freebsd-skq/sys/kern/kern_proc.c
John Baldwin c65440644e - Add a new global mutex 'ppeers_lock' to protect the p_peers list of
processes forked with RFTHREAD.
- Use a goto to a label for common code when exiting from fork1() in case
  of an error.
- Move the RFTHREAD linkage setup code later in fork since the ppeers_lock
  cannot be locked while holding a proc lock.  Handle the race of a task
  leader exiting and killing its peers while a peer is forking a new child.
  In that case, go ahead and let the peer process proceed normally as the
  parent is about to kill it.  However, the task leader may have already
  gone to sleep to wait for the peers to die, so the new child process may
  not receive a SIGKILL from the task leader.  Rather than try to destruct
  the new child process, just go ahead and send it a SIGKILL directly and
  add it to the p_peers list.  This ensures that the task leader will wait
  until both the peer process doing the fork() and the new child process
  have received their KILL signals and exited.

Discussed with:	truckman (earlier versions)
2002-10-15 00:14:32 +00:00

1339 lines
32 KiB
C

/*
* Copyright (c) 1982, 1986, 1989, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
* $FreeBSD$
*/
#include "opt_ktrace.h"
#include "opt_kstack_pages.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sysproto.h>
#include <sys/kse.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/filedesc.h>
#include <sys/tty.h>
#include <sys/signalvar.h>
#include <sys/sx.h>
#include <sys/user.h>
#include <sys/jail.h>
#ifdef KTRACE
#include <sys/uio.h>
#include <sys/ktrace.h>
#endif
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/uma.h>
#include <machine/critical.h>
MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
MALLOC_DEFINE(M_SESSION, "session", "session header");
static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
static struct proc *dopfind(register pid_t);
static void doenterpgrp(struct proc *, struct pgrp *);
static void pgdelete(struct pgrp *);
static void orphanpg(struct pgrp *pg);
static void proc_ctor(void *mem, int size, void *arg);
static void proc_dtor(void *mem, int size, void *arg);
static void proc_init(void *mem, int size);
static void proc_fini(void *mem, int size);
/*
* Other process lists
*/
struct pidhashhead *pidhashtbl;
u_long pidhash;
struct pgrphashhead *pgrphashtbl;
u_long pgrphash;
struct proclist allproc;
struct proclist zombproc;
struct sx allproc_lock;
struct sx proctree_lock;
struct mtx pargs_ref_lock;
struct mtx ppeers_lock;
uma_zone_t proc_zone;
uma_zone_t ithread_zone;
int kstack_pages = KSTACK_PAGES;
int uarea_pages = UAREA_PAGES;
SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
SYSCTL_INT(_kern, OID_AUTO, uarea_pages, CTLFLAG_RD, &uarea_pages, 0, "");
#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
/*
* Initialize global process hashing structures.
*/
void
procinit()
{
sx_init(&allproc_lock, "allproc");
sx_init(&proctree_lock, "proctree");
mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF);
mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
LIST_INIT(&allproc);
LIST_INIT(&zombproc);
pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
proc_zone = uma_zcreate("PROC", sizeof (struct proc),
proc_ctor, proc_dtor, proc_init, proc_fini,
UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
uihashinit();
}
/*
* Prepare a proc for use.
*/
static void
proc_ctor(void *mem, int size, void *arg)
{
struct proc *p;
KASSERT((size == sizeof(struct proc)),
("size mismatch: %d != %d\n", size, (int)sizeof(struct proc)));
p = (struct proc *)mem;
}
/*
* Reclaim a proc after use.
*/
static void
proc_dtor(void *mem, int size, void *arg)
{
struct proc *p;
struct thread *td;
struct ksegrp *kg;
struct kse *ke;
/* INVARIANTS checks go here */
KASSERT((size == sizeof(struct proc)),
("size mismatch: %d != %d\n", size, (int)sizeof(struct proc)));
p = (struct proc *)mem;
KASSERT((p->p_numthreads == 1),
("bad number of threads in exiting process"));
td = FIRST_THREAD_IN_PROC(p);
KASSERT((td != NULL), ("proc_dtor: bad thread pointer"));
kg = FIRST_KSEGRP_IN_PROC(p);
KASSERT((kg != NULL), ("proc_dtor: bad kg pointer"));
ke = FIRST_KSE_IN_KSEGRP(kg);
KASSERT((ke != NULL), ("proc_dtor: bad ke pointer"));
/* Dispose of an alternate kstack, if it exists.
* XXX What if there are more than one thread in the proc?
* The first thread in the proc is special and not
* freed, so you gotta do this here.
*/
if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0))
pmap_dispose_altkstack(td);
/*
* We want to make sure we know the initial linkages.
* so for now tear them down and remake them.
* This is probably un-needed as we can probably rely
* on the state coming in here from wait4().
*/
proc_linkup(p, kg, ke, td);
}
/*
* Initialize type-stable parts of a proc (when newly created).
*/
static void
proc_init(void *mem, int size)
{
struct proc *p;
struct thread *td;
struct ksegrp *kg;
struct kse *ke;
KASSERT((size == sizeof(struct proc)),
("size mismatch: %d != %d\n", size, (int)sizeof(struct proc)));
p = (struct proc *)mem;
vm_proc_new(p);
td = thread_alloc();
ke = kse_alloc();
kg = ksegrp_alloc();
proc_linkup(p, kg, ke, td);
}
/*
* Tear down type-stable parts of a proc (just before being discarded)
*/
static void
proc_fini(void *mem, int size)
{
struct proc *p;
struct thread *td;
struct ksegrp *kg;
struct kse *ke;
KASSERT((size == sizeof(struct proc)),
("size mismatch: %d != %d\n", size, (int)sizeof(struct proc)));
p = (struct proc *)mem;
KASSERT((p->p_numthreads == 1),
("bad number of threads in freeing process"));
td = FIRST_THREAD_IN_PROC(p);
KASSERT((td != NULL), ("proc_dtor: bad thread pointer"));
kg = FIRST_KSEGRP_IN_PROC(p);
KASSERT((kg != NULL), ("proc_dtor: bad kg pointer"));
ke = FIRST_KSE_IN_KSEGRP(kg);
KASSERT((ke != NULL), ("proc_dtor: bad ke pointer"));
vm_proc_dispose(p);
thread_free(td);
ksegrp_free(kg);
kse_free(ke);
}
/*
* KSE is linked onto the idle queue.
*/
void
kse_link(struct kse *ke, struct ksegrp *kg)
{
struct proc *p = kg->kg_proc;
TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist);
kg->kg_kses++;
ke->ke_state = KES_UNQUEUED;
ke->ke_proc = p;
ke->ke_ksegrp = kg;
ke->ke_thread = NULL;
ke->ke_oncpu = NOCPU;
}
void
ksegrp_link(struct ksegrp *kg, struct proc *p)
{
TAILQ_INIT(&kg->kg_threads);
TAILQ_INIT(&kg->kg_runq); /* links with td_runq */
TAILQ_INIT(&kg->kg_slpq); /* links with td_runq */
TAILQ_INIT(&kg->kg_kseq); /* all kses in ksegrp */
TAILQ_INIT(&kg->kg_iq); /* idle kses in ksegrp */
TAILQ_INIT(&kg->kg_lq); /* loan kses in ksegrp */
kg->kg_proc = p;
/* the following counters are in the -zero- section and may not need clearing */
kg->kg_numthreads = 0;
kg->kg_runnable = 0;
kg->kg_kses = 0;
kg->kg_idle_kses = 0;
kg->kg_loan_kses = 0;
kg->kg_runq_kses = 0; /* XXXKSE change name */
/* link it in now that it's consistent */
p->p_numksegrps++;
TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp);
}
/*
* for a newly created process,
* link up a the structure and its initial threads etc.
*/
void
proc_linkup(struct proc *p, struct ksegrp *kg,
struct kse *ke, struct thread *td)
{
TAILQ_INIT(&p->p_ksegrps); /* all ksegrps in proc */
TAILQ_INIT(&p->p_threads); /* all threads in proc */
TAILQ_INIT(&p->p_suspended); /* Threads suspended */
p->p_numksegrps = 0;
p->p_numthreads = 0;
ksegrp_link(kg, p);
kse_link(ke, kg);
thread_link(td, kg);
}
int
kse_thr_interrupt(struct thread *td, struct kse_thr_interrupt_args *uap)
{
return(ENOSYS);
}
int
kse_exit(struct thread *td, struct kse_exit_args *uap)
{
return(ENOSYS);
}
int
kse_release(struct thread *td, struct kse_release_args *uap)
{
struct proc *p;
p = td->td_proc;
/* KSE-enabled processes only, please. */
if (p->p_flag & P_KSES) {
PROC_LOCK(p);
mtx_lock_spin(&sched_lock);
thread_exit();
/* NOTREACHED */
}
return (EINVAL);
}
/* struct kse_wakeup_args {
struct kse_mailbox *mbx;
}; */
int
kse_wakeup(struct thread *td, struct kse_wakeup_args *uap)
{
return(ENOSYS);
}
/*
* No new KSEG: first call: use current KSE, don't schedule an upcall
* All other situations, do allocate a new KSE and schedule an upcall on it.
*/
/* struct kse_create_args {
struct kse_mailbox *mbx;
int newgroup;
}; */
int
kse_create(struct thread *td, struct kse_create_args *uap)
{
struct kse *newke;
struct kse *ke;
struct ksegrp *newkg;
struct ksegrp *kg;
struct proc *p;
struct kse_mailbox mbx;
int err;
p = td->td_proc;
if ((err = copyin(uap->mbx, &mbx, sizeof(mbx))))
return (err);
p->p_flag |= P_KSES; /* easier to just set it than to test and set */
kg = td->td_ksegrp;
if (uap->newgroup) {
/*
* If we want a new KSEGRP it doesn't matter whether
* we have already fired up KSE mode before or not.
* We put the process in KSE mode and create a new KSEGRP
* and KSE. If our KSE has not got a mailbox yet then
* that doesn't matter, just leave it that way. It will
* ensure that this thread stay BOUND. It's possible
* that the call came form a threaded library and the main
* program knows nothing of threads.
*/
newkg = ksegrp_alloc();
bzero(&newkg->kg_startzero, RANGEOF(struct ksegrp,
kg_startzero, kg_endzero));
bcopy(&kg->kg_startcopy, &newkg->kg_startcopy,
RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
newke = kse_alloc();
} else {
/*
* Otherwise, if we have already set this KSE
* to have a mailbox, we want to make another KSE here,
* but only if there are not already the limit, which
* is 1 per CPU max.
*
* If the current KSE doesn't have a mailbox we just use it
* and give it one.
*
* Because we don't like to access
* the KSE outside of schedlock if we are UNBOUND,
* (because it can change if we are preempted by an interrupt)
* we can deduce it as having a mailbox if we are UNBOUND,
* and only need to actually look at it if we are BOUND,
* which is safe.
*/
if ((td->td_flags & TDF_UNBOUND) || td->td_kse->ke_mailbox) {
#if 0 /* while debugging */
#ifdef SMP
if (kg->kg_kses > mp_ncpus)
#endif
return (EPROCLIM);
#endif
newke = kse_alloc();
} else {
newke = NULL;
}
newkg = NULL;
}
if (newke) {
bzero(&newke->ke_startzero, RANGEOF(struct kse,
ke_startzero, ke_endzero));
#if 0
bcopy(&ke->ke_startcopy, &newke->ke_startcopy,
RANGEOF(struct kse, ke_startcopy, ke_endcopy));
#endif
PROC_LOCK(p);
if (SIGPENDING(p))
newke->ke_flags |= KEF_ASTPENDING;
PROC_UNLOCK(p);
/* For the first call this may not have been set */
if (td->td_standin == NULL) {
td->td_standin = thread_alloc();
}
mtx_lock_spin(&sched_lock);
if (newkg)
ksegrp_link(newkg, p);
else
newkg = kg;
kse_link(newke, newkg);
newke->ke_mailbox = uap->mbx;
newke->ke_upcall = mbx.km_func;
bcopy(&mbx.km_stack, &newke->ke_stack, sizeof(stack_t));
thread_schedule_upcall(td, newke);
mtx_unlock_spin(&sched_lock);
} else {
/*
* If we didn't allocate a new KSE then the we are using
* the exisiting (BOUND) kse.
*/
ke = td->td_kse;
ke->ke_mailbox = uap->mbx;
ke->ke_upcall = mbx.km_func;
bcopy(&mbx.km_stack, &ke->ke_stack, sizeof(stack_t));
}
/*
* Fill out the KSE-mode specific fields of the new kse.
*/
td->td_retval[0] = 0;
td->td_retval[1] = 0;
return (0);
}
/*
* Is p an inferior of the current process?
*/
int
inferior(p)
register struct proc *p;
{
sx_assert(&proctree_lock, SX_LOCKED);
for (; p != curproc; p = p->p_pptr)
if (p->p_pid == 0)
return (0);
return (1);
}
/*
* Locate a process by number
*/
struct proc *
pfind(pid)
register pid_t pid;
{
register struct proc *p;
sx_slock(&allproc_lock);
p = dopfind(pid);
sx_sunlock(&allproc_lock);
return (p);
}
static struct proc *
dopfind(pid)
register pid_t pid;
{
register struct proc *p;
sx_assert(&allproc_lock, SX_LOCKED);
LIST_FOREACH(p, PIDHASH(pid), p_hash)
if (p->p_pid == pid) {
PROC_LOCK(p);
break;
}
return (p);
}
/*
* Locate a process group by number.
* The caller must hold proctree_lock.
*/
struct pgrp *
pgfind(pgid)
register pid_t pgid;
{
register struct pgrp *pgrp;
sx_assert(&proctree_lock, SX_LOCKED);
LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
if (pgrp->pg_id == pgid) {
PGRP_LOCK(pgrp);
return (pgrp);
}
}
return (NULL);
}
/*
* Create a new process group.
* pgid must be equal to the pid of p.
* Begin a new session if required.
*/
int
enterpgrp(p, pgid, pgrp, sess)
register struct proc *p;
pid_t pgid;
struct pgrp *pgrp;
struct session *sess;
{
struct pgrp *pgrp2;
sx_assert(&proctree_lock, SX_XLOCKED);
KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
KASSERT(p->p_pid == pgid,
("enterpgrp: new pgrp and pid != pgid"));
pgrp2 = pgfind(pgid);
KASSERT(pgrp2 == NULL,
("enterpgrp: pgrp with pgid exists"));
KASSERT(!SESS_LEADER(p),
("enterpgrp: session leader attempted setpgrp"));
mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
if (sess != NULL) {
/*
* new session
*/
mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
PROC_LOCK(p);
p->p_flag &= ~P_CONTROLT;
PROC_UNLOCK(p);
PGRP_LOCK(pgrp);
sess->s_leader = p;
sess->s_sid = p->p_pid;
sess->s_count = 1;
sess->s_ttyvp = NULL;
sess->s_ttyp = NULL;
bcopy(p->p_session->s_login, sess->s_login,
sizeof(sess->s_login));
pgrp->pg_session = sess;
KASSERT(p == curproc,
("enterpgrp: mksession and p != curproc"));
} else {
pgrp->pg_session = p->p_session;
SESS_LOCK(pgrp->pg_session);
pgrp->pg_session->s_count++;
SESS_UNLOCK(pgrp->pg_session);
PGRP_LOCK(pgrp);
}
pgrp->pg_id = pgid;
LIST_INIT(&pgrp->pg_members);
/*
* As we have an exclusive lock of proctree_lock,
* this should not deadlock.
*/
LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
pgrp->pg_jobc = 0;
SLIST_INIT(&pgrp->pg_sigiolst);
PGRP_UNLOCK(pgrp);
doenterpgrp(p, pgrp);
return (0);
}
/*
* Move p to an existing process group
*/
int
enterthispgrp(p, pgrp)
register struct proc *p;
struct pgrp *pgrp;
{
sx_assert(&proctree_lock, SX_XLOCKED);
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
KASSERT(pgrp->pg_session == p->p_session,
("%s: pgrp's session %p, p->p_session %p.\n",
__func__,
pgrp->pg_session,
p->p_session));
KASSERT(pgrp != p->p_pgrp,
("%s: p belongs to pgrp.", __func__));
doenterpgrp(p, pgrp);
return (0);
}
/*
* Move p to a process group
*/
static void
doenterpgrp(p, pgrp)
struct proc *p;
struct pgrp *pgrp;
{
struct pgrp *savepgrp;
sx_assert(&proctree_lock, SX_XLOCKED);
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
savepgrp = p->p_pgrp;
/*
* Adjust eligibility of affected pgrps to participate in job control.
* Increment eligibility counts before decrementing, otherwise we
* could reach 0 spuriously during the first call.
*/
fixjobc(p, pgrp, 1);
fixjobc(p, p->p_pgrp, 0);
PGRP_LOCK(pgrp);
PGRP_LOCK(savepgrp);
PROC_LOCK(p);
LIST_REMOVE(p, p_pglist);
p->p_pgrp = pgrp;
PROC_UNLOCK(p);
LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
PGRP_UNLOCK(savepgrp);
PGRP_UNLOCK(pgrp);
if (LIST_EMPTY(&savepgrp->pg_members))
pgdelete(savepgrp);
}
/*
* remove process from process group
*/
int
leavepgrp(p)
register struct proc *p;
{
struct pgrp *savepgrp;
sx_assert(&proctree_lock, SX_XLOCKED);
savepgrp = p->p_pgrp;
PGRP_LOCK(savepgrp);
PROC_LOCK(p);
LIST_REMOVE(p, p_pglist);
p->p_pgrp = NULL;
PROC_UNLOCK(p);
PGRP_UNLOCK(savepgrp);
if (LIST_EMPTY(&savepgrp->pg_members))
pgdelete(savepgrp);
return (0);
}
/*
* delete a process group
*/
static void
pgdelete(pgrp)
register struct pgrp *pgrp;
{
struct session *savesess;
sx_assert(&proctree_lock, SX_XLOCKED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
/*
* Reset any sigio structures pointing to us as a result of
* F_SETOWN with our pgid.
*/
funsetownlst(&pgrp->pg_sigiolst);
PGRP_LOCK(pgrp);
if (pgrp->pg_session->s_ttyp != NULL &&
pgrp->pg_session->s_ttyp->t_pgrp == pgrp)
pgrp->pg_session->s_ttyp->t_pgrp = NULL;
LIST_REMOVE(pgrp, pg_hash);
savesess = pgrp->pg_session;
SESS_LOCK(savesess);
savesess->s_count--;
SESS_UNLOCK(savesess);
PGRP_UNLOCK(pgrp);
if (savesess->s_count == 0) {
mtx_destroy(&savesess->s_mtx);
FREE(pgrp->pg_session, M_SESSION);
}
mtx_destroy(&pgrp->pg_mtx);
FREE(pgrp, M_PGRP);
}
/*
* Adjust pgrp jobc counters when specified process changes process group.
* We count the number of processes in each process group that "qualify"
* the group for terminal job control (those with a parent in a different
* process group of the same session). If that count reaches zero, the
* process group becomes orphaned. Check both the specified process'
* process group and that of its children.
* entering == 0 => p is leaving specified group.
* entering == 1 => p is entering specified group.
*/
void
fixjobc(p, pgrp, entering)
register struct proc *p;
register struct pgrp *pgrp;
int entering;
{
register struct pgrp *hispgrp;
register struct session *mysession;
sx_assert(&proctree_lock, SX_LOCKED);
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
/*
* Check p's parent to see whether p qualifies its own process
* group; if so, adjust count for p's process group.
*/
mysession = pgrp->pg_session;
if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
hispgrp->pg_session == mysession) {
PGRP_LOCK(pgrp);
if (entering)
pgrp->pg_jobc++;
else {
--pgrp->pg_jobc;
if (pgrp->pg_jobc == 0)
orphanpg(pgrp);
}
PGRP_UNLOCK(pgrp);
}
/*
* Check this process' children to see whether they qualify
* their process groups; if so, adjust counts for children's
* process groups.
*/
LIST_FOREACH(p, &p->p_children, p_sibling) {
if ((hispgrp = p->p_pgrp) != pgrp &&
hispgrp->pg_session == mysession &&
p->p_state != PRS_ZOMBIE) {
PGRP_LOCK(hispgrp);
if (entering)
hispgrp->pg_jobc++;
else {
--hispgrp->pg_jobc;
if (hispgrp->pg_jobc == 0)
orphanpg(hispgrp);
}
PGRP_UNLOCK(hispgrp);
}
}
}
/*
* A process group has become orphaned;
* if there are any stopped processes in the group,
* hang-up all process in that group.
*/
static void
orphanpg(pg)
struct pgrp *pg;
{
register struct proc *p;
PGRP_LOCK_ASSERT(pg, MA_OWNED);
mtx_lock_spin(&sched_lock);
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
if (P_SHOULDSTOP(p)) {
mtx_unlock_spin(&sched_lock);
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
PROC_LOCK(p);
psignal(p, SIGHUP);
psignal(p, SIGCONT);
PROC_UNLOCK(p);
}
return;
}
}
mtx_unlock_spin(&sched_lock);
}
#include "opt_ddb.h"
#ifdef DDB
#include <ddb/ddb.h>
DB_SHOW_COMMAND(pgrpdump, pgrpdump)
{
register struct pgrp *pgrp;
register struct proc *p;
register int i;
for (i = 0; i <= pgrphash; i++) {
if (!LIST_EMPTY(&pgrphashtbl[i])) {
printf("\tindx %d\n", i);
LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
printf(
"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
(void *)pgrp, (long)pgrp->pg_id,
(void *)pgrp->pg_session,
pgrp->pg_session->s_count,
(void *)LIST_FIRST(&pgrp->pg_members));
LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
printf("\t\tpid %ld addr %p pgrp %p\n",
(long)p->p_pid, (void *)p,
(void *)p->p_pgrp);
}
}
}
}
}
#endif /* DDB */
/*
* Fill in an kinfo_proc structure for the specified process.
* Must be called with the target process locked.
*/
void
fill_kinfo_proc(p, kp)
struct proc *p;
struct kinfo_proc *kp;
{
struct thread *td;
struct kse *ke;
struct ksegrp *kg;
struct tty *tp;
struct session *sp;
struct timeval tv;
bzero(kp, sizeof(*kp));
kp->ki_structsize = sizeof(*kp);
kp->ki_paddr = p;
PROC_LOCK_ASSERT(p, MA_OWNED);
kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */
kp->ki_args = p->p_args;
kp->ki_textvp = p->p_textvp;
#ifdef KTRACE
kp->ki_tracep = p->p_tracep;
mtx_lock(&ktrace_mtx);
kp->ki_traceflag = p->p_traceflag;
mtx_unlock(&ktrace_mtx);
#endif
kp->ki_fd = p->p_fd;
kp->ki_vmspace = p->p_vmspace;
if (p->p_ucred) {
kp->ki_uid = p->p_ucred->cr_uid;
kp->ki_ruid = p->p_ucred->cr_ruid;
kp->ki_svuid = p->p_ucred->cr_svuid;
/* XXX bde doesn't like KI_NGROUPS */
kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS);
bcopy(p->p_ucred->cr_groups, kp->ki_groups,
kp->ki_ngroups * sizeof(gid_t));
kp->ki_rgid = p->p_ucred->cr_rgid;
kp->ki_svgid = p->p_ucred->cr_svgid;
}
if (p->p_procsig) {
kp->ki_sigignore = p->p_procsig->ps_sigignore;
kp->ki_sigcatch = p->p_procsig->ps_sigcatch;
}
mtx_lock_spin(&sched_lock);
if (p->p_state != PRS_NEW &&
p->p_state != PRS_ZOMBIE &&
p->p_vmspace != NULL) {
struct vmspace *vm = p->p_vmspace;
kp->ki_size = vm->vm_map.size;
kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
if (p->p_sflag & PS_INMEM)
kp->ki_rssize += UAREA_PAGES;
FOREACH_THREAD_IN_PROC(p, td) /* XXXKSE: thread swapout check */
kp->ki_rssize += KSTACK_PAGES;
kp->ki_swrss = vm->vm_swrss;
kp->ki_tsize = vm->vm_tsize;
kp->ki_dsize = vm->vm_dsize;
kp->ki_ssize = vm->vm_ssize;
}
if ((p->p_sflag & PS_INMEM) && p->p_stats) {
kp->ki_start = p->p_stats->p_start;
kp->ki_rusage = p->p_stats->p_ru;
kp->ki_childtime.tv_sec = p->p_stats->p_cru.ru_utime.tv_sec +
p->p_stats->p_cru.ru_stime.tv_sec;
kp->ki_childtime.tv_usec = p->p_stats->p_cru.ru_utime.tv_usec +
p->p_stats->p_cru.ru_stime.tv_usec;
}
if (p->p_state != PRS_ZOMBIE) {
td = FIRST_THREAD_IN_PROC(p);
if (td == NULL) {
/* XXXKSE: This should never happen. */
printf("fill_kinfo_proc(): pid %d has no threads!\n",
p->p_pid);
mtx_unlock_spin(&sched_lock);
return;
}
if (!(p->p_flag & P_KSES)) {
if (td->td_wmesg != NULL) {
strncpy(kp->ki_wmesg, td->td_wmesg,
sizeof(kp->ki_wmesg) - 1);
}
if (TD_ON_LOCK(td)) {
kp->ki_kiflag |= KI_LOCKBLOCK;
strncpy(kp->ki_lockname, td->td_lockname,
sizeof(kp->ki_lockname) - 1);
}
}
if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */
if (TD_ON_RUNQ(td) ||
TD_CAN_RUN(td) ||
TD_IS_RUNNING(td)) {
kp->ki_stat = SRUN;
} else if (P_SHOULDSTOP(p)) {
kp->ki_stat = SSTOP;
} else if (TD_IS_SLEEPING(td)) {
kp->ki_stat = SSLEEP;
} else if (TD_ON_LOCK(td)) {
kp->ki_stat = SLOCK;
} else {
kp->ki_stat = SWAIT;
}
} else {
kp->ki_stat = SIDL;
}
kp->ki_sflag = p->p_sflag;
kp->ki_swtime = p->p_swtime;
kp->ki_pid = p->p_pid;
/* vvv XXXKSE */
if (!(p->p_flag & P_KSES)) {
kg = td->td_ksegrp;
ke = td->td_kse;
KASSERT((ke != NULL), ("fill_kinfo_proc: Null KSE"));
bintime2timeval(&p->p_runtime, &tv);
kp->ki_runtime =
tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec;
/* things in the KSE GROUP */
kp->ki_estcpu = kg->kg_estcpu;
kp->ki_slptime = kg->kg_slptime;
kp->ki_pri.pri_user = kg->kg_user_pri;
kp->ki_pri.pri_class = kg->kg_pri_class;
kp->ki_nice = kg->kg_nice;
/* Things in the thread */
kp->ki_wchan = td->td_wchan;
kp->ki_pri.pri_level = td->td_priority;
kp->ki_pri.pri_native = td->td_base_pri;
kp->ki_lastcpu = td->td_lastcpu;
kp->ki_tdflags = td->td_flags;
kp->ki_pcb = td->td_pcb;
kp->ki_kstack = (void *)td->td_kstack;
/* Things in the kse */
kp->ki_rqindex = ke->ke_rqindex;
kp->ki_oncpu = ke->ke_oncpu;
kp->ki_pctcpu = ke->ke_pctcpu;
} else {
kp->ki_oncpu = -1;
kp->ki_lastcpu = -1;
kp->ki_tdflags = -1;
/* All the rest are 0 for now */
}
/* ^^^ XXXKSE */
} else {
kp->ki_stat = SZOMB;
}
mtx_unlock_spin(&sched_lock);
sp = NULL;
tp = NULL;
if (p->p_pgrp) {
kp->ki_pgid = p->p_pgrp->pg_id;
kp->ki_jobc = p->p_pgrp->pg_jobc;
sp = p->p_pgrp->pg_session;
if (sp != NULL) {
kp->ki_sid = sp->s_sid;
SESS_LOCK(sp);
strncpy(kp->ki_login, sp->s_login,
sizeof(kp->ki_login) - 1);
if (sp->s_ttyvp)
kp->ki_kiflag |= KI_CTTY;
if (SESS_LEADER(p))
kp->ki_kiflag |= KI_SLEADER;
tp = sp->s_ttyp;
SESS_UNLOCK(sp);
}
}
if ((p->p_flag & P_CONTROLT) && tp != NULL) {
kp->ki_tdev = dev2udev(tp->t_dev);
kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
if (tp->t_session)
kp->ki_tsid = tp->t_session->s_sid;
} else
kp->ki_tdev = NOUDEV;
if (p->p_comm[0] != '\0') {
strncpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm) - 1);
strncpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm) - 1);
}
kp->ki_siglist = p->p_siglist;
kp->ki_sigmask = p->p_sigmask;
kp->ki_xstat = p->p_xstat;
kp->ki_acflag = p->p_acflag;
kp->ki_flag = p->p_flag;
/* If jailed(p->p_ucred), emulate the old P_JAILED flag. */
if (jailed(p->p_ucred))
kp->ki_flag |= P_JAILED;
kp->ki_lock = p->p_lock;
if (p->p_pptr)
kp->ki_ppid = p->p_pptr->p_pid;
}
/*
* Locate a zombie process by number
*/
struct proc *
zpfind(pid_t pid)
{
struct proc *p;
sx_slock(&allproc_lock);
LIST_FOREACH(p, &zombproc, p_list)
if (p->p_pid == pid) {
PROC_LOCK(p);
break;
}
sx_sunlock(&allproc_lock);
return (p);
}
/*
* Must be called with the process locked and will return with it unlocked.
*/
static int
sysctl_out_proc(struct proc *p, struct sysctl_req *req, int doingzomb)
{
struct kinfo_proc kinfo_proc;
int error;
struct proc *np;
pid_t pid = p->p_pid;
PROC_LOCK_ASSERT(p, MA_OWNED);
fill_kinfo_proc(p, &kinfo_proc);
PROC_UNLOCK(p);
error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, sizeof(kinfo_proc));
if (error)
return (error);
if (doingzomb)
np = zpfind(pid);
else {
if (pid == 0)
return (0);
np = pfind(pid);
}
if (np == NULL)
return EAGAIN;
if (np != p) {
PROC_UNLOCK(np);
return EAGAIN;
}
PROC_UNLOCK(np);
return (0);
}
static int
sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
{
int *name = (int*) arg1;
u_int namelen = arg2;
struct proc *p;
int doingzomb;
int error = 0;
if (oidp->oid_number == KERN_PROC_PID) {
if (namelen != 1)
return (EINVAL);
p = pfind((pid_t)name[0]);
if (!p)
return (0);
if (p_cansee(curthread, p)) {
PROC_UNLOCK(p);
return (0);
}
error = sysctl_out_proc(p, req, 0);
return (error);
}
if (oidp->oid_number == KERN_PROC_ALL && !namelen)
;
else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1)
;
else
return (EINVAL);
if (!req->oldptr) {
/* overestimate by 5 procs */
error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
if (error)
return (error);
}
sysctl_wire_old_buffer(req, 0);
sx_slock(&allproc_lock);
for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
if (!doingzomb)
p = LIST_FIRST(&allproc);
else
p = LIST_FIRST(&zombproc);
for (; p != 0; p = LIST_NEXT(p, p_list)) {
PROC_LOCK(p);
/*
* Show a user only appropriate processes.
*/
if (p_cansee(curthread, p)) {
PROC_UNLOCK(p);
continue;
}
/*
* Skip embryonic processes.
*/
if (p->p_state == PRS_NEW) {
PROC_UNLOCK(p);
continue;
}
/*
* TODO - make more efficient (see notes below).
* do by session.
*/
switch (oidp->oid_number) {
case KERN_PROC_PGRP:
/* could do this by traversing pgrp */
if (p->p_pgrp == NULL ||
p->p_pgrp->pg_id != (pid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_TTY:
if ((p->p_flag & P_CONTROLT) == 0 ||
p->p_session == NULL) {
PROC_UNLOCK(p);
continue;
}
SESS_LOCK(p->p_session);
if (p->p_session->s_ttyp == NULL ||
dev2udev(p->p_session->s_ttyp->t_dev) !=
(udev_t)name[0]) {
SESS_UNLOCK(p->p_session);
PROC_UNLOCK(p);
continue;
}
SESS_UNLOCK(p->p_session);
break;
case KERN_PROC_UID:
if (p->p_ucred == NULL ||
p->p_ucred->cr_uid != (uid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_RUID:
if (p->p_ucred == NULL ||
p->p_ucred->cr_ruid != (uid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
}
error = sysctl_out_proc(p, req, doingzomb);
if (error) {
sx_sunlock(&allproc_lock);
return (error);
}
}
}
sx_sunlock(&allproc_lock);
return (0);
}
struct pargs *
pargs_alloc(int len)
{
struct pargs *pa;
MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS,
M_WAITOK);
pa->ar_ref = 1;
pa->ar_length = len;
return (pa);
}
void
pargs_free(struct pargs *pa)
{
FREE(pa, M_PARGS);
}
void
pargs_hold(struct pargs *pa)
{
if (pa == NULL)
return;
PARGS_LOCK(pa);
pa->ar_ref++;
PARGS_UNLOCK(pa);
}
void
pargs_drop(struct pargs *pa)
{
if (pa == NULL)
return;
PARGS_LOCK(pa);
if (--pa->ar_ref == 0) {
PARGS_UNLOCK(pa);
pargs_free(pa);
} else
PARGS_UNLOCK(pa);
}
/*
* This sysctl allows a process to retrieve the argument list or process
* title for another process without groping around in the address space
* of the other process. It also allow a process to set its own "process
* title to a string of its own choice.
*/
static int
sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
{
int *name = (int*) arg1;
u_int namelen = arg2;
struct proc *p;
struct pargs *pa;
int error = 0;
if (namelen != 1)
return (EINVAL);
p = pfind((pid_t)name[0]);
if (!p)
return (0);
if ((!ps_argsopen) && p_cansee(curthread, p)) {
PROC_UNLOCK(p);
return (0);
}
PROC_UNLOCK(p);
if (req->newptr && curproc != p)
return (EPERM);
PROC_LOCK(p);
pa = p->p_args;
pargs_hold(pa);
PROC_UNLOCK(p);
if (req->oldptr && pa != NULL) {
error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
}
pargs_drop(pa);
if (req->newptr == NULL)
return (error);
PROC_LOCK(p);
pa = p->p_args;
p->p_args = NULL;
PROC_UNLOCK(p);
pargs_drop(pa);
if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
return (error);
pa = pargs_alloc(req->newlen);
error = SYSCTL_IN(req, pa->ar_args, req->newlen);
if (!error) {
PROC_LOCK(p);
p->p_args = pa;
PROC_UNLOCK(p);
} else
pargs_free(pa);
return (error);
}
SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table");
SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD,
sysctl_kern_proc, "Process table");
SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD,
sysctl_kern_proc, "Process table");
SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD,
sysctl_kern_proc, "Process table");
SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD,
sysctl_kern_proc, "Process table");
SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD,
sysctl_kern_proc, "Process table");
SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
sysctl_kern_proc_args, "Process argument list");