ad925439e0
Introduce d_version field in struct cdevsw, this must always be initialized to D_VERSION. Flip sense of D_NOGIANT flag to D_NEEDGIANT, this involves removing four D_NOGIANT flags and adding 145 D_NEEDGIANT flags.
2538 lines
60 KiB
C
2538 lines
60 KiB
C
/*
|
|
* Copyright (c) 2000 Matthew Jacob
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification, immediately at the beginning of the file.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/types.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/errno.h>
|
|
#include <machine/stdarg.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/cam_periph.h>
|
|
#include <cam/cam_xpt_periph.h>
|
|
#include <cam/cam_debug.h>
|
|
|
|
#include <cam/scsi/scsi_all.h>
|
|
#include <cam/scsi/scsi_message.h>
|
|
#include <sys/ioccom.h>
|
|
#include <cam/scsi/scsi_ses.h>
|
|
|
|
#include <opt_ses.h>
|
|
|
|
/*
|
|
* Platform Independent Driver Internal Definitions for SES devices.
|
|
*/
|
|
typedef enum {
|
|
SES_NONE,
|
|
SES_SES_SCSI2,
|
|
SES_SES,
|
|
SES_SES_PASSTHROUGH,
|
|
SES_SEN,
|
|
SES_SAFT
|
|
} enctyp;
|
|
|
|
struct ses_softc;
|
|
typedef struct ses_softc ses_softc_t;
|
|
typedef struct {
|
|
int (*softc_init)(ses_softc_t *, int);
|
|
int (*init_enc)(ses_softc_t *);
|
|
int (*get_encstat)(ses_softc_t *, int);
|
|
int (*set_encstat)(ses_softc_t *, ses_encstat, int);
|
|
int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
|
|
int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
|
|
} encvec;
|
|
|
|
#define ENCI_SVALID 0x80
|
|
|
|
typedef struct {
|
|
uint32_t
|
|
enctype : 8, /* enclosure type */
|
|
subenclosure : 8, /* subenclosure id */
|
|
svalid : 1, /* enclosure information valid */
|
|
priv : 15; /* private data, per object */
|
|
uint8_t encstat[4]; /* state && stats */
|
|
} encobj;
|
|
|
|
#define SEN_ID "UNISYS SUN_SEN"
|
|
#define SEN_ID_LEN 24
|
|
|
|
|
|
static enctyp ses_type(void *, int);
|
|
|
|
|
|
/* Forward reference to Enclosure Functions */
|
|
static int ses_softc_init(ses_softc_t *, int);
|
|
static int ses_init_enc(ses_softc_t *);
|
|
static int ses_get_encstat(ses_softc_t *, int);
|
|
static int ses_set_encstat(ses_softc_t *, uint8_t, int);
|
|
static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
|
|
static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
|
|
|
|
static int safte_softc_init(ses_softc_t *, int);
|
|
static int safte_init_enc(ses_softc_t *);
|
|
static int safte_get_encstat(ses_softc_t *, int);
|
|
static int safte_set_encstat(ses_softc_t *, uint8_t, int);
|
|
static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
|
|
static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
|
|
|
|
/*
|
|
* Platform implementation defines/functions for SES internal kernel stuff
|
|
*/
|
|
|
|
#define STRNCMP strncmp
|
|
#define PRINTF printf
|
|
#define SES_LOG ses_log
|
|
#ifdef DEBUG
|
|
#define SES_DLOG ses_log
|
|
#else
|
|
#define SES_DLOG if (0) ses_log
|
|
#endif
|
|
#define SES_VLOG if (bootverbose) ses_log
|
|
#define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
|
|
#define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
|
|
#define MEMZERO bzero
|
|
#define MEMCPY(dest, src, amt) bcopy(src, dest, amt)
|
|
|
|
static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
|
|
static void ses_log(struct ses_softc *, const char *, ...);
|
|
|
|
/*
|
|
* Gerenal FreeBSD kernel stuff.
|
|
*/
|
|
|
|
|
|
#define ccb_state ppriv_field0
|
|
#define ccb_bp ppriv_ptr1
|
|
|
|
struct ses_softc {
|
|
enctyp ses_type; /* type of enclosure */
|
|
encvec ses_vec; /* vector to handlers */
|
|
void * ses_private; /* per-type private data */
|
|
encobj * ses_objmap; /* objects */
|
|
u_int32_t ses_nobjects; /* number of objects */
|
|
ses_encstat ses_encstat; /* overall status */
|
|
u_int8_t ses_flags;
|
|
union ccb ses_saved_ccb;
|
|
dev_t ses_dev;
|
|
struct cam_periph *periph;
|
|
};
|
|
#define SES_FLAG_INVALID 0x01
|
|
#define SES_FLAG_OPEN 0x02
|
|
#define SES_FLAG_INITIALIZED 0x04
|
|
|
|
#define SESUNIT(x) (minor((x)))
|
|
|
|
static d_open_t sesopen;
|
|
static d_close_t sesclose;
|
|
static d_ioctl_t sesioctl;
|
|
static periph_init_t sesinit;
|
|
static periph_ctor_t sesregister;
|
|
static periph_oninv_t sesoninvalidate;
|
|
static periph_dtor_t sescleanup;
|
|
static periph_start_t sesstart;
|
|
|
|
static void sesasync(void *, u_int32_t, struct cam_path *, void *);
|
|
static void sesdone(struct cam_periph *, union ccb *);
|
|
static int seserror(union ccb *, u_int32_t, u_int32_t);
|
|
|
|
static struct periph_driver sesdriver = {
|
|
sesinit, "ses",
|
|
TAILQ_HEAD_INITIALIZER(sesdriver.units), /* generation */ 0
|
|
};
|
|
|
|
PERIPHDRIVER_DECLARE(ses, sesdriver);
|
|
|
|
static struct cdevsw ses_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_open = sesopen,
|
|
.d_close = sesclose,
|
|
.d_ioctl = sesioctl,
|
|
.d_name = "ses",
|
|
.d_flags = D_NEEDGIANT,
|
|
};
|
|
|
|
static void
|
|
sesinit(void)
|
|
{
|
|
cam_status status;
|
|
struct cam_path *path;
|
|
|
|
/*
|
|
* Install a global async callback. This callback will
|
|
* receive async callbacks like "new device found".
|
|
*/
|
|
status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
|
|
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
|
|
|
|
if (status == CAM_REQ_CMP) {
|
|
struct ccb_setasync csa;
|
|
|
|
xpt_setup_ccb(&csa.ccb_h, path, 5);
|
|
csa.ccb_h.func_code = XPT_SASYNC_CB;
|
|
csa.event_enable = AC_FOUND_DEVICE;
|
|
csa.callback = sesasync;
|
|
csa.callback_arg = NULL;
|
|
xpt_action((union ccb *)&csa);
|
|
status = csa.ccb_h.status;
|
|
xpt_free_path(path);
|
|
}
|
|
|
|
if (status != CAM_REQ_CMP) {
|
|
printf("ses: Failed to attach master async callback "
|
|
"due to status 0x%x!\n", status);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sesoninvalidate(struct cam_periph *periph)
|
|
{
|
|
struct ses_softc *softc;
|
|
struct ccb_setasync csa;
|
|
|
|
softc = (struct ses_softc *)periph->softc;
|
|
|
|
/*
|
|
* Unregister any async callbacks.
|
|
*/
|
|
xpt_setup_ccb(&csa.ccb_h, periph->path, 5);
|
|
csa.ccb_h.func_code = XPT_SASYNC_CB;
|
|
csa.event_enable = 0;
|
|
csa.callback = sesasync;
|
|
csa.callback_arg = periph;
|
|
xpt_action((union ccb *)&csa);
|
|
|
|
softc->ses_flags |= SES_FLAG_INVALID;
|
|
|
|
xpt_print_path(periph->path);
|
|
printf("lost device\n");
|
|
}
|
|
|
|
static void
|
|
sescleanup(struct cam_periph *periph)
|
|
{
|
|
struct ses_softc *softc;
|
|
|
|
softc = (struct ses_softc *)periph->softc;
|
|
|
|
destroy_dev(softc->ses_dev);
|
|
|
|
xpt_print_path(periph->path);
|
|
printf("removing device entry\n");
|
|
free(softc, M_DEVBUF);
|
|
}
|
|
|
|
static void
|
|
sesasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
|
|
{
|
|
struct cam_periph *periph;
|
|
|
|
periph = (struct cam_periph *)callback_arg;
|
|
|
|
switch(code) {
|
|
case AC_FOUND_DEVICE:
|
|
{
|
|
cam_status status;
|
|
struct ccb_getdev *cgd;
|
|
int inq_len;
|
|
|
|
cgd = (struct ccb_getdev *)arg;
|
|
if (arg == NULL) {
|
|
break;
|
|
}
|
|
|
|
inq_len = cgd->inq_data.additional_length + 4;
|
|
|
|
/*
|
|
* PROBLEM: WE NEED TO LOOK AT BYTES 48-53 TO SEE IF THIS IS
|
|
* PROBLEM: IS A SAF-TE DEVICE.
|
|
*/
|
|
switch (ses_type(&cgd->inq_data, inq_len)) {
|
|
case SES_SES:
|
|
case SES_SES_SCSI2:
|
|
case SES_SES_PASSTHROUGH:
|
|
case SES_SEN:
|
|
case SES_SAFT:
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
status = cam_periph_alloc(sesregister, sesoninvalidate,
|
|
sescleanup, sesstart, "ses", CAM_PERIPH_BIO,
|
|
cgd->ccb_h.path, sesasync, AC_FOUND_DEVICE, cgd);
|
|
|
|
if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) {
|
|
printf("sesasync: Unable to probe new device due to "
|
|
"status 0x%x\n", status);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
cam_periph_async(periph, code, path, arg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static cam_status
|
|
sesregister(struct cam_periph *periph, void *arg)
|
|
{
|
|
struct ses_softc *softc;
|
|
struct ccb_setasync csa;
|
|
struct ccb_getdev *cgd;
|
|
char *tname;
|
|
|
|
cgd = (struct ccb_getdev *)arg;
|
|
if (periph == NULL) {
|
|
printf("sesregister: periph was NULL!!\n");
|
|
return (CAM_REQ_CMP_ERR);
|
|
}
|
|
|
|
if (cgd == NULL) {
|
|
printf("sesregister: no getdev CCB, can't register device\n");
|
|
return (CAM_REQ_CMP_ERR);
|
|
}
|
|
|
|
softc = malloc(sizeof (struct ses_softc), M_DEVBUF, M_NOWAIT);
|
|
if (softc == NULL) {
|
|
printf("sesregister: Unable to probe new device. "
|
|
"Unable to allocate softc\n");
|
|
return (CAM_REQ_CMP_ERR);
|
|
}
|
|
bzero(softc, sizeof (struct ses_softc));
|
|
periph->softc = softc;
|
|
softc->periph = periph;
|
|
|
|
softc->ses_type = ses_type(&cgd->inq_data, sizeof (cgd->inq_data));
|
|
|
|
switch (softc->ses_type) {
|
|
case SES_SES:
|
|
case SES_SES_SCSI2:
|
|
case SES_SES_PASSTHROUGH:
|
|
softc->ses_vec.softc_init = ses_softc_init;
|
|
softc->ses_vec.init_enc = ses_init_enc;
|
|
softc->ses_vec.get_encstat = ses_get_encstat;
|
|
softc->ses_vec.set_encstat = ses_set_encstat;
|
|
softc->ses_vec.get_objstat = ses_get_objstat;
|
|
softc->ses_vec.set_objstat = ses_set_objstat;
|
|
break;
|
|
case SES_SAFT:
|
|
softc->ses_vec.softc_init = safte_softc_init;
|
|
softc->ses_vec.init_enc = safte_init_enc;
|
|
softc->ses_vec.get_encstat = safte_get_encstat;
|
|
softc->ses_vec.set_encstat = safte_set_encstat;
|
|
softc->ses_vec.get_objstat = safte_get_objstat;
|
|
softc->ses_vec.set_objstat = safte_set_objstat;
|
|
break;
|
|
case SES_SEN:
|
|
break;
|
|
case SES_NONE:
|
|
default:
|
|
free(softc, M_DEVBUF);
|
|
return (CAM_REQ_CMP_ERR);
|
|
}
|
|
|
|
softc->ses_dev = make_dev(&ses_cdevsw, periph->unit_number,
|
|
UID_ROOT, GID_OPERATOR, 0600, "%s%d",
|
|
periph->periph_name, periph->unit_number);
|
|
softc->ses_dev->si_drv1 = periph;
|
|
|
|
/*
|
|
* Add an async callback so that we get
|
|
* notified if this device goes away.
|
|
*/
|
|
xpt_setup_ccb(&csa.ccb_h, periph->path, 5);
|
|
csa.ccb_h.func_code = XPT_SASYNC_CB;
|
|
csa.event_enable = AC_LOST_DEVICE;
|
|
csa.callback = sesasync;
|
|
csa.callback_arg = periph;
|
|
xpt_action((union ccb *)&csa);
|
|
|
|
switch (softc->ses_type) {
|
|
default:
|
|
case SES_NONE:
|
|
tname = "No SES device";
|
|
break;
|
|
case SES_SES_SCSI2:
|
|
tname = "SCSI-2 SES Device";
|
|
break;
|
|
case SES_SES:
|
|
tname = "SCSI-3 SES Device";
|
|
break;
|
|
case SES_SES_PASSTHROUGH:
|
|
tname = "SES Passthrough Device";
|
|
break;
|
|
case SES_SEN:
|
|
tname = "UNISYS SEN Device (NOT HANDLED YET)";
|
|
break;
|
|
case SES_SAFT:
|
|
tname = "SAF-TE Compliant Device";
|
|
break;
|
|
}
|
|
xpt_announce_periph(periph, tname);
|
|
return (CAM_REQ_CMP);
|
|
}
|
|
|
|
static int
|
|
sesopen(dev_t dev, int flags, int fmt, struct thread *td)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct ses_softc *softc;
|
|
int error, s;
|
|
|
|
s = splsoftcam();
|
|
periph = (struct cam_periph *)dev->si_drv1;
|
|
if (periph == NULL) {
|
|
splx(s);
|
|
return (ENXIO);
|
|
}
|
|
if ((error = cam_periph_lock(periph, PRIBIO | PCATCH)) != 0) {
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
splx(s);
|
|
|
|
if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
|
|
cam_periph_unlock(periph);
|
|
return (ENXIO);
|
|
}
|
|
|
|
softc = (struct ses_softc *)periph->softc;
|
|
|
|
if (softc->ses_flags & SES_FLAG_INVALID) {
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
if (softc->ses_flags & SES_FLAG_OPEN) {
|
|
error = EBUSY;
|
|
goto out;
|
|
}
|
|
if (softc->ses_vec.softc_init == NULL) {
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
softc->ses_flags |= SES_FLAG_OPEN;
|
|
if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
|
|
error = (*softc->ses_vec.softc_init)(softc, 1);
|
|
if (error)
|
|
softc->ses_flags &= ~SES_FLAG_OPEN;
|
|
else
|
|
softc->ses_flags |= SES_FLAG_INITIALIZED;
|
|
}
|
|
|
|
out:
|
|
if (error) {
|
|
cam_periph_release(periph);
|
|
}
|
|
cam_periph_unlock(periph);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
sesclose(dev_t dev, int flag, int fmt, struct thread *td)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct ses_softc *softc;
|
|
int error;
|
|
|
|
error = 0;
|
|
|
|
periph = (struct cam_periph *)dev->si_drv1;
|
|
if (periph == NULL)
|
|
return (ENXIO);
|
|
|
|
softc = (struct ses_softc *)periph->softc;
|
|
|
|
if ((error = cam_periph_lock(periph, PRIBIO)) != 0)
|
|
return (error);
|
|
|
|
softc->ses_flags &= ~SES_FLAG_OPEN;
|
|
|
|
cam_periph_unlock(periph);
|
|
cam_periph_release(periph);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sesstart(struct cam_periph *p, union ccb *sccb)
|
|
{
|
|
int s = splbio();
|
|
if (p->immediate_priority <= p->pinfo.priority) {
|
|
SLIST_INSERT_HEAD(&p->ccb_list, &sccb->ccb_h, periph_links.sle);
|
|
p->immediate_priority = CAM_PRIORITY_NONE;
|
|
wakeup(&p->ccb_list);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
sesdone(struct cam_periph *periph, union ccb *dccb)
|
|
{
|
|
wakeup(&dccb->ccb_h.cbfcnp);
|
|
}
|
|
|
|
static int
|
|
seserror(union ccb *ccb, u_int32_t cflags, u_int32_t sflags)
|
|
{
|
|
struct ses_softc *softc;
|
|
struct cam_periph *periph;
|
|
|
|
periph = xpt_path_periph(ccb->ccb_h.path);
|
|
softc = (struct ses_softc *)periph->softc;
|
|
|
|
return (cam_periph_error(ccb, cflags, sflags, &softc->ses_saved_ccb));
|
|
}
|
|
|
|
static int
|
|
sesioctl(dev_t dev, u_long cmd, caddr_t arg_addr, int flag, struct thread *td)
|
|
{
|
|
struct cam_periph *periph;
|
|
ses_encstat tmp;
|
|
ses_objstat objs;
|
|
ses_object obj, *uobj;
|
|
struct ses_softc *ssc;
|
|
void *addr;
|
|
int error, i;
|
|
|
|
|
|
if (arg_addr)
|
|
addr = *((caddr_t *) arg_addr);
|
|
else
|
|
addr = NULL;
|
|
|
|
periph = (struct cam_periph *)dev->si_drv1;
|
|
if (periph == NULL)
|
|
return (ENXIO);
|
|
|
|
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering sesioctl\n"));
|
|
|
|
ssc = (struct ses_softc *)periph->softc;
|
|
|
|
/*
|
|
* Now check to see whether we're initialized or not.
|
|
*/
|
|
if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
|
|
return (ENXIO);
|
|
}
|
|
|
|
error = 0;
|
|
|
|
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
|
|
("trying to do ioctl %#lx\n", cmd));
|
|
|
|
/*
|
|
* If this command can change the device's state,
|
|
* we must have the device open for writing.
|
|
*/
|
|
switch (cmd) {
|
|
case SESIOC_GETNOBJ:
|
|
case SESIOC_GETOBJMAP:
|
|
case SESIOC_GETENCSTAT:
|
|
case SESIOC_GETOBJSTAT:
|
|
break;
|
|
default:
|
|
if ((flag & FWRITE) == 0) {
|
|
return (EBADF);
|
|
}
|
|
}
|
|
|
|
switch (cmd) {
|
|
case SESIOC_GETNOBJ:
|
|
error = copyout(&ssc->ses_nobjects, addr,
|
|
sizeof (ssc->ses_nobjects));
|
|
break;
|
|
|
|
case SESIOC_GETOBJMAP:
|
|
for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
|
|
obj.obj_id = i;
|
|
obj.subencid = ssc->ses_objmap[i].subenclosure;
|
|
obj.object_type = ssc->ses_objmap[i].enctype;
|
|
error = copyout(&obj, uobj, sizeof (ses_object));
|
|
if (error) {
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case SESIOC_GETENCSTAT:
|
|
error = (*ssc->ses_vec.get_encstat)(ssc, 1);
|
|
if (error)
|
|
break;
|
|
tmp = ssc->ses_encstat & ~ENCI_SVALID;
|
|
error = copyout(&tmp, addr, sizeof (ses_encstat));
|
|
ssc->ses_encstat = tmp;
|
|
break;
|
|
|
|
case SESIOC_SETENCSTAT:
|
|
error = copyin(addr, &tmp, sizeof (ses_encstat));
|
|
if (error)
|
|
break;
|
|
error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
|
|
break;
|
|
|
|
case SESIOC_GETOBJSTAT:
|
|
error = copyin(addr, &objs, sizeof (ses_objstat));
|
|
if (error)
|
|
break;
|
|
if (objs.obj_id >= ssc->ses_nobjects) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
|
|
if (error)
|
|
break;
|
|
error = copyout(&objs, addr, sizeof (ses_objstat));
|
|
/*
|
|
* Always (for now) invalidate entry.
|
|
*/
|
|
ssc->ses_objmap[objs.obj_id].svalid = 0;
|
|
break;
|
|
|
|
case SESIOC_SETOBJSTAT:
|
|
error = copyin(addr, &objs, sizeof (ses_objstat));
|
|
if (error)
|
|
break;
|
|
|
|
if (objs.obj_id >= ssc->ses_nobjects) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
|
|
|
|
/*
|
|
* Always (for now) invalidate entry.
|
|
*/
|
|
ssc->ses_objmap[objs.obj_id].svalid = 0;
|
|
break;
|
|
|
|
case SESIOC_INIT:
|
|
|
|
error = (*ssc->ses_vec.init_enc)(ssc);
|
|
break;
|
|
|
|
default:
|
|
error = cam_periph_ioctl(periph, cmd, arg_addr, seserror);
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#define SES_CFLAGS CAM_RETRY_SELTO
|
|
#define SES_FLAGS SF_NO_PRINT | SF_RETRY_UA
|
|
static int
|
|
ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
|
|
{
|
|
int error, dlen;
|
|
ccb_flags ddf;
|
|
union ccb *ccb;
|
|
|
|
if (dptr) {
|
|
if ((dlen = *dlenp) < 0) {
|
|
dlen = -dlen;
|
|
ddf = CAM_DIR_OUT;
|
|
} else {
|
|
ddf = CAM_DIR_IN;
|
|
}
|
|
} else {
|
|
dlen = 0;
|
|
ddf = CAM_DIR_NONE;
|
|
}
|
|
|
|
if (cdbl > IOCDBLEN) {
|
|
cdbl = IOCDBLEN;
|
|
}
|
|
|
|
ccb = cam_periph_getccb(ssc->periph, 1);
|
|
cam_fill_csio(&ccb->csio, 0, sesdone, ddf, MSG_SIMPLE_Q_TAG, dptr,
|
|
dlen, sizeof (struct scsi_sense_data), cdbl, 60 * 1000);
|
|
bcopy(cdb, ccb->csio.cdb_io.cdb_bytes, cdbl);
|
|
|
|
error = cam_periph_runccb(ccb, seserror, SES_CFLAGS, SES_FLAGS, NULL);
|
|
if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
|
|
cam_release_devq(ccb->ccb_h.path, 0, 0, 0, FALSE);
|
|
if (error) {
|
|
if (dptr) {
|
|
*dlenp = dlen;
|
|
}
|
|
} else {
|
|
if (dptr) {
|
|
*dlenp = ccb->csio.resid;
|
|
}
|
|
}
|
|
xpt_release_ccb(ccb);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
ses_log(struct ses_softc *ssc, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
printf("%s%d: ", ssc->periph->periph_name, ssc->periph->unit_number);
|
|
va_start(ap, fmt);
|
|
vprintf(fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
/*
|
|
* The code after this point runs on many platforms,
|
|
* so forgive the slightly awkward and nonconforming
|
|
* appearance.
|
|
*/
|
|
|
|
/*
|
|
* Is this a device that supports enclosure services?
|
|
*
|
|
* It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
|
|
* an SES device. If it happens to be an old UNISYS SEN device, we can
|
|
* handle that too.
|
|
*/
|
|
|
|
#define SAFTE_START 44
|
|
#define SAFTE_END 50
|
|
#define SAFTE_LEN SAFTE_END-SAFTE_START
|
|
|
|
static enctyp
|
|
ses_type(void *buf, int buflen)
|
|
{
|
|
unsigned char *iqd = buf;
|
|
|
|
if (buflen < 8+SEN_ID_LEN)
|
|
return (SES_NONE);
|
|
|
|
if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
|
|
if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
|
|
return (SES_SEN);
|
|
} else if ((iqd[2] & 0x7) > 2) {
|
|
return (SES_SES);
|
|
} else {
|
|
return (SES_SES_SCSI2);
|
|
}
|
|
return (SES_NONE);
|
|
}
|
|
|
|
#ifdef SES_ENABLE_PASSTHROUGH
|
|
if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
|
|
/*
|
|
* PassThrough Device.
|
|
*/
|
|
return (SES_SES_PASSTHROUGH);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The comparison is short for a reason-
|
|
* some vendors were chopping it short.
|
|
*/
|
|
|
|
if (buflen < SAFTE_END - 2) {
|
|
return (SES_NONE);
|
|
}
|
|
|
|
if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
|
|
return (SES_SAFT);
|
|
}
|
|
return (SES_NONE);
|
|
}
|
|
|
|
/*
|
|
* SES Native Type Device Support
|
|
*/
|
|
|
|
/*
|
|
* SES Diagnostic Page Codes
|
|
*/
|
|
|
|
typedef enum {
|
|
SesConfigPage = 0x1,
|
|
SesControlPage,
|
|
#define SesStatusPage SesControlPage
|
|
SesHelpTxt,
|
|
SesStringOut,
|
|
#define SesStringIn SesStringOut
|
|
SesThresholdOut,
|
|
#define SesThresholdIn SesThresholdOut
|
|
SesArrayControl,
|
|
#define SesArrayStatus SesArrayControl
|
|
SesElementDescriptor,
|
|
SesShortStatus
|
|
} SesDiagPageCodes;
|
|
|
|
/*
|
|
* minimal amounts
|
|
*/
|
|
|
|
/*
|
|
* Minimum amount of data, starting from byte 0, to have
|
|
* the config header.
|
|
*/
|
|
#define SES_CFGHDR_MINLEN 12
|
|
|
|
/*
|
|
* Minimum amount of data, starting from byte 0, to have
|
|
* the config header and one enclosure header.
|
|
*/
|
|
#define SES_ENCHDR_MINLEN 48
|
|
|
|
/*
|
|
* Take this value, subtract it from VEnclen and you know
|
|
* the length of the vendor unique bytes.
|
|
*/
|
|
#define SES_ENCHDR_VMIN 36
|
|
|
|
/*
|
|
* SES Data Structures
|
|
*/
|
|
|
|
typedef struct {
|
|
uint32_t GenCode; /* Generation Code */
|
|
uint8_t Nsubenc; /* Number of Subenclosures */
|
|
} SesCfgHdr;
|
|
|
|
typedef struct {
|
|
uint8_t Subencid; /* SubEnclosure Identifier */
|
|
uint8_t Ntypes; /* # of supported types */
|
|
uint8_t VEnclen; /* Enclosure Descriptor Length */
|
|
} SesEncHdr;
|
|
|
|
typedef struct {
|
|
uint8_t encWWN[8]; /* XXX- Not Right Yet */
|
|
uint8_t encVid[8];
|
|
uint8_t encPid[16];
|
|
uint8_t encRev[4];
|
|
uint8_t encVen[1];
|
|
} SesEncDesc;
|
|
|
|
typedef struct {
|
|
uint8_t enc_type; /* type of element */
|
|
uint8_t enc_maxelt; /* maximum supported */
|
|
uint8_t enc_subenc; /* in SubEnc # N */
|
|
uint8_t enc_tlen; /* Type Descriptor Text Length */
|
|
} SesThdr;
|
|
|
|
typedef struct {
|
|
uint8_t comstatus;
|
|
uint8_t comstat[3];
|
|
} SesComStat;
|
|
|
|
struct typidx {
|
|
int ses_tidx;
|
|
int ses_oidx;
|
|
};
|
|
|
|
struct sscfg {
|
|
uint8_t ses_ntypes; /* total number of types supported */
|
|
|
|
/*
|
|
* We need to keep a type index as well as an
|
|
* object index for each object in an enclosure.
|
|
*/
|
|
struct typidx *ses_typidx;
|
|
|
|
/*
|
|
* We also need to keep track of the number of elements
|
|
* per type of element. This is needed later so that we
|
|
* can find precisely in the returned status data the
|
|
* status for the Nth element of the Kth type.
|
|
*/
|
|
uint8_t * ses_eltmap;
|
|
};
|
|
|
|
|
|
/*
|
|
* (de)canonicalization defines
|
|
*/
|
|
#define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
|
|
#define sbit(x, bit) (((uint32_t)(x)) << bit)
|
|
#define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
|
|
|
|
#define sset16(outp, idx, sval) \
|
|
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
|
|
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
|
|
|
|
|
|
#define sset24(outp, idx, sval) \
|
|
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
|
|
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
|
|
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
|
|
|
|
|
|
#define sset32(outp, idx, sval) \
|
|
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
|
|
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
|
|
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
|
|
(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
|
|
|
|
#define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
|
|
#define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
|
|
#define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
|
|
#define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
|
|
|
|
#define sget16(inp, idx, lval) \
|
|
lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
|
|
(((uint8_t *)(inp))[idx+1]), idx += 2
|
|
|
|
#define gget16(inp, idx, lval) \
|
|
lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
|
|
(((uint8_t *)(inp))[idx+1])
|
|
|
|
#define sget24(inp, idx, lval) \
|
|
lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
|
|
gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
|
|
(((uint8_t *)(inp))[idx+2]), idx += 3
|
|
|
|
#define gget24(inp, idx, lval) \
|
|
lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
|
|
gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
|
|
(((uint8_t *)(inp))[idx+2])
|
|
|
|
#define sget32(inp, idx, lval) \
|
|
lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
|
|
gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
|
|
gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
|
|
(((uint8_t *)(inp))[idx+3]), idx += 4
|
|
|
|
#define gget32(inp, idx, lval) \
|
|
lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
|
|
gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
|
|
gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
|
|
(((uint8_t *)(inp))[idx+3])
|
|
|
|
#define SCSZ 0x2000
|
|
#define CFLEN (256 + SES_ENCHDR_MINLEN)
|
|
|
|
/*
|
|
* Routines specific && private to SES only
|
|
*/
|
|
|
|
static int ses_getconfig(ses_softc_t *);
|
|
static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
|
|
static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
|
|
static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
|
|
static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
|
|
static int ses_getthdr(uint8_t *, int, int, SesThdr *);
|
|
static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
|
|
static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
|
|
|
|
static int
|
|
ses_softc_init(ses_softc_t *ssc, int doinit)
|
|
{
|
|
if (doinit == 0) {
|
|
struct sscfg *cc;
|
|
if (ssc->ses_nobjects) {
|
|
SES_FREE(ssc->ses_objmap,
|
|
ssc->ses_nobjects * sizeof (encobj));
|
|
ssc->ses_objmap = NULL;
|
|
}
|
|
if ((cc = ssc->ses_private) != NULL) {
|
|
if (cc->ses_eltmap && cc->ses_ntypes) {
|
|
SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
|
|
cc->ses_eltmap = NULL;
|
|
cc->ses_ntypes = 0;
|
|
}
|
|
if (cc->ses_typidx && ssc->ses_nobjects) {
|
|
SES_FREE(cc->ses_typidx,
|
|
ssc->ses_nobjects * sizeof (struct typidx));
|
|
cc->ses_typidx = NULL;
|
|
}
|
|
SES_FREE(cc, sizeof (struct sscfg));
|
|
ssc->ses_private = NULL;
|
|
}
|
|
ssc->ses_nobjects = 0;
|
|
return (0);
|
|
}
|
|
if (ssc->ses_private == NULL) {
|
|
ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
|
|
}
|
|
if (ssc->ses_private == NULL) {
|
|
return (ENOMEM);
|
|
}
|
|
ssc->ses_nobjects = 0;
|
|
ssc->ses_encstat = 0;
|
|
return (ses_getconfig(ssc));
|
|
}
|
|
|
|
static int
|
|
ses_init_enc(ses_softc_t *ssc)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ses_get_encstat(ses_softc_t *ssc, int slpflag)
|
|
{
|
|
SesComStat ComStat;
|
|
int status;
|
|
|
|
if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
|
|
return (status);
|
|
}
|
|
ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
|
|
{
|
|
SesComStat ComStat;
|
|
int status;
|
|
|
|
ComStat.comstatus = encstat & 0xf;
|
|
if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
|
|
return (status);
|
|
}
|
|
ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
|
|
{
|
|
int i = (int)obp->obj_id;
|
|
|
|
if (ssc->ses_objmap[i].svalid == 0) {
|
|
SesComStat ComStat;
|
|
int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
|
|
if (err)
|
|
return (err);
|
|
ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
|
|
ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
|
|
ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
|
|
ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
|
|
ssc->ses_objmap[i].svalid = 1;
|
|
}
|
|
obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
|
|
obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
|
|
obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
|
|
obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
|
|
{
|
|
SesComStat ComStat;
|
|
int err;
|
|
/*
|
|
* If this is clear, we don't do diddly.
|
|
*/
|
|
if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
|
|
return (0);
|
|
}
|
|
ComStat.comstatus = obp->cstat[0];
|
|
ComStat.comstat[0] = obp->cstat[1];
|
|
ComStat.comstat[1] = obp->cstat[2];
|
|
ComStat.comstat[2] = obp->cstat[3];
|
|
err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
|
|
ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
ses_getconfig(ses_softc_t *ssc)
|
|
{
|
|
struct sscfg *cc;
|
|
SesCfgHdr cf;
|
|
SesEncHdr hd;
|
|
SesEncDesc *cdp;
|
|
SesThdr thdr;
|
|
int err, amt, i, nobj, ntype, maxima;
|
|
char storage[CFLEN], *sdata;
|
|
static char cdb[6] = {
|
|
RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
|
|
};
|
|
|
|
cc = ssc->ses_private;
|
|
if (cc == NULL) {
|
|
return (ENXIO);
|
|
}
|
|
|
|
sdata = SES_MALLOC(SCSZ);
|
|
if (sdata == NULL)
|
|
return (ENOMEM);
|
|
|
|
amt = SCSZ;
|
|
err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
|
|
if (err) {
|
|
SES_FREE(sdata, SCSZ);
|
|
return (err);
|
|
}
|
|
amt = SCSZ - amt;
|
|
|
|
if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
|
|
SES_LOG(ssc, "Unable to parse SES Config Header\n");
|
|
SES_FREE(sdata, SCSZ);
|
|
return (EIO);
|
|
}
|
|
if (amt < SES_ENCHDR_MINLEN) {
|
|
SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
|
|
SES_FREE(sdata, SCSZ);
|
|
return (EIO);
|
|
}
|
|
|
|
SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
|
|
|
|
/*
|
|
* Now waltz through all the subenclosures toting up the
|
|
* number of types available in each. For this, we only
|
|
* really need the enclosure header. However, we get the
|
|
* enclosure descriptor for debug purposes, as well
|
|
* as self-consistency checking purposes.
|
|
*/
|
|
|
|
maxima = cf.Nsubenc + 1;
|
|
cdp = (SesEncDesc *) storage;
|
|
for (ntype = i = 0; i < maxima; i++) {
|
|
MEMZERO((caddr_t)cdp, sizeof (*cdp));
|
|
if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
|
|
SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
|
|
SES_FREE(sdata, SCSZ);
|
|
return (EIO);
|
|
}
|
|
SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
|
|
"closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
|
|
|
|
if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
|
|
SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
|
|
SES_FREE(sdata, SCSZ);
|
|
return (EIO);
|
|
}
|
|
SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
|
|
cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
|
|
cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
|
|
cdp->encWWN[6], cdp->encWWN[7]);
|
|
ntype += hd.Ntypes;
|
|
}
|
|
|
|
/*
|
|
* Now waltz through all the types that are available, getting
|
|
* the type header so we can start adding up the number of
|
|
* objects available.
|
|
*/
|
|
for (nobj = i = 0; i < ntype; i++) {
|
|
if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
|
|
SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
|
|
SES_FREE(sdata, SCSZ);
|
|
return (EIO);
|
|
}
|
|
SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
|
|
"%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
|
|
thdr.enc_subenc, thdr.enc_tlen);
|
|
nobj += thdr.enc_maxelt;
|
|
}
|
|
|
|
|
|
/*
|
|
* Now allocate the object array and type map.
|
|
*/
|
|
|
|
ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
|
|
cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
|
|
cc->ses_eltmap = SES_MALLOC(ntype);
|
|
|
|
if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
|
|
cc->ses_eltmap == NULL) {
|
|
if (ssc->ses_objmap) {
|
|
SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
|
|
ssc->ses_objmap = NULL;
|
|
}
|
|
if (cc->ses_typidx) {
|
|
SES_FREE(cc->ses_typidx,
|
|
(nobj * sizeof (struct typidx)));
|
|
cc->ses_typidx = NULL;
|
|
}
|
|
if (cc->ses_eltmap) {
|
|
SES_FREE(cc->ses_eltmap, ntype);
|
|
cc->ses_eltmap = NULL;
|
|
}
|
|
SES_FREE(sdata, SCSZ);
|
|
return (ENOMEM);
|
|
}
|
|
MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
|
|
MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
|
|
MEMZERO(cc->ses_eltmap, ntype);
|
|
cc->ses_ntypes = (uint8_t) ntype;
|
|
ssc->ses_nobjects = nobj;
|
|
|
|
/*
|
|
* Now waltz through the # of types again to fill in the types
|
|
* (and subenclosure ids) of the allocated objects.
|
|
*/
|
|
nobj = 0;
|
|
for (i = 0; i < ntype; i++) {
|
|
int j;
|
|
if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
|
|
continue;
|
|
}
|
|
cc->ses_eltmap[i] = thdr.enc_maxelt;
|
|
for (j = 0; j < thdr.enc_maxelt; j++) {
|
|
cc->ses_typidx[nobj].ses_tidx = i;
|
|
cc->ses_typidx[nobj].ses_oidx = j;
|
|
ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
|
|
ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
|
|
}
|
|
}
|
|
SES_FREE(sdata, SCSZ);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
|
|
{
|
|
struct sscfg *cc;
|
|
int err, amt, bufsiz, tidx, oidx;
|
|
char cdb[6], *sdata;
|
|
|
|
cc = ssc->ses_private;
|
|
if (cc == NULL) {
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* If we're just getting overall enclosure status,
|
|
* we only need 2 bytes of data storage.
|
|
*
|
|
* If we're getting anything else, we know how much
|
|
* storage we need by noting that starting at offset
|
|
* 8 in returned data, all object status bytes are 4
|
|
* bytes long, and are stored in chunks of types(M)
|
|
* and nth+1 instances of type M.
|
|
*/
|
|
if (objid == -1) {
|
|
bufsiz = 2;
|
|
} else {
|
|
bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
|
|
}
|
|
sdata = SES_MALLOC(bufsiz);
|
|
if (sdata == NULL)
|
|
return (ENOMEM);
|
|
|
|
cdb[0] = RECEIVE_DIAGNOSTIC;
|
|
cdb[1] = 1;
|
|
cdb[2] = SesStatusPage;
|
|
cdb[3] = bufsiz >> 8;
|
|
cdb[4] = bufsiz & 0xff;
|
|
cdb[5] = 0;
|
|
amt = bufsiz;
|
|
err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
|
|
if (err) {
|
|
SES_FREE(sdata, bufsiz);
|
|
return (err);
|
|
}
|
|
amt = bufsiz - amt;
|
|
|
|
if (objid == -1) {
|
|
tidx = -1;
|
|
oidx = -1;
|
|
} else {
|
|
tidx = cc->ses_typidx[objid].ses_tidx;
|
|
oidx = cc->ses_typidx[objid].ses_oidx;
|
|
}
|
|
if (in) {
|
|
if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
|
|
err = ENODEV;
|
|
}
|
|
} else {
|
|
if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
|
|
err = ENODEV;
|
|
} else {
|
|
cdb[0] = SEND_DIAGNOSTIC;
|
|
cdb[1] = 0x10;
|
|
cdb[2] = 0;
|
|
cdb[3] = bufsiz >> 8;
|
|
cdb[4] = bufsiz & 0xff;
|
|
cdb[5] = 0;
|
|
amt = -bufsiz;
|
|
err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
|
|
}
|
|
}
|
|
SES_FREE(sdata, bufsiz);
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Routines to parse returned SES data structures.
|
|
* Architecture and compiler independent.
|
|
*/
|
|
|
|
static int
|
|
ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
|
|
{
|
|
if (buflen < SES_CFGHDR_MINLEN) {
|
|
return (-1);
|
|
}
|
|
gget8(buffer, 1, cfp->Nsubenc);
|
|
gget32(buffer, 4, cfp->GenCode);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
|
|
{
|
|
int s, off = 8;
|
|
for (s = 0; s < SubEncId; s++) {
|
|
if (off + 3 > amt)
|
|
return (-1);
|
|
off += buffer[off+3] + 4;
|
|
}
|
|
if (off + 3 > amt) {
|
|
return (-1);
|
|
}
|
|
gget8(buffer, off+1, chp->Subencid);
|
|
gget8(buffer, off+2, chp->Ntypes);
|
|
gget8(buffer, off+3, chp->VEnclen);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
|
|
{
|
|
int s, e, enclen, off = 8;
|
|
for (s = 0; s < SubEncId; s++) {
|
|
if (off + 3 > amt)
|
|
return (-1);
|
|
off += buffer[off+3] + 4;
|
|
}
|
|
if (off + 3 > amt) {
|
|
return (-1);
|
|
}
|
|
gget8(buffer, off+3, enclen);
|
|
off += 4;
|
|
if (off >= amt)
|
|
return (-1);
|
|
|
|
e = off + enclen;
|
|
if (e > amt) {
|
|
e = amt;
|
|
}
|
|
MEMCPY(cdp, &buffer[off], e - off);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
|
|
{
|
|
int s, off = 8;
|
|
|
|
if (amt < SES_CFGHDR_MINLEN) {
|
|
return (-1);
|
|
}
|
|
for (s = 0; s < buffer[1]; s++) {
|
|
if (off + 3 > amt)
|
|
return (-1);
|
|
off += buffer[off+3] + 4;
|
|
}
|
|
if (off + 3 > amt) {
|
|
return (-1);
|
|
}
|
|
off += buffer[off+3] + 4 + (nth * 4);
|
|
if (amt < (off + 4))
|
|
return (-1);
|
|
|
|
gget8(buffer, off++, thp->enc_type);
|
|
gget8(buffer, off++, thp->enc_maxelt);
|
|
gget8(buffer, off++, thp->enc_subenc);
|
|
gget8(buffer, off, thp->enc_tlen);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This function needs a little explanation.
|
|
*
|
|
* The arguments are:
|
|
*
|
|
*
|
|
* char *b, int amt
|
|
*
|
|
* These describes the raw input SES status data and length.
|
|
*
|
|
* uint8_t *ep
|
|
*
|
|
* This is a map of the number of types for each element type
|
|
* in the enclosure.
|
|
*
|
|
* int elt
|
|
*
|
|
* This is the element type being sought. If elt is -1,
|
|
* then overall enclosure status is being sought.
|
|
*
|
|
* int elm
|
|
*
|
|
* This is the ordinal Mth element of type elt being sought.
|
|
*
|
|
* SesComStat *sp
|
|
*
|
|
* This is the output area to store the status for
|
|
* the Mth element of type Elt.
|
|
*/
|
|
|
|
static int
|
|
ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
|
|
{
|
|
int idx, i;
|
|
|
|
/*
|
|
* If it's overall enclosure status being sought, get that.
|
|
* We need at least 2 bytes of status data to get that.
|
|
*/
|
|
if (elt == -1) {
|
|
if (amt < 2)
|
|
return (-1);
|
|
gget8(b, 1, sp->comstatus);
|
|
sp->comstat[0] = 0;
|
|
sp->comstat[1] = 0;
|
|
sp->comstat[2] = 0;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check to make sure that the Mth element is legal for type Elt.
|
|
*/
|
|
|
|
if (elm >= ep[elt])
|
|
return (-1);
|
|
|
|
/*
|
|
* Starting at offset 8, start skipping over the storage
|
|
* for the element types we're not interested in.
|
|
*/
|
|
for (idx = 8, i = 0; i < elt; i++) {
|
|
idx += ((ep[i] + 1) * 4);
|
|
}
|
|
|
|
/*
|
|
* Skip over Overall status for this element type.
|
|
*/
|
|
idx += 4;
|
|
|
|
/*
|
|
* And skip to the index for the Mth element that we're going for.
|
|
*/
|
|
idx += (4 * elm);
|
|
|
|
/*
|
|
* Make sure we haven't overflowed the buffer.
|
|
*/
|
|
if (idx+4 > amt)
|
|
return (-1);
|
|
|
|
/*
|
|
* Retrieve the status.
|
|
*/
|
|
gget8(b, idx++, sp->comstatus);
|
|
gget8(b, idx++, sp->comstat[0]);
|
|
gget8(b, idx++, sp->comstat[1]);
|
|
gget8(b, idx++, sp->comstat[2]);
|
|
#if 0
|
|
PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This is the mirror function to ses_decode, but we set the 'select'
|
|
* bit for the object which we're interested in. All other objects,
|
|
* after a status fetch, should have that bit off. Hmm. It'd be easy
|
|
* enough to ensure this, so we will.
|
|
*/
|
|
|
|
static int
|
|
ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
|
|
{
|
|
int idx, i;
|
|
|
|
/*
|
|
* If it's overall enclosure status being sought, get that.
|
|
* We need at least 2 bytes of status data to get that.
|
|
*/
|
|
if (elt == -1) {
|
|
if (amt < 2)
|
|
return (-1);
|
|
i = 0;
|
|
sset8(b, i, 0);
|
|
sset8(b, i, sp->comstatus & 0xf);
|
|
#if 0
|
|
PRINTF("set EncStat %x\n", sp->comstatus);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check to make sure that the Mth element is legal for type Elt.
|
|
*/
|
|
|
|
if (elm >= ep[elt])
|
|
return (-1);
|
|
|
|
/*
|
|
* Starting at offset 8, start skipping over the storage
|
|
* for the element types we're not interested in.
|
|
*/
|
|
for (idx = 8, i = 0; i < elt; i++) {
|
|
idx += ((ep[i] + 1) * 4);
|
|
}
|
|
|
|
/*
|
|
* Skip over Overall status for this element type.
|
|
*/
|
|
idx += 4;
|
|
|
|
/*
|
|
* And skip to the index for the Mth element that we're going for.
|
|
*/
|
|
idx += (4 * elm);
|
|
|
|
/*
|
|
* Make sure we haven't overflowed the buffer.
|
|
*/
|
|
if (idx+4 > amt)
|
|
return (-1);
|
|
|
|
/*
|
|
* Set the status.
|
|
*/
|
|
sset8(b, idx, sp->comstatus);
|
|
sset8(b, idx, sp->comstat[0]);
|
|
sset8(b, idx, sp->comstat[1]);
|
|
sset8(b, idx, sp->comstat[2]);
|
|
idx -= 4;
|
|
|
|
#if 0
|
|
PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
|
|
elt, elm, idx, sp->comstatus, sp->comstat[0],
|
|
sp->comstat[1], sp->comstat[2]);
|
|
#endif
|
|
|
|
/*
|
|
* Now make sure all other 'Select' bits are off.
|
|
*/
|
|
for (i = 8; i < amt; i += 4) {
|
|
if (i != idx)
|
|
b[i] &= ~0x80;
|
|
}
|
|
/*
|
|
* And make sure the INVOP bit is clear.
|
|
*/
|
|
b[2] &= ~0x10;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* SAF-TE Type Device Emulation
|
|
*/
|
|
|
|
static int safte_getconfig(ses_softc_t *);
|
|
static int safte_rdstat(ses_softc_t *, int);;
|
|
static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
|
|
static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
|
|
static void wrslot_stat(ses_softc_t *, int);
|
|
static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
|
|
|
|
#define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
|
|
SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
|
|
/*
|
|
* SAF-TE specific defines- Mandatory ones only...
|
|
*/
|
|
|
|
/*
|
|
* READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
|
|
*/
|
|
#define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
|
|
#define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
|
|
#define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
|
|
|
|
/*
|
|
* WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
|
|
*/
|
|
#define SAFTE_WT_DSTAT 0x10 /* write device slot status */
|
|
#define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
|
|
#define SAFTE_WT_FANSPD 0x13 /* set fan speed */
|
|
#define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
|
|
#define SAFTE_WT_GLOBAL 0x15 /* send global command */
|
|
|
|
|
|
#define SAFT_SCRATCH 64
|
|
#define NPSEUDO_THERM 16
|
|
#define NPSEUDO_ALARM 1
|
|
struct scfg {
|
|
/*
|
|
* Cached Configuration
|
|
*/
|
|
uint8_t Nfans; /* Number of Fans */
|
|
uint8_t Npwr; /* Number of Power Supplies */
|
|
uint8_t Nslots; /* Number of Device Slots */
|
|
uint8_t DoorLock; /* Door Lock Installed */
|
|
uint8_t Ntherm; /* Number of Temperature Sensors */
|
|
uint8_t Nspkrs; /* Number of Speakers */
|
|
uint8_t Nalarm; /* Number of Alarms (at least one) */
|
|
/*
|
|
* Cached Flag Bytes for Global Status
|
|
*/
|
|
uint8_t flag1;
|
|
uint8_t flag2;
|
|
/*
|
|
* What object index ID is where various slots start.
|
|
*/
|
|
uint8_t pwroff;
|
|
uint8_t slotoff;
|
|
#define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
|
|
};
|
|
|
|
#define SAFT_FLG1_ALARM 0x1
|
|
#define SAFT_FLG1_GLOBFAIL 0x2
|
|
#define SAFT_FLG1_GLOBWARN 0x4
|
|
#define SAFT_FLG1_ENCPWROFF 0x8
|
|
#define SAFT_FLG1_ENCFANFAIL 0x10
|
|
#define SAFT_FLG1_ENCPWRFAIL 0x20
|
|
#define SAFT_FLG1_ENCDRVFAIL 0x40
|
|
#define SAFT_FLG1_ENCDRVWARN 0x80
|
|
|
|
#define SAFT_FLG2_LOCKDOOR 0x4
|
|
#define SAFT_PRIVATE sizeof (struct scfg)
|
|
|
|
static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
|
|
#define SAFT_BAIL(r, x, k, l) \
|
|
if ((r) >= (x)) { \
|
|
SES_LOG(ssc, safte_2little, x, __LINE__);\
|
|
SES_FREE((k), (l)); \
|
|
return (EIO); \
|
|
}
|
|
|
|
|
|
static int
|
|
safte_softc_init(ses_softc_t *ssc, int doinit)
|
|
{
|
|
int err, i, r;
|
|
struct scfg *cc;
|
|
|
|
if (doinit == 0) {
|
|
if (ssc->ses_nobjects) {
|
|
if (ssc->ses_objmap) {
|
|
SES_FREE(ssc->ses_objmap,
|
|
ssc->ses_nobjects * sizeof (encobj));
|
|
ssc->ses_objmap = NULL;
|
|
}
|
|
ssc->ses_nobjects = 0;
|
|
}
|
|
if (ssc->ses_private) {
|
|
SES_FREE(ssc->ses_private, SAFT_PRIVATE);
|
|
ssc->ses_private = NULL;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
if (ssc->ses_private == NULL) {
|
|
ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
|
|
if (ssc->ses_private == NULL) {
|
|
return (ENOMEM);
|
|
}
|
|
MEMZERO(ssc->ses_private, SAFT_PRIVATE);
|
|
}
|
|
|
|
ssc->ses_nobjects = 0;
|
|
ssc->ses_encstat = 0;
|
|
|
|
if ((err = safte_getconfig(ssc)) != 0) {
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* The number of objects here, as well as that reported by the
|
|
* READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
|
|
* that get reported during READ_BUFFER/READ_ENC_STATUS.
|
|
*/
|
|
cc = ssc->ses_private;
|
|
ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
|
|
cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
|
|
ssc->ses_objmap = (encobj *)
|
|
SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
|
|
if (ssc->ses_objmap == NULL) {
|
|
return (ENOMEM);
|
|
}
|
|
MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
|
|
|
|
r = 0;
|
|
/*
|
|
* Note that this is all arranged for the convenience
|
|
* in later fetches of status.
|
|
*/
|
|
for (i = 0; i < cc->Nfans; i++)
|
|
ssc->ses_objmap[r++].enctype = SESTYP_FAN;
|
|
cc->pwroff = (uint8_t) r;
|
|
for (i = 0; i < cc->Npwr; i++)
|
|
ssc->ses_objmap[r++].enctype = SESTYP_POWER;
|
|
for (i = 0; i < cc->DoorLock; i++)
|
|
ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
|
|
for (i = 0; i < cc->Nspkrs; i++)
|
|
ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
|
|
for (i = 0; i < cc->Ntherm; i++)
|
|
ssc->ses_objmap[r++].enctype = SESTYP_THERM;
|
|
for (i = 0; i < NPSEUDO_THERM; i++)
|
|
ssc->ses_objmap[r++].enctype = SESTYP_THERM;
|
|
ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
|
|
cc->slotoff = (uint8_t) r;
|
|
for (i = 0; i < cc->Nslots; i++)
|
|
ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
safte_init_enc(ses_softc_t *ssc)
|
|
{
|
|
int err;
|
|
static char cdb0[6] = { SEND_DIAGNOSTIC };
|
|
|
|
err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
|
|
if (err) {
|
|
return (err);
|
|
}
|
|
DELAY(5000);
|
|
err = wrbuf16(ssc, SAFTE_WT_GLOBAL, 0, 0, 0, 1);
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
safte_get_encstat(ses_softc_t *ssc, int slpflg)
|
|
{
|
|
return (safte_rdstat(ssc, slpflg));
|
|
}
|
|
|
|
static int
|
|
safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
|
|
{
|
|
struct scfg *cc = ssc->ses_private;
|
|
if (cc == NULL)
|
|
return (0);
|
|
/*
|
|
* Since SAF-TE devices aren't necessarily sticky in terms
|
|
* of state, make our soft copy of enclosure status 'sticky'-
|
|
* that is, things set in enclosure status stay set (as implied
|
|
* by conditions set in reading object status) until cleared.
|
|
*/
|
|
ssc->ses_encstat &= ~ALL_ENC_STAT;
|
|
ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
|
|
ssc->ses_encstat |= ENCI_SVALID;
|
|
cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
|
|
if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
|
|
cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
|
|
} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
|
|
cc->flag1 |= SAFT_FLG1_GLOBWARN;
|
|
}
|
|
return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
|
|
}
|
|
|
|
static int
|
|
safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
|
|
{
|
|
int i = (int)obp->obj_id;
|
|
|
|
if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
|
|
(ssc->ses_objmap[i].svalid) == 0) {
|
|
int err = safte_rdstat(ssc, slpflg);
|
|
if (err)
|
|
return (err);
|
|
}
|
|
obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
|
|
obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
|
|
obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
|
|
obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int
|
|
safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
|
|
{
|
|
int idx, err;
|
|
encobj *ep;
|
|
struct scfg *cc;
|
|
|
|
|
|
SES_DLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
|
|
(int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
|
|
obp->cstat[3]);
|
|
|
|
/*
|
|
* If this is clear, we don't do diddly.
|
|
*/
|
|
if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
|
|
return (0);
|
|
}
|
|
|
|
err = 0;
|
|
/*
|
|
* Check to see if the common bits are set and do them first.
|
|
*/
|
|
if (obp->cstat[0] & ~SESCTL_CSEL) {
|
|
err = set_objstat_sel(ssc, obp, slp);
|
|
if (err)
|
|
return (err);
|
|
}
|
|
|
|
cc = ssc->ses_private;
|
|
if (cc == NULL)
|
|
return (0);
|
|
|
|
idx = (int)obp->obj_id;
|
|
ep = &ssc->ses_objmap[idx];
|
|
|
|
switch (ep->enctype) {
|
|
case SESTYP_DEVICE:
|
|
{
|
|
uint8_t slotop = 0;
|
|
/*
|
|
* XXX: I should probably cache the previous state
|
|
* XXX: of SESCTL_DEVOFF so that when it goes from
|
|
* XXX: true to false I can then set PREPARE FOR OPERATION
|
|
* XXX: flag in PERFORM SLOT OPERATION write buffer command.
|
|
*/
|
|
if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
|
|
slotop |= 0x2;
|
|
}
|
|
if (obp->cstat[2] & SESCTL_RQSID) {
|
|
slotop |= 0x4;
|
|
}
|
|
err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
|
|
slotop, slp);
|
|
if (err)
|
|
return (err);
|
|
if (obp->cstat[3] & SESCTL_RQSFLT) {
|
|
ep->priv |= 0x2;
|
|
} else {
|
|
ep->priv &= ~0x2;
|
|
}
|
|
if (ep->priv & 0xc6) {
|
|
ep->priv &= ~0x1;
|
|
} else {
|
|
ep->priv |= 0x1; /* no errors */
|
|
}
|
|
wrslot_stat(ssc, slp);
|
|
break;
|
|
}
|
|
case SESTYP_POWER:
|
|
if (obp->cstat[3] & SESCTL_RQSTFAIL) {
|
|
cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
|
|
} else {
|
|
cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
|
|
}
|
|
err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
|
|
cc->flag2, 0, slp);
|
|
if (err)
|
|
return (err);
|
|
if (obp->cstat[3] & SESCTL_RQSTON) {
|
|
(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
|
|
idx - cc->pwroff, 0, 0, slp);
|
|
} else {
|
|
(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
|
|
idx - cc->pwroff, 0, 1, slp);
|
|
}
|
|
break;
|
|
case SESTYP_FAN:
|
|
if (obp->cstat[3] & SESCTL_RQSTFAIL) {
|
|
cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
|
|
} else {
|
|
cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
|
|
}
|
|
err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
|
|
cc->flag2, 0, slp);
|
|
if (err)
|
|
return (err);
|
|
if (obp->cstat[3] & SESCTL_RQSTON) {
|
|
uint8_t fsp;
|
|
if ((obp->cstat[3] & 0x7) == 7) {
|
|
fsp = 4;
|
|
} else if ((obp->cstat[3] & 0x7) == 6) {
|
|
fsp = 3;
|
|
} else if ((obp->cstat[3] & 0x7) == 4) {
|
|
fsp = 2;
|
|
} else {
|
|
fsp = 1;
|
|
}
|
|
(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
|
|
} else {
|
|
(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
|
|
}
|
|
break;
|
|
case SESTYP_DOORLOCK:
|
|
if (obp->cstat[3] & 0x1) {
|
|
cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
|
|
} else {
|
|
cc->flag2 |= SAFT_FLG2_LOCKDOOR;
|
|
}
|
|
(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
|
|
cc->flag2, 0, slp);
|
|
break;
|
|
case SESTYP_ALARM:
|
|
/*
|
|
* On all nonzero but the 'muted' bit, we turn on the alarm,
|
|
*/
|
|
obp->cstat[3] &= ~0xa;
|
|
if (obp->cstat[3] & 0x40) {
|
|
cc->flag2 &= ~SAFT_FLG1_ALARM;
|
|
} else if (obp->cstat[3] != 0) {
|
|
cc->flag2 |= SAFT_FLG1_ALARM;
|
|
} else {
|
|
cc->flag2 &= ~SAFT_FLG1_ALARM;
|
|
}
|
|
ep->priv = obp->cstat[3];
|
|
(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
|
|
cc->flag2, 0, slp);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
ep->svalid = 0;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
safte_getconfig(ses_softc_t *ssc)
|
|
{
|
|
struct scfg *cfg;
|
|
int err, amt;
|
|
char *sdata;
|
|
static char cdb[10] =
|
|
{ READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
|
|
|
|
cfg = ssc->ses_private;
|
|
if (cfg == NULL)
|
|
return (ENXIO);
|
|
|
|
sdata = SES_MALLOC(SAFT_SCRATCH);
|
|
if (sdata == NULL)
|
|
return (ENOMEM);
|
|
|
|
amt = SAFT_SCRATCH;
|
|
err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
|
|
if (err) {
|
|
SES_FREE(sdata, SAFT_SCRATCH);
|
|
return (err);
|
|
}
|
|
amt = SAFT_SCRATCH - amt;
|
|
if (amt < 6) {
|
|
SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
|
|
SES_FREE(sdata, SAFT_SCRATCH);
|
|
return (EIO);
|
|
}
|
|
SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
|
|
sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
|
|
cfg->Nfans = sdata[0];
|
|
cfg->Npwr = sdata[1];
|
|
cfg->Nslots = sdata[2];
|
|
cfg->DoorLock = sdata[3];
|
|
cfg->Ntherm = sdata[4];
|
|
cfg->Nspkrs = sdata[5];
|
|
cfg->Nalarm = NPSEUDO_ALARM;
|
|
SES_FREE(sdata, SAFT_SCRATCH);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
safte_rdstat(ses_softc_t *ssc, int slpflg)
|
|
{
|
|
int err, oid, r, i, hiwater, nitems, amt;
|
|
uint16_t tempflags;
|
|
size_t buflen;
|
|
uint8_t status, oencstat;
|
|
char *sdata, cdb[10];
|
|
struct scfg *cc = ssc->ses_private;
|
|
|
|
|
|
/*
|
|
* The number of objects overstates things a bit,
|
|
* both for the bogus 'thermometer' entries and
|
|
* the drive status (which isn't read at the same
|
|
* time as the enclosure status), but that's okay.
|
|
*/
|
|
buflen = 4 * cc->Nslots;
|
|
if (ssc->ses_nobjects > buflen)
|
|
buflen = ssc->ses_nobjects;
|
|
sdata = SES_MALLOC(buflen);
|
|
if (sdata == NULL)
|
|
return (ENOMEM);
|
|
|
|
cdb[0] = READ_BUFFER;
|
|
cdb[1] = 1;
|
|
cdb[2] = SAFTE_RD_RDESTS;
|
|
cdb[3] = 0;
|
|
cdb[4] = 0;
|
|
cdb[5] = 0;
|
|
cdb[6] = 0;
|
|
cdb[7] = (buflen >> 8) & 0xff;
|
|
cdb[8] = buflen & 0xff;
|
|
cdb[9] = 0;
|
|
amt = buflen;
|
|
err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
|
|
if (err) {
|
|
SES_FREE(sdata, buflen);
|
|
return (err);
|
|
}
|
|
hiwater = buflen - amt;
|
|
|
|
|
|
/*
|
|
* invalidate all status bits.
|
|
*/
|
|
for (i = 0; i < ssc->ses_nobjects; i++)
|
|
ssc->ses_objmap[i].svalid = 0;
|
|
oencstat = ssc->ses_encstat & ALL_ENC_STAT;
|
|
ssc->ses_encstat = 0;
|
|
|
|
|
|
/*
|
|
* Now parse returned buffer.
|
|
* If we didn't get enough data back,
|
|
* that's considered a fatal error.
|
|
*/
|
|
oid = r = 0;
|
|
|
|
for (nitems = i = 0; i < cc->Nfans; i++) {
|
|
SAFT_BAIL(r, hiwater, sdata, buflen);
|
|
/*
|
|
* 0 = Fan Operational
|
|
* 1 = Fan is malfunctioning
|
|
* 2 = Fan is not present
|
|
* 0x80 = Unknown or Not Reportable Status
|
|
*/
|
|
ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
|
|
ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
|
|
switch ((int)(uint8_t)sdata[r]) {
|
|
case 0:
|
|
nitems++;
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
|
|
/*
|
|
* We could get fancier and cache
|
|
* fan speeds that we have set, but
|
|
* that isn't done now.
|
|
*/
|
|
ssc->ses_objmap[oid].encstat[3] = 7;
|
|
break;
|
|
|
|
case 1:
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
|
|
/*
|
|
* FAIL and FAN STOPPED synthesized
|
|
*/
|
|
ssc->ses_objmap[oid].encstat[3] = 0x40;
|
|
/*
|
|
* Enclosure marked with CRITICAL error
|
|
* if only one fan or no thermometers,
|
|
* else the NONCRITICAL error is set.
|
|
*/
|
|
if (cc->Nfans == 1 || cc->Ntherm == 0)
|
|
ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
|
|
else
|
|
ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
|
|
break;
|
|
case 2:
|
|
ssc->ses_objmap[oid].encstat[0] =
|
|
SES_OBJSTAT_NOTINSTALLED;
|
|
ssc->ses_objmap[oid].encstat[3] = 0;
|
|
/*
|
|
* Enclosure marked with CRITICAL error
|
|
* if only one fan or no thermometers,
|
|
* else the NONCRITICAL error is set.
|
|
*/
|
|
if (cc->Nfans == 1)
|
|
ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
|
|
else
|
|
ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
|
|
break;
|
|
case 0x80:
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
|
|
ssc->ses_objmap[oid].encstat[3] = 0;
|
|
ssc->ses_encstat |= SES_ENCSTAT_INFO;
|
|
break;
|
|
default:
|
|
ssc->ses_objmap[oid].encstat[0] =
|
|
SES_OBJSTAT_UNSUPPORTED;
|
|
SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
|
|
sdata[r] & 0xff);
|
|
break;
|
|
}
|
|
ssc->ses_objmap[oid++].svalid = 1;
|
|
r++;
|
|
}
|
|
|
|
/*
|
|
* No matter how you cut it, no cooling elements when there
|
|
* should be some there is critical.
|
|
*/
|
|
if (cc->Nfans && nitems == 0) {
|
|
ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
|
|
}
|
|
|
|
|
|
for (i = 0; i < cc->Npwr; i++) {
|
|
SAFT_BAIL(r, hiwater, sdata, buflen);
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
|
|
ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
|
|
ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
|
|
ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
|
|
switch ((uint8_t)sdata[r]) {
|
|
case 0x00: /* pws operational and on */
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
|
|
break;
|
|
case 0x01: /* pws operational and off */
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
|
|
ssc->ses_objmap[oid].encstat[3] = 0x10;
|
|
ssc->ses_encstat |= SES_ENCSTAT_INFO;
|
|
break;
|
|
case 0x10: /* pws is malfunctioning and commanded on */
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
|
|
ssc->ses_objmap[oid].encstat[3] = 0x61;
|
|
ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
|
|
break;
|
|
|
|
case 0x11: /* pws is malfunctioning and commanded off */
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
|
|
ssc->ses_objmap[oid].encstat[3] = 0x51;
|
|
ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
|
|
break;
|
|
case 0x20: /* pws is not present */
|
|
ssc->ses_objmap[oid].encstat[0] =
|
|
SES_OBJSTAT_NOTINSTALLED;
|
|
ssc->ses_objmap[oid].encstat[3] = 0;
|
|
ssc->ses_encstat |= SES_ENCSTAT_INFO;
|
|
break;
|
|
case 0x21: /* pws is present */
|
|
/*
|
|
* This is for enclosures that cannot tell whether the
|
|
* device is on or malfunctioning, but know that it is
|
|
* present. Just fall through.
|
|
*/
|
|
/* FALLTHROUGH */
|
|
case 0x80: /* Unknown or Not Reportable Status */
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
|
|
ssc->ses_objmap[oid].encstat[3] = 0;
|
|
ssc->ses_encstat |= SES_ENCSTAT_INFO;
|
|
break;
|
|
default:
|
|
SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
|
|
i, sdata[r] & 0xff);
|
|
break;
|
|
}
|
|
ssc->ses_objmap[oid++].svalid = 1;
|
|
r++;
|
|
}
|
|
|
|
/*
|
|
* Skip over Slot SCSI IDs
|
|
*/
|
|
r += cc->Nslots;
|
|
|
|
/*
|
|
* We always have doorlock status, no matter what,
|
|
* but we only save the status if we have one.
|
|
*/
|
|
SAFT_BAIL(r, hiwater, sdata, buflen);
|
|
if (cc->DoorLock) {
|
|
/*
|
|
* 0 = Door Locked
|
|
* 1 = Door Unlocked, or no Lock Installed
|
|
* 0x80 = Unknown or Not Reportable Status
|
|
*/
|
|
ssc->ses_objmap[oid].encstat[1] = 0;
|
|
ssc->ses_objmap[oid].encstat[2] = 0;
|
|
switch ((uint8_t)sdata[r]) {
|
|
case 0:
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
|
|
ssc->ses_objmap[oid].encstat[3] = 0;
|
|
break;
|
|
case 1:
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
|
|
ssc->ses_objmap[oid].encstat[3] = 1;
|
|
break;
|
|
case 0x80:
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
|
|
ssc->ses_objmap[oid].encstat[3] = 0;
|
|
ssc->ses_encstat |= SES_ENCSTAT_INFO;
|
|
break;
|
|
default:
|
|
ssc->ses_objmap[oid].encstat[0] =
|
|
SES_OBJSTAT_UNSUPPORTED;
|
|
SES_LOG(ssc, "unknown lock status 0x%x\n",
|
|
sdata[r] & 0xff);
|
|
break;
|
|
}
|
|
ssc->ses_objmap[oid++].svalid = 1;
|
|
}
|
|
r++;
|
|
|
|
/*
|
|
* We always have speaker status, no matter what,
|
|
* but we only save the status if we have one.
|
|
*/
|
|
SAFT_BAIL(r, hiwater, sdata, buflen);
|
|
if (cc->Nspkrs) {
|
|
ssc->ses_objmap[oid].encstat[1] = 0;
|
|
ssc->ses_objmap[oid].encstat[2] = 0;
|
|
if (sdata[r] == 1) {
|
|
/*
|
|
* We need to cache tone urgency indicators.
|
|
* Someday.
|
|
*/
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
|
|
ssc->ses_objmap[oid].encstat[3] = 0x8;
|
|
ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
|
|
} else if (sdata[r] == 0) {
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
|
|
ssc->ses_objmap[oid].encstat[3] = 0;
|
|
} else {
|
|
ssc->ses_objmap[oid].encstat[0] =
|
|
SES_OBJSTAT_UNSUPPORTED;
|
|
ssc->ses_objmap[oid].encstat[3] = 0;
|
|
SES_LOG(ssc, "unknown spkr status 0x%x\n",
|
|
sdata[r] & 0xff);
|
|
}
|
|
ssc->ses_objmap[oid++].svalid = 1;
|
|
}
|
|
r++;
|
|
|
|
for (i = 0; i < cc->Ntherm; i++) {
|
|
SAFT_BAIL(r, hiwater, sdata, buflen);
|
|
/*
|
|
* Status is a range from -10 to 245 deg Celsius,
|
|
* which we need to normalize to -20 to -245 according
|
|
* to the latest SCSI spec, which makes little
|
|
* sense since this would overflow an 8bit value.
|
|
* Well, still, the base normalization is -20,
|
|
* not -10, so we have to adjust.
|
|
*
|
|
* So what's over and under temperature?
|
|
* Hmm- we'll state that 'normal' operating
|
|
* is 10 to 40 deg Celsius.
|
|
*/
|
|
|
|
/*
|
|
* Actually.... All of the units that people out in the world
|
|
* seem to have do not come even close to setting a value that
|
|
* complies with this spec.
|
|
*
|
|
* The closest explanation I could find was in an
|
|
* LSI-Logic manual, which seemed to indicate that
|
|
* this value would be set by whatever the I2C code
|
|
* would interpolate from the output of an LM75
|
|
* temperature sensor.
|
|
*
|
|
* This means that it is impossible to use the actual
|
|
* numeric value to predict anything. But we don't want
|
|
* to lose the value. So, we'll propagate the *uncorrected*
|
|
* value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
|
|
* temperature flags for warnings.
|
|
*/
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
|
|
ssc->ses_objmap[oid].encstat[1] = 0;
|
|
ssc->ses_objmap[oid].encstat[2] = sdata[r];
|
|
ssc->ses_objmap[oid].encstat[3] = 0;;
|
|
ssc->ses_objmap[oid++].svalid = 1;
|
|
r++;
|
|
}
|
|
|
|
/*
|
|
* Now, for "pseudo" thermometers, we have two bytes
|
|
* of information in enclosure status- 16 bits. Actually,
|
|
* the MSB is a single TEMP ALERT flag indicating whether
|
|
* any other bits are set, but, thanks to fuzzy thinking,
|
|
* in the SAF-TE spec, this can also be set even if no
|
|
* other bits are set, thus making this really another
|
|
* binary temperature sensor.
|
|
*/
|
|
|
|
SAFT_BAIL(r, hiwater, sdata, buflen);
|
|
tempflags = sdata[r++];
|
|
SAFT_BAIL(r, hiwater, sdata, buflen);
|
|
tempflags |= (tempflags << 8) | sdata[r++];
|
|
|
|
for (i = 0; i < NPSEUDO_THERM; i++) {
|
|
ssc->ses_objmap[oid].encstat[1] = 0;
|
|
if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
|
|
ssc->ses_objmap[4].encstat[2] = 0xff;
|
|
/*
|
|
* Set 'over temperature' failure.
|
|
*/
|
|
ssc->ses_objmap[oid].encstat[3] = 8;
|
|
ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
|
|
} else {
|
|
/*
|
|
* We used to say 'not available' and synthesize a
|
|
* nominal 30 deg (C)- that was wrong. Actually,
|
|
* Just say 'OK', and use the reserved value of
|
|
* zero.
|
|
*/
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
|
|
ssc->ses_objmap[oid].encstat[2] = 0;
|
|
ssc->ses_objmap[oid].encstat[3] = 0;
|
|
}
|
|
ssc->ses_objmap[oid++].svalid = 1;
|
|
}
|
|
|
|
/*
|
|
* Get alarm status.
|
|
*/
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
|
|
ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
|
|
ssc->ses_objmap[oid++].svalid = 1;
|
|
|
|
/*
|
|
* Now get drive slot status
|
|
*/
|
|
cdb[2] = SAFTE_RD_RDDSTS;
|
|
amt = buflen;
|
|
err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
|
|
if (err) {
|
|
SES_FREE(sdata, buflen);
|
|
return (err);
|
|
}
|
|
hiwater = buflen - amt;
|
|
for (r = i = 0; i < cc->Nslots; i++, r += 4) {
|
|
SAFT_BAIL(r+3, hiwater, sdata, buflen);
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
|
|
ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
|
|
ssc->ses_objmap[oid].encstat[2] = 0;
|
|
ssc->ses_objmap[oid].encstat[3] = 0;
|
|
status = sdata[r+3];
|
|
if ((status & 0x1) == 0) { /* no device */
|
|
ssc->ses_objmap[oid].encstat[0] =
|
|
SES_OBJSTAT_NOTINSTALLED;
|
|
} else {
|
|
ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
|
|
}
|
|
if (status & 0x2) {
|
|
ssc->ses_objmap[oid].encstat[2] = 0x8;
|
|
}
|
|
if ((status & 0x4) == 0) {
|
|
ssc->ses_objmap[oid].encstat[3] = 0x10;
|
|
}
|
|
ssc->ses_objmap[oid++].svalid = 1;
|
|
}
|
|
/* see comment below about sticky enclosure status */
|
|
ssc->ses_encstat |= ENCI_SVALID | oencstat;
|
|
SES_FREE(sdata, buflen);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
|
|
{
|
|
int idx;
|
|
encobj *ep;
|
|
struct scfg *cc = ssc->ses_private;
|
|
|
|
if (cc == NULL)
|
|
return (0);
|
|
|
|
idx = (int)obp->obj_id;
|
|
ep = &ssc->ses_objmap[idx];
|
|
|
|
switch (ep->enctype) {
|
|
case SESTYP_DEVICE:
|
|
if (obp->cstat[0] & SESCTL_PRDFAIL) {
|
|
ep->priv |= 0x40;
|
|
}
|
|
/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
|
|
if (obp->cstat[0] & SESCTL_DISABLE) {
|
|
ep->priv |= 0x80;
|
|
/*
|
|
* Hmm. Try to set the 'No Drive' flag.
|
|
* Maybe that will count as a 'disable'.
|
|
*/
|
|
}
|
|
if (ep->priv & 0xc6) {
|
|
ep->priv &= ~0x1;
|
|
} else {
|
|
ep->priv |= 0x1; /* no errors */
|
|
}
|
|
wrslot_stat(ssc, slp);
|
|
break;
|
|
case SESTYP_POWER:
|
|
/*
|
|
* Okay- the only one that makes sense here is to
|
|
* do the 'disable' for a power supply.
|
|
*/
|
|
if (obp->cstat[0] & SESCTL_DISABLE) {
|
|
(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
|
|
idx - cc->pwroff, 0, 0, slp);
|
|
}
|
|
break;
|
|
case SESTYP_FAN:
|
|
/*
|
|
* Okay- the only one that makes sense here is to
|
|
* set fan speed to zero on disable.
|
|
*/
|
|
if (obp->cstat[0] & SESCTL_DISABLE) {
|
|
/* remember- fans are the first items, so idx works */
|
|
(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
|
|
}
|
|
break;
|
|
case SESTYP_DOORLOCK:
|
|
/*
|
|
* Well, we can 'disable' the lock.
|
|
*/
|
|
if (obp->cstat[0] & SESCTL_DISABLE) {
|
|
cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
|
|
(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
|
|
cc->flag2, 0, slp);
|
|
}
|
|
break;
|
|
case SESTYP_ALARM:
|
|
/*
|
|
* Well, we can 'disable' the alarm.
|
|
*/
|
|
if (obp->cstat[0] & SESCTL_DISABLE) {
|
|
cc->flag2 &= ~SAFT_FLG1_ALARM;
|
|
ep->priv |= 0x40; /* Muted */
|
|
(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
|
|
cc->flag2, 0, slp);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
ep->svalid = 0;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This function handles all of the 16 byte WRITE BUFFER commands.
|
|
*/
|
|
static int
|
|
wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
|
|
uint8_t b3, int slp)
|
|
{
|
|
int err, amt;
|
|
char *sdata;
|
|
struct scfg *cc = ssc->ses_private;
|
|
static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
|
|
|
|
if (cc == NULL)
|
|
return (0);
|
|
|
|
sdata = SES_MALLOC(16);
|
|
if (sdata == NULL)
|
|
return (ENOMEM);
|
|
|
|
SES_DLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
|
|
|
|
sdata[0] = op;
|
|
sdata[1] = b1;
|
|
sdata[2] = b2;
|
|
sdata[3] = b3;
|
|
MEMZERO(&sdata[4], 12);
|
|
amt = -16;
|
|
err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
|
|
SES_FREE(sdata, 16);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* This function updates the status byte for the device slot described.
|
|
*
|
|
* Since this is an optional SAF-TE command, there's no point in
|
|
* returning an error.
|
|
*/
|
|
static void
|
|
wrslot_stat(ses_softc_t *ssc, int slp)
|
|
{
|
|
int i, amt;
|
|
encobj *ep;
|
|
char cdb[10], *sdata;
|
|
struct scfg *cc = ssc->ses_private;
|
|
|
|
if (cc == NULL)
|
|
return;
|
|
|
|
SES_DLOG(ssc, "saf_wrslot\n");
|
|
cdb[0] = WRITE_BUFFER;
|
|
cdb[1] = 1;
|
|
cdb[2] = 0;
|
|
cdb[3] = 0;
|
|
cdb[4] = 0;
|
|
cdb[5] = 0;
|
|
cdb[6] = 0;
|
|
cdb[7] = 0;
|
|
cdb[8] = cc->Nslots * 3 + 1;
|
|
cdb[9] = 0;
|
|
|
|
sdata = SES_MALLOC(cc->Nslots * 3 + 1);
|
|
if (sdata == NULL)
|
|
return;
|
|
MEMZERO(sdata, cc->Nslots * 3 + 1);
|
|
|
|
sdata[0] = SAFTE_WT_DSTAT;
|
|
for (i = 0; i < cc->Nslots; i++) {
|
|
ep = &ssc->ses_objmap[cc->slotoff + i];
|
|
SES_DLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
|
|
sdata[1 + (3 * i)] = ep->priv & 0xff;
|
|
}
|
|
amt = -(cc->Nslots * 3 + 1);
|
|
(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
|
|
SES_FREE(sdata, cc->Nslots * 3 + 1);
|
|
}
|
|
|
|
/*
|
|
* This function issues the "PERFORM SLOT OPERATION" command.
|
|
*/
|
|
static int
|
|
perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
|
|
{
|
|
int err, amt;
|
|
char *sdata;
|
|
struct scfg *cc = ssc->ses_private;
|
|
static char cdb[10] =
|
|
{ WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
|
|
|
|
if (cc == NULL)
|
|
return (0);
|
|
|
|
sdata = SES_MALLOC(SAFT_SCRATCH);
|
|
if (sdata == NULL)
|
|
return (ENOMEM);
|
|
MEMZERO(sdata, SAFT_SCRATCH);
|
|
|
|
sdata[0] = SAFTE_WT_SLTOP;
|
|
sdata[1] = slot;
|
|
sdata[2] = opflag;
|
|
SES_DLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
|
|
amt = -SAFT_SCRATCH;
|
|
err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
|
|
SES_FREE(sdata, SAFT_SCRATCH);
|
|
return (err);
|
|
}
|