3be9640f2c
Intel 40G Ethernet Controller XL710 Family. This is the core driver, a VF driver called i40evf, will be following soon. Questions or comments to myself or my co-developer Eric Joyner. Cheers!
4299 lines
119 KiB
C
Executable File
4299 lines
119 KiB
C
Executable File
/******************************************************************************
|
|
|
|
Copyright (c) 2013-2014, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
******************************************************************************/
|
|
/*$FreeBSD$*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "i40e.h"
|
|
#include "i40e_pf.h"
|
|
|
|
/*********************************************************************
|
|
* Driver version
|
|
*********************************************************************/
|
|
char i40e_driver_version[] = "0.6.9 - Beta Release";
|
|
|
|
/*********************************************************************
|
|
* PCI Device ID Table
|
|
*
|
|
* Used by probe to select devices to load on
|
|
* Last field stores an index into i40e_strings
|
|
* Last entry must be all 0s
|
|
*
|
|
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
|
|
*********************************************************************/
|
|
|
|
static i40e_vendor_info_t i40e_vendor_info_array[] =
|
|
{
|
|
{I40E_INTEL_VENDOR_ID, I40E_DEV_ID_SFP_XL710, 0, 0, 0},
|
|
{I40E_INTEL_VENDOR_ID, I40E_DEV_ID_KX_A, 0, 0, 0},
|
|
{I40E_INTEL_VENDOR_ID, I40E_DEV_ID_KX_B, 0, 0, 0},
|
|
{I40E_INTEL_VENDOR_ID, I40E_DEV_ID_KX_C, 0, 0, 0},
|
|
{I40E_INTEL_VENDOR_ID, I40E_DEV_ID_QSFP_A, 0, 0, 0},
|
|
{I40E_INTEL_VENDOR_ID, I40E_DEV_ID_QSFP_B, 0, 0, 0},
|
|
{I40E_INTEL_VENDOR_ID, I40E_DEV_ID_QSFP_C, 0, 0, 0},
|
|
/* required last entry */
|
|
{0, 0, 0, 0, 0}
|
|
};
|
|
|
|
/*********************************************************************
|
|
* Table of branding strings
|
|
*********************************************************************/
|
|
|
|
static char *i40e_strings[] = {
|
|
"Intel(R) Ethernet Connection XL710 Driver"
|
|
};
|
|
|
|
|
|
/*********************************************************************
|
|
* Function prototypes
|
|
*********************************************************************/
|
|
static int i40e_probe(device_t);
|
|
static int i40e_attach(device_t);
|
|
static int i40e_detach(device_t);
|
|
static int i40e_shutdown(device_t);
|
|
static int i40e_get_hw_capabilities(struct i40e_pf *);
|
|
static void i40e_cap_txcsum_tso(struct i40e_vsi *, struct ifnet *, int);
|
|
static int i40e_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void i40e_init(void *);
|
|
static void i40e_init_locked(struct i40e_pf *);
|
|
static void i40e_stop(struct i40e_pf *);
|
|
static void i40e_media_status(struct ifnet *, struct ifmediareq *);
|
|
static int i40e_media_change(struct ifnet *);
|
|
static void i40e_update_link_status(struct i40e_pf *);
|
|
static int i40e_allocate_pci_resources(struct i40e_pf *);
|
|
static u16 i40e_get_bus_info(struct i40e_hw *, device_t);
|
|
static int i40e_setup_stations(struct i40e_pf *);
|
|
static int i40e_setup_vsi(struct i40e_vsi *);
|
|
static int i40e_initialize_vsi(struct i40e_vsi *);
|
|
static int i40e_assign_vsi_msix(struct i40e_pf *);
|
|
static int i40e_assign_vsi_legacy(struct i40e_pf *);
|
|
static int i40e_init_msix(struct i40e_pf *);
|
|
static void i40e_configure_msix(struct i40e_pf *);
|
|
static void i40e_configure_itr(struct i40e_pf *);
|
|
static void i40e_configure_legacy(struct i40e_pf *);
|
|
static void i40e_free_pci_resources(struct i40e_pf *);
|
|
static void i40e_local_timer(void *);
|
|
static int i40e_setup_interface(device_t, struct i40e_vsi *);
|
|
static bool i40e_config_link(struct i40e_hw *);
|
|
static void i40e_config_rss(struct i40e_vsi *);
|
|
static void i40e_set_queue_rx_itr(struct i40e_queue *);
|
|
static void i40e_set_queue_tx_itr(struct i40e_queue *);
|
|
|
|
static void i40e_enable_rings(struct i40e_vsi *);
|
|
static void i40e_disable_rings(struct i40e_vsi *);
|
|
static void i40e_enable_intr(struct i40e_vsi *);
|
|
static void i40e_disable_intr(struct i40e_vsi *);
|
|
|
|
static void i40e_enable_adminq(struct i40e_hw *);
|
|
static void i40e_disable_adminq(struct i40e_hw *);
|
|
static void i40e_enable_queue(struct i40e_hw *, int);
|
|
static void i40e_disable_queue(struct i40e_hw *, int);
|
|
static void i40e_enable_legacy(struct i40e_hw *);
|
|
static void i40e_disable_legacy(struct i40e_hw *);
|
|
|
|
static void i40e_set_promisc(struct i40e_vsi *);
|
|
static void i40e_add_multi(struct i40e_vsi *);
|
|
static void i40e_del_multi(struct i40e_vsi *);
|
|
static void i40e_register_vlan(void *, struct ifnet *, u16);
|
|
static void i40e_unregister_vlan(void *, struct ifnet *, u16);
|
|
static void i40e_setup_vlan_filters(struct i40e_vsi *);
|
|
|
|
static void i40e_init_filters(struct i40e_vsi *);
|
|
static void i40e_add_filter(struct i40e_vsi *, u8 *, s16 vlan);
|
|
static void i40e_del_filter(struct i40e_vsi *, u8 *, s16 vlan);
|
|
static void i40e_add_hw_filters(struct i40e_vsi *, int, int);
|
|
static void i40e_del_hw_filters(struct i40e_vsi *, int);
|
|
static struct i40e_mac_filter *
|
|
i40e_find_filter(struct i40e_vsi *, u8 *, s16);
|
|
static void i40e_add_mc_filter(struct i40e_vsi *, u8 *);
|
|
|
|
/* Sysctl debug interface */
|
|
static int i40e_debug_info(SYSCTL_HANDLER_ARGS);
|
|
static void i40e_print_debug_info(struct i40e_pf *);
|
|
|
|
/* The MSI/X Interrupt handlers */
|
|
static void i40e_intr(void *);
|
|
static void i40e_msix_que(void *);
|
|
static void i40e_msix_adminq(void *);
|
|
|
|
/* Deferred interrupt tasklets */
|
|
static void i40e_do_adminq(void *, int);
|
|
|
|
/* Sysctl handlers */
|
|
static int i40e_set_flowcntl(SYSCTL_HANDLER_ARGS);
|
|
|
|
/* Statistics */
|
|
static void i40e_add_hw_stats(struct i40e_pf *);
|
|
static void i40e_add_sysctls_mac_stats(struct sysctl_ctx_list *,
|
|
struct sysctl_oid_list *, struct i40e_hw_port_stats *);
|
|
static void i40e_add_sysctls_eth_stats(struct sysctl_ctx_list *,
|
|
struct sysctl_oid_list *,
|
|
struct i40e_eth_stats *);
|
|
static void i40e_update_stats_counters(struct i40e_pf *);
|
|
static void i40e_update_eth_stats(struct i40e_vsi *);
|
|
static void i40e_pf_reset_stats(struct i40e_pf *);
|
|
static void i40e_vsi_reset_stats(struct i40e_vsi *);
|
|
static void i40e_stat_update48(struct i40e_hw *, u32, u32, bool,
|
|
u64 *, u64 *);
|
|
static void i40e_stat_update32(struct i40e_hw *, u32, bool,
|
|
u64 *, u64 *);
|
|
|
|
#ifdef I40E_DEBUG
|
|
static int i40e_sysctl_link_status(SYSCTL_HANDLER_ARGS);
|
|
static int i40e_sysctl_phy_abilities(SYSCTL_HANDLER_ARGS);
|
|
static int i40e_sysctl_sw_filter_list(SYSCTL_HANDLER_ARGS);
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* FreeBSD Device Interface Entry Points
|
|
*********************************************************************/
|
|
|
|
static device_method_t i40e_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, i40e_probe),
|
|
DEVMETHOD(device_attach, i40e_attach),
|
|
DEVMETHOD(device_detach, i40e_detach),
|
|
DEVMETHOD(device_shutdown, i40e_shutdown),
|
|
{0, 0}
|
|
};
|
|
|
|
static driver_t i40e_driver = {
|
|
"i40e", i40e_methods, sizeof(struct i40e_pf),
|
|
};
|
|
|
|
devclass_t i40e_devclass;
|
|
DRIVER_MODULE(i40e, pci, i40e_driver, i40e_devclass, 0, 0);
|
|
|
|
MODULE_DEPEND(i40e, pci, 1, 1, 1);
|
|
MODULE_DEPEND(i40e, ether, 1, 1, 1);
|
|
|
|
/*
|
|
* MSIX should be the default for best performance,
|
|
* but this allows it to be forced off for testing.
|
|
*/
|
|
static int i40e_enable_msix = 1;
|
|
TUNABLE_INT("hw.i40e.enable_msix", &i40e_enable_msix);
|
|
|
|
/*
|
|
** Number of descriptors per ring:
|
|
** - TX and RX are the same size
|
|
*/
|
|
static int i40e_ringsz = DEFAULT_RING;
|
|
TUNABLE_INT("hw.i40e.ringsz", &i40e_ringsz);
|
|
|
|
/*
|
|
** This can be set manually, if left as 0 the
|
|
** number of queues will be calculated based
|
|
** on cpus and msix vectors available.
|
|
*/
|
|
int i40e_max_queues = 0;
|
|
TUNABLE_INT("hw.i40e.max_queues", &i40e_max_queues);
|
|
|
|
/*
|
|
** Controls for Interrupt Throttling
|
|
** - true/false for dynamic adjustment
|
|
** - default values for static ITR
|
|
*/
|
|
int i40e_dynamic_rx_itr = 0;
|
|
TUNABLE_INT("hw.i40e.dynamic_rx_itr", &i40e_dynamic_rx_itr);
|
|
int i40e_dynamic_tx_itr = 0;
|
|
TUNABLE_INT("hw.i40e.dynamic_tx_itr", &i40e_dynamic_tx_itr);
|
|
|
|
int i40e_rx_itr = I40E_ITR_8K;
|
|
TUNABLE_INT("hw.i40e.rx_itr", &i40e_rx_itr);
|
|
int i40e_tx_itr = I40E_ITR_4K;
|
|
TUNABLE_INT("hw.i40e.tx_itr", &i40e_tx_itr);
|
|
|
|
#ifdef I40E_FDIR
|
|
static int i40e_enable_fdir = 1;
|
|
TUNABLE_INT("hw.i40e.enable_fdir", &i40e_enable_fdir);
|
|
/* Rate at which we sample */
|
|
int i40e_atr_rate = 20;
|
|
TUNABLE_INT("hw.i40e.atr_rate", &i40e_atr_rate);
|
|
#endif
|
|
|
|
|
|
static char *i40e_fc_string[6] = {
|
|
"None",
|
|
"Rx",
|
|
"Tx",
|
|
"Full",
|
|
"Priority",
|
|
"Default"
|
|
};
|
|
|
|
/*********************************************************************
|
|
* Device identification routine
|
|
*
|
|
* i40e_probe determines if the driver should be loaded on
|
|
* the hardware based on PCI vendor/device id of the device.
|
|
*
|
|
* return BUS_PROBE_DEFAULT on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
i40e_probe(device_t dev)
|
|
{
|
|
i40e_vendor_info_t *ent;
|
|
|
|
u16 pci_vendor_id, pci_device_id;
|
|
u16 pci_subvendor_id, pci_subdevice_id;
|
|
char device_name[256];
|
|
|
|
INIT_DEBUGOUT("i40e_probe: begin");
|
|
|
|
pci_vendor_id = pci_get_vendor(dev);
|
|
if (pci_vendor_id != I40E_INTEL_VENDOR_ID)
|
|
return (ENXIO);
|
|
|
|
pci_device_id = pci_get_device(dev);
|
|
pci_subvendor_id = pci_get_subvendor(dev);
|
|
pci_subdevice_id = pci_get_subdevice(dev);
|
|
|
|
ent = i40e_vendor_info_array;
|
|
while (ent->vendor_id != 0) {
|
|
if ((pci_vendor_id == ent->vendor_id) &&
|
|
(pci_device_id == ent->device_id) &&
|
|
|
|
((pci_subvendor_id == ent->subvendor_id) ||
|
|
(ent->subvendor_id == 0)) &&
|
|
|
|
((pci_subdevice_id == ent->subdevice_id) ||
|
|
(ent->subdevice_id == 0))) {
|
|
sprintf(device_name, "%s, Version - %s",
|
|
i40e_strings[ent->index],
|
|
i40e_driver_version);
|
|
device_set_desc_copy(dev, device_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
ent++;
|
|
}
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Device initialization routine
|
|
*
|
|
* The attach entry point is called when the driver is being loaded.
|
|
* This routine identifies the type of hardware, allocates all resources
|
|
* and initializes the hardware.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
i40e_attach(device_t dev)
|
|
{
|
|
struct i40e_pf *pf;
|
|
struct i40e_hw *hw;
|
|
struct i40e_vsi *vsi;
|
|
u16 bus;
|
|
u32 reg;
|
|
int error = 0;
|
|
|
|
INIT_DEBUGOUT("i40e_attach: begin");
|
|
|
|
/* Allocate, clear, and link in our primary soft structure */
|
|
pf = device_get_softc(dev);
|
|
pf->dev = pf->osdep.dev = dev;
|
|
hw = &pf->hw;
|
|
|
|
/*
|
|
** Note this assumes we have a single embedded VSI,
|
|
** this could be enhanced later to allocate multiple
|
|
*/
|
|
vsi = &pf->vsi;
|
|
vsi->dev = pf->dev;
|
|
|
|
/* Core Lock Init*/
|
|
I40E_PF_LOCK_INIT(pf, device_get_nameunit(dev));
|
|
|
|
/* Set up the timer callout */
|
|
callout_init_mtx(&pf->timer, &pf->pf_mtx, 0);
|
|
|
|
/* Set up sysctls */
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW,
|
|
pf, 0, i40e_set_flowcntl, "I", "Flow Control");
|
|
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "rx_itr", CTLTYPE_INT | CTLFLAG_RW,
|
|
&i40e_rx_itr, I40E_ITR_8K, "RX ITR");
|
|
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "dynamic_rx_itr", CTLTYPE_INT | CTLFLAG_RW,
|
|
&i40e_dynamic_rx_itr, 0, "Dynamic RX ITR");
|
|
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "tx_itr", CTLTYPE_INT | CTLFLAG_RW,
|
|
&i40e_tx_itr, I40E_ITR_4K, "TX ITR");
|
|
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "dynamic_tx_itr", CTLTYPE_INT | CTLFLAG_RW,
|
|
&i40e_dynamic_tx_itr, 0, "Dynamic TX ITR");
|
|
|
|
#ifdef I40E_DEBUG
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "link_status", CTLTYPE_STRING | CTLFLAG_RD,
|
|
pf, 0, i40e_sysctl_link_status, "A", "Current Link Status");
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "phy_abilities", CTLTYPE_STRING | CTLFLAG_RD,
|
|
pf, 0, i40e_sysctl_phy_abilities, "A", "PHY Abilities");
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "filter_list", CTLTYPE_STRING | CTLFLAG_RD,
|
|
pf, 0, i40e_sysctl_sw_filter_list, "A", "SW Filter List");
|
|
#endif
|
|
|
|
/* Save off the information about this board */
|
|
hw->vendor_id = pci_get_vendor(dev);
|
|
hw->device_id = pci_get_device(dev);
|
|
hw->revision_id = pci_read_config(dev, PCIR_REVID, 1);
|
|
hw->subsystem_vendor_id =
|
|
pci_read_config(dev, PCIR_SUBVEND_0, 2);
|
|
hw->subsystem_device_id =
|
|
pci_read_config(dev, PCIR_SUBDEV_0, 2);
|
|
|
|
hw->bus.device = pci_get_device(dev);
|
|
hw->bus.func = pci_get_function(dev);
|
|
|
|
/* Do PCI setup - map BAR0, etc */
|
|
if (i40e_allocate_pci_resources(pf)) {
|
|
device_printf(dev, "Allocation of PCI resources failed\n");
|
|
error = ENXIO;
|
|
goto err_out;
|
|
}
|
|
|
|
/* Create for initial debugging use */
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, pf, 0,
|
|
i40e_debug_info, "I", "Debug Information");
|
|
|
|
/* Workaround to keep ARI detection off */
|
|
reg = rd32(hw, I40E_GLPCI_CAPSUP);
|
|
reg &= ~I40E_GLPCI_CAPSUP_ARI_EN_MASK;
|
|
wr32(hw, I40E_GLPCI_CAPSUP, reg);
|
|
|
|
/* Establish a clean starting point */
|
|
error = i40e_pf_reset(hw);
|
|
if (error) {
|
|
// TODO: Remove EMPR reset
|
|
/* Use the heavy hammer, force a firmware reset */
|
|
reg = rd32(&pf->hw, I40E_GLGEN_RSTENA_EMP);
|
|
reg |= I40E_GLGEN_RSTENA_EMP_EMP_RST_ENA_MASK;
|
|
wr32(&pf->hw, I40E_GLGEN_RSTENA_EMP, reg);
|
|
/* force the reset */
|
|
reg = rd32(&pf->hw, I40E_GLGEN_RTRIG);
|
|
reg |= I40E_GLGEN_RTRIG_EMPFWR_MASK;
|
|
wr32(&pf->hw, I40E_GLGEN_RTRIG, reg);
|
|
i40e_flush(hw);
|
|
|
|
error = i40e_pf_reset(hw);
|
|
if (error) {
|
|
device_printf(dev,"PF reset failure %x\n", error);
|
|
error = EIO;
|
|
goto err_out;
|
|
}
|
|
}
|
|
|
|
/* Set admin queue parameters */
|
|
hw->aq.num_arq_entries = I40E_AQ_LEN;
|
|
hw->aq.num_asq_entries = I40E_AQ_LEN;
|
|
hw->aq.arq_buf_size = I40E_AQ_BUFSZ;
|
|
hw->aq.asq_buf_size = I40E_AQ_BUFSZ;
|
|
|
|
/* Initialize the shared code */
|
|
error = i40e_init_shared_code(hw);
|
|
if (error) {
|
|
device_printf(dev,"Unable to initialize the shared code\n");
|
|
error = EIO;
|
|
goto err_out;
|
|
}
|
|
|
|
/* Set up the admin queue */
|
|
error = i40e_init_adminq(hw);
|
|
if (error) {
|
|
device_printf(dev, "Admin Queue setup failure!\n");
|
|
goto err_out;
|
|
}
|
|
|
|
#ifdef I40E_DEBUG
|
|
device_printf(dev,"Firmware version: %d.%d "
|
|
"API version %d.%d NVM track %x version %x\n",
|
|
hw->aq.fw_maj_ver, hw->aq.fw_min_ver,
|
|
hw->aq.api_maj_ver, hw->aq.api_min_ver,
|
|
hw->nvm.eetrack, hw->nvm.version);
|
|
#endif
|
|
|
|
/* Clear PXE mode */
|
|
i40e_clear_pxe_mode(hw);
|
|
|
|
/* Get capabilities from the device */
|
|
error = i40e_get_hw_capabilities(pf);
|
|
if (error) {
|
|
device_printf(dev, "HW capabilities failure!\n");
|
|
goto err_get_cap;
|
|
}
|
|
|
|
/* Set up host memory cache */
|
|
error = i40e_init_lan_hmc(hw, vsi->num_queues, vsi->num_queues, 0, 0);
|
|
if (error) {
|
|
device_printf(dev, "init_lan_hmc failed: %d\n", error);
|
|
goto err_get_cap;
|
|
}
|
|
|
|
error = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
|
|
if (error) {
|
|
device_printf(dev, "configure_lan_hmc failed: %d\n", error);
|
|
goto err_mac_hmc;
|
|
}
|
|
|
|
i40e_get_mac_addr(hw, hw->mac.addr);
|
|
error = i40e_validate_mac_addr(hw->mac.addr);
|
|
if (error) {
|
|
device_printf(dev, "validate_mac_addr failed: %d\n", error);
|
|
goto err_mac_hmc;
|
|
}
|
|
bcopy(hw->mac.addr, hw->mac.perm_addr, ETHER_ADDR_LEN);
|
|
i40e_get_port_mac_addr(hw, hw->mac.port_addr);
|
|
|
|
if (i40e_setup_stations(pf) != 0) {
|
|
device_printf(dev, "setup stations failed!\n");
|
|
error = ENOMEM;
|
|
goto err_mac_hmc;
|
|
}
|
|
|
|
/* Initialize mac filter list for VSI */
|
|
SLIST_INIT(&vsi->ftl);
|
|
|
|
/* Set up interrupt routing here */
|
|
if (pf->msix > 1)
|
|
error = i40e_assign_vsi_msix(pf);
|
|
else
|
|
error = i40e_assign_vsi_legacy(pf);
|
|
if (error)
|
|
goto err_late;
|
|
|
|
/* Determine link state */
|
|
vsi->link_up = i40e_config_link(hw);
|
|
|
|
/* Setup OS specific network interface */
|
|
if (i40e_setup_interface(dev, vsi) != 0)
|
|
goto err_late;
|
|
|
|
/* Get the bus configuration and set the shared code */
|
|
bus = i40e_get_bus_info(hw, dev);
|
|
i40e_set_pci_config_data(hw, bus);
|
|
|
|
/* Initialize statistics */
|
|
i40e_pf_reset_stats(pf);
|
|
i40e_update_stats_counters(pf);
|
|
i40e_add_hw_stats(pf);
|
|
|
|
/* Register for VLAN events */
|
|
vsi->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
|
|
i40e_register_vlan, vsi, EVENTHANDLER_PRI_FIRST);
|
|
vsi->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
|
|
i40e_unregister_vlan, vsi, EVENTHANDLER_PRI_FIRST);
|
|
|
|
INIT_DEBUGOUT("i40e_attach: end");
|
|
return (0);
|
|
|
|
err_late:
|
|
i40e_free_vsi(vsi);
|
|
err_mac_hmc:
|
|
i40e_shutdown_lan_hmc(hw);
|
|
err_get_cap:
|
|
i40e_shutdown_adminq(hw);
|
|
err_out:
|
|
if (vsi->ifp != NULL)
|
|
if_free(vsi->ifp);
|
|
i40e_free_pci_resources(pf);
|
|
I40E_PF_LOCK_DESTROY(pf);
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Device removal routine
|
|
*
|
|
* The detach entry point is called when the driver is being removed.
|
|
* This routine stops the adapter and deallocates all the resources
|
|
* that were allocated for driver operation.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
i40e_detach(device_t dev)
|
|
{
|
|
struct i40e_pf *pf = device_get_softc(dev);
|
|
struct i40e_hw *hw = &pf->hw;
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
struct i40e_queue *que = vsi->queues;
|
|
i40e_status status;
|
|
u32 reg;
|
|
|
|
INIT_DEBUGOUT("i40e_detach: begin");
|
|
|
|
/* Make sure VLANS are not using driver */
|
|
if (vsi->ifp->if_vlantrunk != NULL) {
|
|
device_printf(dev,"Vlan in use, detach first\n");
|
|
return (EBUSY);
|
|
}
|
|
|
|
I40E_PF_LOCK(pf);
|
|
i40e_stop(pf);
|
|
I40E_PF_UNLOCK(pf);
|
|
|
|
for (int i = 0; i < vsi->num_queues; i++, que++) {
|
|
if (que->tq) {
|
|
taskqueue_drain(que->tq, &que->task);
|
|
taskqueue_drain(que->tq, &que->tx_task);
|
|
taskqueue_free(que->tq);
|
|
}
|
|
}
|
|
|
|
/* Drain other tasks here */
|
|
|
|
/* Shutdown LAN HMC */
|
|
status = i40e_shutdown_lan_hmc(hw);
|
|
if (status)
|
|
device_printf(dev,
|
|
"Shutdown LAN HMC failed with code %d\n", status);
|
|
|
|
/* Shutdown admin queue */
|
|
status = i40e_shutdown_adminq(hw);
|
|
if (status)
|
|
device_printf(dev,
|
|
"Shutdown Admin queue failed with code %d\n", status);
|
|
|
|
/* Now force a pf reset */
|
|
reg = rd32(hw, I40E_PFGEN_CTRL);
|
|
reg |= I40E_PFGEN_CTRL_PFSWR_MASK;
|
|
wr32(hw, I40E_PFGEN_CTRL, reg);
|
|
//i40e_pf_reset(hw);
|
|
i40e_flush(hw);
|
|
|
|
/* Unregister VLAN events */
|
|
if (vsi->vlan_attach != NULL)
|
|
EVENTHANDLER_DEREGISTER(vlan_config, vsi->vlan_attach);
|
|
if (vsi->vlan_detach != NULL)
|
|
EVENTHANDLER_DEREGISTER(vlan_unconfig, vsi->vlan_detach);
|
|
|
|
ether_ifdetach(vsi->ifp);
|
|
callout_drain(&pf->timer);
|
|
|
|
|
|
i40e_free_pci_resources(pf);
|
|
bus_generic_detach(dev);
|
|
if_free(vsi->ifp);
|
|
i40e_free_vsi(vsi);
|
|
I40E_PF_LOCK_DESTROY(pf);
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Shutdown entry point
|
|
*
|
|
**********************************************************************/
|
|
|
|
static int
|
|
i40e_shutdown(device_t dev)
|
|
{
|
|
struct i40e_pf *pf = device_get_softc(dev);
|
|
I40E_PF_LOCK(pf);
|
|
i40e_stop(pf);
|
|
I40E_PF_UNLOCK(pf);
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Get the hardware capabilities
|
|
*
|
|
**********************************************************************/
|
|
|
|
static int
|
|
i40e_get_hw_capabilities(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_aqc_list_capabilities_element_resp *buf;
|
|
struct i40e_hw *hw = &pf->hw;
|
|
device_t dev = pf->dev;
|
|
int error, len;
|
|
u16 needed;
|
|
bool again = TRUE;
|
|
|
|
len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp);
|
|
retry:
|
|
if (!(buf = (struct i40e_aqc_list_capabilities_element_resp *)
|
|
malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate cap memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* This populates the hw struct */
|
|
error = i40e_aq_discover_capabilities(hw, buf, len,
|
|
&needed, i40e_aqc_opc_list_func_capabilities, NULL);
|
|
free(buf, M_DEVBUF);
|
|
if ((pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) &&
|
|
(again == TRUE)) {
|
|
/* retry once with a larger buffer */
|
|
again = FALSE;
|
|
len = needed;
|
|
goto retry;
|
|
} else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) {
|
|
device_printf(dev, "capability discovery failed: %d\n",
|
|
pf->hw.aq.asq_last_status);
|
|
return (ENODEV);
|
|
}
|
|
|
|
/* Capture this PF's starting queue pair */
|
|
pf->qbase = hw->func_caps.base_queue;
|
|
|
|
#ifdef I40E_DEBUG
|
|
device_printf(dev,"pf_id=%d, num_vfs=%d, msix_pf=%d, "
|
|
"msix_vf=%d, fd_g=%d, fd_b=%d, tx_qp=%d rx_qp=%d qbase=%d\n",
|
|
hw->pf_id, hw->func_caps.num_vfs,
|
|
hw->func_caps.num_msix_vectors,
|
|
hw->func_caps.num_msix_vectors_vf,
|
|
hw->func_caps.fd_filters_guaranteed,
|
|
hw->func_caps.fd_filters_best_effort,
|
|
hw->func_caps.num_tx_qp,
|
|
hw->func_caps.num_rx_qp,
|
|
hw->func_caps.base_queue);
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
i40e_cap_txcsum_tso(struct i40e_vsi *vsi, struct ifnet *ifp, int mask)
|
|
{
|
|
device_t dev = vsi->dev;
|
|
|
|
/* Enable/disable TXCSUM/TSO4 */
|
|
if (!(ifp->if_capenable & IFCAP_TXCSUM)
|
|
&& !(ifp->if_capenable & IFCAP_TSO4)) {
|
|
if (mask & IFCAP_TXCSUM) {
|
|
ifp->if_capenable |= IFCAP_TXCSUM;
|
|
/* enable TXCSUM, restore TSO if previously enabled */
|
|
if (vsi->flags & I40E_FLAGS_KEEP_TSO4) {
|
|
vsi->flags &= ~I40E_FLAGS_KEEP_TSO4;
|
|
ifp->if_capenable |= IFCAP_TSO4;
|
|
}
|
|
}
|
|
else if (mask & IFCAP_TSO4) {
|
|
ifp->if_capenable |= (IFCAP_TXCSUM | IFCAP_TSO4);
|
|
vsi->flags &= ~I40E_FLAGS_KEEP_TSO4;
|
|
device_printf(dev,
|
|
"TSO4 requires txcsum, enabling both...\n");
|
|
}
|
|
} else if((ifp->if_capenable & IFCAP_TXCSUM)
|
|
&& !(ifp->if_capenable & IFCAP_TSO4)) {
|
|
if (mask & IFCAP_TXCSUM)
|
|
ifp->if_capenable &= ~IFCAP_TXCSUM;
|
|
else if (mask & IFCAP_TSO4)
|
|
ifp->if_capenable |= IFCAP_TSO4;
|
|
} else if((ifp->if_capenable & IFCAP_TXCSUM)
|
|
&& (ifp->if_capenable & IFCAP_TSO4)) {
|
|
if (mask & IFCAP_TXCSUM) {
|
|
vsi->flags |= I40E_FLAGS_KEEP_TSO4;
|
|
ifp->if_capenable &= ~(IFCAP_TXCSUM | IFCAP_TSO4);
|
|
device_printf(dev,
|
|
"TSO4 requires txcsum, disabling both...\n");
|
|
} else if (mask & IFCAP_TSO4)
|
|
ifp->if_capenable &= ~IFCAP_TSO4;
|
|
}
|
|
|
|
/* Enable/disable TXCSUM_IPV6/TSO6 */
|
|
if (!(ifp->if_capenable & IFCAP_TXCSUM_IPV6)
|
|
&& !(ifp->if_capenable & IFCAP_TSO6)) {
|
|
if (mask & IFCAP_TXCSUM_IPV6) {
|
|
ifp->if_capenable |= IFCAP_TXCSUM_IPV6;
|
|
if (vsi->flags & I40E_FLAGS_KEEP_TSO6) {
|
|
vsi->flags &= ~I40E_FLAGS_KEEP_TSO6;
|
|
ifp->if_capenable |= IFCAP_TSO6;
|
|
}
|
|
} else if (mask & IFCAP_TSO6) {
|
|
ifp->if_capenable |= (IFCAP_TXCSUM_IPV6 | IFCAP_TSO6);
|
|
vsi->flags &= ~I40E_FLAGS_KEEP_TSO6;
|
|
device_printf(dev,
|
|
"TSO6 requires txcsum6, enabling both...\n");
|
|
}
|
|
} else if((ifp->if_capenable & IFCAP_TXCSUM_IPV6)
|
|
&& !(ifp->if_capenable & IFCAP_TSO6)) {
|
|
if (mask & IFCAP_TXCSUM_IPV6)
|
|
ifp->if_capenable &= ~IFCAP_TXCSUM_IPV6;
|
|
else if (mask & IFCAP_TSO6)
|
|
ifp->if_capenable |= IFCAP_TSO6;
|
|
} else if ((ifp->if_capenable & IFCAP_TXCSUM_IPV6)
|
|
&& (ifp->if_capenable & IFCAP_TSO6)) {
|
|
if (mask & IFCAP_TXCSUM_IPV6) {
|
|
vsi->flags |= I40E_FLAGS_KEEP_TSO6;
|
|
ifp->if_capenable &= ~(IFCAP_TXCSUM_IPV6 | IFCAP_TSO6);
|
|
device_printf(dev,
|
|
"TSO6 requires txcsum6, disabling both...\n");
|
|
} else if (mask & IFCAP_TSO6)
|
|
ifp->if_capenable &= ~IFCAP_TSO6;
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Ioctl entry point
|
|
*
|
|
* i40e_ioctl is called when the user wants to configure the
|
|
* interface.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
**********************************************************************/
|
|
|
|
static int
|
|
i40e_ioctl(struct ifnet * ifp, u_long command, caddr_t data)
|
|
{
|
|
struct i40e_vsi *vsi = ifp->if_softc;
|
|
struct i40e_pf *pf = (struct i40e_pf *)vsi->back;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
#if defined(INET) || defined(INET6)
|
|
struct ifaddr *ifa = (struct ifaddr *)data;
|
|
bool avoid_reset = FALSE;
|
|
#endif
|
|
int error = 0;
|
|
|
|
switch (command) {
|
|
|
|
case SIOCSIFADDR:
|
|
#ifdef INET
|
|
if (ifa->ifa_addr->sa_family == AF_INET)
|
|
avoid_reset = TRUE;
|
|
#endif
|
|
#ifdef INET6
|
|
if (ifa->ifa_addr->sa_family == AF_INET6)
|
|
avoid_reset = TRUE;
|
|
#endif
|
|
#if defined(INET) || defined(INET6)
|
|
/*
|
|
** Calling init results in link renegotiation,
|
|
** so we avoid doing it when possible.
|
|
*/
|
|
if (avoid_reset) {
|
|
ifp->if_flags |= IFF_UP;
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
i40e_init(pf);
|
|
if (!(ifp->if_flags & IFF_NOARP))
|
|
arp_ifinit(ifp, ifa);
|
|
} else
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
#endif
|
|
case SIOCSIFMTU:
|
|
IOCTL_DEBUGOUT("ioctl: SIOCSIFMTU (Set Interface MTU)");
|
|
if (ifr->ifr_mtu > I40E_MAX_FRAME -
|
|
ETHER_HDR_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN) {
|
|
error = EINVAL;
|
|
} else {
|
|
I40E_PF_LOCK(pf);
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
vsi->max_frame_size =
|
|
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN
|
|
+ ETHER_VLAN_ENCAP_LEN;
|
|
i40e_init_locked(pf);
|
|
I40E_PF_UNLOCK(pf);
|
|
}
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
IOCTL_DEBUGOUT("ioctl: SIOCSIFFLAGS (Set Interface Flags)");
|
|
I40E_PF_LOCK(pf);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
|
|
if ((ifp->if_flags ^ pf->if_flags) &
|
|
(IFF_PROMISC | IFF_ALLMULTI)) {
|
|
i40e_set_promisc(vsi);
|
|
}
|
|
} else
|
|
i40e_init_locked(pf);
|
|
} else
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
i40e_stop(pf);
|
|
pf->if_flags = ifp->if_flags;
|
|
I40E_PF_UNLOCK(pf);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
IOCTL_DEBUGOUT("ioctl: SIOCADDMULTI");
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
I40E_PF_LOCK(pf);
|
|
i40e_disable_intr(vsi);
|
|
i40e_add_multi(vsi);
|
|
i40e_enable_intr(vsi);
|
|
I40E_PF_UNLOCK(pf);
|
|
}
|
|
break;
|
|
case SIOCDELMULTI:
|
|
IOCTL_DEBUGOUT("ioctl: SIOCDELMULTI");
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
I40E_PF_LOCK(pf);
|
|
i40e_disable_intr(vsi);
|
|
i40e_del_multi(vsi);
|
|
i40e_enable_intr(vsi);
|
|
I40E_PF_UNLOCK(pf);
|
|
}
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
IOCTL_DEBUGOUT("ioctl: SIOCxIFMEDIA (Get/Set Interface Media)");
|
|
error = ifmedia_ioctl(ifp, ifr, &vsi->media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
{
|
|
int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
IOCTL_DEBUGOUT("ioctl: SIOCSIFCAP (Set Capabilities)");
|
|
|
|
i40e_cap_txcsum_tso(vsi, ifp, mask);
|
|
|
|
if (mask & IFCAP_RXCSUM)
|
|
ifp->if_capenable ^= IFCAP_RXCSUM;
|
|
if (mask & IFCAP_RXCSUM_IPV6)
|
|
ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
|
|
if (mask & IFCAP_LRO)
|
|
ifp->if_capenable ^= IFCAP_LRO;
|
|
if (mask & IFCAP_VLAN_HWTAGGING)
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
|
|
if (mask & IFCAP_VLAN_HWFILTER)
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
|
|
if (mask & IFCAP_VLAN_HWTSO)
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
I40E_PF_LOCK(pf);
|
|
i40e_init_locked(pf);
|
|
I40E_PF_UNLOCK(pf);
|
|
}
|
|
VLAN_CAPABILITIES(ifp);
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
IOCTL_DEBUGOUT1("ioctl: UNKNOWN (0x%X)\n", (int)command);
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Init entry point
|
|
*
|
|
* This routine is used in two ways. It is used by the stack as
|
|
* init entry point in network interface structure. It is also used
|
|
* by the driver as a hw/sw initialization routine to get to a
|
|
* consistent state.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
**********************************************************************/
|
|
|
|
static void
|
|
i40e_init_locked(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_hw *hw = &pf->hw;
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
struct ifnet *ifp = vsi->ifp;
|
|
device_t dev = pf->dev;
|
|
struct i40e_filter_control_settings filter;
|
|
u8 tmpaddr[ETHER_ADDR_LEN];
|
|
int ret;
|
|
|
|
mtx_assert(&pf->pf_mtx, MA_OWNED);
|
|
INIT_DEBUGOUT("i40e_init: begin");
|
|
i40e_stop(pf);
|
|
|
|
/* Get the latest mac address... User might use a LAA */
|
|
bcopy(IF_LLADDR(vsi->ifp), tmpaddr,
|
|
I40E_ETH_LENGTH_OF_ADDRESS);
|
|
if (!cmp_etheraddr(hw->mac.addr, tmpaddr) &&
|
|
i40e_validate_mac_addr(tmpaddr)) {
|
|
bcopy(tmpaddr, hw->mac.addr,
|
|
I40E_ETH_LENGTH_OF_ADDRESS);
|
|
ret = i40e_aq_mac_address_write(hw,
|
|
I40E_AQC_WRITE_TYPE_LAA_ONLY,
|
|
hw->mac.addr, NULL);
|
|
if (ret) {
|
|
device_printf(dev, "LLA address"
|
|
"change failed!!\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Set the various hardware offload abilities */
|
|
ifp->if_hwassist = 0;
|
|
if (ifp->if_capenable & IFCAP_TSO)
|
|
ifp->if_hwassist |= CSUM_TSO;
|
|
if (ifp->if_capenable & IFCAP_TXCSUM)
|
|
ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
|
|
if (ifp->if_capenable & IFCAP_TXCSUM_IPV6)
|
|
ifp->if_hwassist |= (CSUM_TCP_IPV6 | CSUM_UDP_IPV6);
|
|
|
|
/* Set up the device filtering */
|
|
bzero(&filter, sizeof(filter));
|
|
filter.enable_ethtype = TRUE;
|
|
filter.enable_macvlan = TRUE;
|
|
#ifdef I40E_FDIR
|
|
filter.enable_fdir = TRUE;
|
|
#endif
|
|
if (i40e_set_filter_control(hw, &filter))
|
|
device_printf(dev, "set_filter_control() failed\n");
|
|
|
|
/* Set up RSS */
|
|
i40e_config_rss(vsi);
|
|
|
|
/* Setup the VSI */
|
|
i40e_setup_vsi(vsi);
|
|
|
|
/*
|
|
** Prepare the rings, hmc contexts, etc...
|
|
*/
|
|
if (i40e_initialize_vsi(vsi)) {
|
|
device_printf(dev,"initialize vsi failed!!\n");
|
|
return;
|
|
}
|
|
|
|
/* Add protocol filters to list */
|
|
i40e_init_filters(vsi);
|
|
|
|
/* Setup vlan's if needed */
|
|
i40e_setup_vlan_filters(vsi);
|
|
|
|
/* Start the local timer */
|
|
callout_reset(&pf->timer, hz, i40e_local_timer, pf);
|
|
|
|
/* Set up MSI/X routing and the ITR settings */
|
|
if (i40e_enable_msix) {
|
|
i40e_configure_msix(pf);
|
|
i40e_configure_itr(pf);
|
|
} else
|
|
i40e_configure_legacy(pf);
|
|
|
|
/*
|
|
** Only a temporary workaround for RX hangs
|
|
*/
|
|
if (rd32(hw, I40E_PRTRPB_SLW) != 0x30000)
|
|
wr32(hw, I40E_PRTRPB_SLW, 0x30000);
|
|
|
|
i40e_enable_rings(vsi);
|
|
|
|
i40e_aq_set_default_vsi(hw, vsi->seid, NULL);
|
|
|
|
/* Flow control setup */
|
|
/* NOTE: flow control currently doesn't work correctly */
|
|
// i40e_set_fc_mode(pf, I40E_FC_FULL);
|
|
|
|
/* Set MTU in hardware*/
|
|
if (ifp->if_mtu > ETHERMTU) {
|
|
int aq_error =
|
|
i40e_aq_set_mac_config(hw, vsi->max_frame_size,
|
|
TRUE, 0, NULL);
|
|
if (aq_error)
|
|
device_printf(vsi->dev,
|
|
"aq_set_mac_config in init error, code %d\n",
|
|
aq_error);
|
|
}
|
|
|
|
/* And now turn on interrupts */
|
|
i40e_enable_intr(vsi);
|
|
|
|
/* Now inform the stack we're ready */
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
i40e_init(void *arg)
|
|
{
|
|
struct i40e_pf *pf = arg;
|
|
|
|
I40E_PF_LOCK(pf);
|
|
i40e_init_locked(pf);
|
|
I40E_PF_UNLOCK(pf);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
**
|
|
** MSIX Interrupt Handlers and Tasklets
|
|
**
|
|
*/
|
|
static void
|
|
i40e_handle_que(void *context, int pending)
|
|
{
|
|
struct i40e_queue *que = context;
|
|
struct i40e_vsi *vsi = que->vsi;
|
|
struct i40e_hw *hw = vsi->hw;
|
|
struct tx_ring *txr = &que->txr;
|
|
struct ifnet *ifp = vsi->ifp;
|
|
bool more;
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
more = i40e_rxeof(que, I40E_RX_LIMIT);
|
|
I40E_TX_LOCK(txr);
|
|
i40e_txeof(que);
|
|
if (!drbr_empty(ifp, txr->br))
|
|
i40e_mq_start_locked(ifp, txr);
|
|
I40E_TX_UNLOCK(txr);
|
|
if (more) {
|
|
taskqueue_enqueue(que->tq, &que->task);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Reenable this interrupt - hmmm */
|
|
i40e_enable_queue(hw, que->me);
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Legacy Interrupt Service routine
|
|
*
|
|
**********************************************************************/
|
|
void
|
|
i40e_intr(void *arg)
|
|
{
|
|
struct i40e_pf *pf = arg;
|
|
struct i40e_hw *hw = &pf->hw;
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
struct i40e_queue *que = vsi->queues;
|
|
struct ifnet *ifp = vsi->ifp;
|
|
struct tx_ring *txr = &que->txr;
|
|
u32 reg, icr0, mask;
|
|
bool more_tx, more_rx;
|
|
|
|
++que->irqs;
|
|
|
|
/* Protect against spurious interrupts */
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
return;
|
|
|
|
icr0 = rd32(hw, I40E_PFINT_ICR0);
|
|
|
|
reg = rd32(hw, I40E_PFINT_DYN_CTL0);
|
|
reg = reg | I40E_PFINT_DYN_CTL0_CLEARPBA_MASK;
|
|
wr32(hw, I40E_PFINT_DYN_CTL0, reg);
|
|
|
|
mask = rd32(hw, I40E_PFINT_ICR0_ENA);
|
|
|
|
if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) {
|
|
taskqueue_enqueue(pf->tq, &pf->adminq);
|
|
return;
|
|
}
|
|
|
|
more_rx = i40e_rxeof(que, I40E_RX_LIMIT);
|
|
|
|
I40E_TX_LOCK(txr);
|
|
more_tx = i40e_txeof(que);
|
|
if (!drbr_empty(vsi->ifp, txr->br))
|
|
more_tx = 1;
|
|
I40E_TX_UNLOCK(txr);
|
|
|
|
/* re-enable other interrupt causes */
|
|
wr32(hw, I40E_PFINT_ICR0_ENA, mask);
|
|
|
|
/* And now the queues */
|
|
reg = rd32(hw, I40E_QINT_RQCTL(0));
|
|
reg |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
|
|
wr32(hw, I40E_QINT_RQCTL(0), reg);
|
|
|
|
reg = rd32(hw, I40E_QINT_TQCTL(0));
|
|
reg |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
|
|
reg &= ~I40E_PFINT_ICR0_INTEVENT_MASK;
|
|
wr32(hw, I40E_QINT_TQCTL(0), reg);
|
|
|
|
i40e_enable_legacy(hw);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* MSIX VSI Interrupt Service routine
|
|
*
|
|
**********************************************************************/
|
|
void
|
|
i40e_msix_que(void *arg)
|
|
{
|
|
struct i40e_queue *que = arg;
|
|
struct i40e_vsi *vsi = que->vsi;
|
|
struct i40e_hw *hw = vsi->hw;
|
|
struct tx_ring *txr = &que->txr;
|
|
bool more_tx, more_rx;
|
|
|
|
++que->irqs;
|
|
|
|
more_rx = i40e_rxeof(que, I40E_RX_LIMIT);
|
|
|
|
I40E_TX_LOCK(txr);
|
|
more_tx = i40e_txeof(que);
|
|
/*
|
|
** Make certain that if the stack
|
|
** has anything queued the task gets
|
|
** scheduled to handle it.
|
|
*/
|
|
if (!drbr_empty(vsi->ifp, txr->br))
|
|
more_tx = 1;
|
|
I40E_TX_UNLOCK(txr);
|
|
|
|
i40e_set_queue_rx_itr(que);
|
|
i40e_set_queue_tx_itr(que);
|
|
|
|
if (more_tx || more_rx)
|
|
taskqueue_enqueue(que->tq, &que->task);
|
|
else
|
|
i40e_enable_queue(hw, que->me);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* MSIX Admin Queue Interrupt Service routine
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
i40e_msix_adminq(void *arg)
|
|
{
|
|
struct i40e_pf *pf = arg;
|
|
struct i40e_hw *hw = &pf->hw;
|
|
u32 reg, mask;
|
|
|
|
++pf->admin_irq;
|
|
|
|
reg = rd32(hw, I40E_PFINT_ICR0);
|
|
mask = rd32(hw, I40E_PFINT_ICR0_ENA);
|
|
|
|
/* Check on the cause */
|
|
if (reg & I40E_PFINT_ICR0_ADMINQ_MASK)
|
|
mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
|
|
|
|
if (reg & I40E_PFINT_ICR0_MAL_DETECT_MASK)
|
|
mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK;
|
|
|
|
if (reg & I40E_PFINT_ICR0_VFLR_MASK)
|
|
mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK;
|
|
|
|
reg = rd32(hw, I40E_PFINT_DYN_CTL0);
|
|
reg = reg | I40E_PFINT_DYN_CTL0_CLEARPBA_MASK;
|
|
wr32(hw, I40E_PFINT_DYN_CTL0, reg);
|
|
|
|
taskqueue_enqueue(pf->tq, &pf->adminq);
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Media Ioctl callback
|
|
*
|
|
* This routine is called whenever the user queries the status of
|
|
* the interface using ifconfig.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
i40e_media_status(struct ifnet * ifp, struct ifmediareq * ifmr)
|
|
{
|
|
struct i40e_vsi *vsi = ifp->if_softc;
|
|
struct i40e_pf *pf = (struct i40e_pf *)vsi->back;
|
|
struct i40e_hw *hw = &pf->hw;
|
|
|
|
INIT_DEBUGOUT("i40e_media_status: begin");
|
|
I40E_PF_LOCK(pf);
|
|
|
|
i40e_update_link_status(pf);
|
|
|
|
ifmr->ifm_status = IFM_AVALID;
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
|
|
if (!vsi->link_up) {
|
|
I40E_PF_UNLOCK(pf);
|
|
return;
|
|
}
|
|
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
/* Hardware is always full-duplex */
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
|
|
switch (hw->phy.link_info.phy_type) {
|
|
/* 100 M */
|
|
case I40E_PHY_TYPE_100BASE_TX:
|
|
ifmr->ifm_active |= IFM_100_TX;
|
|
break;
|
|
/* 1 G */
|
|
case I40E_PHY_TYPE_1000BASE_T:
|
|
ifmr->ifm_active |= IFM_1000_T;
|
|
break;
|
|
/* 10 G */
|
|
case I40E_PHY_TYPE_10GBASE_CR1_CU:
|
|
case I40E_PHY_TYPE_10GBASE_SFPP_CU:
|
|
ifmr->ifm_active |= IFM_10G_TWINAX;
|
|
break;
|
|
case I40E_PHY_TYPE_10GBASE_SR:
|
|
ifmr->ifm_active |= IFM_10G_SR;
|
|
break;
|
|
case I40E_PHY_TYPE_10GBASE_LR:
|
|
ifmr->ifm_active |= IFM_10G_LR;
|
|
break;
|
|
/* 40 G */
|
|
case I40E_PHY_TYPE_40GBASE_CR4:
|
|
case I40E_PHY_TYPE_40GBASE_CR4_CU:
|
|
ifmr->ifm_active |= IFM_40G_CR4;
|
|
break;
|
|
case I40E_PHY_TYPE_40GBASE_SR4:
|
|
ifmr->ifm_active |= IFM_40G_SR4;
|
|
break;
|
|
case I40E_PHY_TYPE_40GBASE_LR4:
|
|
ifmr->ifm_active |= IFM_40G_LR4;
|
|
break;
|
|
/*
|
|
* FreeBSD doesn't know about the other phy
|
|
* types this hardware supports.
|
|
*/
|
|
default:
|
|
ifmr->ifm_active |= IFM_UNKNOWN;
|
|
break;
|
|
}
|
|
/* Report flow control status as well */
|
|
/* TODO: Something special if PFC is enabled instead */
|
|
if (hw->phy.link_info.an_info & I40E_AQ_LINK_PAUSE_TX)
|
|
ifmr->ifm_active |= IFM_ETH_TXPAUSE;
|
|
if (hw->phy.link_info.an_info & I40E_AQ_LINK_PAUSE_RX)
|
|
ifmr->ifm_active |= IFM_ETH_RXPAUSE;
|
|
|
|
I40E_PF_UNLOCK(pf);
|
|
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Media Ioctl callback
|
|
*
|
|
* This routine is called when the user changes speed/duplex using
|
|
* media/mediopt option with ifconfig.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
i40e_media_change(struct ifnet * ifp)
|
|
{
|
|
struct i40e_vsi *vsi = ifp->if_softc;
|
|
struct ifmedia *ifm = &vsi->media;
|
|
|
|
INIT_DEBUGOUT("i40e_media_change: begin");
|
|
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return (EINVAL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
#ifdef I40E_FDIR
|
|
/*
|
|
** ATR: Application Targetted Receive - creates a filter
|
|
** based on TX flow info that will keep the receive
|
|
** portion of the flow on the same queue. Based on the
|
|
** implementation this is only available for TCP connections
|
|
*/
|
|
void
|
|
i40e_atr(struct i40e_queue *que, struct tcphdr *th, int etype)
|
|
{
|
|
struct i40e_vsi *vsi = que->vsi;
|
|
struct tx_ring *txr = &que->txr;
|
|
struct i40e_filter_program_desc *FDIR;
|
|
u32 ptype, dtype;
|
|
int idx;
|
|
|
|
/* check if ATR is enabled and sample rate */
|
|
if ((!i40e_enable_fdir) || (!txr->atr_rate))
|
|
return;
|
|
/*
|
|
** We sample all TCP SYN/FIN packets,
|
|
** or at the selected sample rate
|
|
*/
|
|
txr->atr_count++;
|
|
if (((th->th_flags & (TH_FIN | TH_SYN)) == 0) &&
|
|
(txr->atr_count < txr->atr_rate))
|
|
return;
|
|
txr->atr_count = 0;
|
|
|
|
/* Get a descriptor to use */
|
|
idx = txr->next_avail;
|
|
FDIR = (struct i40e_filter_program_desc *) &txr->base[idx];
|
|
if (++idx == que->num_desc)
|
|
idx = 0;
|
|
txr->avail--;
|
|
txr->next_avail = idx;
|
|
|
|
ptype = (que->me << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
|
|
I40E_TXD_FLTR_QW0_QINDEX_MASK;
|
|
|
|
ptype |= (etype == ETHERTYPE_IP) ?
|
|
(I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
|
|
I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
|
|
(I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
|
|
I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
|
|
|
|
ptype |= vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
|
|
|
|
dtype = I40E_TX_DESC_DTYPE_FILTER_PROG;
|
|
|
|
/*
|
|
** We use the TCP TH_FIN as a trigger to remove
|
|
** the filter, otherwise its an update.
|
|
*/
|
|
dtype |= (th->th_flags & TH_FIN) ?
|
|
(I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
|
|
I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
|
|
(I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
|
|
I40E_TXD_FLTR_QW1_PCMD_SHIFT);
|
|
|
|
dtype |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
|
|
I40E_TXD_FLTR_QW1_DEST_SHIFT;
|
|
|
|
dtype |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
|
|
I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
|
|
|
|
FDIR->qindex_flex_ptype_vsi = htole32(ptype);
|
|
FDIR->dtype_cmd_cntindex = htole32(dtype);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
|
|
static void
|
|
i40e_set_promisc(struct i40e_vsi *vsi)
|
|
{
|
|
struct ifnet *ifp = vsi->ifp;
|
|
struct i40e_hw *hw = vsi->hw;
|
|
int err, mcnt = 0;
|
|
bool uni = FALSE, multi = FALSE;
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI)
|
|
multi = TRUE;
|
|
else { /* Need to count the multicast addresses */
|
|
struct ifmultiaddr *ifma;
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
if (mcnt == MAX_MULTICAST_ADDR)
|
|
break;
|
|
mcnt++;
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
}
|
|
|
|
if (mcnt >= MAX_MULTICAST_ADDR)
|
|
multi = TRUE;
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
uni = TRUE;
|
|
|
|
err = i40e_aq_set_vsi_unicast_promiscuous(hw,
|
|
vsi->seid, uni, NULL);
|
|
err = i40e_aq_set_vsi_multicast_promiscuous(hw,
|
|
vsi->seid, multi, NULL);
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Filter Routines
|
|
*
|
|
* Routines for multicast and vlan filter management.
|
|
*
|
|
*********************************************************************/
|
|
static void
|
|
i40e_add_multi(struct i40e_vsi *vsi)
|
|
{
|
|
struct ifmultiaddr *ifma;
|
|
struct ifnet *ifp = vsi->ifp;
|
|
struct i40e_hw *hw = vsi->hw;
|
|
int mcnt = 0, flags;
|
|
|
|
IOCTL_DEBUGOUT("i40e_add_multi: begin");
|
|
|
|
if_maddr_rlock(ifp);
|
|
/*
|
|
** First just get a count, to decide if we
|
|
** we simply use multicast promiscuous.
|
|
*/
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
mcnt++;
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
|
|
if (__predict_false(mcnt >= MAX_MULTICAST_ADDR)) {
|
|
/* delete existing MC filters */
|
|
i40e_del_hw_filters(vsi, mcnt);
|
|
i40e_aq_set_vsi_multicast_promiscuous(hw,
|
|
vsi->seid, TRUE, NULL);
|
|
return;
|
|
}
|
|
|
|
mcnt = 0;
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
i40e_add_mc_filter(vsi,
|
|
(u8*)LLADDR((struct sockaddr_dl *) ifma->ifma_addr));
|
|
mcnt++;
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
if (mcnt > 0) {
|
|
flags = (I40E_FILTER_ADD | I40E_FILTER_USED | I40E_FILTER_MC);
|
|
i40e_add_hw_filters(vsi, flags, mcnt);
|
|
}
|
|
|
|
IOCTL_DEBUGOUT("i40e_add_multi: end");
|
|
return;
|
|
}
|
|
|
|
static void
|
|
i40e_del_multi(struct i40e_vsi *vsi)
|
|
{
|
|
struct ifnet *ifp = vsi->ifp;
|
|
struct ifmultiaddr *ifma;
|
|
struct i40e_mac_filter *f;
|
|
int mcnt = 0;
|
|
bool match = FALSE;
|
|
|
|
IOCTL_DEBUGOUT("i40e_del_multi: begin");
|
|
|
|
/* Search for removed multicast addresses */
|
|
if_maddr_rlock(ifp);
|
|
SLIST_FOREACH(f, &vsi->ftl, next) {
|
|
if ((f->flags & I40E_FILTER_USED) && (f->flags & I40E_FILTER_MC)) {
|
|
match = FALSE;
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
u8 *mc_addr = (u8 *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
|
|
if (cmp_etheraddr(f->macaddr, mc_addr)) {
|
|
match = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
if (match == FALSE) {
|
|
f->flags |= I40E_FILTER_DEL;
|
|
mcnt++;
|
|
}
|
|
}
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
|
|
if (mcnt > 0)
|
|
i40e_del_hw_filters(vsi, mcnt);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Timer routine
|
|
*
|
|
* This routine checks for link status,updates statistics,
|
|
* and runs the watchdog check.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
i40e_local_timer(void *arg)
|
|
{
|
|
struct i40e_pf *pf = arg;
|
|
struct i40e_hw *hw = &pf->hw;
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
struct i40e_queue *que = vsi->queues;
|
|
device_t dev = pf->dev;
|
|
int hung = 0;
|
|
u32 mask;
|
|
|
|
mtx_assert(&pf->pf_mtx, MA_OWNED);
|
|
|
|
/* Fire off the adminq task */
|
|
taskqueue_enqueue(pf->tq, &pf->adminq);
|
|
|
|
/* Update stats */
|
|
i40e_update_stats_counters(pf);
|
|
|
|
/*
|
|
** Check status on the queues for a hang
|
|
*/
|
|
mask = (I40E_PFINT_DYN_CTLN_INTENA_MASK |
|
|
I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK);
|
|
|
|
for (int i = 0; i < vsi->num_queues; i++,que++) {
|
|
/* Any queues with outstanding work get a sw irq */
|
|
if (que->busy)
|
|
wr32(hw, I40E_PFINT_DYN_CTLN(que->me), mask);
|
|
/*
|
|
** Each time txeof runs without cleaning, but there
|
|
** are uncleaned descriptors it increments busy. If
|
|
** we get to 5 we declare it hung.
|
|
*/
|
|
if (que->busy >= I40E_MAX_TX_BUSY) {
|
|
device_printf(dev,"Warning queue %d "
|
|
"appears to be hung!", i);
|
|
++hung;
|
|
}
|
|
}
|
|
/* Only reinit if all queues show hung */
|
|
if (hung == vsi->num_queues)
|
|
goto hung;
|
|
|
|
callout_reset(&pf->timer, hz, i40e_local_timer, pf);
|
|
return;
|
|
|
|
hung:
|
|
device_printf(dev, "Local Timer: HANG DETECT - Resetting!!\n");
|
|
i40e_init_locked(pf);
|
|
}
|
|
|
|
/*
|
|
** Note: this routine updates the OS on the link state
|
|
** the real check of the hardware only happens with
|
|
** a link interrupt.
|
|
*/
|
|
static void
|
|
i40e_update_link_status(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
struct i40e_hw *hw = &pf->hw;
|
|
struct ifnet *ifp = vsi->ifp;
|
|
device_t dev = pf->dev;
|
|
enum i40e_fc_mode fc;
|
|
|
|
|
|
if (vsi->link_up){
|
|
if (vsi->link_active == FALSE) {
|
|
i40e_aq_get_link_info(hw, TRUE, NULL, NULL);
|
|
if (bootverbose) {
|
|
fc = hw->fc.current_mode;
|
|
device_printf(dev,"Link is up %d Gbps %s,"
|
|
" Flow Control: %s\n",
|
|
((vsi->link_speed == I40E_LINK_SPEED_40GB)? 40:10),
|
|
"Full Duplex", i40e_fc_string[fc]);
|
|
}
|
|
vsi->link_active = TRUE;
|
|
if_link_state_change(ifp, LINK_STATE_UP);
|
|
}
|
|
} else { /* Link down */
|
|
if (vsi->link_active == TRUE) {
|
|
if (bootverbose)
|
|
device_printf(dev,"Link is Down\n");
|
|
if_link_state_change(ifp, LINK_STATE_DOWN);
|
|
vsi->link_active = FALSE;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine disables all traffic on the adapter by issuing a
|
|
* global reset on the MAC and deallocates TX/RX buffers.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
i40e_stop(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
struct ifnet *ifp = vsi->ifp;
|
|
|
|
mtx_assert(&pf->pf_mtx, MA_OWNED);
|
|
|
|
INIT_DEBUGOUT("i40e_stop: begin\n");
|
|
i40e_disable_intr(vsi);
|
|
i40e_disable_rings(vsi);
|
|
|
|
/* Tell the stack that the interface is no longer active */
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
/* Stop the local timer */
|
|
callout_stop(&pf->timer);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup MSIX Interrupt resources and handlers for the VSI
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
i40e_assign_vsi_legacy(struct i40e_pf *pf)
|
|
{
|
|
device_t dev = pf->dev;
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
struct i40e_queue *que = vsi->queues;
|
|
int error, rid = 0;
|
|
|
|
if (pf->msix == 1)
|
|
rid = 1;
|
|
pf->res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
|
|
&rid, RF_SHAREABLE | RF_ACTIVE);
|
|
if (pf->res == NULL) {
|
|
device_printf(dev,"Unable to allocate"
|
|
" bus resource: vsi legacy/msi interrupt\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* Set the handler function */
|
|
error = bus_setup_intr(dev, pf->res,
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL,
|
|
i40e_intr, pf, &pf->tag);
|
|
if (error) {
|
|
pf->res = NULL;
|
|
device_printf(dev, "Failed to register legacy/msi handler");
|
|
return (error);
|
|
}
|
|
bus_describe_intr(dev, pf->res, pf->tag, "irq0");
|
|
TASK_INIT(&que->tx_task, 0, i40e_deferred_mq_start, que);
|
|
TASK_INIT(&que->task, 0, i40e_handle_que, que);
|
|
que->tq = taskqueue_create_fast("i40e_que", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &que->tq);
|
|
taskqueue_start_threads(&que->tq, 1, PI_NET, "%s que",
|
|
device_get_nameunit(dev));
|
|
TASK_INIT(&pf->adminq, 0, i40e_do_adminq, pf);
|
|
pf->tq = taskqueue_create_fast("i40e_adm", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &pf->tq);
|
|
taskqueue_start_threads(&pf->tq, 1, PI_NET, "%s adminq",
|
|
device_get_nameunit(dev));
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup MSIX Interrupt resources and handlers for the VSI
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
i40e_assign_vsi_msix(struct i40e_pf *pf)
|
|
{
|
|
device_t dev = pf->dev;
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
struct i40e_queue *que = vsi->queues;
|
|
struct tx_ring *txr;
|
|
int error, rid, vector = 0;
|
|
|
|
/* Admin Que is vector 0*/
|
|
rid = vector + 1;
|
|
pf->res = bus_alloc_resource_any(dev,
|
|
SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
|
|
if (!pf->res) {
|
|
device_printf(dev,"Unable to allocate"
|
|
" bus resource: Adminq interrupt [%d]\n", rid);
|
|
return (ENXIO);
|
|
}
|
|
/* Set the adminq vector and handler */
|
|
error = bus_setup_intr(dev, pf->res,
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL,
|
|
i40e_msix_adminq, pf, &pf->tag);
|
|
if (error) {
|
|
pf->res = NULL;
|
|
device_printf(dev, "Failed to register Admin que handler");
|
|
return (error);
|
|
}
|
|
bus_describe_intr(dev, pf->res, pf->tag, "aq");
|
|
pf->admvec = vector;
|
|
/* Tasklet for Admin Queue */
|
|
TASK_INIT(&pf->adminq, 0, i40e_do_adminq, pf);
|
|
pf->tq = taskqueue_create_fast("i40e_adm", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &pf->tq);
|
|
taskqueue_start_threads(&pf->tq, 1, PI_NET, "%s adminq",
|
|
device_get_nameunit(pf->dev));
|
|
++vector;
|
|
|
|
/* Now set up the stations */
|
|
for (int i = 0; i < vsi->num_queues; i++, vector++, que++) {
|
|
rid = vector + 1;
|
|
txr = &que->txr;
|
|
que->res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
if (que->res == NULL) {
|
|
device_printf(dev,"Unable to allocate"
|
|
" bus resource: que interrupt [%d]\n", vector);
|
|
return (ENXIO);
|
|
}
|
|
/* Set the handler function */
|
|
error = bus_setup_intr(dev, que->res,
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL,
|
|
i40e_msix_que, que, &que->tag);
|
|
if (error) {
|
|
que->res = NULL;
|
|
device_printf(dev, "Failed to register que handler");
|
|
return (error);
|
|
}
|
|
bus_describe_intr(dev, que->res, que->tag, "q%d", i);
|
|
/* Bind the vector to a CPU */
|
|
bus_bind_intr(dev, que->res, i);
|
|
que->msix = vector;
|
|
TASK_INIT(&que->tx_task, 0, i40e_deferred_mq_start, que);
|
|
TASK_INIT(&que->task, 0, i40e_handle_que, que);
|
|
que->tq = taskqueue_create_fast("i40e_que", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &que->tq);
|
|
taskqueue_start_threads(&que->tq, 1, PI_NET, "%s que",
|
|
device_get_nameunit(pf->dev));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Allocate MSI/X vectors
|
|
*/
|
|
static int
|
|
i40e_init_msix(struct i40e_pf *pf)
|
|
{
|
|
device_t dev = pf->dev;
|
|
int rid, want, vectors, queues, available;
|
|
|
|
/* Override by tuneable */
|
|
if (i40e_enable_msix == 0)
|
|
goto msi;
|
|
|
|
/* First try MSI/X */
|
|
rid = PCIR_BAR(I40E_BAR);
|
|
pf->msix_mem = bus_alloc_resource_any(dev,
|
|
SYS_RES_MEMORY, &rid, RF_ACTIVE);
|
|
if (!pf->msix_mem) {
|
|
/* May not be enabled */
|
|
device_printf(pf->dev,
|
|
"Unable to map MSIX table \n");
|
|
goto msi;
|
|
}
|
|
|
|
available = pci_msix_count(dev);
|
|
if (available == 0) { /* system has msix disabled */
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
rid, pf->msix_mem);
|
|
pf->msix_mem = NULL;
|
|
goto msi;
|
|
}
|
|
|
|
/* Figure out a reasonable auto config value */
|
|
queues = (mp_ncpus > (available - 1)) ? (available - 1) : mp_ncpus;
|
|
|
|
/* Override with hardcoded value if sane */
|
|
if ((i40e_max_queues != 0) && (i40e_max_queues <= queues))
|
|
queues = i40e_max_queues;
|
|
|
|
/*
|
|
** Want one vector (RX/TX pair) per queue
|
|
** plus an additional for the admin queue.
|
|
*/
|
|
want = queues + 1;
|
|
if (want <= available) /* Have enough */
|
|
vectors = want;
|
|
else {
|
|
device_printf(pf->dev,
|
|
"MSIX Configuration Problem, "
|
|
"%d vectors available but %d wanted!\n",
|
|
available, want);
|
|
return (0); /* Will go to Legacy setup */
|
|
}
|
|
|
|
// NOTE this is all simplified based on ONE VSI
|
|
if (pci_alloc_msix(dev, &vectors) == 0) {
|
|
device_printf(pf->dev,
|
|
"Using MSIX interrupts with %d vectors\n", vectors);
|
|
pf->msix = vectors;
|
|
pf->vsi.num_queues = queues;
|
|
return (vectors);
|
|
}
|
|
msi:
|
|
vectors = pci_msi_count(dev);
|
|
pf->vsi.num_queues = 1;
|
|
pf->msix = 1;
|
|
i40e_max_queues = 1;
|
|
i40e_enable_msix = 0;
|
|
if (vectors == 1 && pci_alloc_msi(dev, &vectors) == 0)
|
|
device_printf(pf->dev,"Using an MSI interrupt\n");
|
|
else {
|
|
pf->msix = 0;
|
|
device_printf(pf->dev,"Using a Legacy interrupt\n");
|
|
}
|
|
return (vectors);
|
|
}
|
|
|
|
|
|
/*
|
|
* Plumb MSI/X vectors
|
|
*/
|
|
static void
|
|
i40e_configure_msix(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_hw *hw = &pf->hw;
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
u32 reg;
|
|
u16 vector = 1;
|
|
|
|
/* First set up the adminq - vector 0 */
|
|
wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */
|
|
rd32(hw, I40E_PFINT_ICR0); /* read to clear */
|
|
|
|
reg = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK |
|
|
I40E_PFINT_ICR0_ENA_GRST_MASK |
|
|
I40E_PFINT_ICR0_HMC_ERR_MASK |
|
|
I40E_PFINT_ICR0_ENA_ADMINQ_MASK |
|
|
I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK |
|
|
I40E_PFINT_ICR0_ENA_VFLR_MASK |
|
|
I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK;
|
|
wr32(hw, I40E_PFINT_ICR0_ENA, reg);
|
|
|
|
wr32(hw, I40E_PFINT_LNKLST0, 0x7FF);
|
|
wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), 0x003E);
|
|
|
|
wr32(hw, I40E_PFINT_DYN_CTL0,
|
|
I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK |
|
|
I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK);
|
|
|
|
wr32(hw, I40E_PFINT_STAT_CTL0, 0);
|
|
|
|
/* Next configure the queues */
|
|
for (int i = 0; i < vsi->num_queues; i++, vector++) {
|
|
wr32(hw, I40E_PFINT_DYN_CTLN(i), i);
|
|
wr32(hw, I40E_PFINT_LNKLSTN(i), i);
|
|
|
|
reg = I40E_QINT_RQCTL_CAUSE_ENA_MASK |
|
|
(I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) |
|
|
(vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) |
|
|
(i << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) |
|
|
(I40E_QUEUE_TYPE_TX << I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT);
|
|
wr32(hw, I40E_QINT_RQCTL(i), reg);
|
|
|
|
reg = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
|
|
(I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
|
|
(vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
|
|
((i+1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
|
|
(I40E_QUEUE_TYPE_RX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
|
|
if (i == (vsi->num_queues - 1))
|
|
reg |= (I40E_QUEUE_EOL
|
|
<< I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT);
|
|
wr32(hw, I40E_QINT_TQCTL(i), reg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Configure for MSI single vector operation
|
|
*/
|
|
static void
|
|
i40e_configure_legacy(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_hw *hw = &pf->hw;
|
|
u32 reg;
|
|
|
|
|
|
wr32(hw, I40E_PFINT_ITR0(0), 0);
|
|
wr32(hw, I40E_PFINT_ITR0(1), 0);
|
|
|
|
|
|
/* Setup "other" causes */
|
|
reg = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK
|
|
| I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK
|
|
| I40E_PFINT_ICR0_ENA_GRST_MASK
|
|
| I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK
|
|
| I40E_PFINT_ICR0_ENA_GPIO_MASK
|
|
| I40E_PFINT_ICR0_ENA_LINK_STAT_CHANGE_MASK
|
|
| I40E_PFINT_ICR0_ENA_HMC_ERR_MASK
|
|
| I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK
|
|
| I40E_PFINT_ICR0_ENA_VFLR_MASK
|
|
| I40E_PFINT_ICR0_ENA_ADMINQ_MASK
|
|
;
|
|
wr32(hw, I40E_PFINT_ICR0_ENA, reg);
|
|
|
|
/* SW_ITR_IDX = 0, but don't change INTENA */
|
|
wr32(hw, I40E_PFINT_DYN_CTL0,
|
|
I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK |
|
|
I40E_PFINT_DYN_CTLN_INTENA_MSK_MASK);
|
|
/* SW_ITR_IDX = 0, OTHER_ITR_IDX = 0 */
|
|
wr32(hw, I40E_PFINT_STAT_CTL0, 0);
|
|
|
|
/* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */
|
|
wr32(hw, I40E_PFINT_LNKLST0, 0);
|
|
|
|
/* Associate the queue pair to the vector and enable the q int */
|
|
reg = I40E_QINT_RQCTL_CAUSE_ENA_MASK
|
|
| (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT)
|
|
| (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
|
|
wr32(hw, I40E_QINT_RQCTL(0), reg);
|
|
|
|
reg = I40E_QINT_TQCTL_CAUSE_ENA_MASK
|
|
| (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)
|
|
| (I40E_QUEUE_EOL << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT);
|
|
wr32(hw, I40E_QINT_TQCTL(0), reg);
|
|
|
|
/* Next enable the queue pair */
|
|
reg = rd32(hw, I40E_QTX_ENA(0));
|
|
reg |= I40E_QTX_ENA_QENA_REQ_MASK;
|
|
wr32(hw, I40E_QTX_ENA(0), reg);
|
|
|
|
reg = rd32(hw, I40E_QRX_ENA(0));
|
|
reg |= I40E_QRX_ENA_QENA_REQ_MASK;
|
|
wr32(hw, I40E_QRX_ENA(0), reg);
|
|
}
|
|
|
|
|
|
/*
|
|
* Set the Initial ITR state
|
|
*/
|
|
static void
|
|
i40e_configure_itr(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_hw *hw = &pf->hw;
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
struct i40e_queue *que = vsi->queues;
|
|
|
|
vsi->rx_itr_setting = i40e_rx_itr;
|
|
if (i40e_dynamic_rx_itr)
|
|
vsi->rx_itr_setting |= I40E_ITR_DYNAMIC;
|
|
vsi->tx_itr_setting = i40e_tx_itr;
|
|
if (i40e_dynamic_tx_itr)
|
|
vsi->tx_itr_setting |= I40E_ITR_DYNAMIC;
|
|
|
|
for (int i = 0; i < vsi->num_queues; i++, que++) {
|
|
struct tx_ring *txr = &que->txr;
|
|
struct rx_ring *rxr = &que->rxr;
|
|
|
|
wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, i),
|
|
vsi->rx_itr_setting);
|
|
rxr->itr = vsi->rx_itr_setting;
|
|
rxr->latency = I40E_AVE_LATENCY;
|
|
wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, i),
|
|
vsi->tx_itr_setting);
|
|
txr->itr = vsi->tx_itr_setting;
|
|
txr->latency = I40E_AVE_LATENCY;
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
i40e_allocate_pci_resources(struct i40e_pf *pf)
|
|
{
|
|
int rid;
|
|
device_t dev = pf->dev;
|
|
|
|
rid = PCIR_BAR(0);
|
|
pf->pci_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
|
|
&rid, RF_ACTIVE);
|
|
|
|
if (!(pf->pci_mem)) {
|
|
device_printf(dev,"Unable to allocate bus resource: memory\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
pf->osdep.mem_bus_space_tag =
|
|
rman_get_bustag(pf->pci_mem);
|
|
pf->osdep.mem_bus_space_handle =
|
|
rman_get_bushandle(pf->pci_mem);
|
|
pf->hw.hw_addr = (u8 *) &pf->osdep.mem_bus_space_handle;
|
|
|
|
pf->hw.back = &pf->osdep;
|
|
|
|
/*
|
|
** Now setup MSI or MSI/X, should
|
|
** return us the number of supported
|
|
** vectors. (Will be 1 for MSI)
|
|
*/
|
|
pf->msix = i40e_init_msix(pf);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
i40e_free_pci_resources(struct i40e_pf * pf)
|
|
{
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
struct i40e_queue *que = vsi->queues;
|
|
device_t dev = pf->dev;
|
|
int rid, memrid;
|
|
|
|
memrid = PCIR_BAR(I40E_BAR);
|
|
|
|
/* We may get here before stations are setup */
|
|
if ((!i40e_enable_msix) || (que == NULL))
|
|
goto early;
|
|
|
|
/*
|
|
** Release all msix VSI resources:
|
|
*/
|
|
for (int i = 0; i < vsi->num_queues; i++, que++) {
|
|
rid = que->msix + 1;
|
|
if (que->tag != NULL) {
|
|
bus_teardown_intr(dev, que->res, que->tag);
|
|
que->tag = NULL;
|
|
}
|
|
if (que->res != NULL)
|
|
bus_release_resource(dev, SYS_RES_IRQ, rid, que->res);
|
|
}
|
|
|
|
early:
|
|
/* Clean the AdminQ interrupt last */
|
|
if (pf->admvec) /* we are doing MSIX */
|
|
rid = pf->admvec + 1;
|
|
else
|
|
(pf->msix != 0) ? (rid = 1):(rid = 0);
|
|
|
|
if (pf->tag != NULL) {
|
|
bus_teardown_intr(dev, pf->res, pf->tag);
|
|
pf->tag = NULL;
|
|
}
|
|
if (pf->res != NULL)
|
|
bus_release_resource(dev, SYS_RES_IRQ, rid, pf->res);
|
|
|
|
if (pf->msix)
|
|
pci_release_msi(dev);
|
|
|
|
if (pf->msix_mem != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
memrid, pf->msix_mem);
|
|
|
|
if (pf->pci_mem != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(0), pf->pci_mem);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup networking device structure and register an interface.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
i40e_setup_interface(device_t dev, struct i40e_vsi *vsi)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct i40e_hw *hw = vsi->hw;
|
|
struct i40e_queue *que = vsi->queues;
|
|
struct i40e_aq_get_phy_abilities_resp abilities_resp;
|
|
enum i40e_status_code aq_error = 0;
|
|
|
|
INIT_DEBUGOUT("i40e_setup_interface: begin");
|
|
|
|
ifp = vsi->ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "can not allocate ifnet structure\n");
|
|
return (-1);
|
|
}
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_baudrate = 4000000000; // ??
|
|
ifp->if_init = i40e_init;
|
|
ifp->if_softc = vsi;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = i40e_ioctl;
|
|
|
|
ifp->if_transmit = i40e_mq_start;
|
|
|
|
ifp->if_qflush = i40e_qflush;
|
|
|
|
ifp->if_snd.ifq_maxlen = que->num_desc - 2;
|
|
|
|
ether_ifattach(ifp, hw->mac.addr);
|
|
|
|
vsi->max_frame_size =
|
|
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN
|
|
+ ETHER_VLAN_ENCAP_LEN;
|
|
|
|
/*
|
|
* Tell the upper layer(s) we support long frames.
|
|
*/
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
|
|
ifp->if_capabilities |= IFCAP_HWCSUM;
|
|
ifp->if_capabilities |= IFCAP_HWCSUM_IPV6;
|
|
ifp->if_capabilities |= IFCAP_TSO;
|
|
ifp->if_capabilities |= IFCAP_JUMBO_MTU;
|
|
ifp->if_capabilities |= IFCAP_LRO;
|
|
|
|
/* VLAN capabilties */
|
|
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING
|
|
| IFCAP_VLAN_HWTSO
|
|
| IFCAP_VLAN_MTU
|
|
| IFCAP_VLAN_HWCSUM;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
|
|
/*
|
|
** Don't turn this on by default, if vlans are
|
|
** created on another pseudo device (eg. lagg)
|
|
** then vlan events are not passed thru, breaking
|
|
** operation, but with HW FILTER off it works. If
|
|
** using vlans directly on the i40e driver you can
|
|
** enable this and get full hardware tag filtering.
|
|
*/
|
|
ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
|
|
|
|
/*
|
|
* Specify the media types supported by this adapter and register
|
|
* callbacks to update media and link information
|
|
*/
|
|
ifmedia_init(&vsi->media, IFM_IMASK, i40e_media_change,
|
|
i40e_media_status);
|
|
|
|
aq_error = i40e_aq_get_phy_capabilities(hw, FALSE, TRUE, &abilities_resp, NULL);
|
|
if (aq_error) {
|
|
printf("Error getting supported media types, AQ error %d\n", aq_error);
|
|
return (EPERM);
|
|
}
|
|
|
|
/* Display PHY's supported media types */
|
|
if (abilities_resp.phy_type & (1 << I40E_PHY_TYPE_100BASE_TX))
|
|
ifmedia_add(&vsi->media, IFM_ETHER | IFM_100_TX, 0, NULL);
|
|
|
|
if (abilities_resp.phy_type & (1 << I40E_PHY_TYPE_1000BASE_T))
|
|
ifmedia_add(&vsi->media, IFM_ETHER | IFM_1000_T, 0, NULL);
|
|
|
|
if (abilities_resp.phy_type & (1 << I40E_PHY_TYPE_10GBASE_CR1_CU) ||
|
|
abilities_resp.phy_type & (1 << I40E_PHY_TYPE_10GBASE_SFPP_CU))
|
|
ifmedia_add(&vsi->media, IFM_ETHER | IFM_10G_TWINAX, 0, NULL);
|
|
if (abilities_resp.phy_type & (1 << I40E_PHY_TYPE_10GBASE_SR))
|
|
ifmedia_add(&vsi->media, IFM_ETHER | IFM_10G_SR, 0, NULL);
|
|
if (abilities_resp.phy_type & (1 << I40E_PHY_TYPE_10GBASE_LR))
|
|
ifmedia_add(&vsi->media, IFM_ETHER | IFM_10G_LR, 0, NULL);
|
|
|
|
if (abilities_resp.phy_type & (1 << I40E_PHY_TYPE_40GBASE_CR4_CU) ||
|
|
abilities_resp.phy_type & (1 << I40E_PHY_TYPE_40GBASE_CR4))
|
|
ifmedia_add(&vsi->media, IFM_ETHER | IFM_40G_CR4, 0, NULL);
|
|
if (abilities_resp.phy_type & (1 << I40E_PHY_TYPE_40GBASE_SR4))
|
|
ifmedia_add(&vsi->media, IFM_ETHER | IFM_40G_SR4, 0, NULL);
|
|
if (abilities_resp.phy_type & (1 << I40E_PHY_TYPE_40GBASE_LR4))
|
|
ifmedia_add(&vsi->media, IFM_ETHER | IFM_40G_LR4, 0, NULL);
|
|
|
|
/* Use autoselect media by default */
|
|
ifmedia_add(&vsi->media, IFM_ETHER | IFM_AUTO, 0, NULL);
|
|
ifmedia_set(&vsi->media, IFM_ETHER | IFM_AUTO);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static bool
|
|
i40e_config_link(struct i40e_hw *hw)
|
|
{
|
|
bool check;
|
|
|
|
i40e_aq_get_link_info(hw, TRUE, NULL, NULL);
|
|
check = i40e_get_link_status(hw);
|
|
#ifdef I40E_DEBUG
|
|
printf("Link is %s\n", check ? "up":"down");
|
|
#endif
|
|
return (check);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize this VSI
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
i40e_setup_vsi(struct i40e_vsi *vsi)
|
|
{
|
|
struct i40e_hw *hw = vsi->hw;
|
|
device_t dev = vsi->dev;
|
|
struct i40e_aqc_get_switch_config_resp *sw_config;
|
|
struct i40e_vsi_context ctxt;
|
|
u8 aq_buf[I40E_AQ_LARGE_BUF];
|
|
int ret = I40E_SUCCESS;
|
|
u16 next = 0;
|
|
|
|
sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
|
|
ret = i40e_aq_get_switch_config(hw, sw_config,
|
|
sizeof(aq_buf), &next, NULL);
|
|
if (ret) {
|
|
device_printf(dev,"aq_get_switch_config failed!!\n");
|
|
return (ret);
|
|
}
|
|
#ifdef I40E_DEBUG
|
|
printf("Switch config: header reported: %d in structure, %d total\n",
|
|
sw_config->header.num_reported, sw_config->header.num_total);
|
|
printf("type=%d seid=%d uplink=%d downlink=%d\n",
|
|
sw_config->element[0].element_type,
|
|
sw_config->element[0].seid,
|
|
sw_config->element[0].uplink_seid,
|
|
sw_config->element[0].downlink_seid);
|
|
#endif
|
|
/* Save off this important value */
|
|
vsi->seid = sw_config->element[0].seid;
|
|
|
|
memset(&ctxt, 0, sizeof(ctxt));
|
|
ctxt.seid = vsi->seid;
|
|
ctxt.pf_num = hw->pf_id;
|
|
ret = i40e_aq_get_vsi_params(hw, &ctxt, NULL);
|
|
if (ret) {
|
|
device_printf(dev,"get vsi params failed %x!!\n", ret);
|
|
return (ret);
|
|
}
|
|
#ifdef I40E_DEBUG
|
|
printf("get_vsi_params: seid: %d, uplinkseid: %d, vsi_number: %d, "
|
|
"vsis_allocated: %d, vsis_unallocated: %d, flags: 0x%x, "
|
|
"pfnum: %d, vfnum: %d, stat idx: %d, enabled: %d\n", ctxt.seid,
|
|
ctxt.uplink_seid, ctxt.vsi_number,
|
|
ctxt.vsis_allocated, ctxt.vsis_unallocated,
|
|
ctxt.flags, ctxt.pf_num, ctxt.vf_num,
|
|
ctxt.info.stat_counter_idx, ctxt.info.up_enable_bits);
|
|
#endif
|
|
/*
|
|
** Set the queue and traffic class bits
|
|
** - when multiple traffic classes are supported
|
|
** this will need to be more robust.
|
|
*/
|
|
ctxt.info.valid_sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
|
|
ctxt.info.mapping_flags |= I40E_AQ_VSI_QUE_MAP_CONTIG;
|
|
ctxt.info.queue_mapping[0] = 0;
|
|
ctxt.info.tc_mapping[0] = 0x0800;
|
|
|
|
/* Set VLAN receive stripping mode */
|
|
ctxt.info.valid_sections |= I40E_AQ_VSI_PROP_VLAN_VALID;
|
|
ctxt.info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL;
|
|
if (vsi->ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
|
|
ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH;
|
|
else
|
|
ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
|
|
|
|
/* Keep copy of VSI info in VSI for statistic counters */
|
|
memcpy(&vsi->info, &ctxt.info, sizeof(ctxt.info));
|
|
|
|
/* Reset VSI statistics */
|
|
i40e_vsi_reset_stats(vsi);
|
|
vsi->hw_filters_add = 0;
|
|
vsi->hw_filters_del = 0;
|
|
|
|
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
|
|
if (ret)
|
|
device_printf(dev,"update vsi params failed %x!!\n",
|
|
hw->aq.asq_last_status);
|
|
return (ret);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize the VSI: this handles contexts, which means things
|
|
* like the number of descriptors, buffer size,
|
|
* plus we init the rings thru this function.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
i40e_initialize_vsi(struct i40e_vsi *vsi)
|
|
{
|
|
struct i40e_queue *que = vsi->queues;
|
|
device_t dev = vsi->dev;
|
|
struct i40e_hw *hw = vsi->hw;
|
|
int err = 0;
|
|
|
|
|
|
for (int i = 0; i < vsi->num_queues; i++, que++) {
|
|
struct tx_ring *txr = &que->txr;
|
|
struct rx_ring *rxr = &que->rxr;
|
|
struct i40e_hmc_obj_txq tctx;
|
|
struct i40e_hmc_obj_rxq rctx;
|
|
u32 txctl;
|
|
u16 size;
|
|
|
|
|
|
/* Setup the HMC TX Context */
|
|
size = que->num_desc * sizeof(struct i40e_tx_desc);
|
|
memset(&tctx, 0, sizeof(struct i40e_hmc_obj_txq));
|
|
tctx.new_context = 1;
|
|
tctx.base = (txr->dma.pa/128);
|
|
tctx.qlen = que->num_desc;
|
|
tctx.fc_ena = 0;
|
|
tctx.rdylist = vsi->info.qs_handle[0];
|
|
tctx.rdylist_act = 0;
|
|
err = i40e_clear_lan_tx_queue_context(hw, i);
|
|
if (err) {
|
|
device_printf(dev, "Unable to clear TX context\n");
|
|
break;
|
|
}
|
|
err = i40e_set_lan_tx_queue_context(hw, i, &tctx);
|
|
if (err) {
|
|
device_printf(dev, "Unable to set TX context\n");
|
|
break;
|
|
}
|
|
/* Associate the ring with this PF */
|
|
txctl = I40E_QTX_CTL_PF_QUEUE;
|
|
txctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
|
|
I40E_QTX_CTL_PF_INDX_MASK);
|
|
wr32(hw, I40E_QTX_CTL(i), txctl);
|
|
i40e_flush(hw);
|
|
|
|
/* Do ring (re)init */
|
|
i40e_init_tx_ring(que);
|
|
|
|
/* Next setup the HMC RX Context */
|
|
if (vsi->max_frame_size <= 2048)
|
|
rxr->mbuf_sz = MCLBYTES;
|
|
else
|
|
rxr->mbuf_sz = MJUMPAGESIZE;
|
|
|
|
u16 max_rxmax = rxr->mbuf_sz * hw->func_caps.rx_buf_chain_len;
|
|
|
|
/* Set up an RX context for the HMC */
|
|
memset(&rctx, 0, sizeof(struct i40e_hmc_obj_rxq));
|
|
rctx.dbuff = rxr->mbuf_sz >> I40E_RXQ_CTX_DBUFF_SHIFT;
|
|
/* ignore header split for now */
|
|
rctx.hbuff = 0 >> I40E_RXQ_CTX_HBUFF_SHIFT;
|
|
rctx.rxmax = (vsi->max_frame_size < max_rxmax) ?
|
|
vsi->max_frame_size : max_rxmax;
|
|
rctx.dtype = 0;
|
|
rctx.dsize = 1; /* do 32byte descriptors */
|
|
rctx.hsplit_0 = 0; /* no HDR split initially */
|
|
rctx.base = (rxr->dma.pa/128);
|
|
rctx.qlen = que->num_desc;
|
|
rctx.tphrdesc_ena = 1;
|
|
rctx.tphwdesc_ena = 1;
|
|
rctx.tphdata_ena = 0;
|
|
rctx.tphhead_ena = 0;
|
|
#ifdef FORTVILLE_A0_SUPPORT
|
|
rctx.lrxqthresh = 0;
|
|
#else
|
|
rctx.lrxqthresh = 2;
|
|
#endif
|
|
rctx.crcstrip = 1;
|
|
rctx.l2tsel = 1;
|
|
rctx.showiv = 1;
|
|
rctx.fc_ena = 0;
|
|
rctx.prefena = 1;
|
|
|
|
err = i40e_clear_lan_rx_queue_context(hw, i);
|
|
if (err) {
|
|
device_printf(dev,
|
|
"Unable to clear RX context %d\n", i);
|
|
break;
|
|
}
|
|
err = i40e_set_lan_rx_queue_context(hw, i, &rctx);
|
|
if (err) {
|
|
device_printf(dev, "Unable to set RX context %d\n", i);
|
|
break;
|
|
}
|
|
err = i40e_init_rx_ring(que);
|
|
if (err) {
|
|
device_printf(dev, "Fail in init_rx_ring %d\n", i);
|
|
break;
|
|
}
|
|
wr32(vsi->hw, I40E_QRX_TAIL(que->me), 0);
|
|
wr32(vsi->hw, I40E_QRX_TAIL(que->me), que->num_desc - 1);
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free all VSI structs.
|
|
*
|
|
**********************************************************************/
|
|
void
|
|
i40e_free_vsi(struct i40e_vsi *vsi)
|
|
{
|
|
struct i40e_pf *pf = (struct i40e_pf *)vsi->back;
|
|
struct i40e_queue *que = vsi->queues;
|
|
struct i40e_mac_filter *f;
|
|
|
|
/* Free station queues */
|
|
for (int i = 0; i < vsi->num_queues; i++, que++) {
|
|
struct tx_ring *txr = &que->txr;
|
|
struct rx_ring *rxr = &que->rxr;
|
|
|
|
if (!mtx_initialized(&txr->mtx)) /* uninitialized */
|
|
continue;
|
|
I40E_TX_LOCK(txr);
|
|
i40e_free_que_tx(que);
|
|
if (txr->base)
|
|
i40e_free_dma(&pf->hw, &txr->dma);
|
|
I40E_TX_UNLOCK(txr);
|
|
I40E_TX_LOCK_DESTROY(txr);
|
|
|
|
if (!mtx_initialized(&rxr->mtx)) /* uninitialized */
|
|
continue;
|
|
I40E_RX_LOCK(rxr);
|
|
i40e_free_que_rx(que);
|
|
if (rxr->base)
|
|
i40e_free_dma(&pf->hw, &rxr->dma);
|
|
I40E_RX_UNLOCK(rxr);
|
|
I40E_RX_LOCK_DESTROY(rxr);
|
|
|
|
}
|
|
free(vsi->queues, M_DEVBUF);
|
|
|
|
/* Free VSI filter list */
|
|
while (!SLIST_EMPTY(&vsi->ftl)) {
|
|
f = SLIST_FIRST(&vsi->ftl);
|
|
SLIST_REMOVE_HEAD(&vsi->ftl, next);
|
|
free(f, M_DEVBUF);
|
|
}
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for the VSI (virtual station interface) and their
|
|
* associated queues, rings and the descriptors associated with each,
|
|
* called only once at attach.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
i40e_setup_stations(struct i40e_pf *pf)
|
|
{
|
|
device_t dev = pf->dev;
|
|
struct i40e_vsi *vsi;
|
|
struct i40e_queue *que;
|
|
struct tx_ring *txr;
|
|
struct rx_ring *rxr;
|
|
int rsize, tsize;
|
|
int error = I40E_SUCCESS;
|
|
|
|
vsi = &pf->vsi;
|
|
vsi->back = (void *)pf;
|
|
vsi->hw = &pf->hw;
|
|
vsi->id = 0;
|
|
vsi->num_vlans = 0;
|
|
|
|
/* Get memory for the station queues */
|
|
if (!(vsi->queues =
|
|
(struct i40e_queue *) malloc(sizeof(struct i40e_queue) *
|
|
vsi->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate queue memory\n");
|
|
error = ENOMEM;
|
|
goto early;
|
|
}
|
|
|
|
for (int i = 0; i < vsi->num_queues; i++) {
|
|
que = &vsi->queues[i];
|
|
que->num_desc = i40e_ringsz;
|
|
que->me = i;
|
|
que->vsi = vsi;
|
|
txr = &que->txr;
|
|
txr->que = que;
|
|
|
|
/* Initialize the TX lock */
|
|
snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
|
|
device_get_nameunit(dev), que->me);
|
|
mtx_init(&txr->mtx, txr->mtx_name, NULL, MTX_DEF);
|
|
/* Create the TX descriptor ring */
|
|
tsize = roundup2(que->num_desc *
|
|
sizeof(struct i40e_tx_desc), DBA_ALIGN);
|
|
if (i40e_allocate_dma(&pf->hw,
|
|
&txr->dma, tsize, DBA_ALIGN)) {
|
|
device_printf(dev,
|
|
"Unable to allocate TX Descriptor memory\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
txr->base = (struct i40e_tx_desc *)txr->dma.va;
|
|
bzero((void *)txr->base, tsize);
|
|
/* Now allocate transmit soft structs for the ring */
|
|
if (i40e_allocate_tx_data(que)) {
|
|
device_printf(dev,
|
|
"Critical Failure setting up TX structures\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
/* Allocate a buf ring */
|
|
txr->br = buf_ring_alloc(4096, M_DEVBUF,
|
|
M_WAITOK, &txr->mtx);
|
|
if (txr->br == NULL) {
|
|
device_printf(dev,
|
|
"Critical Failure setting up TX buf ring\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Next the RX queues...
|
|
*/
|
|
rsize = roundup2(que->num_desc *
|
|
sizeof(union i40e_rx_desc), DBA_ALIGN);
|
|
rxr = &que->rxr;
|
|
rxr->que = que;
|
|
|
|
/* Initialize the RX side lock */
|
|
snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
|
|
device_get_nameunit(dev), que->me);
|
|
mtx_init(&rxr->mtx, rxr->mtx_name, NULL, MTX_DEF);
|
|
|
|
if (i40e_allocate_dma(&pf->hw,
|
|
&rxr->dma, rsize, 4096)) {
|
|
device_printf(dev,
|
|
"Unable to allocate RX Descriptor memory\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
rxr->base = (union i40e_rx_desc *)rxr->dma.va;
|
|
bzero((void *)rxr->base, rsize);
|
|
|
|
/* Allocate receive soft structs for the ring*/
|
|
if (i40e_allocate_rx_data(que)) {
|
|
device_printf(dev,
|
|
"Critical Failure setting up receive structs\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
for (int i = 0; i < vsi->num_queues; i++) {
|
|
que = &vsi->queues[i];
|
|
rxr = &que->rxr;
|
|
txr = &que->txr;
|
|
if (rxr->base)
|
|
i40e_free_dma(&pf->hw, &rxr->dma);
|
|
if (txr->base)
|
|
i40e_free_dma(&pf->hw, &txr->dma);
|
|
}
|
|
|
|
early:
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
** Provide a update to the queue RX
|
|
** interrupt moderation value.
|
|
*/
|
|
static void
|
|
i40e_set_queue_rx_itr(struct i40e_queue *que)
|
|
{
|
|
struct i40e_vsi *vsi = que->vsi;
|
|
struct i40e_hw *hw = vsi->hw;
|
|
struct rx_ring *rxr = &que->rxr;
|
|
u16 rx_itr;
|
|
u16 rx_latency = 0;
|
|
int rx_bytes;
|
|
|
|
|
|
/* Idle, do nothing */
|
|
if (rxr->bytes == 0)
|
|
return;
|
|
|
|
if (i40e_dynamic_rx_itr) {
|
|
rx_bytes = rxr->bytes/rxr->itr;
|
|
rx_itr = rxr->itr;
|
|
|
|
/* Adjust latency range */
|
|
switch (rxr->latency) {
|
|
case I40E_LOW_LATENCY:
|
|
if (rx_bytes > 10) {
|
|
rx_latency = I40E_AVE_LATENCY;
|
|
rx_itr = I40E_ITR_20K;
|
|
}
|
|
break;
|
|
case I40E_AVE_LATENCY:
|
|
if (rx_bytes > 20) {
|
|
rx_latency = I40E_BULK_LATENCY;
|
|
rx_itr = I40E_ITR_8K;
|
|
} else if (rx_bytes <= 10) {
|
|
rx_latency = I40E_LOW_LATENCY;
|
|
rx_itr = I40E_ITR_100K;
|
|
}
|
|
break;
|
|
case I40E_BULK_LATENCY:
|
|
if (rx_bytes <= 20) {
|
|
rx_latency = I40E_AVE_LATENCY;
|
|
rx_itr = I40E_ITR_20K;
|
|
}
|
|
break;
|
|
}
|
|
|
|
rxr->latency = rx_latency;
|
|
|
|
if (rx_itr != rxr->itr) {
|
|
/* do an exponential smoothing */
|
|
rx_itr = (10 * rx_itr * rxr->itr) /
|
|
((9 * rx_itr) + rxr->itr);
|
|
rxr->itr = rx_itr & I40E_MAX_ITR;
|
|
wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR,
|
|
que->me), rxr->itr);
|
|
}
|
|
} else { /* We may have have toggled to non-dynamic */
|
|
if (vsi->rx_itr_setting & I40E_ITR_DYNAMIC)
|
|
vsi->rx_itr_setting = i40e_rx_itr;
|
|
/* Update the hardware if needed */
|
|
if (rxr->itr != vsi->rx_itr_setting) {
|
|
rxr->itr = vsi->rx_itr_setting;
|
|
wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR,
|
|
que->me), rxr->itr);
|
|
}
|
|
}
|
|
rxr->bytes = 0;
|
|
rxr->packets = 0;
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
** Provide a update to the queue TX
|
|
** interrupt moderation value.
|
|
*/
|
|
static void
|
|
i40e_set_queue_tx_itr(struct i40e_queue *que)
|
|
{
|
|
struct i40e_vsi *vsi = que->vsi;
|
|
struct i40e_hw *hw = vsi->hw;
|
|
struct tx_ring *txr = &que->txr;
|
|
u16 tx_itr;
|
|
u16 tx_latency = 0;
|
|
int tx_bytes;
|
|
|
|
|
|
/* Idle, do nothing */
|
|
if (txr->bytes == 0)
|
|
return;
|
|
|
|
if (i40e_dynamic_rx_itr) {
|
|
tx_bytes = txr->bytes/txr->itr;
|
|
tx_itr = txr->itr;
|
|
|
|
switch (txr->latency) {
|
|
case I40E_LOW_LATENCY:
|
|
if (tx_bytes > 10) {
|
|
tx_latency = I40E_AVE_LATENCY;
|
|
tx_itr = I40E_ITR_20K;
|
|
}
|
|
break;
|
|
case I40E_AVE_LATENCY:
|
|
if (tx_bytes > 20) {
|
|
tx_latency = I40E_BULK_LATENCY;
|
|
tx_itr = I40E_ITR_8K;
|
|
} else if (tx_bytes <= 10) {
|
|
tx_latency = I40E_LOW_LATENCY;
|
|
tx_itr = I40E_ITR_100K;
|
|
}
|
|
break;
|
|
case I40E_BULK_LATENCY:
|
|
if (tx_bytes <= 20) {
|
|
tx_latency = I40E_AVE_LATENCY;
|
|
tx_itr = I40E_ITR_20K;
|
|
}
|
|
break;
|
|
}
|
|
|
|
txr->latency = tx_latency;
|
|
|
|
if (tx_itr != txr->itr) {
|
|
/* do an exponential smoothing */
|
|
tx_itr = (10 * tx_itr * txr->itr) /
|
|
((9 * tx_itr) + txr->itr);
|
|
txr->itr = tx_itr & I40E_MAX_ITR;
|
|
wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR,
|
|
que->me), txr->itr);
|
|
}
|
|
|
|
} else { /* We may have have toggled to non-dynamic */
|
|
if (vsi->tx_itr_setting & I40E_ITR_DYNAMIC)
|
|
vsi->tx_itr_setting = i40e_tx_itr;
|
|
/* Update the hardware if needed */
|
|
if (txr->itr != vsi->tx_itr_setting) {
|
|
txr->itr = vsi->tx_itr_setting;
|
|
wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR,
|
|
que->me), txr->itr);
|
|
}
|
|
}
|
|
txr->bytes = 0;
|
|
txr->packets = 0;
|
|
return;
|
|
}
|
|
|
|
|
|
static void
|
|
i40e_add_hw_stats(struct i40e_pf *pf)
|
|
{
|
|
device_t dev = pf->dev;
|
|
|
|
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
|
|
struct sysctl_oid *tree = device_get_sysctl_tree(dev);
|
|
struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
|
|
|
|
struct sysctl_oid *vsi_node, *queue_node;
|
|
struct sysctl_oid_list *vsi_list, *queue_list;
|
|
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
struct i40e_eth_stats *vsi_stats = &vsi->eth_stats;
|
|
struct i40e_hw_port_stats *pf_stats = &pf->stats;
|
|
|
|
/* Driver statistics */
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_events",
|
|
CTLFLAG_RD, &pf->watchdog_events,
|
|
"Watchdog timeouts");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "admin_irq",
|
|
CTLFLAG_RD, &pf->admin_irq,
|
|
"Admin Queue IRQ Handled");
|
|
|
|
/* VSI statistics */
|
|
#define QUEUE_NAME_LEN 32
|
|
char vsi_namebuf[QUEUE_NAME_LEN];
|
|
char queue_namebuf[QUEUE_NAME_LEN];
|
|
|
|
snprintf(vsi_namebuf, QUEUE_NAME_LEN, "vsi%d", vsi->info.stat_counter_idx);
|
|
vsi_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, vsi_namebuf,
|
|
CTLFLAG_RD, NULL, "VSI Number");
|
|
vsi_list = SYSCTL_CHILDREN(vsi_node);
|
|
|
|
i40e_add_sysctls_eth_stats(ctx, vsi_list, vsi_stats);
|
|
|
|
/* Queue statistics */
|
|
struct i40e_queue *queues = vsi->queues;
|
|
struct tx_ring *txr;
|
|
struct rx_ring *rxr;
|
|
for (int q = 0; q < vsi->num_queues; q++) {
|
|
snprintf(queue_namebuf, QUEUE_NAME_LEN, "queue%d", q);
|
|
queue_node = SYSCTL_ADD_NODE(ctx, vsi_list, OID_AUTO, queue_namebuf,
|
|
CTLFLAG_RD, NULL, "Queue Name");
|
|
queue_list = SYSCTL_CHILDREN(queue_node);
|
|
|
|
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "mbuf_defrag_failed",
|
|
CTLFLAG_RD, &(queues[q].mbuf_defrag_failed),
|
|
"m_defrag() failed");
|
|
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "dropped",
|
|
CTLFLAG_RD, &(queues[q].dropped_pkts),
|
|
"Driver dropped packets");
|
|
|
|
txr = &(queues[q].txr);
|
|
/* ERJ - Need:
|
|
* i40e_sysctl_interrupt_rate_handler
|
|
* i40e_sysctl_tdh_handler
|
|
* i40e_sysctl_tdt_handler
|
|
*
|
|
* i40e_sysctl_rdh_handler
|
|
* i40e_sysctl_rdt_handler
|
|
* rx_copies
|
|
* LRO stats
|
|
*/
|
|
SYSCTL_ADD_UQUAD(ctx, queue_list, OID_AUTO, "irqs",
|
|
CTLFLAG_RD, &(queues[q].irqs),
|
|
"irqs on this queue");
|
|
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tso_tx",
|
|
CTLFLAG_RD, &(queues[q].tso),
|
|
"TSO");
|
|
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_dma_setup",
|
|
CTLFLAG_RD, &(queues[q].tx_dma_setup),
|
|
"Driver tx dma failure in xmit");
|
|
SYSCTL_ADD_UQUAD(ctx, queue_list, OID_AUTO, "no_desc_avail",
|
|
CTLFLAG_RD, &(txr->no_desc),
|
|
"Queue No Descriptor Available");
|
|
SYSCTL_ADD_UQUAD(ctx, queue_list, OID_AUTO, "tx_packets",
|
|
CTLFLAG_RD, &(txr->total_packets),
|
|
"Queue Packets Transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, queue_list, OID_AUTO, "tx_bytes",
|
|
CTLFLAG_RD, &(txr->bytes),
|
|
"Queue Bytes Transmitted");
|
|
|
|
rxr = &(queues[q].rxr);
|
|
SYSCTL_ADD_UQUAD(ctx, queue_list, OID_AUTO, "rx_packets",
|
|
CTLFLAG_RD, &(rxr->rx_packets),
|
|
"Queue Packets Received");
|
|
SYSCTL_ADD_UQUAD(ctx, queue_list, OID_AUTO, "rx_bytes",
|
|
CTLFLAG_RD, &(rxr->rx_bytes),
|
|
"Queue Bytes Received");
|
|
}
|
|
|
|
/* MAC stats */
|
|
i40e_add_sysctls_mac_stats(ctx, child, pf_stats);
|
|
}
|
|
|
|
static void
|
|
i40e_add_sysctls_eth_stats(struct sysctl_ctx_list *ctx,
|
|
struct sysctl_oid_list *child,
|
|
struct i40e_eth_stats *eth_stats)
|
|
{
|
|
struct i40e_sysctl_info ctls[] =
|
|
{
|
|
{ð_stats->rx_bytes, "good_octets_rcvd", "Good Octets Received"},
|
|
{ð_stats->rx_unicast, "ucast_pkts_rcvd",
|
|
"Unicast Packets Received"},
|
|
{ð_stats->rx_multicast, "mcast_pkts_rcvd",
|
|
"Multicast Packets Received"},
|
|
{ð_stats->rx_broadcast, "bcast_pkts_rcvd",
|
|
"Broadcast Packets Received"},
|
|
// Add description
|
|
{ð_stats->rx_discards, "rx_discards", "?"},
|
|
{ð_stats->tx_bytes, "good_octets_txd", "Good Octets Transmitted"},
|
|
{ð_stats->tx_unicast, "ucast_pkts_txd", "Unicast Packets Transmitted"},
|
|
{ð_stats->tx_multicast, "mcast_pkts_txd",
|
|
"Multicast Packets Transmitted"},
|
|
{ð_stats->tx_broadcast, "bcast_pkts_txd",
|
|
"Broadcast Packets Transmitted"},
|
|
// Add description
|
|
{ð_stats->tx_discards, "tx_discards", "?"},
|
|
// end
|
|
{0,0,0}
|
|
};
|
|
|
|
struct i40e_sysctl_info *entry = ctls;
|
|
while (entry->stat != 0)
|
|
{
|
|
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, entry->name,
|
|
CTLFLAG_RD, entry->stat,
|
|
entry->description);
|
|
entry++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
i40e_add_sysctls_mac_stats(struct sysctl_ctx_list *ctx,
|
|
struct sysctl_oid_list *child,
|
|
struct i40e_hw_port_stats *stats)
|
|
{
|
|
struct sysctl_oid *stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
|
|
CTLFLAG_RD, NULL, "Mac Statistics");
|
|
struct sysctl_oid_list *stat_list = SYSCTL_CHILDREN(stat_node);
|
|
|
|
struct i40e_eth_stats *eth_stats = &stats->eth;
|
|
i40e_add_sysctls_eth_stats(ctx, stat_list, eth_stats);
|
|
|
|
struct i40e_sysctl_info ctls[] =
|
|
{
|
|
{&stats->crc_errors, "crc_errors", "CRC Errors"},
|
|
{&stats->illegal_bytes, "illegal_bytes", "Illegal Byte Errors"},
|
|
{&stats->mac_local_faults, "local_faults", "MAC Local Faults"},
|
|
{&stats->mac_remote_faults, "remote_faults", "MAC Remote Faults"},
|
|
{&stats->rx_length_errors, "rx_length_errors", "Receive Length Errors"},
|
|
/* Packet Reception Stats */
|
|
{&stats->rx_size_64, "rx_frames_64", "64 byte frames received"},
|
|
{&stats->rx_size_127, "rx_frames_65_127", "65-127 byte frames received"},
|
|
{&stats->rx_size_255, "rx_frames_128_255", "128-255 byte frames received"},
|
|
{&stats->rx_size_511, "rx_frames_256_511", "256-511 byte frames received"},
|
|
{&stats->rx_size_1023, "rx_frames_512_1023", "512-1023 byte frames received"},
|
|
{&stats->rx_size_1522, "rx_frames_1024_1522", "1024-1522 byte frames received"},
|
|
{&stats->rx_size_big, "rx_frames_big", "1523-9522 byte frames received"},
|
|
{&stats->rx_undersize, "rx_undersize", "Undersized packets received"},
|
|
{&stats->rx_fragments, "rx_fragmented", "Fragmented packets received"},
|
|
{&stats->rx_oversize, "rx_oversized", "Oversized packets received"},
|
|
{&stats->rx_jabber, "rx_jabber", "Received Jabber"},
|
|
{&stats->checksum_error, "checksum_errors", "Checksum Errors"},
|
|
/* Packet Transmission Stats */
|
|
{&stats->tx_size_64, "tx_frames_64", "64 byte frames transmitted"},
|
|
{&stats->tx_size_127, "tx_frames_65_127", "65-127 byte frames transmitted"},
|
|
{&stats->tx_size_255, "tx_frames_128_255", "128-255 byte frames transmitted"},
|
|
{&stats->tx_size_511, "tx_frames_256_511", "256-511 byte frames transmitted"},
|
|
{&stats->tx_size_1023, "tx_frames_512_1023", "512-1023 byte frames transmitted"},
|
|
{&stats->tx_size_1522, "tx_frames_1024_1522", "1024-1522 byte frames transmitted"},
|
|
{&stats->tx_size_big, "tx_frames_big", "1523-9522 byte frames transmitted"},
|
|
/* Flow control */
|
|
{&stats->link_xon_tx, "xon_txd", "Link XON transmitted"},
|
|
{&stats->link_xon_rx, "xon_recvd", "Link XON received"},
|
|
{&stats->link_xoff_tx, "xoff_txd", "Link XOFF transmitted"},
|
|
{&stats->link_xoff_rx, "xoff_recvd", "Link XOFF received"},
|
|
/* End */
|
|
{0,0,0}
|
|
};
|
|
|
|
struct i40e_sysctl_info *entry = ctls;
|
|
while (entry->stat != 0)
|
|
{
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, entry->name,
|
|
CTLFLAG_RD, entry->stat,
|
|
entry->description);
|
|
entry++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** i40e_config_rss - setup RSS
|
|
** - note this is done for the single vsi
|
|
*/
|
|
static void i40e_config_rss(struct i40e_vsi *vsi)
|
|
{
|
|
struct i40e_pf *pf = (struct i40e_pf *)vsi->back;
|
|
struct i40e_hw *hw = vsi->hw;
|
|
u32 lut = 0;
|
|
u64 set_hena, hena;
|
|
int i, j;
|
|
|
|
static const u32 seed[I40E_PFQF_HKEY_MAX_INDEX + 1] = {0x41b01687,
|
|
0x183cfd8c, 0xce880440, 0x580cbc3c, 0x35897377,
|
|
0x328b25e1, 0x4fa98922, 0xb7d90c14, 0xd5bad70d,
|
|
0xcd15a2c1, 0xe8580225, 0x4a1e9d11, 0xfe5731be};
|
|
|
|
/* Fill out hash function seed */
|
|
for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
|
|
wr32(hw, I40E_PFQF_HKEY(i), seed[i]);
|
|
|
|
/* Enable PCTYPES for RSS: */
|
|
set_hena =
|
|
((u64)1 << I40E_FILTER_PCTYPE_NONF_IPV4_UDP) |
|
|
((u64)1 << I40E_FILTER_PCTYPE_NONF_IPV4_TCP) |
|
|
((u64)1 << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) |
|
|
((u64)1 << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) |
|
|
((u64)1 << I40E_FILTER_PCTYPE_FRAG_IPV4) |
|
|
((u64)1 << I40E_FILTER_PCTYPE_NONF_IPV6_UDP) |
|
|
((u64)1 << I40E_FILTER_PCTYPE_NONF_IPV6_TCP) |
|
|
((u64)1 << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) |
|
|
((u64)1 << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) |
|
|
((u64)1 << I40E_FILTER_PCTYPE_FRAG_IPV6) |
|
|
((u64)1 << I40E_FILTER_PCTYPE_L2_PAYLOAD);
|
|
|
|
hena = (u64)rd32(hw, I40E_PFQF_HENA(0)) |
|
|
((u64)rd32(hw, I40E_PFQF_HENA(1)) << 32);
|
|
hena |= set_hena;
|
|
wr32(hw, I40E_PFQF_HENA(0), (u32)hena);
|
|
wr32(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32));
|
|
|
|
/* Populate the LUT with max no. of queues in round robin fashion */
|
|
for (i = j = 0; i < pf->hw.func_caps.rss_table_size; i++, j++) {
|
|
if (j == vsi->num_queues)
|
|
j = 0;
|
|
/* lut = 4-byte sliding window of 4 lut entries */
|
|
lut = (lut << 8) | (j &
|
|
((0x1 << pf->hw.func_caps.rss_table_entry_width) - 1));
|
|
/* On i = 3, we have 4 entries in lut; write to the register */
|
|
if ((i & 3) == 3)
|
|
wr32(hw, I40E_PFQF_HLUT(i >> 2), lut);
|
|
}
|
|
i40e_flush(hw);
|
|
}
|
|
|
|
|
|
/*
|
|
** This routine is run via an vlan config EVENT,
|
|
** it enables us to use the HW Filter table since
|
|
** we can get the vlan id. This just creates the
|
|
** entry in the soft version of the VFTA, init will
|
|
** repopulate the real table.
|
|
*/
|
|
static void
|
|
i40e_register_vlan(void *arg, struct ifnet *ifp, u16 vtag)
|
|
{
|
|
struct i40e_vsi *vsi = ifp->if_softc;
|
|
struct i40e_hw *hw = vsi->hw;
|
|
struct i40e_pf *pf = (struct i40e_pf *)vsi->back;
|
|
|
|
if (ifp->if_softc != arg) /* Not our event */
|
|
return;
|
|
|
|
if ((vtag == 0) || (vtag > 4095)) /* Invalid */
|
|
return;
|
|
|
|
I40E_PF_LOCK(pf);
|
|
++vsi->num_vlans;
|
|
i40e_add_filter(vsi, hw->mac.addr, vtag);
|
|
I40E_PF_UNLOCK(pf);
|
|
}
|
|
|
|
/*
|
|
** This routine is run via an vlan
|
|
** unconfig EVENT, remove our entry
|
|
** in the soft vfta.
|
|
*/
|
|
static void
|
|
i40e_unregister_vlan(void *arg, struct ifnet *ifp, u16 vtag)
|
|
{
|
|
struct i40e_vsi *vsi = ifp->if_softc;
|
|
struct i40e_hw *hw = vsi->hw;
|
|
struct i40e_pf *pf = (struct i40e_pf *)vsi->back;
|
|
|
|
if (ifp->if_softc != arg)
|
|
return;
|
|
|
|
if ((vtag == 0) || (vtag > 4095)) /* Invalid */
|
|
return;
|
|
|
|
I40E_PF_LOCK(pf);
|
|
--vsi->num_vlans;
|
|
i40e_del_filter(vsi, hw->mac.addr, vtag);
|
|
I40E_PF_UNLOCK(pf);
|
|
}
|
|
|
|
/*
|
|
** This routine updates vlan filters, called by init
|
|
** it scans the filter table and then updates the hw
|
|
** after a soft reset.
|
|
*/
|
|
static void
|
|
i40e_setup_vlan_filters(struct i40e_vsi *vsi)
|
|
{
|
|
struct i40e_mac_filter *f;
|
|
int cnt = 0, flags;
|
|
|
|
if (vsi->num_vlans == 0)
|
|
return;
|
|
/*
|
|
** Scan the filter list for vlan entries,
|
|
** mark them for addition and then call
|
|
** for the AQ update.
|
|
*/
|
|
SLIST_FOREACH(f, &vsi->ftl, next) {
|
|
if (f->flags & I40E_FILTER_VLAN) {
|
|
f->flags |=
|
|
(I40E_FILTER_ADD |
|
|
I40E_FILTER_USED);
|
|
cnt++;
|
|
}
|
|
}
|
|
if (cnt == 0) {
|
|
printf("setup vlan: no filters found!\n");
|
|
return;
|
|
}
|
|
flags = I40E_FILTER_VLAN;
|
|
flags |= (I40E_FILTER_ADD | I40E_FILTER_USED);
|
|
i40e_add_hw_filters(vsi, flags, cnt);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Initialize filter list and add filters that the hardware
|
|
** needs to know about.
|
|
*/
|
|
static void
|
|
i40e_init_filters(struct i40e_vsi *vsi)
|
|
{
|
|
/* Protocol addresses */
|
|
/* - Flow control multicast */
|
|
u8 mc[6] = {0x01, 0x80, 0xC2, 0x00, 0x00, 0x01};
|
|
i40e_add_filter(vsi, mc, I40E_VLAN_ANY);
|
|
/* TODO: other protocols */
|
|
}
|
|
|
|
/*
|
|
** This routine adds mulicast filters
|
|
*/
|
|
static void
|
|
i40e_add_mc_filter(struct i40e_vsi *vsi, u8 *macaddr)
|
|
{
|
|
struct i40e_mac_filter *f;
|
|
|
|
/* Does one already exist */
|
|
f = i40e_find_filter(vsi, macaddr, I40E_VLAN_ANY);
|
|
if (f != NULL)
|
|
return;
|
|
|
|
f = i40e_get_filter(vsi);
|
|
if (f == NULL) {
|
|
printf("WARNING: no filter available!!\n");
|
|
return;
|
|
}
|
|
bcopy(macaddr, f->macaddr, ETHER_ADDR_LEN);
|
|
f->vlan = I40E_VLAN_ANY;
|
|
f->flags |= (I40E_FILTER_ADD | I40E_FILTER_USED
|
|
| I40E_FILTER_MC);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** This routine adds macvlan filters
|
|
*/
|
|
static void
|
|
i40e_add_filter(struct i40e_vsi *vsi, u8 *macaddr, s16 vlan)
|
|
{
|
|
struct i40e_mac_filter *f, *tmp;
|
|
device_t dev = vsi->dev;
|
|
|
|
DEBUGOUT("i40e_add_filter: begin");
|
|
|
|
/* Does one already exist */
|
|
f = i40e_find_filter(vsi, macaddr, vlan);
|
|
if (f != NULL)
|
|
return;
|
|
/*
|
|
** Is this the first vlan being registered, if so we
|
|
** need to remove the ANY filter that indicates we are
|
|
** not in a vlan, and replace that with a 0 filter.
|
|
*/
|
|
if ((vlan != I40E_VLAN_ANY) && (vsi->num_vlans == 1)) {
|
|
tmp = i40e_find_filter(vsi, macaddr, I40E_VLAN_ANY);
|
|
if (tmp != NULL) {
|
|
i40e_del_filter(vsi, macaddr, I40E_VLAN_ANY);
|
|
i40e_add_filter(vsi, macaddr, 0);
|
|
}
|
|
}
|
|
|
|
f = i40e_get_filter(vsi);
|
|
if (f == NULL) {
|
|
device_printf(dev, "WARNING: no filter available!!\n");
|
|
return;
|
|
}
|
|
bcopy(macaddr, f->macaddr, ETHER_ADDR_LEN);
|
|
f->vlan = vlan;
|
|
f->flags |= (I40E_FILTER_ADD | I40E_FILTER_USED);
|
|
if (f->vlan != I40E_VLAN_ANY)
|
|
f->flags |= I40E_FILTER_VLAN;
|
|
|
|
i40e_add_hw_filters(vsi, f->flags, 1);
|
|
return;
|
|
}
|
|
|
|
static void
|
|
i40e_del_filter(struct i40e_vsi *vsi, u8 *macaddr, s16 vlan)
|
|
{
|
|
struct i40e_mac_filter *f;
|
|
|
|
f = i40e_find_filter(vsi, macaddr, vlan);
|
|
if (f == NULL)
|
|
return;
|
|
|
|
f->flags |= I40E_FILTER_DEL;
|
|
i40e_del_hw_filters(vsi, 1);
|
|
|
|
/* Check if this is the last vlan removal */
|
|
if (vlan != I40E_VLAN_ANY && vsi->num_vlans == 0) {
|
|
/* Switch back to a non-vlan filter */
|
|
i40e_del_filter(vsi, macaddr, 0);
|
|
i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Find the filter with both matching mac addr and vlan id
|
|
*/
|
|
static struct i40e_mac_filter *
|
|
i40e_find_filter(struct i40e_vsi *vsi, u8 *macaddr, s16 vlan)
|
|
{
|
|
struct i40e_mac_filter *f;
|
|
bool match = FALSE;
|
|
|
|
SLIST_FOREACH(f, &vsi->ftl, next) {
|
|
if (!cmp_etheraddr(f->macaddr, macaddr))
|
|
continue;
|
|
if (f->vlan == vlan) {
|
|
match = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!match)
|
|
f = NULL;
|
|
return (f);
|
|
}
|
|
|
|
/*
|
|
** This routine takes additions to the vsi filter
|
|
** table and creates an Admin Queue call to create
|
|
** the filters in the hardware.
|
|
*/
|
|
static void
|
|
i40e_add_hw_filters(struct i40e_vsi *vsi, int flags, int cnt)
|
|
{
|
|
struct i40e_aqc_add_macvlan_element_data *a, *b;
|
|
struct i40e_mac_filter *f;
|
|
struct i40e_hw *hw = vsi->hw;
|
|
device_t dev = vsi->dev;
|
|
int err, j = 0;
|
|
|
|
a = malloc(sizeof(struct i40e_aqc_add_macvlan_element_data) * cnt,
|
|
M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (a == NULL) {
|
|
device_printf(dev, "add hw filter failed to get memory\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Scan the filter list, each time we find one
|
|
** we add it to the admin queue array and turn off
|
|
** the add bit.
|
|
*/
|
|
SLIST_FOREACH(f, &vsi->ftl, next) {
|
|
if (f->flags == flags) {
|
|
b = &a[j]; // a pox on fvl long names :)
|
|
bcopy(f->macaddr, b->mac_addr, ETHER_ADDR_LEN);
|
|
b->vlan_tag =
|
|
(f->vlan == I40E_VLAN_ANY ? 0 : f->vlan);
|
|
b->flags = I40E_AQC_MACVLAN_ADD_PERFECT_MATCH;
|
|
f->flags &= ~I40E_FILTER_ADD;
|
|
j++;
|
|
}
|
|
if (j == cnt)
|
|
break;
|
|
}
|
|
if (j > 0) {
|
|
err = i40e_aq_add_macvlan(hw, vsi->seid, a, j, NULL);
|
|
if (err)
|
|
device_printf(dev, "aq_add_macvlan failure %d\n",
|
|
hw->aq.asq_last_status);
|
|
else
|
|
vsi->hw_filters_add += j;
|
|
}
|
|
free(a, M_DEVBUF);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** This routine takes removals in the vsi filter
|
|
** table and creates an Admin Queue call to delete
|
|
** the filters in the hardware.
|
|
*/
|
|
static void
|
|
i40e_del_hw_filters(struct i40e_vsi *vsi, int cnt)
|
|
{
|
|
struct i40e_aqc_remove_macvlan_element_data *d, *e;
|
|
struct i40e_hw *hw = vsi->hw;
|
|
device_t dev = vsi->dev;
|
|
struct i40e_mac_filter *f, *f_temp;
|
|
int err, j = 0;
|
|
|
|
DEBUGOUT("i40e_del_hw_filters: begin\n");
|
|
|
|
d = malloc(sizeof(struct i40e_aqc_remove_macvlan_element_data) * cnt,
|
|
M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (d == NULL) {
|
|
printf("del hw filter failed to get memory\n");
|
|
return;
|
|
}
|
|
|
|
SLIST_FOREACH_SAFE(f, &vsi->ftl, next, f_temp) {
|
|
if (f->flags & I40E_FILTER_DEL) {
|
|
e = &d[j]; // a pox on fvl long names :)
|
|
bcopy(f->macaddr, e->mac_addr, ETHER_ADDR_LEN);
|
|
e->vlan_tag = (f->vlan == I40E_VLAN_ANY ? 0 : f->vlan);
|
|
e->flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
|
|
/* delete entry from vsi list */
|
|
SLIST_REMOVE(&vsi->ftl, f, i40e_mac_filter, next);
|
|
free(f, M_DEVBUF);
|
|
j++;
|
|
}
|
|
if (j == cnt)
|
|
break;
|
|
}
|
|
if (j > 0) {
|
|
err = i40e_aq_remove_macvlan(hw, vsi->seid, d, j, NULL);
|
|
/* NOTE: returns ENOENT every time but seems to work fine,
|
|
so we'll ignore that specific error. */
|
|
if (err && hw->aq.asq_last_status != I40E_AQ_RC_ENOENT) {
|
|
int sc = 0;
|
|
for (int i = 0; i < j; i++)
|
|
sc += (!d[i].error_code);
|
|
vsi->hw_filters_del += sc;
|
|
device_printf(dev,
|
|
"Failed to remove %d/%d filters, aq error %d\n",
|
|
j - sc, j, hw->aq.asq_last_status);
|
|
} else
|
|
vsi->hw_filters_del += j;
|
|
}
|
|
free(d, M_DEVBUF);
|
|
|
|
DEBUGOUT("i40e_del_hw_filters: end\n");
|
|
return;
|
|
}
|
|
|
|
|
|
static void
|
|
i40e_enable_rings(struct i40e_vsi *vsi)
|
|
{
|
|
struct i40e_hw *hw = vsi->hw;
|
|
u32 reg;
|
|
|
|
for (int i = 0; i < vsi->num_queues; i++) {
|
|
// ERJ: pre_tx_queue_cfg is B0-only?
|
|
i40e_pre_tx_queue_cfg(hw, i, TRUE);
|
|
|
|
reg = rd32(hw, I40E_QTX_ENA(i));
|
|
reg |= I40E_QTX_ENA_QENA_REQ_MASK |
|
|
I40E_QTX_ENA_QENA_STAT_MASK;
|
|
wr32(hw, I40E_QTX_ENA(i), reg);
|
|
/* Verify the enable took */
|
|
for (int j = 0; j < 10; j++) {
|
|
reg = rd32(hw, I40E_QTX_ENA(i));
|
|
if (reg & I40E_QTX_ENA_QENA_STAT_MASK)
|
|
break;
|
|
i40e_msec_delay(10);
|
|
}
|
|
if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0)
|
|
printf("TX queue %d disabled!\n", i);
|
|
|
|
reg = rd32(hw, I40E_QRX_ENA(i));
|
|
reg |= I40E_QRX_ENA_QENA_REQ_MASK |
|
|
I40E_QRX_ENA_QENA_STAT_MASK;
|
|
wr32(hw, I40E_QRX_ENA(i), reg);
|
|
/* Verify the enable took */
|
|
for (int j = 0; j < 10; j++) {
|
|
reg = rd32(hw, I40E_QRX_ENA(i));
|
|
if (reg & I40E_QRX_ENA_QENA_STAT_MASK)
|
|
break;
|
|
i40e_msec_delay(10);
|
|
}
|
|
if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0)
|
|
printf("RX queue %d disabled!\n", i);
|
|
}
|
|
}
|
|
|
|
static void
|
|
i40e_disable_rings(struct i40e_vsi *vsi)
|
|
{
|
|
struct i40e_hw *hw = vsi->hw;
|
|
u32 reg;
|
|
|
|
for (int i = 0; i < vsi->num_queues; i++) {
|
|
// ERJ
|
|
// this step can be executed concurrently for each queue
|
|
i40e_pre_tx_queue_cfg(hw, i, FALSE);
|
|
// min 100usec for 2x10, 400usec for 1x10
|
|
i40e_usec_delay(500);
|
|
|
|
reg = rd32(hw, I40E_QTX_ENA(i));
|
|
reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
|
|
wr32(hw, I40E_QTX_ENA(i), reg);
|
|
/* Verify the disable took */
|
|
for (int j = 0; j < 10; j++) {
|
|
reg = rd32(hw, I40E_QTX_ENA(i));
|
|
if (!(reg & I40E_QTX_ENA_QENA_STAT_MASK))
|
|
break;
|
|
i40e_msec_delay(10);
|
|
}
|
|
if (reg & I40E_QTX_ENA_QENA_STAT_MASK)
|
|
printf("TX queue %d still enabled!\n", i);
|
|
|
|
reg = rd32(hw, I40E_QRX_ENA(i));
|
|
reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
|
|
wr32(hw, I40E_QRX_ENA(i), reg);
|
|
/* Verify the disable took */
|
|
for (int j = 0; j < 10; j++) {
|
|
reg = rd32(hw, I40E_QRX_ENA(i));
|
|
if (!(reg & I40E_QRX_ENA_QENA_STAT_MASK))
|
|
break;
|
|
i40e_msec_delay(10);
|
|
}
|
|
if (reg & I40E_QRX_ENA_QENA_STAT_MASK)
|
|
printf("RX queue %d still enabled!\n", i);
|
|
}
|
|
}
|
|
|
|
static void
|
|
i40e_enable_intr(struct i40e_vsi *vsi)
|
|
{
|
|
struct i40e_hw *hw = vsi->hw;
|
|
struct i40e_queue *que = vsi->queues;
|
|
|
|
if (i40e_enable_msix) {
|
|
i40e_enable_adminq(hw);
|
|
for (int i = 0; i < vsi->num_queues; i++, que++)
|
|
i40e_enable_queue(hw, que->me);
|
|
} else
|
|
i40e_enable_legacy(hw);
|
|
}
|
|
|
|
static void
|
|
i40e_disable_intr(struct i40e_vsi *vsi)
|
|
{
|
|
struct i40e_hw *hw = vsi->hw;
|
|
struct i40e_queue *que = vsi->queues;
|
|
|
|
if (i40e_enable_msix) {
|
|
i40e_disable_adminq(hw);
|
|
for (int i = 0; i < vsi->num_queues; i++, que++)
|
|
i40e_disable_queue(hw, que->me);
|
|
} else
|
|
i40e_disable_legacy(hw);
|
|
}
|
|
|
|
static void
|
|
i40e_enable_adminq(struct i40e_hw *hw)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = I40E_PFINT_DYN_CTL0_INTENA_MASK |
|
|
I40E_PFINT_DYN_CTL0_CLEARPBA_MASK |
|
|
(I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT);
|
|
wr32(hw, I40E_PFINT_DYN_CTL0, reg);
|
|
i40e_flush(hw);
|
|
return;
|
|
}
|
|
|
|
static void
|
|
i40e_disable_adminq(struct i40e_hw *hw)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT;
|
|
wr32(hw, I40E_PFINT_DYN_CTL0, reg);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
i40e_enable_queue(struct i40e_hw *hw, int id)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = I40E_PFINT_DYN_CTLN_INTENA_MASK |
|
|
I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
|
|
(I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT);
|
|
wr32(hw, I40E_PFINT_DYN_CTLN(id), reg);
|
|
}
|
|
|
|
static void
|
|
i40e_disable_queue(struct i40e_hw *hw, int id)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT;
|
|
wr32(hw, I40E_PFINT_DYN_CTLN(id), reg);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
i40e_enable_legacy(struct i40e_hw *hw)
|
|
{
|
|
u32 reg;
|
|
reg = I40E_PFINT_DYN_CTL0_INTENA_MASK |
|
|
I40E_PFINT_DYN_CTL0_CLEARPBA_MASK |
|
|
(I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT);
|
|
wr32(hw, I40E_PFINT_DYN_CTL0, reg);
|
|
}
|
|
|
|
static void
|
|
i40e_disable_legacy(struct i40e_hw *hw)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT;
|
|
wr32(hw, I40E_PFINT_DYN_CTL0, reg);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
i40e_update_stats_counters(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_hw *hw = &pf->hw;
|
|
struct i40e_hw_port_stats *nsd = &pf->stats;
|
|
struct i40e_hw_port_stats *osd = &pf->stats_offsets;
|
|
|
|
/* Update hw stats */
|
|
i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->crc_errors, &nsd->crc_errors);
|
|
i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->illegal_bytes, &nsd->illegal_bytes);
|
|
i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port),
|
|
I40E_GLPRT_GORCL(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->eth.rx_bytes, &nsd->eth.rx_bytes);
|
|
i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port),
|
|
I40E_GLPRT_GOTCL(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->eth.tx_bytes, &nsd->eth.tx_bytes);
|
|
i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->eth.rx_discards,
|
|
&nsd->eth.rx_discards);
|
|
i40e_stat_update32(hw, I40E_GLPRT_TDPC(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->eth.tx_discards,
|
|
&nsd->eth.tx_discards);
|
|
i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port),
|
|
I40E_GLPRT_UPRCL(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->eth.rx_unicast,
|
|
&nsd->eth.rx_unicast);
|
|
i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port),
|
|
I40E_GLPRT_UPTCL(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->eth.tx_unicast,
|
|
&nsd->eth.tx_unicast);
|
|
i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port),
|
|
I40E_GLPRT_MPRCL(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->eth.rx_multicast,
|
|
&nsd->eth.rx_multicast);
|
|
i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port),
|
|
I40E_GLPRT_MPTCL(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->eth.tx_multicast,
|
|
&nsd->eth.tx_multicast);
|
|
i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port),
|
|
I40E_GLPRT_BPRCL(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->eth.rx_broadcast,
|
|
&nsd->eth.rx_broadcast);
|
|
i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port),
|
|
I40E_GLPRT_BPTCL(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->eth.tx_broadcast,
|
|
&nsd->eth.tx_broadcast);
|
|
|
|
i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->tx_dropped_link_down,
|
|
&nsd->tx_dropped_link_down);
|
|
i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->mac_local_faults,
|
|
&nsd->mac_local_faults);
|
|
i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->mac_remote_faults,
|
|
&nsd->mac_remote_faults);
|
|
i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->rx_length_errors,
|
|
&nsd->rx_length_errors);
|
|
|
|
/* Update flow control stats */
|
|
i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->link_xon_rx, &nsd->link_xon_rx);
|
|
i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->link_xon_tx, &nsd->link_xon_tx);
|
|
i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->link_xoff_rx, &nsd->link_xoff_rx);
|
|
i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->link_xoff_tx, &nsd->link_xoff_tx);
|
|
|
|
/*
|
|
* Uncomment these out when priority flow control
|
|
* is implemented.
|
|
*/
|
|
#if 0
|
|
for (int i = 0; i < 8; i++) {
|
|
i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i),
|
|
pf->stat_offsets_loaded,
|
|
&osd->priority_xon_rx[i],
|
|
&nsd->priority_xon_rx[i]);
|
|
i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i),
|
|
pf->stat_offsets_loaded,
|
|
&osd->priority_xon_tx[i],
|
|
&nsd->priority_xon_tx[i]);
|
|
i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i),
|
|
pf->stat_offsets_loaded,
|
|
&osd->priority_xoff_tx[i],
|
|
&nsd->priority_xoff_tx[i]);
|
|
i40e_stat_update32(hw,
|
|
I40E_GLPRT_RXON2OFFCNT(hw->port, i),
|
|
pf->stat_offsets_loaded,
|
|
&osd->priority_xon_2_xoff[i],
|
|
&nsd->priority_xon_2_xoff[i]);
|
|
}
|
|
#endif
|
|
|
|
i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port),
|
|
I40E_GLPRT_PRC64L(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->rx_size_64, &nsd->rx_size_64);
|
|
i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port),
|
|
I40E_GLPRT_PRC127L(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->rx_size_127, &nsd->rx_size_127);
|
|
i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port),
|
|
I40E_GLPRT_PRC255L(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->rx_size_255, &nsd->rx_size_255);
|
|
i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port),
|
|
I40E_GLPRT_PRC511L(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->rx_size_511, &nsd->rx_size_511);
|
|
i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port),
|
|
I40E_GLPRT_PRC1023L(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->rx_size_1023, &nsd->rx_size_1023);
|
|
i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port),
|
|
I40E_GLPRT_PRC1522L(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->rx_size_1522, &nsd->rx_size_1522);
|
|
i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port),
|
|
I40E_GLPRT_PRC9522L(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->rx_size_big, &nsd->rx_size_big);
|
|
|
|
i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port),
|
|
I40E_GLPRT_PTC64L(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->tx_size_64, &nsd->tx_size_64);
|
|
i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port),
|
|
I40E_GLPRT_PTC127L(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->tx_size_127, &nsd->tx_size_127);
|
|
i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port),
|
|
I40E_GLPRT_PTC255L(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->tx_size_255, &nsd->tx_size_255);
|
|
i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port),
|
|
I40E_GLPRT_PTC511L(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->tx_size_511, &nsd->tx_size_511);
|
|
i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port),
|
|
I40E_GLPRT_PTC1023L(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->tx_size_1023, &nsd->tx_size_1023);
|
|
i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port),
|
|
I40E_GLPRT_PTC1522L(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->tx_size_1522, &nsd->tx_size_1522);
|
|
i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port),
|
|
I40E_GLPRT_PTC9522L(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->tx_size_big, &nsd->tx_size_big);
|
|
|
|
i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->rx_undersize, &nsd->rx_undersize);
|
|
i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->rx_fragments, &nsd->rx_fragments);
|
|
i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->rx_oversize, &nsd->rx_oversize);
|
|
i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port),
|
|
pf->stat_offsets_loaded,
|
|
&osd->rx_jabber, &nsd->rx_jabber);
|
|
pf->stat_offsets_loaded = true;
|
|
/* End pf-only stats */
|
|
|
|
/* Update vsi stats */
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
i40e_update_eth_stats(vsi);
|
|
|
|
/* ERJ - does something need these statistics?
|
|
u64 rx_p = 0, rx_b = 0, tx_p = 0, tx_b = 0;
|
|
u64 tx_no_desc;
|
|
u64 rx_split, rx_discarded, rx_not_done;
|
|
for (u16 q = 0; q < vsi->num_queues; q++)
|
|
{
|
|
struct i40e_queue *p = &vsi->queues[q];
|
|
|
|
rx_p += p->rxr.packets;
|
|
tx_p += p->txr.packets;
|
|
rx_b += p->rxr.bytes;
|
|
tx_b += p->txr.bytes;
|
|
|
|
tx_no_desc += p->txr.no_desc;
|
|
rx_split += p->rxr.split;
|
|
rx_discarded += p->rxr.discarded;
|
|
rx_not_done += p->rxr.not_done;
|
|
}
|
|
*/
|
|
|
|
/* OS statistics */
|
|
struct ifnet *ifp = vsi->ifp;
|
|
|
|
// ifp->if_ipackets = rx_p; // no gprc
|
|
// ifp->if_opackets = tx_p; // no gptc
|
|
ifp->if_ibytes = nsd->eth.rx_bytes;
|
|
ifp->if_obytes = nsd->eth.tx_bytes;
|
|
ifp->if_imcasts = nsd->eth.rx_multicast;
|
|
ifp->if_omcasts = nsd->eth.tx_multicast;
|
|
ifp->if_collisions = 0;
|
|
|
|
/* Rx Errors */
|
|
// Linux uses illegal_bytes instead of rx_length_errors
|
|
ifp->if_ierrors = nsd->crc_errors + nsd->illegal_bytes;
|
|
}
|
|
|
|
/*
|
|
** Tasklet handler for MSIX Adminq interrupts
|
|
** - do outside interrupt since it might sleep
|
|
*/
|
|
static void
|
|
i40e_do_adminq(void *context, int pending)
|
|
{
|
|
struct i40e_pf *pf = context;
|
|
struct i40e_hw *hw = &pf->hw;
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
struct i40e_arq_event_info event;
|
|
i40e_status ret;
|
|
u32 reg, loop = 0;
|
|
u16 opcode, result;
|
|
|
|
event.msg_size = I40E_AQ_BUF_SZ;
|
|
event.msg_buf = malloc(event.msg_size,
|
|
M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (!event.msg_buf) {
|
|
printf("Unable to allocate adminq memory\n");
|
|
return;
|
|
}
|
|
|
|
/* clean and process any events */
|
|
do {
|
|
ret = i40e_clean_arq_element(hw, &event, &result);
|
|
if (ret)
|
|
break;
|
|
opcode = LE16_TO_CPU(event.desc.opcode);
|
|
switch (opcode) {
|
|
case i40e_aqc_opc_get_link_status:
|
|
vsi->link_up = i40e_config_link(hw);
|
|
i40e_update_link_status(pf);
|
|
break;
|
|
case i40e_aqc_opc_send_msg_to_pf:
|
|
/* process pf/vf communication here */
|
|
break;
|
|
case i40e_aqc_opc_event_lan_overflow:
|
|
break;
|
|
default:
|
|
#ifdef I40E_DEBUG
|
|
printf("AdminQ unknown event %x\n", opcode);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
} while (result && (loop++ < I40E_ADM_LIMIT));
|
|
|
|
reg = rd32(hw, I40E_PFINT_ICR0_ENA);
|
|
reg |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
|
|
wr32(hw, I40E_PFINT_ICR0_ENA, reg);
|
|
free(event.msg_buf, M_DEVBUF);
|
|
|
|
if (pf->msix > 1)
|
|
i40e_enable_adminq(&pf->hw);
|
|
else
|
|
i40e_enable_intr(vsi);
|
|
}
|
|
|
|
static int
|
|
i40e_debug_info(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct i40e_pf *pf;
|
|
int error, input = 0;
|
|
|
|
error = sysctl_handle_int(oidp, &input, 0, req);
|
|
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
|
|
if (input == 1) {
|
|
pf = (struct i40e_pf *)arg1;
|
|
i40e_print_debug_info(pf);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
i40e_print_debug_info(struct i40e_pf *pf)
|
|
{
|
|
struct i40e_hw *hw = &pf->hw;
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
struct i40e_queue *que = vsi->queues;
|
|
struct rx_ring *rxr = &que->rxr;
|
|
struct tx_ring *txr = &que->txr;
|
|
u32 reg;
|
|
|
|
|
|
printf("Queue irqs = %lx\n", que->irqs);
|
|
printf("AdminQ irqs = %lx\n", pf->admin_irq);
|
|
printf("RX next check = %x\n", rxr->next_check);
|
|
printf("RX not ready = %lx\n", rxr->not_done);
|
|
printf("RX packets = %lx\n", rxr->rx_packets);
|
|
printf("TX desc avail = %x\n", txr->avail);
|
|
|
|
reg = rd32(hw, I40E_GLV_GORCL(0xc));
|
|
printf("RX Bytes = %x\n", reg);
|
|
reg = rd32(hw, I40E_GLPRT_GORCL(hw->port));
|
|
printf("Port RX Bytes = %x\n", reg);
|
|
reg = rd32(hw, I40E_GLV_RDPC(0xc));
|
|
printf("RX discard = %x\n", reg);
|
|
reg = rd32(hw, I40E_GLPRT_RDPC(hw->port));
|
|
printf("Port RX discard = %x\n", reg);
|
|
|
|
reg = rd32(hw, I40E_GLV_TEPC(0xc));
|
|
printf("TX errors = %x\n", reg);
|
|
reg = rd32(hw, I40E_GLV_GOTCL(0xc));
|
|
printf("TX Bytes = %x\n", reg);
|
|
|
|
reg = rd32(hw, I40E_GLPRT_RUC(hw->port));
|
|
printf("RX undersize = %x\n", reg);
|
|
reg = rd32(hw, I40E_GLPRT_RFC(hw->port));
|
|
printf("RX fragments = %x\n", reg);
|
|
reg = rd32(hw, I40E_GLPRT_ROC(hw->port));
|
|
printf("RX oversize = %x\n", reg);
|
|
reg = rd32(hw, I40E_GLPRT_RLEC(hw->port));
|
|
printf("RX length error = %x\n", reg);
|
|
reg = rd32(hw, I40E_GLPRT_MRFC(hw->port));
|
|
printf("mac remote fault = %x\n", reg);
|
|
reg = rd32(hw, I40E_GLPRT_MLFC(hw->port));
|
|
printf("mac local fault = %x\n", reg);
|
|
}
|
|
|
|
/**
|
|
* Update VSI-specific ethernet statistics counters.
|
|
**/
|
|
void i40e_update_eth_stats(struct i40e_vsi *vsi)
|
|
{
|
|
struct i40e_pf *pf = (struct i40e_pf *)vsi->back;
|
|
struct i40e_hw *hw = &pf->hw;
|
|
struct i40e_eth_stats *es;
|
|
struct i40e_eth_stats *oes;
|
|
u16 stat_idx = vsi->info.stat_counter_idx;
|
|
|
|
es = &vsi->eth_stats;
|
|
oes = &vsi->eth_stats_offsets;
|
|
|
|
/* Gather up the stats that the hw collects */
|
|
i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx),
|
|
vsi->stat_offsets_loaded,
|
|
&oes->tx_errors, &es->tx_errors);
|
|
i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx),
|
|
vsi->stat_offsets_loaded,
|
|
&oes->rx_discards, &es->rx_discards);
|
|
|
|
i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx),
|
|
I40E_GLV_GORCL(stat_idx),
|
|
vsi->stat_offsets_loaded,
|
|
&oes->rx_bytes, &es->rx_bytes);
|
|
i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx),
|
|
I40E_GLV_UPRCL(stat_idx),
|
|
vsi->stat_offsets_loaded,
|
|
&oes->rx_unicast, &es->rx_unicast);
|
|
i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx),
|
|
I40E_GLV_MPRCL(stat_idx),
|
|
vsi->stat_offsets_loaded,
|
|
&oes->rx_multicast, &es->rx_multicast);
|
|
i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx),
|
|
I40E_GLV_BPRCL(stat_idx),
|
|
vsi->stat_offsets_loaded,
|
|
&oes->rx_broadcast, &es->rx_broadcast);
|
|
|
|
i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx),
|
|
I40E_GLV_GOTCL(stat_idx),
|
|
vsi->stat_offsets_loaded,
|
|
&oes->tx_bytes, &es->tx_bytes);
|
|
i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx),
|
|
I40E_GLV_UPTCL(stat_idx),
|
|
vsi->stat_offsets_loaded,
|
|
&oes->tx_unicast, &es->tx_unicast);
|
|
i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx),
|
|
I40E_GLV_MPTCL(stat_idx),
|
|
vsi->stat_offsets_loaded,
|
|
&oes->tx_multicast, &es->tx_multicast);
|
|
i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx),
|
|
I40E_GLV_BPTCL(stat_idx),
|
|
vsi->stat_offsets_loaded,
|
|
&oes->tx_broadcast, &es->tx_broadcast);
|
|
vsi->stat_offsets_loaded = true;
|
|
}
|
|
|
|
/**
|
|
* Reset all of the stats for the given pf
|
|
**/
|
|
void i40e_pf_reset_stats(struct i40e_pf *pf)
|
|
{
|
|
bzero(&pf->stats, sizeof(struct i40e_hw_port_stats));
|
|
bzero(&pf->stats_offsets, sizeof(struct i40e_hw_port_stats));
|
|
pf->stat_offsets_loaded = false;
|
|
}
|
|
|
|
/**
|
|
* Resets all stats of the given vsi
|
|
**/
|
|
void i40e_vsi_reset_stats(struct i40e_vsi *vsi)
|
|
{
|
|
bzero(&vsi->eth_stats, sizeof(struct i40e_eth_stats));
|
|
bzero(&vsi->eth_stats_offsets, sizeof(struct i40e_eth_stats));
|
|
vsi->stat_offsets_loaded = false;
|
|
}
|
|
|
|
/**
|
|
* Read and update a 48 bit stat from the hw
|
|
*
|
|
* Since the device stats are not reset at PFReset, they likely will not
|
|
* be zeroed when the driver starts. We'll save the first values read
|
|
* and use them as offsets to be subtracted from the raw values in order
|
|
* to report stats that count from zero.
|
|
**/
|
|
static void
|
|
i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg,
|
|
bool offset_loaded, u64 *offset, u64 *stat)
|
|
{
|
|
u64 new_data;
|
|
|
|
#if __FreeBSD__ >= 10 && __amd64__
|
|
new_data = rd64(hw, loreg);
|
|
#else
|
|
/*
|
|
* Use two rd32's instead of one rd64 because FreeBSD versions before
|
|
* 10 don't support 8 byte bus reads/writes.
|
|
*/
|
|
new_data = rd32(hw, loreg);
|
|
new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
|
|
#endif
|
|
|
|
if (!offset_loaded)
|
|
*offset = new_data;
|
|
if (new_data >= *offset)
|
|
*stat = new_data - *offset;
|
|
else
|
|
*stat = (new_data + ((u64)1 << 48)) - *offset;
|
|
*stat &= 0xFFFFFFFFFFFFULL;
|
|
}
|
|
|
|
/**
|
|
* Read and update a 32 bit stat from the hw
|
|
**/
|
|
static void
|
|
i40e_stat_update32(struct i40e_hw *hw, u32 reg,
|
|
bool offset_loaded, u64 *offset, u64 *stat)
|
|
{
|
|
u32 new_data;
|
|
|
|
new_data = rd32(hw, reg);
|
|
if (!offset_loaded)
|
|
*offset = new_data;
|
|
if (new_data >= *offset)
|
|
*stat = (u32)(new_data - *offset);
|
|
else
|
|
*stat = (u32)((new_data + ((u64)1 << 32)) - *offset);
|
|
}
|
|
|
|
/*
|
|
** Set flow control using sysctl:
|
|
** Flow control values:
|
|
** 0 - off
|
|
** 1 - rx pause
|
|
** 2 - tx pause
|
|
** 3 - full
|
|
*/
|
|
static int
|
|
i40e_set_flowcntl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
/*
|
|
* TODO: ensure flow control is disabled if
|
|
* priority flow control is enabled
|
|
*
|
|
* TODO: ensure tx CRC by hardware should be enabled
|
|
* if tx flow control is enabled.
|
|
*/
|
|
struct i40e_pf *pf = (struct i40e_pf *)arg1;
|
|
struct i40e_hw *hw = &pf->hw;
|
|
device_t dev = pf->dev;
|
|
struct i40e_aq_get_phy_abilities_resp abilities;
|
|
int requested_fc = 0, error = 0;
|
|
enum i40e_status_code aq_error = 0;
|
|
u8 fc_aq_err = 0;
|
|
|
|
/* Get current capability information */
|
|
aq_error = i40e_aq_get_phy_capabilities(hw, FALSE, FALSE, &abilities, NULL);
|
|
if (aq_error)
|
|
device_printf(dev, "Error getting phy capabilities %d,"
|
|
" aq error: %d\n", aq_error, hw->aq.asq_last_status);
|
|
|
|
if ((abilities.abilities & I40E_AQ_PHY_FLAG_PAUSE_TX) &&
|
|
(abilities.abilities & I40E_AQ_PHY_FLAG_PAUSE_RX))
|
|
hw->fc.current_mode = I40E_FC_FULL;
|
|
else if (abilities.abilities & I40E_AQ_PHY_FLAG_PAUSE_TX)
|
|
hw->fc.current_mode = I40E_FC_TX_PAUSE;
|
|
else if (abilities.abilities & I40E_AQ_PHY_FLAG_PAUSE_RX)
|
|
hw->fc.current_mode = I40E_FC_RX_PAUSE;
|
|
else
|
|
hw->fc.current_mode = I40E_FC_NONE;
|
|
|
|
/* Read in new mode */
|
|
requested_fc = hw->fc.current_mode;
|
|
error = sysctl_handle_int(oidp, &requested_fc, 0, req);
|
|
if ((error) || (req->newptr == NULL))
|
|
goto no_set;
|
|
if (requested_fc < 0 || requested_fc > 3) {
|
|
device_printf(dev,
|
|
"Invalid fc mode; valid modes are 0 through 3\n");
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* Set fc ability for port */
|
|
hw->fc.requested_mode = requested_fc;
|
|
i40e_set_fc(hw, &fc_aq_err, TRUE);
|
|
|
|
// DEBUG: Verify flow control setting was successfully set
|
|
if (hw->fc.current_mode != hw->fc.requested_mode) {
|
|
device_printf(dev, "FC set failure:\n");
|
|
device_printf(dev, "Current: %s / Requested: %s\n",
|
|
i40e_fc_string[hw->fc.current_mode],
|
|
i40e_fc_string[hw->fc.requested_mode]);
|
|
}
|
|
|
|
no_set:;
|
|
#ifdef I40E_DEBUG
|
|
/* Print FC registers */
|
|
u32 reg = 0;
|
|
printf("Current FC mode: %s\n", i40e_fc_string[hw->fc.current_mode]);
|
|
if (i40e_is_40G_device(hw->device_id)) {
|
|
// XXX: Why are these names so long?
|
|
reg = rd32(hw, I40E_PRTMAC_HSEC_CTL_RX_ENABLE_GPP);
|
|
printf("PRTMAC_HSEC_CTL_RX_ENABLE_GPP (LFC) : %s\n",
|
|
ON_OFF_STR(reg & I40E_PRTMAC_HSEC_CTL_RX_ENABLE_GPP_HSEC_CTL_RX_ENABLE_GPP_MASK));
|
|
|
|
reg = rd32(hw, I40E_PRTMAC_HSEC_CTL_RX_ENABLE_PPP);
|
|
printf("PRTMAC_HSEC_CTL_RX_ENABLE_PPP (PFC) : %s\n",
|
|
ON_OFF_STR(reg & I40E_PRTMAC_HSEC_CTL_RX_ENABLE_GPP_HSEC_CTL_RX_ENABLE_GPP_MASK));
|
|
|
|
reg = rd32(hw, I40E_PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE);
|
|
printf("PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE (LFC) : %s\n",
|
|
ON_OFF_STR(reg & I40E_PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE_HSEC_CTL_RX_PAUSE_ENABLE_MASK));
|
|
|
|
reg = rd32(hw, I40E_PRTMAC_HSEC_CTL_TX_PAUSE_ENABLE);
|
|
printf("PRTMAC_HSEC_CTL_TX_PAUSE_ENABLE (LFC) : %s\n",
|
|
ON_OFF_STR(reg & I40E_PRTMAC_HSEC_CTL_TX_PAUSE_ENABLE_HSEC_CTL_TX_PAUSE_ENABLE_MASK));
|
|
|
|
reg = rd32(hw, I40E_PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(8));
|
|
printf("PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER (LFC): %#010x\n", reg);
|
|
|
|
reg = rd32(hw, I40E_PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(8));
|
|
printf("PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA (LFC) : %#010x\n",
|
|
reg & I40E_PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_MASK);
|
|
} else {
|
|
reg = rd32(hw, I40E_PRTDCB_MFLCN);
|
|
printf("PRTDCB_MFLCN :\n");
|
|
printf("- PMCF (Pass MAC Control Frames): %s\n",
|
|
ON_OFF_STR(reg & I40E_PRTDCB_MFLCN_PMCF_MASK));
|
|
printf("- DPF (Discard Pause Frames) : %s\n",
|
|
ON_OFF_STR(reg & I40E_PRTDCB_MFLCN_DPF_MASK));
|
|
printf("- RPFCM (Rx PFC Mode) : %s\n",
|
|
ON_OFF_STR(reg & I40E_PRTDCB_MFLCN_RPFCM_MASK));
|
|
printf("- RFCE (Rx LFC Mode) : %s\n",
|
|
ON_OFF_STR(reg & I40E_PRTDCB_MFLCN_RFCE_MASK));
|
|
printf("- RPFCE (Rx PFC Enable Bitmap) : %#04x\n",
|
|
reg & I40E_PRTDCB_MFLCN_RPFCE_MASK);
|
|
reg = rd32(hw, I40E_PRTDCB_FCCFG);
|
|
printf("PRTDCB_FCCFG :\n");
|
|
u8 tfce = reg & I40E_PRTDCB_FCCFG_TFCE_MASK;
|
|
printf("- TFCE (Tx FC Enable) : %s\n",
|
|
(tfce == 3) ? "Reserved" :
|
|
(tfce == 2) ? "PFC Enabled" :
|
|
(tfce == 1) ? "LFC Enabled" :
|
|
"Tx FC Disabled");
|
|
reg = rd32(hw, I40E_PRTDCB_FCTTVN(0));
|
|
printf("PRTDCB_FCCTTVN (LFC) : %#06x\n",
|
|
reg & I40E_PRTDCB_FCTTVN_TTV_2N_MASK);
|
|
reg = rd32(hw, I40E_PRTDCB_FCRTV);
|
|
printf("PRTDCB_FCRTV (Pause ref thresh) : %#06x\n",
|
|
reg & I40E_PRTDCB_FCRTV_FC_REFRESH_TH_MASK);
|
|
reg = rd32(hw, I40E_PRTDCB_TC2PFC);
|
|
printf("PRTDCB_TC2PFC is 0xff : %s\n",
|
|
((reg & I40E_PRTDCB_TC2PFC_TC2PFC_MASK) == 0xFF)
|
|
? "Yes" : "No");
|
|
}
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
** Get the width and transaction speed of
|
|
** the bus this adapter is plugged into.
|
|
*/
|
|
static u16
|
|
i40e_get_bus_info(struct i40e_hw *hw, device_t dev)
|
|
{
|
|
u16 link;
|
|
u32 offset;
|
|
|
|
|
|
/* Get the PCI Express Capabilities offset */
|
|
pci_find_cap(dev, PCIY_EXPRESS, &offset);
|
|
|
|
/* ...and read the Link Status Register */
|
|
link = pci_read_config(dev, offset + PCIER_LINK_STA, 2);
|
|
|
|
switch (link & I40E_PCI_LINK_WIDTH) {
|
|
case I40E_PCI_LINK_WIDTH_1:
|
|
hw->bus.width = i40e_bus_width_pcie_x1;
|
|
break;
|
|
case I40E_PCI_LINK_WIDTH_2:
|
|
hw->bus.width = i40e_bus_width_pcie_x2;
|
|
break;
|
|
case I40E_PCI_LINK_WIDTH_4:
|
|
hw->bus.width = i40e_bus_width_pcie_x4;
|
|
break;
|
|
case I40E_PCI_LINK_WIDTH_8:
|
|
hw->bus.width = i40e_bus_width_pcie_x8;
|
|
break;
|
|
default:
|
|
hw->bus.width = i40e_bus_width_unknown;
|
|
break;
|
|
}
|
|
|
|
switch (link & I40E_PCI_LINK_SPEED) {
|
|
case I40E_PCI_LINK_SPEED_2500:
|
|
hw->bus.speed = i40e_bus_speed_2500;
|
|
break;
|
|
case I40E_PCI_LINK_SPEED_5000:
|
|
hw->bus.speed = i40e_bus_speed_5000;
|
|
break;
|
|
case I40E_PCI_LINK_SPEED_8000:
|
|
hw->bus.speed = i40e_bus_speed_8000;
|
|
break;
|
|
default:
|
|
hw->bus.speed = i40e_bus_speed_unknown;
|
|
break;
|
|
}
|
|
|
|
|
|
device_printf(dev,"PCI Express Bus: Speed %s %s\n",
|
|
((hw->bus.speed == i40e_bus_speed_8000) ? "8.0GT/s":
|
|
(hw->bus.speed == i40e_bus_speed_5000) ? "5.0GT/s":
|
|
(hw->bus.speed == i40e_bus_speed_2500) ? "2.5GT/s":"Unknown"),
|
|
(hw->bus.width == i40e_bus_width_pcie_x8) ? "Width x8" :
|
|
(hw->bus.width == i40e_bus_width_pcie_x4) ? "Width x4" :
|
|
(hw->bus.width == i40e_bus_width_pcie_x1) ? "Width x1" :
|
|
("Unknown"));
|
|
|
|
if ((hw->bus.width <= i40e_bus_width_pcie_x8) &&
|
|
(hw->bus.speed < i40e_bus_speed_8000)) {
|
|
device_printf(dev, "PCI-Express bandwidth available"
|
|
" for this device\n is not sufficient for"
|
|
" normal operation.\n");
|
|
device_printf(dev, "For expected performance a x8 "
|
|
"PCIE Gen3 slot is required.\n");
|
|
}
|
|
|
|
return (link);
|
|
}
|
|
|
|
#ifdef I40E_DEBUG
|
|
static int
|
|
i40e_sysctl_link_status(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct i40e_pf *pf = (struct i40e_pf *)arg1;
|
|
struct i40e_hw *hw = &pf->hw;
|
|
struct i40e_link_status link_status;
|
|
char buf[512];
|
|
|
|
enum i40e_status_code aq_error = 0;
|
|
|
|
aq_error = i40e_aq_get_link_info(hw, TRUE, &link_status, NULL);
|
|
if (aq_error) {
|
|
printf("i40e_aq_get_link_info() error %d\n", aq_error);
|
|
return (EPERM);
|
|
}
|
|
|
|
sprintf(buf, "\n"
|
|
"PHY Type : %#04x\n"
|
|
"Speed : %#04x\n"
|
|
"Link info: %#04x\n"
|
|
"AN info : %#04x\n"
|
|
"Ext info : %#04x",
|
|
link_status.phy_type, link_status.link_speed,
|
|
link_status.link_info, link_status.an_info,
|
|
link_status.ext_info);
|
|
|
|
return (sysctl_handle_string(oidp, buf, strlen(buf), req));
|
|
}
|
|
|
|
static int
|
|
i40e_sysctl_phy_abilities(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct i40e_pf *pf = (struct i40e_pf *)arg1;
|
|
struct i40e_hw *hw = &pf->hw;
|
|
struct i40e_aq_get_phy_abilities_resp abilities_resp;
|
|
char buf[512];
|
|
|
|
enum i40e_status_code aq_error = 0;
|
|
|
|
// TODO: Print out list of qualified modules as well?
|
|
aq_error = i40e_aq_get_phy_capabilities(hw, TRUE, FALSE, &abilities_resp, NULL);
|
|
if (aq_error) {
|
|
printf("i40e_aq_get_phy_capabilities() error %d\n", aq_error);
|
|
return (EPERM);
|
|
}
|
|
|
|
sprintf(buf, "\n"
|
|
"PHY Type : %#010x\n"
|
|
"Speed : %#04x\n"
|
|
"Abilities: %#04x\n"
|
|
"EEE cap : %#06x\n"
|
|
"EEER reg : %#010x\n"
|
|
"D3 Lpan : %#04x",
|
|
abilities_resp.phy_type, abilities_resp.link_speed,
|
|
abilities_resp.abilities, abilities_resp.eee_capability,
|
|
abilities_resp.eeer_val, abilities_resp.d3_lpan);
|
|
|
|
return (sysctl_handle_string(oidp, buf, strlen(buf), req));
|
|
}
|
|
|
|
static int
|
|
i40e_sysctl_sw_filter_list(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct i40e_pf *pf = (struct i40e_pf *)arg1;
|
|
struct i40e_vsi *vsi = &pf->vsi;
|
|
struct i40e_mac_filter *f;
|
|
char *buf, *buf_i;
|
|
|
|
int error = 0;
|
|
int ftl_len = 0;
|
|
int ftl_counter = 0;
|
|
int buf_len = 0;
|
|
int entry_len = 42;
|
|
|
|
SLIST_FOREACH(f, &vsi->ftl, next) {
|
|
ftl_len++;
|
|
}
|
|
|
|
if (ftl_len < 1) {
|
|
sysctl_handle_string(oidp, "(none)", 6, req);
|
|
return (0);
|
|
}
|
|
|
|
buf_len = sizeof(char) * (entry_len + 1) * ftl_len + 2;
|
|
buf = buf_i = malloc(buf_len, M_DEVBUF, M_NOWAIT);
|
|
|
|
sprintf(buf_i++, "\n");
|
|
SLIST_FOREACH(f, &vsi->ftl, next) {
|
|
sprintf(buf_i,
|
|
MAC_FORMAT ", vlan %4d, flags %#06x",
|
|
MAC_FORMAT_ARGS(f->macaddr), f->vlan, f->flags);
|
|
buf_i += entry_len;
|
|
/* don't print '\n' for last entry */
|
|
if (++ftl_counter != ftl_len) {
|
|
sprintf(buf_i, "\n");
|
|
buf_i++;
|
|
}
|
|
}
|
|
|
|
error = sysctl_handle_string(oidp, buf, strlen(buf), req);
|
|
if (error)
|
|
printf("sysctl error: %d\n", error);
|
|
free(buf, M_DEVBUF);
|
|
return error;
|
|
}
|
|
#endif
|
|
|