freebsd-skq/sys/kern/kern_exit.c
John Baldwin ddf9c4f771 - Slightly reorder the events around the setting of PRS_ZOMBIE to be less
hokie and much more readable and expand the comment to explain why it is
  the way that it is.
- Close a race where one CPU could free the process belonging to a thread
  on another CPU that hasn't quite finished exiting yet but is beyond the
  point of setting the process state as PRS_ZOMBIE.

Reported and tested by:	ps (2)
MFC after:	3 days
2005-07-18 20:08:14 +00:00

793 lines
20 KiB
C

/*-
* Copyright (c) 1982, 1986, 1989, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_exit.c 8.7 (Berkeley) 2/12/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include "opt_ktrace.h"
#include "opt_mac.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/pioctl.h>
#include <sys/tty.h>
#include <sys/wait.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/sched.h>
#include <sys/sx.h>
#include <sys/syscallsubr.h>
#include <sys/ptrace.h>
#include <sys/acct.h> /* for acct_process() function prototype */
#include <sys/filedesc.h>
#include <sys/mac.h>
#include <sys/shm.h>
#include <sys/sem.h>
#ifdef KTRACE
#include <sys/ktrace.h>
#endif
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/uma.h>
/* Required to be non-static for SysVR4 emulator */
MALLOC_DEFINE(M_ZOMBIE, "zombie", "zombie proc status");
/*
* exit --
* Death of process.
*
* MPSAFE
*/
void
sys_exit(struct thread *td, struct sys_exit_args *uap)
{
exit1(td, W_EXITCODE(uap->rval, 0));
/* NOTREACHED */
}
/*
* Exit: deallocate address space and other resources, change proc state
* to zombie, and unlink proc from allproc and parent's lists. Save exit
* status and rusage for wait(). Check for child processes and orphan them.
*/
void
exit1(struct thread *td, int rv)
{
struct bintime new_switchtime;
struct proc *p, *nq, *q;
struct tty *tp;
struct vnode *ttyvp;
struct vmspace *vm;
struct vnode *vtmp;
#ifdef KTRACE
struct vnode *tracevp;
struct ucred *tracecred;
#endif
struct plimit *plim;
int refcnt;
/*
* Drop Giant if caller has it. Eventually we should warn about
* being called with Giant held.
*/
while (mtx_owned(&Giant))
mtx_unlock(&Giant);
p = td->td_proc;
if (p == initproc) {
printf("init died (signal %d, exit %d)\n",
WTERMSIG(rv), WEXITSTATUS(rv));
panic("Going nowhere without my init!");
}
/*
* MUST abort all other threads before proceeding past here.
*/
PROC_LOCK(p);
if (p->p_flag & P_HADTHREADS) {
retry:
/*
* First check if some other thread got here before us..
* if so, act apropriatly, (exit or suspend);
*/
thread_suspend_check(0);
/*
* Kill off the other threads. This requires
* some co-operation from other parts of the kernel
* so it may not be instantaneous. With this state set
* any thread entering the kernel from userspace will
* thread_exit() in trap(). Any thread attempting to
* sleep will return immediately with EINTR or EWOULDBLOCK
* which will hopefully force them to back out to userland
* freeing resources as they go. Any thread attempting
* to return to userland will thread_exit() from userret().
* thread_exit() will unsuspend us when the last of the
* other threads exits.
* If there is already a thread singler after resumption,
* calling thread_single will fail; in that case, we just
* re-check all suspension request, the thread should
* either be suspended there or exit.
*/
if (thread_single(SINGLE_EXIT))
goto retry;
/*
* All other activity in this process is now stopped.
* Threading support has been turned off.
*/
}
p->p_flag |= P_WEXIT;
PROC_UNLOCK(p);
/* Are we a task leader? */
if (p == p->p_leader) {
mtx_lock(&ppeers_lock);
q = p->p_peers;
while (q != NULL) {
PROC_LOCK(q);
psignal(q, SIGKILL);
PROC_UNLOCK(q);
q = q->p_peers;
}
while (p->p_peers != NULL)
msleep(p, &ppeers_lock, PWAIT, "exit1", 0);
mtx_unlock(&ppeers_lock);
}
PROC_LOCK(p);
_STOPEVENT(p, S_EXIT, rv);
wakeup(&p->p_stype); /* Wakeup anyone in procfs' PIOCWAIT */
PROC_UNLOCK(p);
/*
* Check if any loadable modules need anything done at process exit.
* E.g. SYSV IPC stuff
* XXX what if one of these generates an error?
*/
EVENTHANDLER_INVOKE(process_exit, p);
MALLOC(p->p_ru, struct rusage *, sizeof(struct rusage),
M_ZOMBIE, M_WAITOK);
/*
* If parent is waiting for us to exit or exec,
* P_PPWAIT is set; we will wakeup the parent below.
*/
PROC_LOCK(p);
stopprofclock(p);
p->p_flag &= ~(P_TRACED | P_PPWAIT);
SIGEMPTYSET(p->p_siglist);
SIGEMPTYSET(td->td_siglist);
/*
* Stop the real interval timer. If the handler is currently
* executing, prevent it from rearming itself and let it finish.
*/
if (timevalisset(&p->p_realtimer.it_value) &&
callout_stop(&p->p_itcallout) == 0) {
timevalclear(&p->p_realtimer.it_interval);
msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0);
KASSERT(!timevalisset(&p->p_realtimer.it_value),
("realtime timer is still armed"));
}
PROC_UNLOCK(p);
/*
* Reset any sigio structures pointing to us as a result of
* F_SETOWN with our pid.
*/
mtx_lock(&Giant); /* XXX: not sure if needed */
funsetownlst(&p->p_sigiolst);
/*
* Close open files and release open-file table.
* This may block!
*/
fdfree(td);
mtx_unlock(&Giant);
/*
* If this thread tickled GEOM, we need to wait for the giggling to
* stop before we return to userland
*/
if (td->td_pflags & TDP_GEOM)
g_waitidle();
/*
* Remove ourself from our leader's peer list and wake our leader.
*/
mtx_lock(&ppeers_lock);
if (p->p_leader->p_peers) {
q = p->p_leader;
while (q->p_peers != p)
q = q->p_peers;
q->p_peers = p->p_peers;
wakeup(p->p_leader);
}
mtx_unlock(&ppeers_lock);
/* The next two chunks should probably be moved to vmspace_exit. */
vm = p->p_vmspace;
/*
* Release user portion of address space.
* This releases references to vnodes,
* which could cause I/O if the file has been unlinked.
* Need to do this early enough that we can still sleep.
* Can't free the entire vmspace as the kernel stack
* may be mapped within that space also.
*
* Processes sharing the same vmspace may exit in one order, and
* get cleaned up by vmspace_exit() in a different order. The
* last exiting process to reach this point releases as much of
* the environment as it can, and the last process cleaned up
* by vmspace_exit() (which decrements exitingcnt) cleans up the
* remainder.
*/
atomic_add_int(&vm->vm_exitingcnt, 1);
do
refcnt = vm->vm_refcnt;
while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
if (refcnt == 1) {
shmexit(vm);
pmap_remove_pages(vmspace_pmap(vm), vm_map_min(&vm->vm_map),
vm_map_max(&vm->vm_map));
(void) vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
vm_map_max(&vm->vm_map));
}
mtx_lock(&Giant);
sx_xlock(&proctree_lock);
if (SESS_LEADER(p)) {
struct session *sp;
sp = p->p_session;
if (sp->s_ttyvp) {
/*
* Controlling process.
* Signal foreground pgrp,
* drain controlling terminal
* and revoke access to controlling terminal.
*/
if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
tp = sp->s_ttyp;
if (sp->s_ttyp->t_pgrp) {
PGRP_LOCK(sp->s_ttyp->t_pgrp);
pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
PGRP_UNLOCK(sp->s_ttyp->t_pgrp);
}
/* XXX tp should be locked. */
sx_xunlock(&proctree_lock);
(void) ttywait(tp);
sx_xlock(&proctree_lock);
/*
* The tty could have been revoked
* if we blocked.
*/
if (sp->s_ttyvp) {
ttyvp = sp->s_ttyvp;
SESS_LOCK(p->p_session);
sp->s_ttyvp = NULL;
SESS_UNLOCK(p->p_session);
sx_xunlock(&proctree_lock);
VOP_LOCK(ttyvp, LK_EXCLUSIVE, td);
VOP_REVOKE(ttyvp, REVOKEALL);
vput(ttyvp);
sx_xlock(&proctree_lock);
}
}
if (sp->s_ttyvp) {
ttyvp = sp->s_ttyvp;
SESS_LOCK(p->p_session);
sp->s_ttyvp = NULL;
SESS_UNLOCK(p->p_session);
vrele(ttyvp);
}
/*
* s_ttyp is not zero'd; we use this to indicate
* that the session once had a controlling terminal.
* (for logging and informational purposes)
*/
}
SESS_LOCK(p->p_session);
sp->s_leader = NULL;
SESS_UNLOCK(p->p_session);
}
fixjobc(p, p->p_pgrp, 0);
sx_xunlock(&proctree_lock);
(void)acct_process(td);
mtx_unlock(&Giant);
#ifdef KTRACE
/*
* release trace file
*/
PROC_LOCK(p);
mtx_lock(&ktrace_mtx);
p->p_traceflag = 0; /* don't trace the vrele() */
tracevp = p->p_tracevp;
p->p_tracevp = NULL;
tracecred = p->p_tracecred;
p->p_tracecred = NULL;
mtx_unlock(&ktrace_mtx);
PROC_UNLOCK(p);
if (tracevp != NULL) {
mtx_lock(&Giant);
vrele(tracevp);
mtx_unlock(&Giant);
}
if (tracecred != NULL)
crfree(tracecred);
#endif
/*
* Release reference to text vnode
*/
if ((vtmp = p->p_textvp) != NULL) {
p->p_textvp = NULL;
mtx_lock(&Giant);
vrele(vtmp);
mtx_unlock(&Giant);
}
/*
* Release our limits structure.
*/
PROC_LOCK(p);
plim = p->p_limit;
p->p_limit = NULL;
PROC_UNLOCK(p);
lim_free(plim);
/*
* Remove proc from allproc queue and pidhash chain.
* Place onto zombproc. Unlink from parent's child list.
*/
sx_xlock(&allproc_lock);
LIST_REMOVE(p, p_list);
LIST_INSERT_HEAD(&zombproc, p, p_list);
LIST_REMOVE(p, p_hash);
sx_xunlock(&allproc_lock);
sx_xlock(&proctree_lock);
q = LIST_FIRST(&p->p_children);
if (q != NULL) /* only need this if any child is S_ZOMB */
wakeup(initproc);
for (; q != NULL; q = nq) {
nq = LIST_NEXT(q, p_sibling);
PROC_LOCK(q);
proc_reparent(q, initproc);
q->p_sigparent = SIGCHLD;
/*
* Traced processes are killed
* since their existence means someone is screwing up.
*/
if (q->p_flag & P_TRACED) {
q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE);
psignal(q, SIGKILL);
}
PROC_UNLOCK(q);
}
/*
* Save exit status and finalize rusage info except for times,
* adding in child rusage info.
*/
PROC_LOCK(p);
p->p_xstat = rv;
p->p_xthread = td;
p->p_stats->p_ru.ru_nvcsw++;
*p->p_ru = p->p_stats->p_ru;
ruadd(p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux);
/*
* Notify interested parties of our demise.
*/
KNOTE_LOCKED(&p->p_klist, NOTE_EXIT);
/*
* Just delete all entries in the p_klist. At this point we won't
* report any more events, and there are nasty race conditions that
* can beat us if we don't.
*/
knlist_clear(&p->p_klist, 1);
/*
* Notify parent that we're gone. If parent has the PS_NOCLDWAIT
* flag set, or if the handler is set to SIG_IGN, notify process
* 1 instead (and hope it will handle this situation).
*/
PROC_LOCK(p->p_pptr);
mtx_lock(&p->p_pptr->p_sigacts->ps_mtx);
if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
struct proc *pp;
mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
pp = p->p_pptr;
PROC_UNLOCK(pp);
proc_reparent(p, initproc);
p->p_sigparent = SIGCHLD;
PROC_LOCK(p->p_pptr);
/*
* If this was the last child of our parent, notify
* parent, so in case he was wait(2)ing, he will
* continue.
*/
if (LIST_EMPTY(&pp->p_children))
wakeup(pp);
} else
mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
if (p->p_pptr == initproc)
psignal(p->p_pptr, SIGCHLD);
else if (p->p_sigparent != 0)
psignal(p->p_pptr, p->p_sigparent);
PROC_UNLOCK(p->p_pptr);
/*
* If this is a kthread, then wakeup anyone waiting for it to exit.
*/
if (p->p_flag & P_KTHREAD)
wakeup(p);
PROC_UNLOCK(p);
/*
* Finally, call machine-dependent code to release the remaining
* resources including address space.
* The address space is released by "vmspace_exitfree(p)" in
* vm_waitproc().
*/
cpu_exit(td);
PROC_LOCK(p);
PROC_LOCK(p->p_pptr);
sx_xunlock(&proctree_lock);
/*
* We have to wait until after acquiring all locks before
* changing p_state. We need to avoid all possible context
* switches (including ones from blocking on a mutex) while
* marked as a zombie. We also have to set the zombie state
* before we release the parent process' proc lock to avoid
* a lost wakeup. So, we first call wakeup, then we grab the
* sched lock, update the state, and release the parent process'
* proc lock.
*/
wakeup(p->p_pptr);
mtx_lock_spin(&sched_lock);
p->p_state = PRS_ZOMBIE;
PROC_UNLOCK(p->p_pptr);
/* Do the same timestamp bookkeeping that mi_switch() would do. */
binuptime(&new_switchtime);
bintime_add(&p->p_rux.rux_runtime, &new_switchtime);
bintime_sub(&p->p_rux.rux_runtime, PCPU_PTR(switchtime));
PCPU_SET(switchtime, new_switchtime);
PCPU_SET(switchticks, ticks);
cnt.v_swtch++;
sched_exit(p->p_pptr, td);
/*
* Hopefully no one will try to deliver a signal to the process this
* late in the game.
*/
knlist_destroy(&p->p_klist);
/*
* Make sure the scheduler takes this thread out of its tables etc.
* This will also release this thread's reference to the ucred.
* Other thread parts to release include pcb bits and such.
*/
thread_exit();
}
#ifdef COMPAT_43
/*
* The dirty work is handled by kern_wait().
*
* MPSAFE.
*/
int
owait(struct thread *td, struct owait_args *uap __unused)
{
int error, status;
error = kern_wait(td, WAIT_ANY, &status, 0, NULL);
if (error == 0)
td->td_retval[1] = status;
return (error);
}
#endif /* COMPAT_43 */
/*
* The dirty work is handled by kern_wait().
*
* MPSAFE.
*/
int
wait4(struct thread *td, struct wait_args *uap)
{
struct rusage ru, *rup;
int error, status;
if (uap->rusage != NULL)
rup = &ru;
else
rup = NULL;
error = kern_wait(td, uap->pid, &status, uap->options, rup);
if (uap->status != NULL && error == 0)
error = copyout(&status, uap->status, sizeof(status));
if (uap->rusage != NULL && error == 0)
error = copyout(&ru, uap->rusage, sizeof(struct rusage));
return (error);
}
int
kern_wait(struct thread *td, pid_t pid, int *status, int options,
struct rusage *rusage)
{
struct proc *p, *q, *t;
int error, nfound;
q = td->td_proc;
if (pid == 0) {
PROC_LOCK(q);
pid = -q->p_pgid;
PROC_UNLOCK(q);
}
if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
return (EINVAL);
loop:
if (q->p_flag & P_STATCHILD) {
PROC_LOCK(q);
q->p_flag &= ~P_STATCHILD;
PROC_UNLOCK(q);
}
nfound = 0;
sx_xlock(&proctree_lock);
LIST_FOREACH(p, &q->p_children, p_sibling) {
PROC_LOCK(p);
if (pid != WAIT_ANY &&
p->p_pid != pid && p->p_pgid != -pid) {
PROC_UNLOCK(p);
continue;
}
if (p_canwait(td, p)) {
PROC_UNLOCK(p);
continue;
}
/*
* This special case handles a kthread spawned by linux_clone
* (see linux_misc.c). The linux_wait4 and linux_waitpid
* functions need to be able to distinguish between waiting
* on a process and waiting on a thread. It is a thread if
* p_sigparent is not SIGCHLD, and the WLINUXCLONE option
* signifies we want to wait for threads and not processes.
*/
if ((p->p_sigparent != SIGCHLD) ^
((options & WLINUXCLONE) != 0)) {
PROC_UNLOCK(p);
continue;
}
nfound++;
if (p->p_state == PRS_ZOMBIE) {
/*
* It is possible that the last thread of this
* process is still running on another CPU
* in thread_exit() after having dropped the process
* lock via PROC_UNLOCK() but before it has completed
* cpu_throw(). In that case, the other thread must
* still hold sched_lock, so simply by acquiring
* sched_lock once we will wait long enough for the
* thread to exit in that case.
*/
mtx_lock_spin(&sched_lock);
mtx_unlock_spin(&sched_lock);
td->td_retval[0] = p->p_pid;
if (status)
*status = p->p_xstat; /* convert to int */
if (rusage) {
*rusage = *p->p_ru;
calcru(p, &rusage->ru_utime, &rusage->ru_stime);
}
/*
* If we got the child via a ptrace 'attach',
* we need to give it back to the old parent.
*/
PROC_UNLOCK(p);
if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
PROC_LOCK(p);
p->p_oppid = 0;
proc_reparent(p, t);
PROC_UNLOCK(p);
psignal(t, SIGCHLD);
wakeup(t);
PROC_UNLOCK(t);
sx_xunlock(&proctree_lock);
return (0);
}
/*
* Remove other references to this process to ensure
* we have an exclusive reference.
*/
sx_xlock(&allproc_lock);
LIST_REMOVE(p, p_list); /* off zombproc */
sx_xunlock(&allproc_lock);
LIST_REMOVE(p, p_sibling);
leavepgrp(p);
sx_xunlock(&proctree_lock);
/*
* As a side effect of this lock, we know that
* all other writes to this proc are visible now, so
* no more locking is needed for p.
*/
PROC_LOCK(p);
p->p_xstat = 0; /* XXX: why? */
PROC_UNLOCK(p);
PROC_LOCK(q);
ruadd(&q->p_stats->p_cru, &q->p_crux, p->p_ru,
&p->p_rux);
PROC_UNLOCK(q);
FREE(p->p_ru, M_ZOMBIE);
p->p_ru = NULL;
/*
* Decrement the count of procs running with this uid.
*/
(void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
/*
* Free credentials, arguments, and sigacts.
*/
crfree(p->p_ucred);
p->p_ucred = NULL;
pargs_drop(p->p_args);
p->p_args = NULL;
sigacts_free(p->p_sigacts);
p->p_sigacts = NULL;
/*
* Do any thread-system specific cleanups.
*/
thread_wait(p);
/*
* Give vm and machine-dependent layer a chance
* to free anything that cpu_exit couldn't
* release while still running in process context.
*/
vm_waitproc(p);
#ifdef MAC
mac_destroy_proc(p);
#endif
KASSERT(FIRST_THREAD_IN_PROC(p),
("kern_wait: no residual thread!"));
uma_zfree(proc_zone, p);
sx_xlock(&allproc_lock);
nprocs--;
sx_xunlock(&allproc_lock);
return (0);
}
mtx_lock_spin(&sched_lock);
if ((p->p_flag & P_STOPPED_SIG) &&
(p->p_suspcount == p->p_numthreads) &&
(p->p_flag & P_WAITED) == 0 &&
(p->p_flag & P_TRACED || options & WUNTRACED)) {
mtx_unlock_spin(&sched_lock);
p->p_flag |= P_WAITED;
sx_xunlock(&proctree_lock);
td->td_retval[0] = p->p_pid;
if (status)
*status = W_STOPCODE(p->p_xstat);
PROC_UNLOCK(p);
return (0);
}
mtx_unlock_spin(&sched_lock);
if (options & WCONTINUED && (p->p_flag & P_CONTINUED)) {
sx_xunlock(&proctree_lock);
td->td_retval[0] = p->p_pid;
p->p_flag &= ~P_CONTINUED;
PROC_UNLOCK(p);
if (status)
*status = SIGCONT;
return (0);
}
PROC_UNLOCK(p);
}
if (nfound == 0) {
sx_xunlock(&proctree_lock);
return (ECHILD);
}
if (options & WNOHANG) {
sx_xunlock(&proctree_lock);
td->td_retval[0] = 0;
return (0);
}
PROC_LOCK(q);
sx_xunlock(&proctree_lock);
if (q->p_flag & P_STATCHILD) {
q->p_flag &= ~P_STATCHILD;
error = 0;
} else
error = msleep(q, &q->p_mtx, PWAIT | PCATCH, "wait", 0);
PROC_UNLOCK(q);
if (error)
return (error);
goto loop;
}
/*
* Make process 'parent' the new parent of process 'child'.
* Must be called with an exclusive hold of proctree lock.
*/
void
proc_reparent(struct proc *child, struct proc *parent)
{
sx_assert(&proctree_lock, SX_XLOCKED);
PROC_LOCK_ASSERT(child, MA_OWNED);
if (child->p_pptr == parent)
return;
LIST_REMOVE(child, p_sibling);
LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
child->p_pptr = parent;
}