
|
|
"argemdio interface debugging flags");
|
|
#endif
|
|
|
|
/* Reset MAC - required for AR71xx MDIO to successfully occur */
|
|
arge_reset_mac(sc);
|
|
/* Reset MII bus */
|
|
arge_reset_miibus(sc);
|
|
|
|
bus_generic_probe(dev);
|
|
bus_enumerate_hinted_children(dev);
|
|
error = bus_generic_attach(dev);
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
argemdio_detach(device_t dev)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
#endif
|