freebsd-skq/sys/net80211/ieee80211_crypto_tkip.c
Sam Leffler 68e8e04e93 Update 802.11 wireless support:
o major overhaul of the way channels are handled: channels are now
  fully enumerated and uniquely identify the operating characteristics;
  these changes are visible to user applications which require changes
o make scanning support independent of the state machine to enable
  background scanning and roaming
o move scanning support into loadable modules based on the operating
  mode to enable different policies and reduce the memory footprint
  on systems w/ constrained resources
o add background scanning in station mode (no support for adhoc/ibss
  mode yet)
o significantly speedup sta mode scanning with a variety of techniques
o add roaming support when background scanning is supported; for now
  we use a simple algorithm to trigger a roam: we threshold the rssi
  and tx rate, if either drops too low we try to roam to a new ap
o add tx fragmentation support
o add first cut at 802.11n support: this code works with forthcoming
  drivers but is incomplete; it's included now to establish a baseline
  for other drivers to be developed and for user applications
o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates
  prepending mbufs for traffic generated locally
o add support for Atheros protocol extensions; mainly the fast frames
  encapsulation (note this can be used with any card that can tx+rx
  large frames correctly)
o add sta support for ap's that beacon both WPA1+2 support
o change all data types from bsd-style to posix-style
o propagate noise floor data from drivers to net80211 and on to user apps
o correct various issues in the sta mode state machine related to handling
  authentication and association failures
o enable the addition of sta mode power save support for drivers that need
  net80211 support (not in this commit)
o remove old WI compatibility ioctls (wicontrol is officially dead)
o change the data structures returned for get sta info and get scan
  results so future additions will not break user apps
o fixed tx rate is now maintained internally as an ieee rate and not an
  index into the rate set; this needs to be extended to deal with
  multi-mode operation
o add extended channel specifications to radiotap to enable 11n sniffing

Drivers:
o ath: add support for bg scanning, tx fragmentation, fast frames,
       dynamic turbo (lightly tested), 11n (sniffing only and needs
       new hal)
o awi: compile tested only
o ndis: lightly tested
o ipw: lightly tested
o iwi: add support for bg scanning (well tested but may have some
       rough edges)
o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data
o wi: lightly tested

This work is based on contributions by Atheros, kmacy, sephe, thompsa,
mlaier, kevlo, and others.  Much of the scanning work was supported by
Atheros.  The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00

974 lines
27 KiB
C

/*-
* Copyright (c) 2002-2007 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* IEEE 802.11i TKIP crypto support.
*
* Part of this module is derived from similar code in the Host
* AP driver. The code is used with the consent of the author and
* it's license is included below.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/endian.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/ethernet.h>
#include <net80211/ieee80211_var.h>
static void *tkip_attach(struct ieee80211com *, struct ieee80211_key *);
static void tkip_detach(struct ieee80211_key *);
static int tkip_setkey(struct ieee80211_key *);
static int tkip_encap(struct ieee80211_key *, struct mbuf *m, uint8_t keyid);
static int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
static int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
static int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
static const struct ieee80211_cipher tkip = {
.ic_name = "TKIP",
.ic_cipher = IEEE80211_CIPHER_TKIP,
.ic_header = IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
IEEE80211_WEP_EXTIVLEN,
.ic_trailer = IEEE80211_WEP_CRCLEN,
.ic_miclen = IEEE80211_WEP_MICLEN,
.ic_attach = tkip_attach,
.ic_detach = tkip_detach,
.ic_setkey = tkip_setkey,
.ic_encap = tkip_encap,
.ic_decap = tkip_decap,
.ic_enmic = tkip_enmic,
.ic_demic = tkip_demic,
};
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t __u32;
typedef uint32_t u32;
#define memmove(dst, src, n) ovbcopy(src, dst, n)
struct tkip_ctx {
struct ieee80211com *tc_ic; /* for diagnostics */
u16 tx_ttak[5];
int tx_phase1_done;
u8 tx_rc4key[16]; /* XXX for test module; make locals? */
u16 rx_ttak[5];
int rx_phase1_done;
u8 rx_rc4key[16]; /* XXX for test module; make locals? */
uint64_t rx_rsc; /* held until MIC verified */
};
static void michael_mic(struct tkip_ctx *, const u8 *key,
struct mbuf *m, u_int off, size_t data_len,
u8 mic[IEEE80211_WEP_MICLEN]);
static int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
struct mbuf *, int hdr_len);
static int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
struct mbuf *, int hdr_len);
/* number of references from net80211 layer */
static int nrefs = 0;
static void *
tkip_attach(struct ieee80211com *ic, struct ieee80211_key *k)
{
struct tkip_ctx *ctx;
MALLOC(ctx, struct tkip_ctx *, sizeof(struct tkip_ctx),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (ctx == NULL) {
ic->ic_stats.is_crypto_nomem++;
return NULL;
}
ctx->tc_ic = ic;
nrefs++; /* NB: we assume caller locking */
return ctx;
}
static void
tkip_detach(struct ieee80211_key *k)
{
struct tkip_ctx *ctx = k->wk_private;
FREE(ctx, M_DEVBUF);
KASSERT(nrefs > 0, ("imbalanced attach/detach"));
nrefs--; /* NB: we assume caller locking */
}
static int
tkip_setkey(struct ieee80211_key *k)
{
struct tkip_ctx *ctx = k->wk_private;
if (k->wk_keylen != (128/NBBY)) {
(void) ctx; /* XXX */
IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
"%s: Invalid key length %u, expecting %u\n",
__func__, k->wk_keylen, 128/NBBY);
return 0;
}
k->wk_keytsc = 1; /* TSC starts at 1 */
return 1;
}
/*
* Add privacy headers and do any s/w encryption required.
*/
static int
tkip_encap(struct ieee80211_key *k, struct mbuf *m, uint8_t keyid)
{
struct tkip_ctx *ctx = k->wk_private;
struct ieee80211com *ic = ctx->tc_ic;
uint8_t *ivp;
int hdrlen;
/*
* Handle TKIP counter measures requirement.
*/
if (ic->ic_flags & IEEE80211_F_COUNTERM) {
#ifdef IEEE80211_DEBUG
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
#endif
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
"[%s] Discard frame due to countermeasures (%s)\n",
ether_sprintf(wh->i_addr2), __func__);
ic->ic_stats.is_crypto_tkipcm++;
return 0;
}
hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
/*
* Copy down 802.11 header and add the IV, KeyID, and ExtIV.
*/
M_PREPEND(m, tkip.ic_header, M_NOWAIT);
if (m == NULL)
return 0;
ivp = mtod(m, uint8_t *);
memmove(ivp, ivp + tkip.ic_header, hdrlen);
ivp += hdrlen;
ivp[0] = k->wk_keytsc >> 8; /* TSC1 */
ivp[1] = (ivp[0] | 0x20) & 0x7f; /* WEP seed */
ivp[2] = k->wk_keytsc >> 0; /* TSC0 */
ivp[3] = keyid | IEEE80211_WEP_EXTIV; /* KeyID | ExtID */
ivp[4] = k->wk_keytsc >> 16; /* TSC2 */
ivp[5] = k->wk_keytsc >> 24; /* TSC3 */
ivp[6] = k->wk_keytsc >> 32; /* TSC4 */
ivp[7] = k->wk_keytsc >> 40; /* TSC5 */
/*
* Finally, do software encrypt if neeed.
*/
if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
if (!tkip_encrypt(ctx, k, m, hdrlen))
return 0;
/* NB: tkip_encrypt handles wk_keytsc */
} else
k->wk_keytsc++;
return 1;
}
/*
* Add MIC to the frame as needed.
*/
static int
tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
{
struct tkip_ctx *ctx = k->wk_private;
if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
struct ieee80211com *ic = ctx->tc_ic;
int hdrlen;
uint8_t mic[IEEE80211_WEP_MICLEN];
ic->ic_stats.is_crypto_tkipenmic++;
hdrlen = ieee80211_hdrspace(ic, wh);
michael_mic(ctx, k->wk_txmic,
m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
return m_append(m, tkip.ic_miclen, mic);
}
return 1;
}
static __inline uint64_t
READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
{
uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
uint16_t iv16 = (b4 << 0) | (b5 << 8);
return (((uint64_t)iv16) << 32) | iv32;
}
/*
* Validate and strip privacy headers (and trailer) for a
* received frame. If necessary, decrypt the frame using
* the specified key.
*/
static int
tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
{
struct tkip_ctx *ctx = k->wk_private;
struct ieee80211com *ic = ctx->tc_ic;
struct ieee80211_frame *wh;
uint8_t *ivp;
/*
* Header should have extended IV and sequence number;
* verify the former and validate the latter.
*/
wh = mtod(m, struct ieee80211_frame *);
ivp = mtod(m, uint8_t *) + hdrlen;
if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
/*
* No extended IV; discard frame.
*/
IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
"[%s] missing ExtIV for TKIP cipher\n",
ether_sprintf(wh->i_addr2));
ctx->tc_ic->ic_stats.is_rx_tkipformat++;
return 0;
}
/*
* Handle TKIP counter measures requirement.
*/
if (ic->ic_flags & IEEE80211_F_COUNTERM) {
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
"[%s] discard frame due to countermeasures (%s)\n",
ether_sprintf(wh->i_addr2), __func__);
ic->ic_stats.is_crypto_tkipcm++;
return 0;
}
ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
if (ctx->rx_rsc <= k->wk_keyrsc) {
/*
* Replay violation; notify upper layer.
*/
ieee80211_notify_replay_failure(ctx->tc_ic, wh, k, ctx->rx_rsc);
ctx->tc_ic->ic_stats.is_rx_tkipreplay++;
return 0;
}
/*
* NB: We can't update the rsc in the key until MIC is verified.
*
* We assume we are not preempted between doing the check above
* and updating wk_keyrsc when stripping the MIC in tkip_demic.
* Otherwise we might process another packet and discard it as
* a replay.
*/
/*
* Check if the device handled the decrypt in hardware.
* If so we just strip the header; otherwise we need to
* handle the decrypt in software.
*/
if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
!tkip_decrypt(ctx, k, m, hdrlen))
return 0;
/*
* Copy up 802.11 header and strip crypto bits.
*/
memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
m_adj(m, tkip.ic_header);
m_adj(m, -tkip.ic_trailer);
return 1;
}
/*
* Verify and strip MIC from the frame.
*/
static int
tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
{
struct tkip_ctx *ctx = k->wk_private;
if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
struct ieee80211com *ic = ctx->tc_ic;
int hdrlen = ieee80211_hdrspace(ic, wh);
u8 mic[IEEE80211_WEP_MICLEN];
u8 mic0[IEEE80211_WEP_MICLEN];
ic->ic_stats.is_crypto_tkipdemic++;
michael_mic(ctx, k->wk_rxmic,
m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
mic);
m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
tkip.ic_miclen, mic0);
if (memcmp(mic, mic0, tkip.ic_miclen)) {
/* NB: 802.11 layer handles statistic and debug msg */
ieee80211_notify_michael_failure(ic, wh,
k->wk_rxkeyix != IEEE80211_KEYIX_NONE ?
k->wk_rxkeyix : k->wk_keyix);
return 0;
}
}
/*
* Strip MIC from the tail.
*/
m_adj(m, -tkip.ic_miclen);
/*
* Ok to update rsc now that MIC has been verified.
*/
k->wk_keyrsc = ctx->rx_rsc;
return 1;
}
/*
* Host AP crypt: host-based TKIP encryption implementation for Host AP driver
*
* Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation. See README and COPYING for
* more details.
*
* Alternatively, this software may be distributed under the terms of BSD
* license.
*/
static const __u32 crc32_table[256] = {
0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
0x2d02ef8dL
};
static __inline u16 RotR1(u16 val)
{
return (val >> 1) | (val << 15);
}
static __inline u8 Lo8(u16 val)
{
return val & 0xff;
}
static __inline u8 Hi8(u16 val)
{
return val >> 8;
}
static __inline u16 Lo16(u32 val)
{
return val & 0xffff;
}
static __inline u16 Hi16(u32 val)
{
return val >> 16;
}
static __inline u16 Mk16(u8 hi, u8 lo)
{
return lo | (((u16) hi) << 8);
}
static __inline u16 Mk16_le(const u16 *v)
{
return le16toh(*v);
}
static const u16 Sbox[256] = {
0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
};
static __inline u16 _S_(u16 v)
{
u16 t = Sbox[Hi8(v)];
return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
}
#define PHASE1_LOOP_COUNT 8
static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
{
int i, j;
/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
TTAK[0] = Lo16(IV32);
TTAK[1] = Hi16(IV32);
TTAK[2] = Mk16(TA[1], TA[0]);
TTAK[3] = Mk16(TA[3], TA[2]);
TTAK[4] = Mk16(TA[5], TA[4]);
for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
j = 2 * (i & 1);
TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
}
}
#ifndef _BYTE_ORDER
#error "Don't know native byte order"
#endif
static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
u16 IV16)
{
/* Make temporary area overlap WEP seed so that the final copy can be
* avoided on little endian hosts. */
u16 *PPK = (u16 *) &WEPSeed[4];
/* Step 1 - make copy of TTAK and bring in TSC */
PPK[0] = TTAK[0];
PPK[1] = TTAK[1];
PPK[2] = TTAK[2];
PPK[3] = TTAK[3];
PPK[4] = TTAK[4];
PPK[5] = TTAK[4] + IV16;
/* Step 2 - 96-bit bijective mixing using S-box */
PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
PPK[2] += RotR1(PPK[1]);
PPK[3] += RotR1(PPK[2]);
PPK[4] += RotR1(PPK[3]);
PPK[5] += RotR1(PPK[4]);
/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
* WEPSeed[0..2] is transmitted as WEP IV */
WEPSeed[0] = Hi8(IV16);
WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
WEPSeed[2] = Lo8(IV16);
WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
#if _BYTE_ORDER == _BIG_ENDIAN
{
int i;
for (i = 0; i < 6; i++)
PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
}
#endif
}
static void
wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
uint8_t icv[IEEE80211_WEP_CRCLEN])
{
u32 i, j, k, crc;
size_t buflen;
u8 S[256];
u8 *pos;
struct mbuf *m;
#define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
/* Setup RC4 state */
for (i = 0; i < 256; i++)
S[i] = i;
j = 0;
for (i = 0; i < 256; i++) {
j = (j + S[i] + key[i & 0x0f]) & 0xff;
S_SWAP(i, j);
}
/* Compute CRC32 over unencrypted data and apply RC4 to data */
crc = ~0;
i = j = 0;
m = m0;
pos = mtod(m, uint8_t *) + off;
buflen = m->m_len - off;
for (;;) {
if (buflen > data_len)
buflen = data_len;
data_len -= buflen;
for (k = 0; k < buflen; k++) {
crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
i = (i + 1) & 0xff;
j = (j + S[i]) & 0xff;
S_SWAP(i, j);
*pos++ ^= S[(S[i] + S[j]) & 0xff];
}
m = m->m_next;
if (m == NULL) {
KASSERT(data_len == 0,
("out of buffers with data_len %zu\n", data_len));
break;
}
pos = mtod(m, uint8_t *);
buflen = m->m_len;
}
crc = ~crc;
/* Append little-endian CRC32 and encrypt it to produce ICV */
icv[0] = crc;
icv[1] = crc >> 8;
icv[2] = crc >> 16;
icv[3] = crc >> 24;
for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
i = (i + 1) & 0xff;
j = (j + S[i]) & 0xff;
S_SWAP(i, j);
icv[k] ^= S[(S[i] + S[j]) & 0xff];
}
}
static int
wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
{
u32 i, j, k, crc;
u8 S[256];
u8 *pos, icv[4];
size_t buflen;
/* Setup RC4 state */
for (i = 0; i < 256; i++)
S[i] = i;
j = 0;
for (i = 0; i < 256; i++) {
j = (j + S[i] + key[i & 0x0f]) & 0xff;
S_SWAP(i, j);
}
/* Apply RC4 to data and compute CRC32 over decrypted data */
crc = ~0;
i = j = 0;
pos = mtod(m, uint8_t *) + off;
buflen = m->m_len - off;
for (;;) {
if (buflen > data_len)
buflen = data_len;
data_len -= buflen;
for (k = 0; k < buflen; k++) {
i = (i + 1) & 0xff;
j = (j + S[i]) & 0xff;
S_SWAP(i, j);
*pos ^= S[(S[i] + S[j]) & 0xff];
crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
pos++;
}
m = m->m_next;
if (m == NULL) {
KASSERT(data_len == 0,
("out of buffers with data_len %zu\n", data_len));
break;
}
pos = mtod(m, uint8_t *);
buflen = m->m_len;
}
crc = ~crc;
/* Encrypt little-endian CRC32 and verify that it matches with the
* received ICV */
icv[0] = crc;
icv[1] = crc >> 8;
icv[2] = crc >> 16;
icv[3] = crc >> 24;
for (k = 0; k < 4; k++) {
i = (i + 1) & 0xff;
j = (j + S[i]) & 0xff;
S_SWAP(i, j);
if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
/* ICV mismatch - drop frame */
return -1;
}
}
return 0;
}
static __inline u32 rotl(u32 val, int bits)
{
return (val << bits) | (val >> (32 - bits));
}
static __inline u32 rotr(u32 val, int bits)
{
return (val >> bits) | (val << (32 - bits));
}
static __inline u32 xswap(u32 val)
{
return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
}
#define michael_block(l, r) \
do { \
r ^= rotl(l, 17); \
l += r; \
r ^= xswap(l); \
l += r; \
r ^= rotl(l, 3); \
l += r; \
r ^= rotr(l, 2); \
l += r; \
} while (0)
static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
{
return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
}
static __inline u32 get_le32(const u8 *p)
{
return get_le32_split(p[0], p[1], p[2], p[3]);
}
static __inline void put_le32(u8 *p, u32 v)
{
p[0] = v;
p[1] = v >> 8;
p[2] = v >> 16;
p[3] = v >> 24;
}
/*
* Craft pseudo header used to calculate the MIC.
*/
static void
michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
{
const struct ieee80211_frame_addr4 *wh =
(const struct ieee80211_frame_addr4 *) wh0;
switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
case IEEE80211_FC1_DIR_NODS:
IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
break;
case IEEE80211_FC1_DIR_TODS:
IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
break;
case IEEE80211_FC1_DIR_FROMDS:
IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
break;
case IEEE80211_FC1_DIR_DSTODS:
IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
break;
}
if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
const struct ieee80211_qosframe *qwh =
(const struct ieee80211_qosframe *) wh;
hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
} else
hdr[12] = 0;
hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
}
static void
michael_mic(struct tkip_ctx *ctx, const u8 *key,
struct mbuf *m, u_int off, size_t data_len,
u8 mic[IEEE80211_WEP_MICLEN])
{
uint8_t hdr[16];
u32 l, r;
const uint8_t *data;
u_int space;
michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
l = get_le32(key);
r = get_le32(key + 4);
/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
l ^= get_le32(hdr);
michael_block(l, r);
l ^= get_le32(&hdr[4]);
michael_block(l, r);
l ^= get_le32(&hdr[8]);
michael_block(l, r);
l ^= get_le32(&hdr[12]);
michael_block(l, r);
/* first buffer has special handling */
data = mtod(m, const uint8_t *) + off;
space = m->m_len - off;
for (;;) {
if (space > data_len)
space = data_len;
/* collect 32-bit blocks from current buffer */
while (space >= sizeof(uint32_t)) {
l ^= get_le32(data);
michael_block(l, r);
data += sizeof(uint32_t), space -= sizeof(uint32_t);
data_len -= sizeof(uint32_t);
}
if (data_len < sizeof(uint32_t))
break;
m = m->m_next;
if (m == NULL) {
KASSERT(0, ("out of data, data_len %zu\n", data_len));
break;
}
if (space != 0) {
const uint8_t *data_next;
/*
* Block straddles buffers, split references.
*/
data_next = mtod(m, const uint8_t *);
KASSERT(m->m_len >= sizeof(uint32_t) - space,
("not enough data in following buffer, "
"m_len %u need %zu\n", m->m_len,
sizeof(uint32_t) - space));
switch (space) {
case 1:
l ^= get_le32_split(data[0], data_next[0],
data_next[1], data_next[2]);
data = data_next + 3;
space = m->m_len - 3;
break;
case 2:
l ^= get_le32_split(data[0], data[1],
data_next[0], data_next[1]);
data = data_next + 2;
space = m->m_len - 2;
break;
case 3:
l ^= get_le32_split(data[0], data[1],
data[2], data_next[0]);
data = data_next + 1;
space = m->m_len - 1;
break;
}
michael_block(l, r);
data_len -= sizeof(uint32_t);
} else {
/*
* Setup for next buffer.
*/
data = mtod(m, const uint8_t *);
space = m->m_len;
}
}
/* Last block and padding (0x5a, 4..7 x 0) */
switch (data_len) {
case 0:
l ^= get_le32_split(0x5a, 0, 0, 0);
break;
case 1:
l ^= get_le32_split(data[0], 0x5a, 0, 0);
break;
case 2:
l ^= get_le32_split(data[0], data[1], 0x5a, 0);
break;
case 3:
l ^= get_le32_split(data[0], data[1], data[2], 0x5a);
break;
}
michael_block(l, r);
/* l ^= 0; */
michael_block(l, r);
put_le32(mic, l);
put_le32(mic + 4, r);
}
static int
tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
struct mbuf *m, int hdrlen)
{
struct ieee80211_frame *wh;
uint8_t icv[IEEE80211_WEP_CRCLEN];
ctx->tc_ic->ic_stats.is_crypto_tkip++;
wh = mtod(m, struct ieee80211_frame *);
if (!ctx->tx_phase1_done) {
tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
(u32)(key->wk_keytsc >> 16));
ctx->tx_phase1_done = 1;
}
tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
(u16) key->wk_keytsc);
wep_encrypt(ctx->tx_rc4key,
m, hdrlen + tkip.ic_header,
m->m_pkthdr.len - (hdrlen + tkip.ic_header),
icv);
(void) m_append(m, IEEE80211_WEP_CRCLEN, icv); /* XXX check return */
key->wk_keytsc++;
if ((u16)(key->wk_keytsc) == 0)
ctx->tx_phase1_done = 0;
return 1;
}
static int
tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
struct mbuf *m, int hdrlen)
{
struct ieee80211_frame *wh;
u32 iv32;
u16 iv16;
ctx->tc_ic->ic_stats.is_crypto_tkip++;
wh = mtod(m, struct ieee80211_frame *);
/* NB: tkip_decap already verified header and left seq in rx_rsc */
iv16 = (u16) ctx->rx_rsc;
iv32 = (u32) (ctx->rx_rsc >> 16);
if (iv32 != (u32)(key->wk_keyrsc >> 16) || !ctx->rx_phase1_done) {
tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
wh->i_addr2, iv32);
ctx->rx_phase1_done = 1;
}
tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
/* NB: m is unstripped; deduct headers + ICV to get payload */
if (wep_decrypt(ctx->rx_rc4key,
m, hdrlen + tkip.ic_header,
m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
if (iv32 != (u32)(key->wk_keyrsc >> 16)) {
/* Previously cached Phase1 result was already lost, so
* it needs to be recalculated for the next packet. */
ctx->rx_phase1_done = 0;
}
IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
"[%s] TKIP ICV mismatch on decrypt\n",
ether_sprintf(wh->i_addr2));
ctx->tc_ic->ic_stats.is_rx_tkipicv++;
return 0;
}
return 1;
}
/*
* Module glue.
*/
IEEE80211_CRYPTO_MODULE(tkip, 1);