1952e2e1c1
These bits are taken from the FSF anoncvs repo on 1-Feb-2002 08:20 PST.
2992 lines
113 KiB
C++
2992 lines
113 KiB
C++
/* Definitions of target machine for GNU compiler, for Sun SPARC.
|
||
Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
|
||
2000, 2001, 2002 Free Software Foundation, Inc.
|
||
Contributed by Michael Tiemann (tiemann@cygnus.com).
|
||
64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
|
||
at Cygnus Support.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/* Note that some other tm.h files include this one and then override
|
||
whatever definitions are necessary. */
|
||
|
||
/* Specify this in a cover file to provide bi-architecture (32/64) support. */
|
||
/* #define SPARC_BI_ARCH */
|
||
|
||
/* Macro used later in this file to determine default architecture. */
|
||
#define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
|
||
|
||
/* TARGET_ARCH{32,64} are the main macros to decide which of the two
|
||
architectures to compile for. We allow targets to choose compile time or
|
||
runtime selection. */
|
||
#ifdef IN_LIBGCC2
|
||
#if defined(__sparcv9) || defined(__arch64__)
|
||
#define TARGET_ARCH32 0
|
||
#else
|
||
#define TARGET_ARCH32 1
|
||
#endif /* sparc64 */
|
||
#else
|
||
#ifdef SPARC_BI_ARCH
|
||
#define TARGET_ARCH32 (! TARGET_64BIT)
|
||
#else
|
||
#define TARGET_ARCH32 (DEFAULT_ARCH32_P)
|
||
#endif /* SPARC_BI_ARCH */
|
||
#endif /* IN_LIBGCC2 */
|
||
#define TARGET_ARCH64 (! TARGET_ARCH32)
|
||
|
||
/* Code model selection.
|
||
-mcmodel is used to select the v9 code model.
|
||
Different code models aren't supported for v7/8 code.
|
||
|
||
TARGET_CM_32: 32 bit address space, top 32 bits = 0,
|
||
pointers are 32 bits. Note that this isn't intended
|
||
to imply a v7/8 abi.
|
||
|
||
TARGET_CM_MEDLOW: 32 bit address space, top 32 bits = 0,
|
||
avoid generating %uhi and %ulo terms,
|
||
pointers are 64 bits.
|
||
|
||
TARGET_CM_MEDMID: 64 bit address space.
|
||
The executable must be in the low 16 TB of memory.
|
||
This corresponds to the low 44 bits, and the %[hml]44
|
||
relocs are used. The text segment has a maximum size
|
||
of 31 bits.
|
||
|
||
TARGET_CM_MEDANY: 64 bit address space.
|
||
The text and data segments have a maximum size of 31
|
||
bits and may be located anywhere. The maximum offset
|
||
from any instruction to the label _GLOBAL_OFFSET_TABLE_
|
||
is 31 bits.
|
||
|
||
TARGET_CM_EMBMEDANY: 64 bit address space.
|
||
The text and data segments have a maximum size of 31 bits
|
||
and may be located anywhere. Register %g4 contains
|
||
the start address of the data segment.
|
||
*/
|
||
|
||
enum cmodel {
|
||
CM_32,
|
||
CM_MEDLOW,
|
||
CM_MEDMID,
|
||
CM_MEDANY,
|
||
CM_EMBMEDANY
|
||
};
|
||
|
||
/* Value of -mcmodel specified by user. */
|
||
extern const char *sparc_cmodel_string;
|
||
/* One of CM_FOO. */
|
||
extern enum cmodel sparc_cmodel;
|
||
|
||
/* V9 code model selection. */
|
||
#define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
|
||
#define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
|
||
#define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
|
||
#define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
|
||
|
||
#define SPARC_DEFAULT_CMODEL CM_32
|
||
|
||
/* This is call-clobbered in the normal ABI, but is reserved in the
|
||
home grown (aka upward compatible) embedded ABI. */
|
||
#define EMBMEDANY_BASE_REG "%g4"
|
||
|
||
/* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
|
||
and specified by the user via --with-cpu=foo.
|
||
This specifies the cpu implementation, not the architecture size. */
|
||
/* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
|
||
capable cpu's. */
|
||
#define TARGET_CPU_sparc 0
|
||
#define TARGET_CPU_v7 0 /* alias for previous */
|
||
#define TARGET_CPU_sparclet 1
|
||
#define TARGET_CPU_sparclite 2
|
||
#define TARGET_CPU_v8 3 /* generic v8 implementation */
|
||
#define TARGET_CPU_supersparc 4
|
||
#define TARGET_CPU_hypersparc 5
|
||
#define TARGET_CPU_sparc86x 6
|
||
#define TARGET_CPU_sparclite86x 6
|
||
#define TARGET_CPU_v9 7 /* generic v9 implementation */
|
||
#define TARGET_CPU_sparcv9 7 /* alias */
|
||
#define TARGET_CPU_sparc64 7 /* alias */
|
||
#define TARGET_CPU_ultrasparc 8
|
||
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
|
||
|| TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
|
||
|
||
#define CPP_CPU32_DEFAULT_SPEC ""
|
||
#define ASM_CPU32_DEFAULT_SPEC ""
|
||
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_v9
|
||
/* ??? What does Sun's CC pass? */
|
||
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
|
||
/* ??? It's not clear how other assemblers will handle this, so by default
|
||
use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
|
||
is handled in sol2.h. */
|
||
#define ASM_CPU64_DEFAULT_SPEC "-Av9"
|
||
#endif
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
|
||
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
|
||
#define ASM_CPU64_DEFAULT_SPEC "-Av9a"
|
||
#endif
|
||
|
||
#else
|
||
|
||
#define CPP_CPU64_DEFAULT_SPEC ""
|
||
#define ASM_CPU64_DEFAULT_SPEC ""
|
||
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
|
||
|| TARGET_CPU_DEFAULT == TARGET_CPU_v8
|
||
#define CPP_CPU32_DEFAULT_SPEC ""
|
||
#define ASM_CPU32_DEFAULT_SPEC ""
|
||
#endif
|
||
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
|
||
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
|
||
#define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
|
||
#endif
|
||
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
|
||
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
|
||
#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
|
||
#endif
|
||
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
|
||
#define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
|
||
#define ASM_CPU32_DEFAULT_SPEC ""
|
||
#endif
|
||
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
|
||
#define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
|
||
#define ASM_CPU32_DEFAULT_SPEC ""
|
||
#endif
|
||
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
|
||
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
|
||
#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
|
||
#endif
|
||
|
||
#endif
|
||
|
||
#if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
|
||
Unrecognized value in TARGET_CPU_DEFAULT.
|
||
#endif
|
||
|
||
#ifdef SPARC_BI_ARCH
|
||
|
||
#define CPP_CPU_DEFAULT_SPEC \
|
||
(DEFAULT_ARCH32_P ? "\
|
||
%{m64:" CPP_CPU64_DEFAULT_SPEC "} \
|
||
%{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
|
||
" : "\
|
||
%{m32:" CPP_CPU32_DEFAULT_SPEC "} \
|
||
%{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
|
||
")
|
||
#define ASM_CPU_DEFAULT_SPEC \
|
||
(DEFAULT_ARCH32_P ? "\
|
||
%{m64:" ASM_CPU64_DEFAULT_SPEC "} \
|
||
%{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
|
||
" : "\
|
||
%{m32:" ASM_CPU32_DEFAULT_SPEC "} \
|
||
%{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
|
||
")
|
||
|
||
#else /* !SPARC_BI_ARCH */
|
||
|
||
#define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
|
||
#define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
|
||
|
||
#endif /* !SPARC_BI_ARCH */
|
||
|
||
/* Define macros to distinguish architectures. */
|
||
|
||
/* Common CPP definitions used by CPP_SPEC amongst the various targets
|
||
for handling -mcpu=xxx switches. */
|
||
#define CPP_CPU_SPEC "\
|
||
%{msoft-float:-D_SOFT_FLOAT} \
|
||
%{mcypress:} \
|
||
%{msparclite:-D__sparclite__} \
|
||
%{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
|
||
%{mv8:-D__sparc_v8__} \
|
||
%{msupersparc:-D__supersparc__ -D__sparc_v8__} \
|
||
%{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
|
||
%{mcpu=sparclite:-D__sparclite__} \
|
||
%{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
|
||
%{mcpu=v8:-D__sparc_v8__} \
|
||
%{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
|
||
%{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
|
||
%{mcpu=sparclite86x:-D__sparclite86x__} \
|
||
%{mcpu=v9:-D__sparc_v9__} \
|
||
%{mcpu=ultrasparc:-D__sparc_v9__} \
|
||
%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
|
||
"
|
||
|
||
/* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
|
||
the right varags.h file when bootstrapping. */
|
||
/* ??? It's not clear what value we want to use for -Acpu/machine for
|
||
sparc64 in 32 bit environments, so for now we only use `sparc64' in
|
||
64 bit environments. */
|
||
|
||
#ifdef SPARC_BI_ARCH
|
||
|
||
#define CPP_ARCH32_SPEC "-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int \
|
||
-D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
|
||
#define CPP_ARCH64_SPEC "-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int \
|
||
-D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
|
||
|
||
#else
|
||
|
||
#define CPP_ARCH32_SPEC "-D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
|
||
#define CPP_ARCH64_SPEC "-D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
|
||
|
||
#endif
|
||
|
||
#define CPP_ARCH_DEFAULT_SPEC \
|
||
(DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
|
||
|
||
#define CPP_ARCH_SPEC "\
|
||
%{m32:%(cpp_arch32)} \
|
||
%{m64:%(cpp_arch64)} \
|
||
%{!m32:%{!m64:%(cpp_arch_default)}} \
|
||
"
|
||
|
||
/* Macros to distinguish endianness. */
|
||
#define CPP_ENDIAN_SPEC "\
|
||
%{mlittle-endian:-D__LITTLE_ENDIAN__} \
|
||
%{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
|
||
|
||
/* Macros to distinguish the particular subtarget. */
|
||
#define CPP_SUBTARGET_SPEC ""
|
||
|
||
#define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
|
||
|
||
/* Prevent error on `-sun4' and `-target sun4' options. */
|
||
/* This used to translate -dalign to -malign, but that is no good
|
||
because it can't turn off the usual meaning of making debugging dumps. */
|
||
/* Translate old style -m<cpu> into new style -mcpu=<cpu>.
|
||
??? Delete support for -m<cpu> for 2.9. */
|
||
|
||
#define CC1_SPEC "\
|
||
%{sun4:} %{target:} \
|
||
%{mcypress:-mcpu=cypress} \
|
||
%{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
|
||
%{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
|
||
"
|
||
|
||
/* Override in target specific files. */
|
||
#define ASM_CPU_SPEC "\
|
||
%{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
|
||
%{msparclite:-Asparclite} \
|
||
%{mf930:-Asparclite} %{mf934:-Asparclite} \
|
||
%{mcpu=sparclite:-Asparclite} \
|
||
%{mcpu=sparclite86x:-Asparclite} \
|
||
%{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
|
||
%{mv8plus:-Av8plus} \
|
||
%{mcpu=v9:-Av9} \
|
||
%{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
|
||
%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
|
||
"
|
||
|
||
/* Word size selection, among other things.
|
||
This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
|
||
|
||
#define ASM_ARCH32_SPEC "-32"
|
||
#ifdef HAVE_AS_REGISTER_PSEUDO_OP
|
||
#define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
|
||
#else
|
||
#define ASM_ARCH64_SPEC "-64"
|
||
#endif
|
||
#define ASM_ARCH_DEFAULT_SPEC \
|
||
(DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
|
||
|
||
#define ASM_ARCH_SPEC "\
|
||
%{m32:%(asm_arch32)} \
|
||
%{m64:%(asm_arch64)} \
|
||
%{!m32:%{!m64:%(asm_arch_default)}} \
|
||
"
|
||
|
||
#ifdef HAVE_AS_RELAX_OPTION
|
||
#define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
|
||
#else
|
||
#define ASM_RELAX_SPEC ""
|
||
#endif
|
||
|
||
/* Special flags to the Sun-4 assembler when using pipe for input. */
|
||
|
||
#define ASM_SPEC "\
|
||
%| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L} \
|
||
%(asm_cpu) %(asm_relax)"
|
||
|
||
/* This macro defines names of additional specifications to put in the specs
|
||
that can be used in various specifications like CC1_SPEC. Its definition
|
||
is an initializer with a subgrouping for each command option.
|
||
|
||
Each subgrouping contains a string constant, that defines the
|
||
specification name, and a string constant that used by the GNU CC driver
|
||
program.
|
||
|
||
Do not define this macro if it does not need to do anything. */
|
||
|
||
#define EXTRA_SPECS \
|
||
{ "cpp_cpu", CPP_CPU_SPEC }, \
|
||
{ "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
|
||
{ "cpp_arch32", CPP_ARCH32_SPEC }, \
|
||
{ "cpp_arch64", CPP_ARCH64_SPEC }, \
|
||
{ "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
|
||
{ "cpp_arch", CPP_ARCH_SPEC }, \
|
||
{ "cpp_endian", CPP_ENDIAN_SPEC }, \
|
||
{ "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
|
||
{ "asm_cpu", ASM_CPU_SPEC }, \
|
||
{ "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
|
||
{ "asm_arch32", ASM_ARCH32_SPEC }, \
|
||
{ "asm_arch64", ASM_ARCH64_SPEC }, \
|
||
{ "asm_relax", ASM_RELAX_SPEC }, \
|
||
{ "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
|
||
{ "asm_arch", ASM_ARCH_SPEC }, \
|
||
SUBTARGET_EXTRA_SPECS
|
||
|
||
#define SUBTARGET_EXTRA_SPECS
|
||
|
||
#ifdef SPARC_BI_ARCH
|
||
#define NO_BUILTIN_PTRDIFF_TYPE
|
||
#define NO_BUILTIN_SIZE_TYPE
|
||
#endif
|
||
#define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
|
||
#define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
|
||
|
||
/* ??? This should be 32 bits for v9 but what can we do? */
|
||
#define WCHAR_TYPE "short unsigned int"
|
||
#define WCHAR_TYPE_SIZE 16
|
||
#define MAX_WCHAR_TYPE_SIZE 16
|
||
|
||
/* Show we can debug even without a frame pointer. */
|
||
#define CAN_DEBUG_WITHOUT_FP
|
||
|
||
/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
|
||
code into the rtl. Also, if we are profiling, we cannot eliminate
|
||
the frame pointer (because the return address will get smashed). */
|
||
|
||
#define OVERRIDE_OPTIONS \
|
||
do { \
|
||
if (profile_flag || profile_arc_flag) \
|
||
{ \
|
||
if (flag_pic) \
|
||
{ \
|
||
const char *const pic_string = (flag_pic == 1) ? "-fpic" : "-fPIC";\
|
||
warning ("%s and profiling conflict: disabling %s", \
|
||
pic_string, pic_string); \
|
||
flag_pic = 0; \
|
||
} \
|
||
flag_omit_frame_pointer = 0; \
|
||
} \
|
||
sparc_override_options (); \
|
||
SUBTARGET_OVERRIDE_OPTIONS; \
|
||
} while (0)
|
||
|
||
/* This is meant to be redefined in the host dependent files. */
|
||
#define SUBTARGET_OVERRIDE_OPTIONS
|
||
|
||
/* Generate DBX debugging information. */
|
||
|
||
#define DBX_DEBUGGING_INFO
|
||
|
||
/* Run-time compilation parameters selecting different hardware subsets. */
|
||
|
||
extern int target_flags;
|
||
|
||
/* Nonzero if we should generate code to use the fpu. */
|
||
#define MASK_FPU 1
|
||
#define TARGET_FPU (target_flags & MASK_FPU)
|
||
|
||
/* Nonzero if we should use function_epilogue(). Otherwise, we
|
||
use fast return insns, but lose some generality. */
|
||
#define MASK_EPILOGUE 2
|
||
#define TARGET_EPILOGUE (target_flags & MASK_EPILOGUE)
|
||
|
||
/* Nonzero if we should assume that double pointers might be unaligned.
|
||
This can happen when linking gcc compiled code with other compilers,
|
||
because the ABI only guarantees 4 byte alignment. */
|
||
#define MASK_UNALIGNED_DOUBLES 4
|
||
#define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
|
||
|
||
/* Nonzero means that we should generate code for a v8 sparc. */
|
||
#define MASK_V8 0x8
|
||
#define TARGET_V8 (target_flags & MASK_V8)
|
||
|
||
/* Nonzero means that we should generate code for a sparclite.
|
||
This enables the sparclite specific instructions, but does not affect
|
||
whether FPU instructions are emitted. */
|
||
#define MASK_SPARCLITE 0x10
|
||
#define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
|
||
|
||
/* Nonzero if we're compiling for the sparclet. */
|
||
#define MASK_SPARCLET 0x20
|
||
#define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
|
||
|
||
/* Nonzero if we're compiling for v9 sparc.
|
||
Note that v9's can run in 32 bit mode so this doesn't necessarily mean
|
||
the word size is 64. */
|
||
#define MASK_V9 0x40
|
||
#define TARGET_V9 (target_flags & MASK_V9)
|
||
|
||
/* Non-zero to generate code that uses the instructions deprecated in
|
||
the v9 architecture. This option only applies to v9 systems. */
|
||
/* ??? This isn't user selectable yet. It's used to enable such insns
|
||
on 32 bit v9 systems and for the moment they're permanently disabled
|
||
on 64 bit v9 systems. */
|
||
#define MASK_DEPRECATED_V8_INSNS 0x80
|
||
#define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
|
||
|
||
/* Mask of all CPU selection flags. */
|
||
#define MASK_ISA \
|
||
(MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
|
||
|
||
/* Non-zero means don't pass `-assert pure-text' to the linker. */
|
||
#define MASK_IMPURE_TEXT 0x100
|
||
#define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
|
||
|
||
/* Nonzero means that we should generate code using a flat register window
|
||
model, i.e. no save/restore instructions are generated, which is
|
||
compatible with normal sparc code.
|
||
The frame pointer is %i7 instead of %fp. */
|
||
#define MASK_FLAT 0x200
|
||
#define TARGET_FLAT (target_flags & MASK_FLAT)
|
||
|
||
/* Nonzero means use the registers that the Sparc ABI reserves for
|
||
application software. This must be the default to coincide with the
|
||
setting in FIXED_REGISTERS. */
|
||
#define MASK_APP_REGS 0x400
|
||
#define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
|
||
|
||
/* Option to select how quad word floating point is implemented.
|
||
When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
|
||
Otherwise, we use the SPARC ABI quad library functions. */
|
||
#define MASK_HARD_QUAD 0x800
|
||
#define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
|
||
|
||
/* Non-zero on little-endian machines. */
|
||
/* ??? Little endian support currently only exists for sparclet-aout and
|
||
sparc64-elf configurations. May eventually want to expand the support
|
||
to all targets, but for now it's kept local to only those two. */
|
||
#define MASK_LITTLE_ENDIAN 0x1000
|
||
#define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
|
||
|
||
/* 0x2000, 0x4000 are unused */
|
||
|
||
/* Nonzero if pointers are 64 bits. */
|
||
#define MASK_PTR64 0x8000
|
||
#define TARGET_PTR64 (target_flags & MASK_PTR64)
|
||
|
||
/* Nonzero if generating code to run in a 64 bit environment.
|
||
This is intended to only be used by TARGET_ARCH{32,64} as they are the
|
||
mechanism used to control compile time or run time selection. */
|
||
#define MASK_64BIT 0x10000
|
||
#define TARGET_64BIT (target_flags & MASK_64BIT)
|
||
|
||
/* 0x20000,0x40000 unused */
|
||
|
||
/* Non-zero means use a stack bias of 2047. Stack offsets are obtained by
|
||
adding 2047 to %sp. This option is for v9 only and is the default. */
|
||
#define MASK_STACK_BIAS 0x80000
|
||
#define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
|
||
|
||
/* 0x100000,0x200000 unused */
|
||
|
||
/* Non-zero means -m{,no-}fpu was passed on the command line. */
|
||
#define MASK_FPU_SET 0x400000
|
||
#define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
|
||
|
||
/* Use the UltraSPARC Visual Instruction Set extensions. */
|
||
#define MASK_VIS 0x1000000
|
||
#define TARGET_VIS (target_flags & MASK_VIS)
|
||
|
||
/* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of
|
||
the current out and global registers and Linux 2.2+ as well. */
|
||
#define MASK_V8PLUS 0x2000000
|
||
#define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
|
||
|
||
/* Force a the fastest alignment on structures to take advantage of
|
||
faster copies. */
|
||
#define MASK_FASTER_STRUCTS 0x4000000
|
||
#define TARGET_FASTER_STRUCTS (target_flags & MASK_FASTER_STRUCTS)
|
||
|
||
/* Use IEEE quad long double. */
|
||
#define MASK_LONG_DOUBLE_128 0x8000000
|
||
#define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
|
||
|
||
/* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
|
||
TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
|
||
to get high 32 bits. False in V8+ or V9 because multiply stores
|
||
a 64 bit result in a register. */
|
||
|
||
#define TARGET_HARD_MUL32 \
|
||
((TARGET_V8 || TARGET_SPARCLITE \
|
||
|| TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
|
||
&& ! TARGET_V8PLUS && TARGET_ARCH32)
|
||
|
||
#define TARGET_HARD_MUL \
|
||
(TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
|
||
|| TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
|
||
|
||
|
||
/* Macro to define tables used to set the flags.
|
||
This is a list in braces of pairs in braces,
|
||
each pair being { "NAME", VALUE }
|
||
where VALUE is the bits to set or minus the bits to clear.
|
||
An empty string NAME is used to identify the default VALUE. */
|
||
|
||
#define TARGET_SWITCHES \
|
||
{ {"fpu", MASK_FPU | MASK_FPU_SET, \
|
||
N_("Use hardware fp") }, \
|
||
{"no-fpu", -MASK_FPU, \
|
||
N_("Do not use hardware fp") }, \
|
||
{"no-fpu", MASK_FPU_SET, NULL, }, \
|
||
{"hard-float", MASK_FPU | MASK_FPU_SET, \
|
||
N_("Use hardware fp") }, \
|
||
{"soft-float", -MASK_FPU, \
|
||
N_("Do not use hardware fp") }, \
|
||
{"soft-float", MASK_FPU_SET, NULL }, \
|
||
{"epilogue", MASK_EPILOGUE, \
|
||
N_("Use function_epilogue()") }, \
|
||
{"no-epilogue", -MASK_EPILOGUE, \
|
||
N_("Do not use function_epilogue()") }, \
|
||
{"unaligned-doubles", MASK_UNALIGNED_DOUBLES, \
|
||
N_("Assume possible double misalignment") }, \
|
||
{"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, \
|
||
N_("Assume all doubles are aligned") }, \
|
||
{"impure-text", MASK_IMPURE_TEXT, \
|
||
N_("Pass -assert pure-text to linker") }, \
|
||
{"no-impure-text", -MASK_IMPURE_TEXT, \
|
||
N_("Do not pass -assert pure-text to linker") }, \
|
||
{"flat", MASK_FLAT, \
|
||
N_("Use flat register window model") }, \
|
||
{"no-flat", -MASK_FLAT, \
|
||
N_("Do not use flat register window model") }, \
|
||
{"app-regs", MASK_APP_REGS, \
|
||
N_("Use ABI reserved registers") }, \
|
||
{"no-app-regs", -MASK_APP_REGS, \
|
||
N_("Do not use ABI reserved registers") }, \
|
||
{"hard-quad-float", MASK_HARD_QUAD, \
|
||
N_("Use hardware quad fp instructions") }, \
|
||
{"soft-quad-float", -MASK_HARD_QUAD, \
|
||
N_("Do not use hardware quad fp instructions") }, \
|
||
{"v8plus", MASK_V8PLUS, \
|
||
N_("Compile for v8plus ABI") }, \
|
||
{"no-v8plus", -MASK_V8PLUS, \
|
||
N_("Do not compile for v8plus ABI") }, \
|
||
{"vis", MASK_VIS, \
|
||
N_("Utilize Visual Instruction Set") }, \
|
||
{"no-vis", -MASK_VIS, \
|
||
N_("Do not utilize Visual Instruction Set") }, \
|
||
/* ??? These are deprecated, coerced to -mcpu=. Delete in 2.9. */ \
|
||
{"cypress", 0, \
|
||
N_("Optimize for Cypress processors") }, \
|
||
{"sparclite", 0, \
|
||
N_("Optimize for SparcLite processors") }, \
|
||
{"f930", 0, \
|
||
N_("Optimize for F930 processors") }, \
|
||
{"f934", 0, \
|
||
N_("Optimize for F934 processors") }, \
|
||
{"v8", 0, \
|
||
N_("Use V8 Sparc ISA") }, \
|
||
{"supersparc", 0, \
|
||
N_("Optimize for SuperSparc processors") }, \
|
||
/* End of deprecated options. */ \
|
||
{"ptr64", MASK_PTR64, \
|
||
N_("Pointers are 64-bit") }, \
|
||
{"ptr32", -MASK_PTR64, \
|
||
N_("Pointers are 32-bit") }, \
|
||
{"32", -MASK_64BIT, \
|
||
N_("Use 32-bit ABI") }, \
|
||
{"64", MASK_64BIT, \
|
||
N_("Use 64-bit ABI") }, \
|
||
{"stack-bias", MASK_STACK_BIAS, \
|
||
N_("Use stack bias") }, \
|
||
{"no-stack-bias", -MASK_STACK_BIAS, \
|
||
N_("Do not use stack bias") }, \
|
||
{"faster-structs", MASK_FASTER_STRUCTS, \
|
||
N_("Use structs on stronger alignment for double-word copies") }, \
|
||
{"no-faster-structs", -MASK_FASTER_STRUCTS, \
|
||
N_("Do not use structs on stronger alignment for double-word copies") }, \
|
||
{"relax", 0, \
|
||
N_("Optimize tail call instructions in assembler and linker") }, \
|
||
{"no-relax", 0, \
|
||
N_("Do not optimize tail call instructions in assembler or linker") }, \
|
||
SUBTARGET_SWITCHES \
|
||
{ "", TARGET_DEFAULT, ""}}
|
||
|
||
/* MASK_APP_REGS must always be the default because that's what
|
||
FIXED_REGISTERS is set to and -ffixed- is processed before
|
||
CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
|
||
#define TARGET_DEFAULT (MASK_APP_REGS + MASK_EPILOGUE + MASK_FPU)
|
||
|
||
/* This is meant to be redefined in target specific files. */
|
||
#define SUBTARGET_SWITCHES
|
||
|
||
/* Processor type.
|
||
These must match the values for the cpu attribute in sparc.md. */
|
||
enum processor_type {
|
||
PROCESSOR_V7,
|
||
PROCESSOR_CYPRESS,
|
||
PROCESSOR_V8,
|
||
PROCESSOR_SUPERSPARC,
|
||
PROCESSOR_SPARCLITE,
|
||
PROCESSOR_F930,
|
||
PROCESSOR_F934,
|
||
PROCESSOR_HYPERSPARC,
|
||
PROCESSOR_SPARCLITE86X,
|
||
PROCESSOR_SPARCLET,
|
||
PROCESSOR_TSC701,
|
||
PROCESSOR_V9,
|
||
PROCESSOR_ULTRASPARC
|
||
};
|
||
|
||
/* This is set from -m{cpu,tune}=xxx. */
|
||
extern enum processor_type sparc_cpu;
|
||
|
||
/* Recast the cpu class to be the cpu attribute.
|
||
Every file includes us, but not every file includes insn-attr.h. */
|
||
#define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
|
||
|
||
#define TARGET_OPTIONS \
|
||
{ \
|
||
{ "cpu=", &sparc_select[1].string, \
|
||
N_("Use features of and schedule code for given CPU") }, \
|
||
{ "tune=", &sparc_select[2].string, \
|
||
N_("Schedule code for given CPU") }, \
|
||
{ "cmodel=", &sparc_cmodel_string, \
|
||
N_("Use given Sparc code model") }, \
|
||
SUBTARGET_OPTIONS \
|
||
}
|
||
|
||
/* This is meant to be redefined in target specific files. */
|
||
#define SUBTARGET_OPTIONS
|
||
|
||
/* sparc_select[0] is reserved for the default cpu. */
|
||
struct sparc_cpu_select
|
||
{
|
||
const char *string;
|
||
const char *const name;
|
||
const int set_tune_p;
|
||
const int set_arch_p;
|
||
};
|
||
|
||
extern struct sparc_cpu_select sparc_select[];
|
||
|
||
/* target machine storage layout */
|
||
|
||
/* Define for cross-compilation to a sparc target with no TFmode from a host
|
||
with a different float format (e.g. VAX). */
|
||
#define REAL_ARITHMETIC
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields. */
|
||
#define BITS_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
#define BYTES_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant word of a multiword number is the lowest
|
||
numbered. */
|
||
#define WORDS_BIG_ENDIAN 1
|
||
|
||
/* Define this to set the endianness to use in libgcc2.c, which can
|
||
not depend on target_flags. */
|
||
#if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
|
||
#define LIBGCC2_WORDS_BIG_ENDIAN 0
|
||
#else
|
||
#define LIBGCC2_WORDS_BIG_ENDIAN 1
|
||
#endif
|
||
|
||
/* number of bits in an addressable storage unit */
|
||
#define BITS_PER_UNIT 8
|
||
|
||
/* Width in bits of a "word", which is the contents of a machine register.
|
||
Note that this is not necessarily the width of data type `int';
|
||
if using 16-bit ints on a 68000, this would still be 32.
|
||
But on a machine with 16-bit registers, this would be 16. */
|
||
#define BITS_PER_WORD (TARGET_ARCH64 ? 64 : 32)
|
||
#define MAX_BITS_PER_WORD 64
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
|
||
#define MIN_UNITS_PER_WORD 4
|
||
|
||
/* Now define the sizes of the C data types. */
|
||
|
||
#define SHORT_TYPE_SIZE 16
|
||
#define INT_TYPE_SIZE 32
|
||
#define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
|
||
#define LONG_LONG_TYPE_SIZE 64
|
||
#define FLOAT_TYPE_SIZE 32
|
||
#define DOUBLE_TYPE_SIZE 64
|
||
|
||
#ifdef SPARC_BI_ARCH
|
||
#define MAX_LONG_TYPE_SIZE 64
|
||
#endif
|
||
|
||
#if 0
|
||
/* ??? This does not work in SunOS 4.x, so it is not enabled here.
|
||
Instead, it is enabled in sol2.h, because it does work under Solaris. */
|
||
/* Define for support of TFmode long double and REAL_ARITHMETIC.
|
||
Sparc ABI says that long double is 4 words. */
|
||
#define LONG_DOUBLE_TYPE_SIZE 128
|
||
#endif
|
||
|
||
/* Width in bits of a pointer.
|
||
See also the macro `Pmode' defined below. */
|
||
#define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
|
||
|
||
/* If we have to extend pointers (only when TARGET_ARCH64 and not
|
||
TARGET_PTR64), we want to do it unsigned. This macro does nothing
|
||
if ptr_mode and Pmode are the same. */
|
||
#define POINTERS_EXTEND_UNSIGNED 1
|
||
|
||
/* A macro to update MODE and UNSIGNEDP when an object whose type
|
||
is TYPE and which has the specified mode and signedness is to be
|
||
stored in a register. This macro is only called when TYPE is a
|
||
scalar type. */
|
||
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
|
||
if (TARGET_ARCH64 \
|
||
&& GET_MODE_CLASS (MODE) == MODE_INT \
|
||
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
|
||
(MODE) = DImode;
|
||
|
||
/* Define this macro if the promotion described by PROMOTE_MODE
|
||
should also be done for outgoing function arguments. */
|
||
/* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
|
||
for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
|
||
for this value. */
|
||
#define PROMOTE_FUNCTION_ARGS
|
||
|
||
/* Define this macro if the promotion described by PROMOTE_MODE
|
||
should also be done for the return value of functions.
|
||
If this macro is defined, FUNCTION_VALUE must perform the same
|
||
promotions done by PROMOTE_MODE. */
|
||
/* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
|
||
for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
|
||
for this value. */
|
||
#define PROMOTE_FUNCTION_RETURN
|
||
|
||
/* Define this macro if the promotion described by PROMOTE_MODE
|
||
should _only_ be performed for outgoing function arguments or
|
||
function return values, as specified by PROMOTE_FUNCTION_ARGS
|
||
and PROMOTE_FUNCTION_RETURN, respectively. */
|
||
/* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
|
||
for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
|
||
for this value. For TARGET_ARCH64 we need it, as we don't have instructions
|
||
for arithmetic operations which do zero/sign extension at the same time,
|
||
so without this we end up with a srl/sra after every assignment to an
|
||
user variable, which means very very bad code. */
|
||
#define PROMOTE_FOR_CALL_ONLY
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
|
||
|
||
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
||
#define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
|
||
|
||
/* ALIGN FRAMES on double word boundaries */
|
||
|
||
#define SPARC_STACK_ALIGN(LOC) \
|
||
(TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
|
||
|
||
/* Allocation boundary (in *bits*) for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 32
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
#define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
|
||
|
||
/* Every structure's size must be a multiple of this. */
|
||
#define STRUCTURE_SIZE_BOUNDARY 8
|
||
|
||
/* A bitfield declared as `int' forces `int' alignment for the struct. */
|
||
#define PCC_BITFIELD_TYPE_MATTERS 1
|
||
|
||
/* No data type wants to be aligned rounder than this. */
|
||
#define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
|
||
|
||
/* The best alignment to use in cases where we have a choice. */
|
||
#define FASTEST_ALIGNMENT 64
|
||
|
||
/* Define this macro as an expression for the alignment of a structure
|
||
(given by STRUCT as a tree node) if the alignment computed in the
|
||
usual way is COMPUTED and the alignment explicitly specified was
|
||
SPECIFIED.
|
||
|
||
The default is to use SPECIFIED if it is larger; otherwise, use
|
||
the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
|
||
#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
|
||
(TARGET_FASTER_STRUCTS ? \
|
||
((TREE_CODE (STRUCT) == RECORD_TYPE \
|
||
|| TREE_CODE (STRUCT) == UNION_TYPE \
|
||
|| TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
|
||
&& TYPE_FIELDS (STRUCT) != 0 \
|
||
? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
|
||
: MAX ((COMPUTED), (SPECIFIED))) \
|
||
: MAX ((COMPUTED), (SPECIFIED)))
|
||
|
||
/* Make strings word-aligned so strcpy from constants will be faster. */
|
||
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
||
((TREE_CODE (EXP) == STRING_CST \
|
||
&& (ALIGN) < FASTEST_ALIGNMENT) \
|
||
? FASTEST_ALIGNMENT : (ALIGN))
|
||
|
||
/* Make arrays of chars word-aligned for the same reasons. */
|
||
#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
||
(TREE_CODE (TYPE) == ARRAY_TYPE \
|
||
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
|
||
&& (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
|
||
|
||
/* Set this nonzero if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
/* Things that must be doubleword aligned cannot go in the text section,
|
||
because the linker fails to align the text section enough!
|
||
Put them in the data section. This macro is only used in this file. */
|
||
#define MAX_TEXT_ALIGN 32
|
||
|
||
/* This forces all variables and constants to the data section when PIC.
|
||
This is because the SunOS 4 shared library scheme thinks everything in
|
||
text is a function, and patches the address to point to a loader stub. */
|
||
/* This is defined to zero for every system which doesn't use the a.out object
|
||
file format. */
|
||
#ifndef SUNOS4_SHARED_LIBRARIES
|
||
#define SUNOS4_SHARED_LIBRARIES 0
|
||
#endif
|
||
|
||
|
||
/* Use text section for a constant
|
||
unless we need more alignment than that offers. */
|
||
/* This is defined differently for v9 in a cover file. */
|
||
#define SELECT_RTX_SECTION(MODE, X, ALIGN) \
|
||
{ \
|
||
if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
|
||
&& ! (flag_pic && (symbolic_operand ((X), (MODE)) || SUNOS4_SHARED_LIBRARIES))) \
|
||
text_section (); \
|
||
else \
|
||
data_section (); \
|
||
}
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Number of actual hardware registers.
|
||
The hardware registers are assigned numbers for the compiler
|
||
from 0 to just below FIRST_PSEUDO_REGISTER.
|
||
All registers that the compiler knows about must be given numbers,
|
||
even those that are not normally considered general registers.
|
||
|
||
SPARC has 32 integer registers and 32 floating point registers.
|
||
64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
|
||
accessible. We still account for them to simplify register computations
|
||
(eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
|
||
32+32+32+4 == 100.
|
||
Register 100 is used as the integer condition code register. */
|
||
|
||
#define FIRST_PSEUDO_REGISTER 101
|
||
|
||
#define SPARC_FIRST_FP_REG 32
|
||
/* Additional V9 fp regs. */
|
||
#define SPARC_FIRST_V9_FP_REG 64
|
||
#define SPARC_LAST_V9_FP_REG 95
|
||
/* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
|
||
#define SPARC_FIRST_V9_FCC_REG 96
|
||
#define SPARC_LAST_V9_FCC_REG 99
|
||
/* V8 fcc reg. */
|
||
#define SPARC_FCC_REG 96
|
||
/* Integer CC reg. We don't distinguish %icc from %xcc. */
|
||
#define SPARC_ICC_REG 100
|
||
|
||
/* Nonzero if REGNO is an fp reg. */
|
||
#define SPARC_FP_REG_P(REGNO) \
|
||
((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
|
||
|
||
/* Argument passing regs. */
|
||
#define SPARC_OUTGOING_INT_ARG_FIRST 8
|
||
#define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
|
||
#define SPARC_FP_ARG_FIRST 32
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator.
|
||
|
||
On non-v9 systems:
|
||
g1 is free to use as temporary.
|
||
g2-g4 are reserved for applications. Gcc normally uses them as
|
||
temporaries, but this can be disabled via the -mno-app-regs option.
|
||
g5 through g7 are reserved for the operating system.
|
||
|
||
On v9 systems:
|
||
g1,g5 are free to use as temporaries, and are free to use between calls
|
||
if the call is to an external function via the PLT.
|
||
g4 is free to use as a temporary in the non-embedded case.
|
||
g4 is reserved in the embedded case.
|
||
g2-g3 are reserved for applications. Gcc normally uses them as
|
||
temporaries, but this can be disabled via the -mno-app-regs option.
|
||
g6-g7 are reserved for the operating system (or application in
|
||
embedded case).
|
||
??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
|
||
currently be a fixed register until this pattern is rewritten.
|
||
Register 1 is also used when restoring call-preserved registers in large
|
||
stack frames.
|
||
|
||
Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
|
||
CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
|
||
*/
|
||
|
||
#define FIXED_REGISTERS \
|
||
{1, 0, 2, 2, 2, 2, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 1, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 1, 1, \
|
||
\
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
\
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
\
|
||
0, 0, 0, 0, 0}
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like. */
|
||
|
||
#define CALL_USED_REGISTERS \
|
||
{1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 1, 1, \
|
||
\
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
\
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
\
|
||
1, 1, 1, 1, 1}
|
||
|
||
/* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
|
||
they won't be allocated. */
|
||
|
||
#define CONDITIONAL_REGISTER_USAGE \
|
||
do \
|
||
{ \
|
||
if (flag_pic) \
|
||
{ \
|
||
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
||
call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
||
} \
|
||
/* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
|
||
/* then honour it. */ \
|
||
if (TARGET_ARCH32 && fixed_regs[5]) \
|
||
fixed_regs[5] = 1; \
|
||
else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
|
||
fixed_regs[5] = 0; \
|
||
if (! TARGET_V9) \
|
||
{ \
|
||
int regno; \
|
||
for (regno = SPARC_FIRST_V9_FP_REG; \
|
||
regno <= SPARC_LAST_V9_FP_REG; \
|
||
regno++) \
|
||
fixed_regs[regno] = 1; \
|
||
/* %fcc0 is used by v8 and v9. */ \
|
||
for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
|
||
regno <= SPARC_LAST_V9_FCC_REG; \
|
||
regno++) \
|
||
fixed_regs[regno] = 1; \
|
||
} \
|
||
if (! TARGET_FPU) \
|
||
{ \
|
||
int regno; \
|
||
for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
|
||
fixed_regs[regno] = 1; \
|
||
} \
|
||
/* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
|
||
/* then honour it. Likewise with g3 and g4. */ \
|
||
if (fixed_regs[2] == 2) \
|
||
fixed_regs[2] = ! TARGET_APP_REGS; \
|
||
if (fixed_regs[3] == 2) \
|
||
fixed_regs[3] = ! TARGET_APP_REGS; \
|
||
if (TARGET_ARCH32 && fixed_regs[4] == 2) \
|
||
fixed_regs[4] = ! TARGET_APP_REGS; \
|
||
else if (TARGET_CM_EMBMEDANY) \
|
||
fixed_regs[4] = 1; \
|
||
else if (fixed_regs[4] == 2) \
|
||
fixed_regs[4] = 0; \
|
||
if (TARGET_FLAT) \
|
||
{ \
|
||
/* Let the compiler believe the frame pointer is still \
|
||
%fp, but output it as %i7. */ \
|
||
fixed_regs[31] = 1; \
|
||
reg_names[FRAME_POINTER_REGNUM] = "%i7"; \
|
||
/* Disable leaf functions */ \
|
||
memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER); \
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers.
|
||
|
||
On SPARC, ordinary registers hold 32 bits worth;
|
||
this means both integer and floating point registers.
|
||
On v9, integer regs hold 64 bits worth; floating point regs hold
|
||
32 bits worth (this includes the new fp regs as even the odd ones are
|
||
included in the hard register count). */
|
||
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
(TARGET_ARCH64 \
|
||
? ((REGNO) < 32 \
|
||
? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
|
||
: (GET_MODE_SIZE (MODE) + 3) / 4) \
|
||
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
||
|
||
/* Due to the ARCH64 descrepancy above we must override this next
|
||
macro too. */
|
||
#define REGMODE_NATURAL_SIZE(MODE) \
|
||
((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
|
||
|
||
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
|
||
See sparc.c for how we initialize this. */
|
||
extern const int *hard_regno_mode_classes;
|
||
extern int sparc_mode_class[];
|
||
|
||
/* ??? Because of the funny way we pass parameters we should allow certain
|
||
??? types of float/complex values to be in integer registers during
|
||
??? RTL generation. This only matters on arch32. */
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output.
|
||
|
||
For V9: SFmode can't be combined with other float modes, because they can't
|
||
be allocated to the %d registers. Also, DFmode won't fit in odd %f
|
||
registers, but SFmode will. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
((MODE1) == (MODE2) \
|
||
|| (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
|
||
&& (! TARGET_V9 \
|
||
|| (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
|
||
|| (MODE1 != SFmode && MODE2 != SFmode)))))
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* SPARC pc isn't overloaded on a register that the compiler knows about. */
|
||
/* #define PC_REGNUM */
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM 14
|
||
|
||
/* Actual top-of-stack address is 92/176 greater than the contents of the
|
||
stack pointer register for !v9/v9. That is:
|
||
- !v9: 64 bytes for the in and local registers, 4 bytes for structure return
|
||
address, and 6*4 bytes for the 6 register parameters.
|
||
- v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
|
||
parameter regs. */
|
||
#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
|
||
|
||
/* The stack bias (amount by which the hardware register is offset by). */
|
||
#define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
|
||
|
||
/* Is stack biased? */
|
||
#define STACK_BIAS SPARC_STACK_BIAS
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 30
|
||
|
||
#if 0
|
||
/* Register that is used for the return address for the flat model. */
|
||
#define RETURN_ADDR_REGNUM 15
|
||
#endif
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms
|
||
may be accessed via the stack pointer) in functions that seem suitable.
|
||
This is computed in `reload', in reload1.c.
|
||
Used in flow.c, global.c, and reload1.c.
|
||
|
||
Being a non-leaf function does not mean a frame pointer is needed in the
|
||
flat window model. However, the debugger won't be able to backtrace through
|
||
us with out it. */
|
||
#define FRAME_POINTER_REQUIRED \
|
||
(TARGET_FLAT ? (current_function_calls_alloca || current_function_varargs \
|
||
|| !leaf_function_p ()) \
|
||
: ! (leaf_function_p () && only_leaf_regs_used ()))
|
||
|
||
/* C statement to store the difference between the frame pointer
|
||
and the stack pointer values immediately after the function prologue.
|
||
|
||
Note, we always pretend that this is a leaf function because if
|
||
it's not, there's no point in trying to eliminate the
|
||
frame pointer. If it is a leaf function, we guessed right! */
|
||
#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
|
||
((VAR) = (TARGET_FLAT ? sparc_flat_compute_frame_size (get_frame_size ()) \
|
||
: compute_frame_size (get_frame_size (), 1)))
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
|
||
|
||
/* Register in which static-chain is passed to a function. This must
|
||
not be a register used by the prologue. */
|
||
#define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
|
||
|
||
/* Register which holds offset table for position-independent
|
||
data references. */
|
||
|
||
#define PIC_OFFSET_TABLE_REGNUM 23
|
||
|
||
/* Pick a default value we can notice from override_options:
|
||
!v9: Default is on.
|
||
v9: Default is off. */
|
||
|
||
#define DEFAULT_PCC_STRUCT_RETURN -1
|
||
|
||
/* Sparc ABI says that quad-precision floats and all structures are returned
|
||
in memory.
|
||
For v9: unions <= 32 bytes in size are returned in int regs,
|
||
structures up to 32 bytes are returned in int and fp regs. */
|
||
|
||
#define RETURN_IN_MEMORY(TYPE) \
|
||
(TARGET_ARCH32 \
|
||
? (TYPE_MODE (TYPE) == BLKmode \
|
||
|| TYPE_MODE (TYPE) == TFmode \
|
||
|| TYPE_MODE (TYPE) == TCmode) \
|
||
: (TYPE_MODE (TYPE) == BLKmode \
|
||
&& (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 32))
|
||
|
||
/* Functions which return large structures get the address
|
||
to place the wanted value at offset 64 from the frame.
|
||
Must reserve 64 bytes for the in and local registers.
|
||
v9: Functions which return large structures get the address to place the
|
||
wanted value from an invisible first argument. */
|
||
/* Used only in other #defines in this file. */
|
||
#define STRUCT_VALUE_OFFSET 64
|
||
|
||
#define STRUCT_VALUE \
|
||
(TARGET_ARCH64 \
|
||
? 0 \
|
||
: gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
|
||
STRUCT_VALUE_OFFSET)))
|
||
|
||
#define STRUCT_VALUE_INCOMING \
|
||
(TARGET_ARCH64 \
|
||
? 0 \
|
||
: gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, \
|
||
STRUCT_VALUE_OFFSET)))
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union. */
|
||
|
||
/* The SPARC has various kinds of registers: general, floating point,
|
||
and condition codes [well, it has others as well, but none that we
|
||
care directly about].
|
||
|
||
For v9 we must distinguish between the upper and lower floating point
|
||
registers because the upper ones can't hold SFmode values.
|
||
HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
|
||
satisfying a group need for a class will also satisfy a single need for
|
||
that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
|
||
regs.
|
||
|
||
It is important that one class contains all the general and all the standard
|
||
fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
|
||
because reg_class_record() will bias the selection in favor of fp regs,
|
||
because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
|
||
because FP_REGS > GENERAL_REGS.
|
||
|
||
It is also important that one class contain all the general and all the
|
||
fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
|
||
but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
|
||
allocate_reload_reg() to bypass it causing an abort because the compiler
|
||
thinks it doesn't have a spill reg when in fact it does.
|
||
|
||
v9 also has 4 floating point condition code registers. Since we don't
|
||
have a class that is the union of FPCC_REGS with either of the others,
|
||
it is important that it appear first. Otherwise the compiler will die
|
||
trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
|
||
constraints.
|
||
|
||
It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
|
||
may try to use it to hold an SImode value. See register_operand.
|
||
??? Should %fcc[0123] be handled similarly?
|
||
*/
|
||
|
||
enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
|
||
EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
|
||
ALL_REGS, LIM_REG_CLASSES };
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{ "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
|
||
"EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
|
||
"ALL_REGS" }
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
|
||
#define REG_CLASS_CONTENTS \
|
||
{{0, 0, 0, 0}, {0, 0, 0, 0xf}, {0xffff, 0, 0, 0}, \
|
||
{-1, 0, 0, 0}, {0, -1, 0, 0}, {0, -1, -1, 0}, \
|
||
{-1, -1, 0, 0}, {-1, -1, -1, 0}, {-1, -1, -1, 0x1f}}
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
|
||
extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
|
||
|
||
#define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
|
||
|
||
/* This is the order in which to allocate registers normally.
|
||
|
||
We put %f0/%f1 last among the float registers, so as to make it more
|
||
likely that a pseudo-register which dies in the float return register
|
||
will get allocated to the float return register, thus saving a move
|
||
instruction at the end of the function. */
|
||
|
||
#define REG_ALLOC_ORDER \
|
||
{ 8, 9, 10, 11, 12, 13, 2, 3, \
|
||
15, 16, 17, 18, 19, 20, 21, 22, \
|
||
23, 24, 25, 26, 27, 28, 29, 31, \
|
||
34, 35, 36, 37, 38, 39, /* %f2-%f7 */ \
|
||
40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
|
||
48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
|
||
56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
|
||
64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
|
||
72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
|
||
80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
|
||
88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
|
||
32, 33, /* %f0,%f1 */ \
|
||
96, 97, 98, 99, 100, /* %fcc0-3, %icc */ \
|
||
1, 4, 5, 6, 7, 0, 14, 30}
|
||
|
||
/* This is the order in which to allocate registers for
|
||
leaf functions. If all registers can fit in the "gi" registers,
|
||
then we have the possibility of having a leaf function. */
|
||
|
||
#define REG_LEAF_ALLOC_ORDER \
|
||
{ 2, 3, 24, 25, 26, 27, 28, 29, \
|
||
4, 5, 6, 7, 1, \
|
||
15, 8, 9, 10, 11, 12, 13, \
|
||
16, 17, 18, 19, 20, 21, 22, 23, \
|
||
34, 35, 36, 37, 38, 39, \
|
||
40, 41, 42, 43, 44, 45, 46, 47, \
|
||
48, 49, 50, 51, 52, 53, 54, 55, \
|
||
56, 57, 58, 59, 60, 61, 62, 63, \
|
||
64, 65, 66, 67, 68, 69, 70, 71, \
|
||
72, 73, 74, 75, 76, 77, 78, 79, \
|
||
80, 81, 82, 83, 84, 85, 86, 87, \
|
||
88, 89, 90, 91, 92, 93, 94, 95, \
|
||
32, 33, \
|
||
96, 97, 98, 99, 100, \
|
||
0, 14, 30, 31}
|
||
|
||
#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
|
||
|
||
extern char sparc_leaf_regs[];
|
||
#define LEAF_REGISTERS sparc_leaf_regs
|
||
|
||
extern const char leaf_reg_remap[];
|
||
#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
#define INDEX_REG_CLASS GENERAL_REGS
|
||
#define BASE_REG_CLASS GENERAL_REGS
|
||
|
||
/* Local macro to handle the two v9 classes of FP regs. */
|
||
#define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
|
||
|
||
/* Get reg_class from a letter such as appears in the machine description.
|
||
In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
|
||
.md file for v8 and v9.
|
||
'd' and 'b' are used for single and double precision VIS operations,
|
||
if TARGET_VIS.
|
||
'h' is used for V8+ 64 bit global and out registers. */
|
||
|
||
#define REG_CLASS_FROM_LETTER(C) \
|
||
(TARGET_V9 \
|
||
? ((C) == 'f' ? FP_REGS \
|
||
: (C) == 'e' ? EXTRA_FP_REGS \
|
||
: (C) == 'c' ? FPCC_REGS \
|
||
: ((C) == 'd' && TARGET_VIS) ? FP_REGS\
|
||
: ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
|
||
: ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
|
||
: NO_REGS) \
|
||
: ((C) == 'f' ? FP_REGS \
|
||
: (C) == 'e' ? FP_REGS \
|
||
: (C) == 'c' ? FPCC_REGS \
|
||
: NO_REGS))
|
||
|
||
/* The letters I, J, K, L and M in a register constraint string
|
||
can be used to stand for particular ranges of immediate operands.
|
||
This macro defines what the ranges are.
|
||
C is the letter, and VALUE is a constant value.
|
||
Return 1 if VALUE is in the range specified by C.
|
||
|
||
`I' is used for the range of constants an insn can actually contain.
|
||
`J' is used for the range which is just zero (since that is R0).
|
||
`K' is used for constants which can be loaded with a single sethi insn.
|
||
`L' is used for the range of constants supported by the movcc insns.
|
||
`M' is used for the range of constants supported by the movrcc insns. */
|
||
|
||
#define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
|
||
#define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
|
||
#define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
|
||
/* 10 and 11 bit immediates are only used for a few specific insns.
|
||
SMALL_INT is used throughout the port so we continue to use it. */
|
||
#define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
|
||
/* 13 bit immediate, considering only the low 32 bits */
|
||
#define SMALL_INT32(X) (SPARC_SIMM13_P ((int)INTVAL (X) & 0xffffffff))
|
||
#define SPARC_SETHI_P(X) \
|
||
(((unsigned HOST_WIDE_INT) (X) & \
|
||
(TARGET_ARCH64 ? ~(unsigned HOST_WIDE_INT) 0xfffffc00 : 0x3ff)) == 0)
|
||
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
|
||
: (C) == 'J' ? (VALUE) == 0 \
|
||
: (C) == 'K' ? SPARC_SETHI_P (VALUE) \
|
||
: (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
|
||
: (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
|
||
: 0)
|
||
|
||
/* Similar, but for floating constants, and defining letters G and H.
|
||
Here VALUE is the CONST_DOUBLE rtx itself. */
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'G' ? fp_zero_operand (VALUE, GET_MODE (VALUE)) \
|
||
: (C) == 'H' ? arith_double_operand (VALUE, DImode) \
|
||
: 0)
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class. */
|
||
/* - We can't load constants into FP registers.
|
||
- We can't load FP constants into integer registers when soft-float,
|
||
because there is no soft-float pattern with a r/F constraint.
|
||
- We can't load FP constants into integer registers for TFmode unless
|
||
it is 0.0L, because there is no movtf pattern with a r/F constraint.
|
||
- Try and reload integer constants (symbolic or otherwise) back into
|
||
registers directly, rather than having them dumped to memory. */
|
||
|
||
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
|
||
(CONSTANT_P (X) \
|
||
? ((FP_REG_CLASS_P (CLASS) \
|
||
|| (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
|
||
&& ! TARGET_FPU) \
|
||
|| (GET_MODE (X) == TFmode \
|
||
&& ! fp_zero_operand (X, TFmode))) \
|
||
? NO_REGS \
|
||
: (!FP_REG_CLASS_P (CLASS) \
|
||
&& GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
|
||
? GENERAL_REGS \
|
||
: (CLASS)) \
|
||
: (CLASS))
|
||
|
||
/* Return the register class of a scratch register needed to load IN into
|
||
a register of class CLASS in MODE.
|
||
|
||
We need a temporary when loading/storing a HImode/QImode value
|
||
between memory and the FPU registers. This can happen when combine puts
|
||
a paradoxical subreg in a float/fix conversion insn. */
|
||
|
||
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
|
||
((FP_REG_CLASS_P (CLASS) \
|
||
&& ((MODE) == HImode || (MODE) == QImode) \
|
||
&& (GET_CODE (IN) == MEM \
|
||
|| ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
|
||
&& true_regnum (IN) == -1))) \
|
||
? GENERAL_REGS \
|
||
: (((TARGET_CM_MEDANY \
|
||
&& symbolic_operand ((IN), (MODE))) \
|
||
|| (TARGET_CM_EMBMEDANY \
|
||
&& text_segment_operand ((IN), (MODE)))) \
|
||
&& !flag_pic) \
|
||
? GENERAL_REGS \
|
||
: NO_REGS)
|
||
|
||
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
|
||
((FP_REG_CLASS_P (CLASS) \
|
||
&& ((MODE) == HImode || (MODE) == QImode) \
|
||
&& (GET_CODE (IN) == MEM \
|
||
|| ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
|
||
&& true_regnum (IN) == -1))) \
|
||
? GENERAL_REGS \
|
||
: (((TARGET_CM_MEDANY \
|
||
&& symbolic_operand ((IN), (MODE))) \
|
||
|| (TARGET_CM_EMBMEDANY \
|
||
&& text_segment_operand ((IN), (MODE)))) \
|
||
&& !flag_pic) \
|
||
? GENERAL_REGS \
|
||
: NO_REGS)
|
||
|
||
/* On SPARC it is not possible to directly move data between
|
||
GENERAL_REGS and FP_REGS. */
|
||
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
|
||
(FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
|
||
|
||
/* Return the stack location to use for secondary memory needed reloads.
|
||
We want to use the reserved location just below the frame pointer.
|
||
However, we must ensure that there is a frame, so use assign_stack_local
|
||
if the frame size is zero. */
|
||
#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
|
||
(get_frame_size () == 0 \
|
||
? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
|
||
: gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
|
||
STARTING_FRAME_OFFSET)))
|
||
|
||
/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
|
||
because the movsi and movsf patterns don't handle r/f moves.
|
||
For v8 we copy the default definition. */
|
||
#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
|
||
(TARGET_ARCH64 \
|
||
? (GET_MODE_BITSIZE (MODE) < 32 \
|
||
? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
|
||
: MODE) \
|
||
: (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
|
||
? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
|
||
: MODE))
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
/* On SPARC, this is the size of MODE in words. */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
(FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
|
||
: (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define the number of register that can hold parameters.
|
||
This macro is only used in other macro definitions below and in sparc.c.
|
||
MODE is the mode of the argument.
|
||
!v9: All args are passed in %o0-%o5.
|
||
v9: %o0-%o5 and %f0-%f31 are cumulatively used to pass values.
|
||
See the description in sparc.c. */
|
||
#define NPARM_REGS(MODE) \
|
||
(TARGET_ARCH64 \
|
||
? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 6) \
|
||
: 6)
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD
|
||
|
||
/* Define this if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
#define FRAME_GROWS_DOWNWARD
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
/* This allows space for one TFmode floating point value. */
|
||
#define STARTING_FRAME_OFFSET \
|
||
(TARGET_ARCH64 ? (SPARC_STACK_BIAS - 16) \
|
||
: (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by.
|
||
On SPARC, don't define this because there are no push insns. */
|
||
/* #define PUSH_ROUNDING(BYTES) */
|
||
|
||
/* Offset of first parameter from the argument pointer register value.
|
||
!v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
|
||
even if this function isn't going to use it.
|
||
v9: This is 128 for the ins and locals. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) \
|
||
(TARGET_ARCH64 ? (SPARC_STACK_BIAS + 16 * UNITS_PER_WORD) \
|
||
: (STRUCT_VALUE_OFFSET + UNITS_PER_WORD))
|
||
|
||
/* Offset from the argument pointer register value to the CFA.
|
||
This is different from FIRST_PARM_OFFSET because the register window
|
||
comes between the CFA and the arguments. */
|
||
|
||
#define ARG_POINTER_CFA_OFFSET(FNDECL) SPARC_STACK_BIAS
|
||
|
||
/* When a parameter is passed in a register, stack space is still
|
||
allocated for it.
|
||
!v9: All 6 possible integer registers have backing store allocated.
|
||
v9: Only space for the arguments passed is allocated. */
|
||
/* ??? Ideally, we'd use zero here (as the minimum), but zero has special
|
||
meaning to the backend. Further, we need to be able to detect if a
|
||
varargs/unprototyped function is called, as they may want to spill more
|
||
registers than we've provided space. Ugly, ugly. So for now we retain
|
||
all 6 slots even for v9. */
|
||
#define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
|
||
|
||
/* Keep the stack pointer constant throughout the function.
|
||
This is both an optimization and a necessity: longjmp
|
||
doesn't behave itself when the stack pointer moves within
|
||
the function! */
|
||
#define ACCUMULATE_OUTGOING_ARGS 1
|
||
|
||
/* Value is the number of bytes of arguments automatically
|
||
popped when returning from a subroutine call.
|
||
FUNDECL is the declaration node of the function (as a tree),
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name.
|
||
SIZE is the number of bytes of arguments passed on the stack. */
|
||
|
||
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
|
||
|
||
/* Some subroutine macros specific to this machine.
|
||
When !TARGET_FPU, put float return values in the general registers,
|
||
since we don't have any fp registers. */
|
||
#define BASE_RETURN_VALUE_REG(MODE) \
|
||
(TARGET_ARCH64 \
|
||
? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
|
||
: (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
|
||
|
||
#define BASE_OUTGOING_VALUE_REG(MODE) \
|
||
(TARGET_ARCH64 \
|
||
? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
|
||
: TARGET_FLAT ? 8 : 24) \
|
||
: (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
|
||
: (TARGET_FLAT ? 8 : 24)))
|
||
|
||
#define BASE_PASSING_ARG_REG(MODE) \
|
||
(TARGET_ARCH64 \
|
||
? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
|
||
: 8)
|
||
|
||
/* ??? FIXME -- seems wrong for v9 structure passing... */
|
||
#define BASE_INCOMING_ARG_REG(MODE) \
|
||
(TARGET_ARCH64 \
|
||
? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
|
||
: TARGET_FLAT ? 8 : 24) \
|
||
: (TARGET_FLAT ? 8 : 24))
|
||
|
||
/* Define this macro if the target machine has "register windows". This
|
||
C expression returns the register number as seen by the called function
|
||
corresponding to register number OUT as seen by the calling function.
|
||
Return OUT if register number OUT is not an outbound register. */
|
||
|
||
#define INCOMING_REGNO(OUT) \
|
||
((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
|
||
|
||
/* Define this macro if the target machine has "register windows". This
|
||
C expression returns the register number as seen by the calling function
|
||
corresponding to register number IN as seen by the called function.
|
||
Return IN if register number IN is not an inbound register. */
|
||
|
||
#define OUTGOING_REGNO(IN) \
|
||
((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
|
||
|
||
/* Define this macro if the target machine has register windows. This
|
||
C expression returns true if the register is call-saved but is in the
|
||
register window. */
|
||
|
||
#define LOCAL_REGNO(REGNO) \
|
||
(TARGET_FLAT ? 0 : (REGNO) >= 16 && (REGNO) <= 31)
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0. */
|
||
|
||
/* On SPARC the value is found in the first "output" register. */
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
|
||
|
||
/* But the called function leaves it in the first "input" register. */
|
||
|
||
#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
|
||
function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
|
||
#define LIBCALL_VALUE(MODE) \
|
||
function_value (NULL_TREE, (MODE), 1)
|
||
|
||
/* 1 if N is a possible register number for a function value
|
||
as seen by the caller.
|
||
On SPARC, the first "output" reg is used for integer values,
|
||
and the first floating point register is used for floating point values. */
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
|
||
|
||
/* Define the size of space to allocate for the return value of an
|
||
untyped_call. */
|
||
|
||
#define APPLY_RESULT_SIZE 16
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
|
||
|
||
#define FUNCTION_ARG_REGNO_P(N) \
|
||
(TARGET_ARCH64 \
|
||
? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
|
||
: ((N) >= 8 && (N) <= 13))
|
||
|
||
/* Define a data type for recording info about an argument list
|
||
during the scan of that argument list. This data type should
|
||
hold all necessary information about the function itself
|
||
and about the args processed so far, enough to enable macros
|
||
such as FUNCTION_ARG to determine where the next arg should go.
|
||
|
||
On SPARC (!v9), this is a single integer, which is a number of words
|
||
of arguments scanned so far (including the invisible argument,
|
||
if any, which holds the structure-value-address).
|
||
Thus 7 or more means all following args should go on the stack.
|
||
|
||
For v9, we also need to know whether a prototype is present. */
|
||
|
||
struct sparc_args {
|
||
int words; /* number of words passed so far */
|
||
int prototype_p; /* non-zero if a prototype is present */
|
||
int libcall_p; /* non-zero if a library call */
|
||
};
|
||
#define CUMULATIVE_ARGS struct sparc_args
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
|
||
init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (INDIRECT));
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
TYPE is null for libcalls where that information may not be available. */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
|
||
|
||
/* Nonzero if we do not know how to pass TYPE solely in registers. */
|
||
|
||
#define MUST_PASS_IN_STACK(MODE,TYPE) \
|
||
((TYPE) != 0 \
|
||
&& (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
|
||
|| TREE_ADDRESSABLE (TYPE)))
|
||
|
||
/* Determine where to put an argument to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis). */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
|
||
|
||
/* Define where a function finds its arguments.
|
||
This is different from FUNCTION_ARG because of register windows. */
|
||
|
||
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
|
||
function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
|
||
|
||
/* For an arg passed partly in registers and partly in memory,
|
||
this is the number of registers used.
|
||
For args passed entirely in registers or entirely in memory, zero. */
|
||
|
||
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
|
||
function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
|
||
|
||
/* A C expression that indicates when an argument must be passed by reference.
|
||
If nonzero for an argument, a copy of that argument is made in memory and a
|
||
pointer to the argument is passed instead of the argument itself.
|
||
The pointer is passed in whatever way is appropriate for passing a pointer
|
||
to that type. */
|
||
|
||
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
|
||
function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
|
||
|
||
/* If defined, a C expression which determines whether, and in which direction,
|
||
to pad out an argument with extra space. The value should be of type
|
||
`enum direction': either `upward' to pad above the argument,
|
||
`downward' to pad below, or `none' to inhibit padding. */
|
||
|
||
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
|
||
function_arg_padding ((MODE), (TYPE))
|
||
|
||
/* If defined, a C expression that gives the alignment boundary, in bits,
|
||
of an argument with the specified mode and type. If it is not defined,
|
||
PARM_BOUNDARY is used for all arguments.
|
||
For sparc64, objects requiring 16 byte alignment are passed that way. */
|
||
|
||
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
|
||
((TARGET_ARCH64 \
|
||
&& (GET_MODE_ALIGNMENT (MODE) == 128 \
|
||
|| ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
|
||
? 128 : PARM_BOUNDARY)
|
||
|
||
/* Define the information needed to generate branch and scc insns. This is
|
||
stored from the compare operation. Note that we can't use "rtx" here
|
||
since it hasn't been defined! */
|
||
|
||
extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
|
||
|
||
|
||
/* Generate the special assembly code needed to tell the assembler whatever
|
||
it might need to know about the return value of a function.
|
||
|
||
For Sparc assemblers, we need to output a .proc pseudo-op which conveys
|
||
information to the assembler relating to peephole optimization (done in
|
||
the assembler). */
|
||
|
||
#define ASM_DECLARE_RESULT(FILE, RESULT) \
|
||
fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
|
||
|
||
/* Output the special assembly code needed to tell the assembler some
|
||
register is used as global register variable.
|
||
|
||
SPARC 64bit psABI declares registers %g2 and %g3 as application
|
||
registers and %g6 and %g7 as OS registers. Any object using them
|
||
should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
|
||
and how they are used (scratch or some global variable).
|
||
Linker will then refuse to link together objects which use those
|
||
registers incompatibly.
|
||
|
||
Unless the registers are used for scratch, two different global
|
||
registers cannot be declared to the same name, so in the unlikely
|
||
case of a global register variable occupying more than one register
|
||
we prefix the second and following registers with .gnu.part1. etc. */
|
||
|
||
extern char sparc_hard_reg_printed[8];
|
||
|
||
#ifdef HAVE_AS_REGISTER_PSEUDO_OP
|
||
#define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
|
||
do { \
|
||
if (TARGET_ARCH64) \
|
||
{ \
|
||
int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
|
||
int reg; \
|
||
for (reg = (REGNO); reg < 8 && reg < end; reg++) \
|
||
if ((reg & ~1) == 2 || (reg & ~1) == 6) \
|
||
{ \
|
||
if (reg == (REGNO)) \
|
||
fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
|
||
else \
|
||
fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
|
||
reg, reg - (REGNO), (NAME)); \
|
||
sparc_hard_reg_printed[reg] = 1; \
|
||
} \
|
||
} \
|
||
} while (0)
|
||
#endif
|
||
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry. */
|
||
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
sparc_function_profiler(FILE, LABELNO)
|
||
|
||
/* Set the name of the mcount function for the system. */
|
||
|
||
#define MCOUNT_FUNCTION "*mcount"
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero. */
|
||
|
||
#define EXIT_IGNORE_STACK \
|
||
(get_frame_size () != 0 \
|
||
|| current_function_calls_alloca || current_function_outgoing_args_size)
|
||
|
||
#define DELAY_SLOTS_FOR_EPILOGUE \
|
||
(TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
|
||
#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
|
||
(TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
|
||
: eligible_for_epilogue_delay (trial, slots_filled))
|
||
|
||
/* Define registers used by the epilogue and return instruction. */
|
||
#define EPILOGUE_USES(REGNO) \
|
||
(!TARGET_FLAT && REGNO == 31)
|
||
|
||
/* Length in units of the trampoline for entering a nested function. */
|
||
|
||
#define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
|
||
|
||
#define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function. */
|
||
|
||
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
||
if (TARGET_ARCH64) \
|
||
sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
|
||
else \
|
||
sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
|
||
|
||
/* Generate necessary RTL for __builtin_saveregs(). */
|
||
|
||
#define EXPAND_BUILTIN_SAVEREGS() sparc_builtin_saveregs ()
|
||
|
||
/* Implement `va_start' for varargs and stdarg. */
|
||
#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
|
||
sparc_va_start (stdarg, valist, nextarg)
|
||
|
||
/* Implement `va_arg'. */
|
||
#define EXPAND_BUILTIN_VA_ARG(valist, type) \
|
||
sparc_va_arg (valist, type)
|
||
|
||
/* Define this macro if the location where a function argument is passed
|
||
depends on whether or not it is a named argument.
|
||
|
||
This macro controls how the NAMED argument to FUNCTION_ARG
|
||
is set for varargs and stdarg functions. With this macro defined,
|
||
the NAMED argument is always true for named arguments, and false for
|
||
unnamed arguments. If this is not defined, but SETUP_INCOMING_VARARGS
|
||
is defined, then all arguments are treated as named. Otherwise, all named
|
||
arguments except the last are treated as named.
|
||
For the v9 we want NAMED to mean what it says it means. */
|
||
|
||
#define STRICT_ARGUMENT_NAMING TARGET_V9
|
||
|
||
/* We do not allow sibling calls if -mflat, nor
|
||
we do not allow indirect calls to be optimized into sibling calls. */
|
||
#define FUNCTION_OK_FOR_SIBCALL(DECL) (DECL && ! TARGET_FLAT)
|
||
|
||
/* Generate RTL to flush the register windows so as to make arbitrary frames
|
||
available. */
|
||
#define SETUP_FRAME_ADDRESSES() \
|
||
emit_insn (gen_flush_register_windows ())
|
||
|
||
/* Given an rtx for the address of a frame,
|
||
return an rtx for the address of the word in the frame
|
||
that holds the dynamic chain--the previous frame's address.
|
||
??? -mflat support? */
|
||
#define DYNAMIC_CHAIN_ADDRESS(frame) plus_constant (frame, 14 * UNITS_PER_WORD)
|
||
|
||
/* The return address isn't on the stack, it is in a register, so we can't
|
||
access it from the current frame pointer. We can access it from the
|
||
previous frame pointer though by reading a value from the register window
|
||
save area. */
|
||
#define RETURN_ADDR_IN_PREVIOUS_FRAME
|
||
|
||
/* This is the offset of the return address to the true next instruction to be
|
||
executed for the current function. */
|
||
#define RETURN_ADDR_OFFSET \
|
||
(8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
|
||
|
||
/* The current return address is in %i7. The return address of anything
|
||
farther back is in the register window save area at [%fp+60]. */
|
||
/* ??? This ignores the fact that the actual return address is +8 for normal
|
||
returns, and +12 for structure returns. */
|
||
#define RETURN_ADDR_RTX(count, frame) \
|
||
((count == -1) \
|
||
? gen_rtx_REG (Pmode, 31) \
|
||
: gen_rtx_MEM (Pmode, \
|
||
memory_address (Pmode, plus_constant (frame, \
|
||
15 * UNITS_PER_WORD))))
|
||
|
||
/* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
|
||
+12, but always using +8 is close enough for frame unwind purposes.
|
||
Actually, just using %o7 is close enough for unwinding, but %o7+8
|
||
is something you can return to. */
|
||
#define INCOMING_RETURN_ADDR_RTX \
|
||
plus_constant (gen_rtx_REG (word_mode, 15), 8)
|
||
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
|
||
|
||
/* The offset from the incoming value of %sp to the top of the stack frame
|
||
for the current function. On sparc64, we have to account for the stack
|
||
bias if present. */
|
||
#define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
|
||
|
||
/* Describe how we implement __builtin_eh_return. */
|
||
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
|
||
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
|
||
#define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
|
||
|
||
/* Select a format to encode pointers in exception handling data. CODE
|
||
is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
|
||
true if the symbol may be affected by dynamic relocations.
|
||
|
||
If assembler and linker properly support .uaword %r_disp32(foo),
|
||
then use PC relative 32-bit relocations instead of absolute relocs
|
||
for shared libraries. On sparc64, use pc relative 32-bit relocs even
|
||
for binaries, to save memory. */
|
||
#ifdef HAVE_AS_SPARC_UA_PCREL
|
||
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
|
||
(flag_pic \
|
||
? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
|
||
: ((TARGET_ARCH64 && ! GLOBAL) \
|
||
? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
|
||
: DW_EH_PE_absptr))
|
||
|
||
/* Emit a PC-relative relocation. */
|
||
#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
|
||
do { \
|
||
fputs (integer_asm_op (SIZE, FALSE), FILE); \
|
||
fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
|
||
assemble_name (FILE, LABEL); \
|
||
fputc (')', FILE); \
|
||
} while (0)
|
||
#endif
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
/* #define HAVE_POST_INCREMENT 0 */
|
||
/* #define HAVE_POST_DECREMENT 0 */
|
||
|
||
/* #define HAVE_PRE_DECREMENT 0 */
|
||
/* #define HAVE_PRE_INCREMENT 0 */
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
||
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32)
|
||
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
||
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32)
|
||
#define REGNO_OK_FOR_FP_P(REGNO) \
|
||
(((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
|
||
|| ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
|
||
#define REGNO_OK_FOR_CCFP_P(REGNO) \
|
||
(TARGET_V9 \
|
||
&& (((unsigned) (REGNO) - 96 < (unsigned)4) \
|
||
|| ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
|
||
|
||
/* Now macros that check whether X is a register and also,
|
||
strictly, whether it is in a specified class.
|
||
|
||
These macros are specific to the SPARC, and may be used only
|
||
in code for printing assembler insns and in conditions for
|
||
define_optimization. */
|
||
|
||
/* 1 if X is an fp register. */
|
||
|
||
#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
|
||
|
||
/* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
|
||
#define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
/* Recognize any constant value that is a valid address.
|
||
When PIC, we do not accept an address that would require a scratch reg
|
||
to load into a register. */
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|
||
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
|
||
|| (GET_CODE (X) == CONST \
|
||
&& ! (flag_pic && pic_address_needs_scratch (X))))
|
||
|
||
/* Define this, so that when PIC, reload won't try to reload invalid
|
||
addresses which require two reload registers. */
|
||
|
||
#define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
Anything can be made to work except floating point constants.
|
||
If TARGET_VIS, 0.0 can be made to work as well. */
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) \
|
||
(GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode || \
|
||
(TARGET_VIS && \
|
||
(GET_MODE (X) == SFmode || GET_MODE (X) == DFmode || \
|
||
GET_MODE (X) == TFmode) && \
|
||
fp_zero_operand (X, GET_MODE (X))))
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Source files for reload pass need to be strict.
|
||
After reload, it makes no difference, since pseudo regs have
|
||
been eliminated by then. */
|
||
|
||
/* Optional extra constraints for this machine.
|
||
|
||
'Q' handles floating point constants which can be moved into
|
||
an integer register with a single sethi instruction.
|
||
|
||
'R' handles floating point constants which can be moved into
|
||
an integer register with a single mov instruction.
|
||
|
||
'S' handles floating point constants which can be moved into
|
||
an integer register using a high/lo_sum sequence.
|
||
|
||
'T' handles memory addresses where the alignment is known to
|
||
be at least 8 bytes.
|
||
|
||
`U' handles all pseudo registers or a hard even numbered
|
||
integer register, needed for ldd/std instructions. */
|
||
|
||
#define EXTRA_CONSTRAINT_BASE(OP, C) \
|
||
((C) == 'Q' ? fp_sethi_p(OP) \
|
||
: (C) == 'R' ? fp_mov_p(OP) \
|
||
: (C) == 'S' ? fp_high_losum_p(OP) \
|
||
: 0)
|
||
|
||
#ifndef REG_OK_STRICT
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_INDEX_P(X) \
|
||
(((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))
|
||
/* Nonzero if X is a hard reg that can be used as a base reg
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_BASE_P(X) \
|
||
(((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))
|
||
|
||
/* 'T', 'U' are for aligned memory loads which aren't needed for arch64. */
|
||
|
||
#define EXTRA_CONSTRAINT(OP, C) \
|
||
(EXTRA_CONSTRAINT_BASE(OP, C) \
|
||
|| ((! TARGET_ARCH64 && (C) == 'T') \
|
||
? (mem_min_alignment (OP, 8)) \
|
||
: ((! TARGET_ARCH64 && (C) == 'U') \
|
||
? (register_ok_for_ldd (OP)) \
|
||
: 0)))
|
||
|
||
#else
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index. */
|
||
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
||
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#define EXTRA_CONSTRAINT(OP, C) \
|
||
(EXTRA_CONSTRAINT_BASE(OP, C) \
|
||
|| ((! TARGET_ARCH64 && (C) == 'T') \
|
||
? mem_min_alignment (OP, 8) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
|
||
: ((! TARGET_ARCH64 && (C) == 'U') \
|
||
? (GET_CODE (OP) == REG \
|
||
&& (REGNO (OP) < FIRST_PSEUDO_REGISTER \
|
||
|| reg_renumber[REGNO (OP)] >= 0) \
|
||
&& register_ok_for_ldd (OP)) \
|
||
: 0)))
|
||
|
||
#endif
|
||
|
||
/* Should gcc use [%reg+%lo(xx)+offset] addresses? */
|
||
|
||
#ifdef HAVE_AS_OFFSETABLE_LO10
|
||
#define USE_AS_OFFSETABLE_LO10 1
|
||
#else
|
||
#define USE_AS_OFFSETABLE_LO10 0
|
||
#endif
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address.
|
||
|
||
On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
|
||
ordinarily. This changes a bit when generating PIC.
|
||
|
||
If you change this, execute "rm explow.o recog.o reload.o". */
|
||
|
||
#define RTX_OK_FOR_BASE_P(X) \
|
||
((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|
||
|| (GET_CODE (X) == SUBREG \
|
||
&& GET_CODE (SUBREG_REG (X)) == REG \
|
||
&& REG_OK_FOR_BASE_P (SUBREG_REG (X))))
|
||
|
||
#define RTX_OK_FOR_INDEX_P(X) \
|
||
((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
|
||
|| (GET_CODE (X) == SUBREG \
|
||
&& GET_CODE (SUBREG_REG (X)) == REG \
|
||
&& REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
|
||
|
||
#define RTX_OK_FOR_OFFSET_P(X) \
|
||
(GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
|
||
|
||
#define RTX_OK_FOR_OLO10_P(X) \
|
||
(GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
|
||
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
{ if (RTX_OK_FOR_BASE_P (X)) \
|
||
goto ADDR; \
|
||
else if (GET_CODE (X) == PLUS) \
|
||
{ \
|
||
register rtx op0 = XEXP (X, 0); \
|
||
register rtx op1 = XEXP (X, 1); \
|
||
if (flag_pic && op0 == pic_offset_table_rtx) \
|
||
{ \
|
||
if (RTX_OK_FOR_BASE_P (op1)) \
|
||
goto ADDR; \
|
||
else if (flag_pic == 1 \
|
||
&& GET_CODE (op1) != REG \
|
||
&& GET_CODE (op1) != LO_SUM \
|
||
&& GET_CODE (op1) != MEM \
|
||
&& (GET_CODE (op1) != CONST_INT \
|
||
|| SMALL_INT (op1))) \
|
||
goto ADDR; \
|
||
} \
|
||
else if (RTX_OK_FOR_BASE_P (op0)) \
|
||
{ \
|
||
if ((RTX_OK_FOR_INDEX_P (op1) \
|
||
/* We prohibit REG + REG for TFmode when \
|
||
there are no instructions which accept \
|
||
REG+REG instructions. We do this \
|
||
because REG+REG is not an offsetable \
|
||
address. If we get the situation \
|
||
in reload where source and destination \
|
||
of a movtf pattern are both MEMs with \
|
||
REG+REG address, then only one of them \
|
||
gets converted to an offsetable \
|
||
address. */ \
|
||
&& (MODE != TFmode \
|
||
|| (TARGET_FPU && TARGET_ARCH64 \
|
||
&& TARGET_V9 \
|
||
&& TARGET_HARD_QUAD)) \
|
||
/* We prohibit REG + REG on ARCH32 if \
|
||
not optimizing for DFmode/DImode \
|
||
because then mem_min_alignment is \
|
||
likely to be zero after reload and the \
|
||
forced split would lack a matching \
|
||
splitter pattern. */ \
|
||
&& (TARGET_ARCH64 || optimize \
|
||
|| (MODE != DFmode \
|
||
&& MODE != DImode))) \
|
||
|| RTX_OK_FOR_OFFSET_P (op1)) \
|
||
goto ADDR; \
|
||
} \
|
||
else if (RTX_OK_FOR_BASE_P (op1)) \
|
||
{ \
|
||
if ((RTX_OK_FOR_INDEX_P (op0) \
|
||
/* See the previous comment. */ \
|
||
&& (MODE != TFmode \
|
||
|| (TARGET_FPU && TARGET_ARCH64 \
|
||
&& TARGET_V9 \
|
||
&& TARGET_HARD_QUAD)) \
|
||
&& (TARGET_ARCH64 || optimize \
|
||
|| (MODE != DFmode \
|
||
&& MODE != DImode))) \
|
||
|| RTX_OK_FOR_OFFSET_P (op0)) \
|
||
goto ADDR; \
|
||
} \
|
||
else if (USE_AS_OFFSETABLE_LO10 \
|
||
&& GET_CODE (op0) == LO_SUM \
|
||
&& TARGET_ARCH64 \
|
||
&& ! TARGET_CM_MEDMID \
|
||
&& RTX_OK_FOR_OLO10_P (op1)) \
|
||
{ \
|
||
register rtx op00 = XEXP (op0, 0); \
|
||
register rtx op01 = XEXP (op0, 1); \
|
||
if (RTX_OK_FOR_BASE_P (op00) \
|
||
&& CONSTANT_P (op01)) \
|
||
goto ADDR; \
|
||
} \
|
||
else if (USE_AS_OFFSETABLE_LO10 \
|
||
&& GET_CODE (op1) == LO_SUM \
|
||
&& TARGET_ARCH64 \
|
||
&& ! TARGET_CM_MEDMID \
|
||
&& RTX_OK_FOR_OLO10_P (op0)) \
|
||
{ \
|
||
register rtx op10 = XEXP (op1, 0); \
|
||
register rtx op11 = XEXP (op1, 1); \
|
||
if (RTX_OK_FOR_BASE_P (op10) \
|
||
&& CONSTANT_P (op11)) \
|
||
goto ADDR; \
|
||
} \
|
||
} \
|
||
else if (GET_CODE (X) == LO_SUM) \
|
||
{ \
|
||
register rtx op0 = XEXP (X, 0); \
|
||
register rtx op1 = XEXP (X, 1); \
|
||
if (RTX_OK_FOR_BASE_P (op0) \
|
||
&& CONSTANT_P (op1) \
|
||
/* We can't allow TFmode, because an offset \
|
||
greater than or equal to the alignment (8) \
|
||
may cause the LO_SUM to overflow if !v9. */\
|
||
&& (MODE != TFmode || TARGET_V9)) \
|
||
goto ADDR; \
|
||
} \
|
||
else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
|
||
goto ADDR; \
|
||
}
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
This macro is used in only one place: `memory_address' in explow.c.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE and WIN are passed so that this macro can use
|
||
GO_IF_LEGITIMATE_ADDRESS.
|
||
|
||
It is always safe for this macro to do nothing. It exists to recognize
|
||
opportunities to optimize the output. */
|
||
|
||
/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
|
||
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
|
||
{ rtx sparc_x = (X); \
|
||
if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
|
||
(X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
|
||
force_operand (XEXP (X, 0), NULL_RTX)); \
|
||
if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
|
||
(X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
|
||
force_operand (XEXP (X, 1), NULL_RTX)); \
|
||
if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
|
||
(X) = gen_rtx_PLUS (Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
|
||
XEXP (X, 1)); \
|
||
if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
|
||
(X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
|
||
force_operand (XEXP (X, 1), NULL_RTX)); \
|
||
if (sparc_x != (X) && memory_address_p (MODE, X)) \
|
||
goto WIN; \
|
||
if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
|
||
else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
|
||
(X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
|
||
copy_to_mode_reg (Pmode, XEXP (X, 1))); \
|
||
else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
|
||
(X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
|
||
copy_to_mode_reg (Pmode, XEXP (X, 0))); \
|
||
else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
|
||
|| GET_CODE (X) == LABEL_REF) \
|
||
(X) = copy_to_suggested_reg (X, NULL_RTX, Pmode); \
|
||
if (memory_address_p (MODE, X)) \
|
||
goto WIN; }
|
||
|
||
/* Try a machine-dependent way of reloading an illegitimate address
|
||
operand. If we find one, push the reload and jump to WIN. This
|
||
macro is used in only one place: `find_reloads_address' in reload.c.
|
||
|
||
For Sparc 32, we wish to handle addresses by splitting them into
|
||
HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
|
||
This cuts the number of extra insns by one.
|
||
|
||
Do nothing when generating PIC code and the address is a
|
||
symbolic operand or requires a scratch register. */
|
||
|
||
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
|
||
do { \
|
||
/* Decompose SImode constants into hi+lo_sum. We do have to \
|
||
rerecognize what we produce, so be careful. */ \
|
||
if (CONSTANT_P (X) \
|
||
&& (MODE != TFmode || TARGET_V9) \
|
||
&& GET_MODE (X) == SImode \
|
||
&& GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
|
||
&& ! (flag_pic \
|
||
&& (symbolic_operand (X, Pmode) \
|
||
|| pic_address_needs_scratch (X)))) \
|
||
{ \
|
||
X = gen_rtx_LO_SUM (GET_MODE (X), \
|
||
gen_rtx_HIGH (GET_MODE (X), X), X); \
|
||
push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
|
||
BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
|
||
OPNUM, TYPE); \
|
||
goto WIN; \
|
||
} \
|
||
/* ??? 64-bit reloads. */ \
|
||
} while (0)
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for.
|
||
On the SPARC this is never true. */
|
||
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
|
||
|
||
/* If we are referencing a function make the SYMBOL_REF special.
|
||
In the Embedded Medium/Anywhere code model, %g4 points to the data segment
|
||
so we must not add it to function addresses. */
|
||
|
||
#define ENCODE_SECTION_INFO(DECL) \
|
||
do { \
|
||
if (TARGET_CM_EMBMEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \
|
||
SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
|
||
} while (0)
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
/* If we ever implement any of the full models (such as CM_FULLANY),
|
||
this has to be DImode in that case */
|
||
#ifdef HAVE_GAS_SUBSECTION_ORDERING
|
||
#define CASE_VECTOR_MODE \
|
||
(! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
|
||
#else
|
||
/* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
|
||
we have to sign extend which slows things down. */
|
||
#define CASE_VECTOR_MODE \
|
||
(! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
|
||
#endif
|
||
|
||
/* Define as C expression which evaluates to nonzero if the tablejump
|
||
instruction expects the table to contain offsets from the address of the
|
||
table.
|
||
Do not define this if the table should contain absolute addresses. */
|
||
/* #define CASE_VECTOR_PC_RELATIVE 1 */
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#define DEFAULT_SIGNED_CHAR 1
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 8
|
||
|
||
#if 0 /* Sun 4 has matherr, so this is no good. */
|
||
/* This is the value of the error code EDOM for this machine,
|
||
used by the sqrt instruction. */
|
||
#define TARGET_EDOM 33
|
||
|
||
/* This is how to refer to the variable errno. */
|
||
#define GEN_ERRNO_RTX \
|
||
gen_rtx_MEM (SImode, gen_rtx_SYMBOL_REF (Pmode, "errno"))
|
||
#endif /* 0 */
|
||
|
||
/* Define if operations between registers always perform the operation
|
||
on the full register even if a narrower mode is specified. */
|
||
#define WORD_REGISTER_OPERATIONS
|
||
|
||
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
|
||
will either zero-extend or sign-extend. The value of this macro should
|
||
be the code that says which one of the two operations is implicitly
|
||
done, NIL if none. */
|
||
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
|
||
|
||
/* Nonzero if access to memory by bytes is slow and undesirable.
|
||
For RISC chips, it means that access to memory by bytes is no
|
||
better than access by words when possible, so grab a whole word
|
||
and maybe make use of that. */
|
||
#define SLOW_BYTE_ACCESS 1
|
||
|
||
/* We assume that the store-condition-codes instructions store 0 for false
|
||
and some other value for true. This is the value stored for true. */
|
||
|
||
#define STORE_FLAG_VALUE 1
|
||
|
||
/* When a prototype says `char' or `short', really pass an `int'. */
|
||
#define PROMOTE_PROTOTYPES (TARGET_ARCH32)
|
||
|
||
/* Define this to be nonzero if shift instructions ignore all but the low-order
|
||
few bits. */
|
||
#define SHIFT_COUNT_TRUNCATED 1
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
#define Pmode (TARGET_ARCH64 ? DImode : SImode)
|
||
|
||
/* Generate calls to memcpy, memcmp and memset. */
|
||
#define TARGET_MEM_FUNCTIONS
|
||
|
||
/* Add any extra modes needed to represent the condition code.
|
||
|
||
On the Sparc, we have a "no-overflow" mode which is used when an add or
|
||
subtract insn is used to set the condition code. Different branches are
|
||
used in this case for some operations.
|
||
|
||
We also have two modes to indicate that the relevant condition code is
|
||
in the floating-point condition code register. One for comparisons which
|
||
will generate an exception if the result is unordered (CCFPEmode) and
|
||
one for comparisons which will never trap (CCFPmode).
|
||
|
||
CCXmode and CCX_NOOVmode are only used by v9. */
|
||
|
||
#define EXTRA_CC_MODES \
|
||
CC(CCXmode, "CCX") \
|
||
CC(CC_NOOVmode, "CC_NOOV") \
|
||
CC(CCX_NOOVmode, "CCX_NOOV") \
|
||
CC(CCFPmode, "CCFP") \
|
||
CC(CCFPEmode, "CCFPE")
|
||
|
||
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
||
return the mode to be used for the comparison. For floating-point,
|
||
CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
|
||
is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
|
||
processing is needed. */
|
||
#define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
|
||
|
||
/* Return non-zero if MODE implies a floating point inequality can be
|
||
reversed. For Sparc this is always true because we have a full
|
||
compliment of ordered and unordered comparisons, but until generic
|
||
code knows how to reverse it correctly we keep the old definition. */
|
||
#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
|
||
|
||
/* A function address in a call instruction for indexing purposes. */
|
||
#define FUNCTION_MODE Pmode
|
||
|
||
/* Define this if addresses of constant functions
|
||
shouldn't be put through pseudo regs where they can be cse'd.
|
||
Desirable on machines where ordinary constants are expensive
|
||
but a CALL with constant address is cheap. */
|
||
#define NO_FUNCTION_CSE
|
||
|
||
/* alloca should avoid clobbering the old register save area. */
|
||
#define SETJMP_VIA_SAVE_AREA
|
||
|
||
/* Define subroutines to call to handle multiply and divide.
|
||
Use the subroutines that Sun's library provides.
|
||
The `*' prevents an underscore from being prepended by the compiler. */
|
||
|
||
#define DIVSI3_LIBCALL "*.div"
|
||
#define UDIVSI3_LIBCALL "*.udiv"
|
||
#define MODSI3_LIBCALL "*.rem"
|
||
#define UMODSI3_LIBCALL "*.urem"
|
||
/* .umul is a little faster than .mul. */
|
||
#define MULSI3_LIBCALL "*.umul"
|
||
|
||
/* Define library calls for quad FP operations. These are all part of the
|
||
SPARC 32bit ABI. */
|
||
#define ADDTF3_LIBCALL "_Q_add"
|
||
#define SUBTF3_LIBCALL "_Q_sub"
|
||
#define NEGTF2_LIBCALL "_Q_neg"
|
||
#define MULTF3_LIBCALL "_Q_mul"
|
||
#define DIVTF3_LIBCALL "_Q_div"
|
||
#define FLOATSITF2_LIBCALL "_Q_itoq"
|
||
#define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
|
||
#define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
|
||
#define EXTENDSFTF2_LIBCALL "_Q_stoq"
|
||
#define TRUNCTFSF2_LIBCALL "_Q_qtos"
|
||
#define EXTENDDFTF2_LIBCALL "_Q_dtoq"
|
||
#define TRUNCTFDF2_LIBCALL "_Q_qtod"
|
||
#define EQTF2_LIBCALL "_Q_feq"
|
||
#define NETF2_LIBCALL "_Q_fne"
|
||
#define GTTF2_LIBCALL "_Q_fgt"
|
||
#define GETF2_LIBCALL "_Q_fge"
|
||
#define LTTF2_LIBCALL "_Q_flt"
|
||
#define LETF2_LIBCALL "_Q_fle"
|
||
|
||
/* We can define the TFmode sqrt optab only if TARGET_FPU. This is because
|
||
with soft-float, the SFmode and DFmode sqrt instructions will be absent,
|
||
and the compiler will notice and try to use the TFmode sqrt instruction
|
||
for calls to the builtin function sqrt, but this fails. */
|
||
#define INIT_TARGET_OPTABS \
|
||
do { \
|
||
if (TARGET_ARCH32) \
|
||
{ \
|
||
add_optab->handlers[(int) TFmode].libfunc \
|
||
= init_one_libfunc (ADDTF3_LIBCALL); \
|
||
sub_optab->handlers[(int) TFmode].libfunc \
|
||
= init_one_libfunc (SUBTF3_LIBCALL); \
|
||
neg_optab->handlers[(int) TFmode].libfunc \
|
||
= init_one_libfunc (NEGTF2_LIBCALL); \
|
||
smul_optab->handlers[(int) TFmode].libfunc \
|
||
= init_one_libfunc (MULTF3_LIBCALL); \
|
||
sdiv_optab->handlers[(int) TFmode].libfunc \
|
||
= init_one_libfunc (DIVTF3_LIBCALL); \
|
||
eqtf2_libfunc = init_one_libfunc (EQTF2_LIBCALL); \
|
||
netf2_libfunc = init_one_libfunc (NETF2_LIBCALL); \
|
||
gttf2_libfunc = init_one_libfunc (GTTF2_LIBCALL); \
|
||
getf2_libfunc = init_one_libfunc (GETF2_LIBCALL); \
|
||
lttf2_libfunc = init_one_libfunc (LTTF2_LIBCALL); \
|
||
letf2_libfunc = init_one_libfunc (LETF2_LIBCALL); \
|
||
trunctfsf2_libfunc = init_one_libfunc (TRUNCTFSF2_LIBCALL); \
|
||
trunctfdf2_libfunc = init_one_libfunc (TRUNCTFDF2_LIBCALL); \
|
||
extendsftf2_libfunc = init_one_libfunc (EXTENDSFTF2_LIBCALL); \
|
||
extenddftf2_libfunc = init_one_libfunc (EXTENDDFTF2_LIBCALL); \
|
||
floatsitf_libfunc = init_one_libfunc (FLOATSITF2_LIBCALL); \
|
||
fixtfsi_libfunc = init_one_libfunc (FIX_TRUNCTFSI2_LIBCALL); \
|
||
fixunstfsi_libfunc \
|
||
= init_one_libfunc (FIXUNS_TRUNCTFSI2_LIBCALL); \
|
||
if (TARGET_FPU) \
|
||
sqrt_optab->handlers[(int) TFmode].libfunc \
|
||
= init_one_libfunc ("_Q_sqrt"); \
|
||
} \
|
||
INIT_SUBTARGET_OPTABS; \
|
||
} while (0)
|
||
|
||
/* This is meant to be redefined in the host dependent files */
|
||
#define INIT_SUBTARGET_OPTABS
|
||
|
||
/* Nonzero if a floating point comparison library call for
|
||
mode MODE that will return a boolean value. Zero if one
|
||
of the libgcc2 functions is used. */
|
||
#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
|
||
|
||
/* Compute the cost of computing a constant rtl expression RTX
|
||
whose rtx-code is CODE. The body of this macro is a portion
|
||
of a switch statement. If the code is computed here,
|
||
return it with a return statement. Otherwise, break from the switch. */
|
||
|
||
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
|
||
case CONST_INT: \
|
||
if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
|
||
return 0; \
|
||
case HIGH: \
|
||
return 2; \
|
||
case CONST: \
|
||
case LABEL_REF: \
|
||
case SYMBOL_REF: \
|
||
return 4; \
|
||
case CONST_DOUBLE: \
|
||
if (GET_MODE (RTX) == DImode) \
|
||
if ((XINT (RTX, 3) == 0 \
|
||
&& (unsigned) XINT (RTX, 2) < 0x1000) \
|
||
|| (XINT (RTX, 3) == -1 \
|
||
&& XINT (RTX, 2) < 0 \
|
||
&& XINT (RTX, 2) >= -0x1000)) \
|
||
return 0; \
|
||
return 8;
|
||
|
||
#define ADDRESS_COST(RTX) 1
|
||
|
||
/* Compute extra cost of moving data between one register class
|
||
and another. */
|
||
#define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
|
||
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
|
||
(((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
|
||
|| (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
|
||
|| (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
|
||
? (sparc_cpu == PROCESSOR_ULTRASPARC ? 12 : 6) : 2)
|
||
|
||
/* Provide the costs of a rtl expression. This is in the body of a
|
||
switch on CODE. The purpose for the cost of MULT is to encourage
|
||
`synth_mult' to find a synthetic multiply when reasonable.
|
||
|
||
If we need more than 12 insns to do a multiply, then go out-of-line,
|
||
since the call overhead will be < 10% of the cost of the multiply. */
|
||
|
||
#define RTX_COSTS(X,CODE,OUTER_CODE) \
|
||
case MULT: \
|
||
if (sparc_cpu == PROCESSOR_ULTRASPARC) \
|
||
return (GET_MODE (X) == DImode ? \
|
||
COSTS_N_INSNS (34) : COSTS_N_INSNS (19)); \
|
||
return TARGET_HARD_MUL ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
|
||
case DIV: \
|
||
case UDIV: \
|
||
case MOD: \
|
||
case UMOD: \
|
||
if (sparc_cpu == PROCESSOR_ULTRASPARC) \
|
||
return (GET_MODE (X) == DImode ? \
|
||
COSTS_N_INSNS (68) : COSTS_N_INSNS (37)); \
|
||
return COSTS_N_INSNS (25); \
|
||
/* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
|
||
so that cse will favor the latter. */ \
|
||
case FLOAT: \
|
||
case FIX: \
|
||
return 19;
|
||
|
||
/* Conditional branches with empty delay slots have a length of two. */
|
||
#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
|
||
do { \
|
||
if (GET_CODE (INSN) == CALL_INSN \
|
||
|| (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
|
||
LENGTH += 1; \
|
||
} while (0)
|
||
|
||
/* Control the assembler format that we output. */
|
||
|
||
/* Output at beginning of assembler file. */
|
||
|
||
#define ASM_FILE_START(file)
|
||
|
||
/* A C string constant describing how to begin a comment in the target
|
||
assembler language. The compiler assumes that the comment will end at
|
||
the end of the line. */
|
||
|
||
#define ASM_COMMENT_START "!"
|
||
|
||
/* Output to assembler file text saying following lines
|
||
may contain character constants, extra white space, comments, etc. */
|
||
|
||
#define ASM_APP_ON ""
|
||
|
||
/* Output to assembler file text saying following lines
|
||
no longer contain unusual constructs. */
|
||
|
||
#define ASM_APP_OFF ""
|
||
|
||
/* ??? Try to make the style consistent here (_OP?). */
|
||
|
||
#define ASM_FLOAT ".single"
|
||
#define ASM_DOUBLE ".double"
|
||
#define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
|
||
|
||
/* How to refer to registers in assembler output.
|
||
This sequence is indexed by compiler's hard-register-number (see above). */
|
||
|
||
#define REGISTER_NAMES \
|
||
{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
|
||
"%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
|
||
"%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
|
||
"%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
|
||
"%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
|
||
"%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
|
||
"%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
|
||
"%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
|
||
"%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
|
||
"%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
|
||
"%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
|
||
"%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
|
||
"%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc"}
|
||
|
||
/* Define additional names for use in asm clobbers and asm declarations. */
|
||
|
||
#define ADDITIONAL_REGISTER_NAMES \
|
||
{{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
|
||
|
||
/* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
|
||
can run past this up to a continuation point. Once we used 1500, but
|
||
a single entry in C++ can run more than 500 bytes, due to the length of
|
||
mangled symbol names. dbxout.c should really be fixed to do
|
||
continuations when they are actually needed instead of trying to
|
||
guess... */
|
||
#define DBX_CONTIN_LENGTH 1000
|
||
|
||
/* This is how to output the definition of a user-level label named NAME,
|
||
such as the label on a static function or variable NAME. */
|
||
|
||
#define ASM_OUTPUT_LABEL(FILE,NAME) \
|
||
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
|
||
|
||
/* This is how to output a command to make the user-level label named NAME
|
||
defined for reference from other files. */
|
||
|
||
#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
|
||
do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
|
||
|
||
/* The prefix to add to user-visible assembler symbols. */
|
||
|
||
#define USER_LABEL_PREFIX "_"
|
||
|
||
/* This is how to output a definition of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class. */
|
||
|
||
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
|
||
fprintf (FILE, "%s%d:\n", PREFIX, NUM)
|
||
|
||
/* This is how to store into the string LABEL
|
||
the symbol_ref name of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class.
|
||
This is suitable for output with `assemble_name'. */
|
||
|
||
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
|
||
sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
|
||
|
||
/* This is how we hook in and defer the case-vector until the end of
|
||
the function. */
|
||
#define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
|
||
sparc_defer_case_vector ((LAB),(VEC), 0)
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
|
||
sparc_defer_case_vector ((LAB),(VEC), 1)
|
||
|
||
/* This is how to output an element of a case-vector that is absolute. */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
||
do { \
|
||
char label[30]; \
|
||
ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
|
||
if (CASE_VECTOR_MODE == SImode) \
|
||
fprintf (FILE, "\t.word\t"); \
|
||
else \
|
||
fprintf (FILE, "\t.xword\t"); \
|
||
assemble_name (FILE, label); \
|
||
fputc ('\n', FILE); \
|
||
} while (0)
|
||
|
||
/* This is how to output an element of a case-vector that is relative.
|
||
(SPARC uses such vectors only when generating PIC.) */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
|
||
do { \
|
||
char label[30]; \
|
||
ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
|
||
if (CASE_VECTOR_MODE == SImode) \
|
||
fprintf (FILE, "\t.word\t"); \
|
||
else \
|
||
fprintf (FILE, "\t.xword\t"); \
|
||
assemble_name (FILE, label); \
|
||
ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
|
||
fputc ('-', FILE); \
|
||
assemble_name (FILE, label); \
|
||
fputc ('\n', FILE); \
|
||
} while (0)
|
||
|
||
/* This is what to output before and after case-vector (both
|
||
relative and absolute). If .subsection -1 works, we put case-vectors
|
||
at the beginning of the current section. */
|
||
|
||
#ifdef HAVE_GAS_SUBSECTION_ORDERING
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_START(FILE) \
|
||
fprintf(FILE, "\t.subsection\t-1\n")
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_END(FILE) \
|
||
fprintf(FILE, "\t.previous\n")
|
||
|
||
#endif
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter
|
||
to a multiple of 2**LOG bytes. */
|
||
|
||
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
||
if ((LOG) != 0) \
|
||
fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
|
||
|
||
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
|
||
fprintf (FILE, "\t.skip %u\n", (SIZE))
|
||
|
||
/* This says how to output an assembler line
|
||
to define a global common symbol. */
|
||
|
||
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
|
||
( fputs ("\t.common ", (FILE)), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
|
||
|
||
/* This says how to output an assembler line to define a local common
|
||
symbol. */
|
||
|
||
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
|
||
( fputs ("\t.reserve ", (FILE)), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ",%u,\"bss\",%u\n", \
|
||
(SIZE), ((ALIGNED) / BITS_PER_UNIT)))
|
||
|
||
/* A C statement (sans semicolon) to output to the stdio stream
|
||
FILE the assembler definition of uninitialized global DECL named
|
||
NAME whose size is SIZE bytes and alignment is ALIGN bytes.
|
||
Try to use asm_output_aligned_bss to implement this macro. */
|
||
|
||
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
|
||
do { \
|
||
fputs (".globl ", (FILE)); \
|
||
assemble_name ((FILE), (NAME)); \
|
||
fputs ("\n", (FILE)); \
|
||
ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
|
||
} while (0)
|
||
|
||
/* Store in OUTPUT a string (made with alloca) containing
|
||
an assembler-name for a local static variable named NAME.
|
||
LABELNO is an integer which is different for each call. */
|
||
|
||
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
|
||
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
|
||
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
|
||
|
||
#define IDENT_ASM_OP "\t.ident\t"
|
||
|
||
/* Output #ident as a .ident. */
|
||
|
||
#define ASM_OUTPUT_IDENT(FILE, NAME) \
|
||
fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
|
||
|
||
/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
|
||
Used for C++ multiple inheritance. */
|
||
#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
|
||
do { \
|
||
int reg = 0; \
|
||
\
|
||
if (TARGET_ARCH64 \
|
||
&& aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION)))) \
|
||
reg = 1; \
|
||
if ((DELTA) >= 4096 || (DELTA) < -4096) \
|
||
fprintf (FILE, "\tset\t%d, %%g1\n\tadd\t%%o%d, %%g1, %%o%d\n", \
|
||
(int)(DELTA), reg, reg); \
|
||
else \
|
||
fprintf (FILE, "\tadd\t%%o%d, %d, %%o%d\n", reg, (int)(DELTA), reg);\
|
||
fprintf (FILE, "\tor\t%%o7, %%g0, %%g1\n"); \
|
||
fprintf (FILE, "\tcall\t"); \
|
||
assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
|
||
fprintf (FILE, ", 0\n"); \
|
||
fprintf (FILE, "\t or\t%%g1, %%g0, %%o7\n"); \
|
||
} while (0)
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
|
||
((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(' || (CHAR) == '_')
|
||
|
||
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
||
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
||
For `%' followed by punctuation, CODE is the punctuation and X is null. */
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
|
||
|
||
/* Print a memory address as an operand to reference that memory location. */
|
||
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
|
||
{ register rtx base, index = 0; \
|
||
int offset = 0; \
|
||
register rtx addr = ADDR; \
|
||
if (GET_CODE (addr) == REG) \
|
||
fputs (reg_names[REGNO (addr)], FILE); \
|
||
else if (GET_CODE (addr) == PLUS) \
|
||
{ \
|
||
if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
|
||
offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
|
||
else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
|
||
offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
|
||
else \
|
||
base = XEXP (addr, 0), index = XEXP (addr, 1); \
|
||
if (GET_CODE (base) == LO_SUM) \
|
||
{ \
|
||
if (! USE_AS_OFFSETABLE_LO10 \
|
||
|| TARGET_ARCH32 \
|
||
|| TARGET_CM_MEDMID) \
|
||
abort (); \
|
||
output_operand (XEXP (base, 0), 0); \
|
||
fputs ("+%lo(", FILE); \
|
||
output_address (XEXP (base, 1)); \
|
||
fprintf (FILE, ")+%d", offset); \
|
||
} \
|
||
else \
|
||
{ \
|
||
fputs (reg_names[REGNO (base)], FILE); \
|
||
if (index == 0) \
|
||
fprintf (FILE, "%+d", offset); \
|
||
else if (GET_CODE (index) == REG) \
|
||
fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
|
||
else if (GET_CODE (index) == SYMBOL_REF \
|
||
|| GET_CODE (index) == CONST) \
|
||
fputc ('+', FILE), output_addr_const (FILE, index); \
|
||
else abort (); \
|
||
} \
|
||
} \
|
||
else if (GET_CODE (addr) == MINUS \
|
||
&& GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
|
||
{ \
|
||
output_addr_const (FILE, XEXP (addr, 0)); \
|
||
fputs ("-(", FILE); \
|
||
output_addr_const (FILE, XEXP (addr, 1)); \
|
||
fputs ("-.)", FILE); \
|
||
} \
|
||
else if (GET_CODE (addr) == LO_SUM) \
|
||
{ \
|
||
output_operand (XEXP (addr, 0), 0); \
|
||
if (TARGET_CM_MEDMID) \
|
||
fputs ("+%l44(", FILE); \
|
||
else \
|
||
fputs ("+%lo(", FILE); \
|
||
output_address (XEXP (addr, 1)); \
|
||
fputc (')', FILE); \
|
||
} \
|
||
else if (flag_pic && GET_CODE (addr) == CONST \
|
||
&& GET_CODE (XEXP (addr, 0)) == MINUS \
|
||
&& GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
|
||
&& GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
|
||
&& XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
|
||
{ \
|
||
addr = XEXP (addr, 0); \
|
||
output_addr_const (FILE, XEXP (addr, 0)); \
|
||
/* Group the args of the second CONST in parenthesis. */ \
|
||
fputs ("-(", FILE); \
|
||
/* Skip past the second CONST--it does nothing for us. */\
|
||
output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
|
||
/* Close the parenthesis. */ \
|
||
fputc (')', FILE); \
|
||
} \
|
||
else \
|
||
{ \
|
||
output_addr_const (FILE, addr); \
|
||
} \
|
||
}
|
||
|
||
/* Define the codes that are matched by predicates in sparc.c. */
|
||
|
||
#define PREDICATE_CODES \
|
||
{"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
|
||
{"fp_zero_operand", {CONST_DOUBLE}}, \
|
||
{"intreg_operand", {SUBREG, REG}}, \
|
||
{"fcc_reg_operand", {REG}}, \
|
||
{"icc_or_fcc_reg_operand", {REG}}, \
|
||
{"restore_operand", {REG}}, \
|
||
{"call_operand", {MEM}}, \
|
||
{"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \
|
||
ADDRESSOF, SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \
|
||
{"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
|
||
{"symbolic_memory_operand", {SUBREG, MEM}}, \
|
||
{"label_ref_operand", {LABEL_REF}}, \
|
||
{"sp64_medium_pic_operand", {CONST}}, \
|
||
{"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \
|
||
{"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \
|
||
{"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
|
||
{"splittable_symbolic_memory_operand", {MEM}}, \
|
||
{"splittable_immediate_memory_operand", {MEM}}, \
|
||
{"eq_or_neq", {EQ, NE}}, \
|
||
{"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \
|
||
{"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
|
||
{"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \
|
||
{"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \
|
||
{"cc_arithop", {AND, IOR, XOR}}, \
|
||
{"cc_arithopn", {AND, IOR}}, \
|
||
{"arith_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"arith_add_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"arith11_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"arith10_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
|
||
{"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
|
||
{"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
|
||
{"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
|
||
{"small_int", {CONST_INT}}, \
|
||
{"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \
|
||
{"uns_small_int", {CONST_INT}}, \
|
||
{"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"clobbered_register", {REG}}, \
|
||
{"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \
|
||
{"const64_operand", {CONST_INT, CONST_DOUBLE}}, \
|
||
{"const64_high_operand", {CONST_INT, CONST_DOUBLE}},
|
||
|
||
/* The number of Pmode words for the setjmp buffer. */
|
||
#define JMP_BUF_SIZE 12
|
||
|
||
#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)
|
||
|