freebsd-skq/sys/dev/qlnx/qlnxe/ecore_hw.c
davidcs 86c0cb1a42 Remove support for QLNX_RCV_IN_TASKQ - i.e., Rx only in TaskQ.
Added support for LLDP passthru
Upgrade ECORE to version 8.33.5.0
Upgrade STORMFW to version 8.33.7.0
Added support for SRIOV

MFC after:5 days
2018-07-25 02:36:55 +00:00

1192 lines
34 KiB
C

/*
* Copyright (c) 2017-2018 Cavium, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* File : ecore_hw.c
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "bcm_osal.h"
#include "ecore_hsi_common.h"
#include "ecore_status.h"
#include "ecore.h"
#include "ecore_hw.h"
#include "reg_addr.h"
#include "ecore_utils.h"
#include "ecore_iov_api.h"
#ifdef _NTDDK_
#pragma warning(push)
#pragma warning(disable : 28167)
#pragma warning(disable : 28123)
#pragma warning(disable : 28121)
#endif
#ifndef ASIC_ONLY
#define ECORE_EMUL_FACTOR 2000
#define ECORE_FPGA_FACTOR 200
#endif
#define ECORE_BAR_ACQUIRE_TIMEOUT 1000
/* Invalid values */
#define ECORE_BAR_INVALID_OFFSET (OSAL_CPU_TO_LE32(-1))
struct ecore_ptt {
osal_list_entry_t list_entry;
unsigned int idx;
struct pxp_ptt_entry pxp;
u8 hwfn_id;
};
struct ecore_ptt_pool {
osal_list_t free_list;
osal_spinlock_t lock; /* ptt synchronized access */
struct ecore_ptt ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
};
static void __ecore_ptt_pool_free(struct ecore_hwfn *p_hwfn)
{
OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_ptt_pool);
p_hwfn->p_ptt_pool = OSAL_NULL;
}
enum _ecore_status_t ecore_ptt_pool_alloc(struct ecore_hwfn *p_hwfn)
{
struct ecore_ptt_pool *p_pool = OSAL_ALLOC(p_hwfn->p_dev,
GFP_KERNEL,
sizeof(*p_pool));
int i;
if (!p_pool)
return ECORE_NOMEM;
OSAL_LIST_INIT(&p_pool->free_list);
for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
p_pool->ptts[i].idx = i;
p_pool->ptts[i].pxp.offset = ECORE_BAR_INVALID_OFFSET;
p_pool->ptts[i].pxp.pretend.control = 0;
p_pool->ptts[i].hwfn_id = p_hwfn->my_id;
/* There are special PTT entries that are taken only by design.
* The rest are added ot the list for general usage.
*/
if (i >= RESERVED_PTT_MAX)
OSAL_LIST_PUSH_HEAD(&p_pool->ptts[i].list_entry,
&p_pool->free_list);
}
p_hwfn->p_ptt_pool = p_pool;
#ifdef CONFIG_ECORE_LOCK_ALLOC
if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_pool->lock)) {
__ecore_ptt_pool_free(p_hwfn);
return ECORE_NOMEM;
}
#endif
OSAL_SPIN_LOCK_INIT(&p_pool->lock);
return ECORE_SUCCESS;
}
void ecore_ptt_invalidate(struct ecore_hwfn *p_hwfn)
{
struct ecore_ptt *p_ptt;
int i;
for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
p_ptt->pxp.offset = ECORE_BAR_INVALID_OFFSET;
}
}
void ecore_ptt_pool_free(struct ecore_hwfn *p_hwfn)
{
#ifdef CONFIG_ECORE_LOCK_ALLOC
if (p_hwfn->p_ptt_pool)
OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->p_ptt_pool->lock);
#endif
__ecore_ptt_pool_free(p_hwfn);
}
struct ecore_ptt *ecore_ptt_acquire(struct ecore_hwfn *p_hwfn)
{
struct ecore_ptt *p_ptt;
unsigned int i;
/* Take the free PTT from the list */
for (i = 0; i < ECORE_BAR_ACQUIRE_TIMEOUT; i++) {
OSAL_SPIN_LOCK(&p_hwfn->p_ptt_pool->lock);
if (!OSAL_LIST_IS_EMPTY(&p_hwfn->p_ptt_pool->free_list)) {
p_ptt = OSAL_LIST_FIRST_ENTRY(&p_hwfn->p_ptt_pool->free_list,
struct ecore_ptt, list_entry);
OSAL_LIST_REMOVE_ENTRY(&p_ptt->list_entry,
&p_hwfn->p_ptt_pool->free_list);
OSAL_SPIN_UNLOCK(&p_hwfn->p_ptt_pool->lock);
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"allocated ptt %d\n", p_ptt->idx);
return p_ptt;
}
OSAL_SPIN_UNLOCK(&p_hwfn->p_ptt_pool->lock);
OSAL_MSLEEP(1);
}
DP_NOTICE(p_hwfn, true, "PTT acquire timeout - failed to allocate PTT\n");
return OSAL_NULL;
}
void ecore_ptt_release(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt) {
/* This PTT should not be set to pretend if it is being released */
/* TODO - add some pretend sanity checks, to make sure pretend isn't set on this ptt */
OSAL_SPIN_LOCK(&p_hwfn->p_ptt_pool->lock);
OSAL_LIST_PUSH_HEAD(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
OSAL_SPIN_UNLOCK(&p_hwfn->p_ptt_pool->lock);
}
static u32 ecore_ptt_get_hw_addr(struct ecore_ptt *p_ptt)
{
/* The HW is using DWORDS and we need to translate it to Bytes */
return OSAL_LE32_TO_CPU(p_ptt->pxp.offset) << 2;
}
static u32 ecore_ptt_config_addr(struct ecore_ptt *p_ptt)
{
return PXP_PF_WINDOW_ADMIN_PER_PF_START +
p_ptt->idx * sizeof(struct pxp_ptt_entry);
}
u32 ecore_ptt_get_bar_addr(struct ecore_ptt *p_ptt)
{
return PXP_EXTERNAL_BAR_PF_WINDOW_START +
p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
}
void ecore_ptt_set_win(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u32 new_hw_addr)
{
u32 prev_hw_addr;
prev_hw_addr = ecore_ptt_get_hw_addr(p_ptt);
if (new_hw_addr == prev_hw_addr)
return;
/* Update PTT entery in admin window */
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"Updating PTT entry %d to offset 0x%x\n",
p_ptt->idx, new_hw_addr);
/* The HW is using DWORDS and the address is in Bytes */
p_ptt->pxp.offset = OSAL_CPU_TO_LE32(new_hw_addr >> 2);
REG_WR(p_hwfn,
ecore_ptt_config_addr(p_ptt) +
OFFSETOF(struct pxp_ptt_entry, offset),
OSAL_LE32_TO_CPU(p_ptt->pxp.offset));
}
static u32 ecore_set_ptt(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u32 hw_addr)
{
u32 win_hw_addr = ecore_ptt_get_hw_addr(p_ptt);
u32 offset;
offset = hw_addr - win_hw_addr;
if (p_ptt->hwfn_id != p_hwfn->my_id)
DP_NOTICE(p_hwfn, true,
"ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n",
p_ptt->idx, p_ptt->hwfn_id, p_hwfn->my_id);
/* Verify the address is within the window */
if (hw_addr < win_hw_addr ||
offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
ecore_ptt_set_win(p_hwfn, p_ptt, hw_addr);
offset = 0;
}
return ecore_ptt_get_bar_addr(p_ptt) + offset;
}
struct ecore_ptt *ecore_get_reserved_ptt(struct ecore_hwfn *p_hwfn,
enum reserved_ptts ptt_idx)
{
if (ptt_idx >= RESERVED_PTT_MAX) {
DP_NOTICE(p_hwfn, true,
"Requested PTT %d is out of range\n", ptt_idx);
return OSAL_NULL;
}
return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
}
static bool ecore_is_reg_fifo_empty(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
bool is_empty = true;
u32 bar_addr;
if (!p_hwfn->p_dev->chk_reg_fifo)
goto out;
/* ecore_rd() cannot be used here since it calls this function */
bar_addr = ecore_set_ptt(p_hwfn, p_ptt, GRC_REG_TRACE_FIFO_VALID_DATA);
is_empty = REG_RD(p_hwfn, bar_addr) == 0;
#ifndef ASIC_ONLY
if (CHIP_REV_IS_SLOW(p_hwfn->p_dev))
OSAL_UDELAY(100);
#endif
out:
return is_empty;
}
void ecore_wr(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u32 hw_addr,
u32 val)
{
bool prev_fifo_err;
u32 bar_addr;
prev_fifo_err = !ecore_is_reg_fifo_empty(p_hwfn, p_ptt);
bar_addr = ecore_set_ptt(p_hwfn, p_ptt, hw_addr);
REG_WR(p_hwfn, bar_addr, val);
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
bar_addr, hw_addr, val);
#ifndef ASIC_ONLY
if (CHIP_REV_IS_SLOW(p_hwfn->p_dev))
OSAL_UDELAY(100);
#endif
OSAL_WARN(!prev_fifo_err && !ecore_is_reg_fifo_empty(p_hwfn, p_ptt),
"reg_fifo error was caused by a call to ecore_wr(0x%x, 0x%x)\n",
hw_addr, val);
}
u32 ecore_rd(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u32 hw_addr)
{
bool prev_fifo_err;
u32 bar_addr, val;
prev_fifo_err = !ecore_is_reg_fifo_empty(p_hwfn, p_ptt);
bar_addr = ecore_set_ptt(p_hwfn, p_ptt, hw_addr);
val = REG_RD(p_hwfn, bar_addr);
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
bar_addr, hw_addr, val);
#ifndef ASIC_ONLY
if (CHIP_REV_IS_SLOW(p_hwfn->p_dev))
OSAL_UDELAY(100);
#endif
OSAL_WARN(!prev_fifo_err && !ecore_is_reg_fifo_empty(p_hwfn, p_ptt),
"reg_fifo error was caused by a call to ecore_rd(0x%x)\n",
hw_addr);
return val;
}
static void ecore_memcpy_hw(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
void *addr,
u32 hw_addr,
osal_size_t n,
bool to_device)
{
u32 dw_count, *host_addr, hw_offset;
osal_size_t quota, done = 0;
u32 OSAL_IOMEM *reg_addr;
while (done < n) {
quota = OSAL_MIN_T(osal_size_t, n - done,
PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
if (IS_PF(p_hwfn->p_dev)) {
ecore_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
hw_offset = ecore_ptt_get_bar_addr(p_ptt);
} else {
hw_offset = hw_addr + done;
}
dw_count = quota / 4;
host_addr = (u32 *)((u8 *)addr + done);
reg_addr = (u32 OSAL_IOMEM *)OSAL_REG_ADDR(p_hwfn, hw_offset);
if (to_device)
while (dw_count--)
DIRECT_REG_WR(p_hwfn, reg_addr++, *host_addr++);
else
while (dw_count--)
*host_addr++ = DIRECT_REG_RD(p_hwfn,
reg_addr++);
done += quota;
}
}
void ecore_memcpy_from(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
void *dest, u32 hw_addr, osal_size_t n)
{
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
hw_addr, dest, hw_addr, (unsigned long) n);
ecore_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
}
void ecore_memcpy_to(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u32 hw_addr, void *src, osal_size_t n)
{
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
hw_addr, hw_addr, src, (unsigned long)n);
ecore_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
}
void ecore_fid_pretend(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt, u16 fid)
{
u16 control = 0;
SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
/* Every pretend undos previous pretends, including
* previous port pretend.
*/
SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
p_ptt->pxp.pretend.control = OSAL_CPU_TO_LE16(control);
p_ptt->pxp.pretend.fid.concrete_fid.fid = OSAL_CPU_TO_LE16(fid);
REG_WR(p_hwfn,
ecore_ptt_config_addr(p_ptt) +
OFFSETOF(struct pxp_ptt_entry, pretend),
*(u32 *)&p_ptt->pxp.pretend);
}
void ecore_port_pretend(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt, u8 port_id)
{
u16 control = 0;
SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
p_ptt->pxp.pretend.control = OSAL_CPU_TO_LE16(control);
REG_WR(p_hwfn,
ecore_ptt_config_addr(p_ptt) +
OFFSETOF(struct pxp_ptt_entry, pretend),
*(u32 *)&p_ptt->pxp.pretend);
}
void ecore_port_unpretend(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
u16 control = 0;
SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
p_ptt->pxp.pretend.control = OSAL_CPU_TO_LE16(control);
REG_WR(p_hwfn,
ecore_ptt_config_addr(p_ptt) +
OFFSETOF(struct pxp_ptt_entry, pretend),
*(u32 *)&p_ptt->pxp.pretend);
}
u32 ecore_vfid_to_concrete(struct ecore_hwfn *p_hwfn, u8 vfid)
{
u32 concrete_fid = 0;
SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
return concrete_fid;
}
#if 0
/* Ecore HW lock
* =============
* Although the implemention is ready, today we don't have any flow that
* utliizes said locks - and we want to keep it this way.
* If this changes, this needs to be revisted.
*/
#define HW_LOCK_MAX_RETRIES 1000
enum _ecore_status_t ecore_hw_lock(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u8 resource,
bool block)
{
u32 cnt, lock_status, hw_lock_cntr_reg;
enum _ecore_status_t ecore_status;
/* Locate the proper lock register for this function.
* Note This code assumes all the H/W lock registers are sequential
* in memory.
*/
hw_lock_cntr_reg = MISCS_REG_DRIVER_CONTROL_0 +
p_hwfn->rel_pf_id *
MISCS_REG_DRIVER_CONTROL_0_SIZE * sizeof(u32);
/* Validate that the resource is not already taken */
lock_status = ecore_rd(p_hwfn, p_ptt, hw_lock_cntr_reg);
if (lock_status & resource) {
DP_NOTICE(p_hwfn, true,
"Resource already locked: lock_status=0x%x resource=0x%x\n",
lock_status, resource);
return ECORE_BUSY;
}
/* Register for the lock */
ecore_wr(p_hwfn, p_ptt, hw_lock_cntr_reg + sizeof(u32), resource);
/* Try for 5 seconds every 5ms */
for (cnt = 0; cnt < HW_LOCK_MAX_RETRIES; cnt++) {
lock_status = ecore_rd(p_hwfn, p_ptt, hw_lock_cntr_reg);
if (lock_status & resource)
return ECORE_SUCCESS;
if (!block) {
ecore_status = ECORE_BUSY;
break;
}
OSAL_MSLEEP(5);
}
if (cnt == HW_LOCK_MAX_RETRIES) {
DP_NOTICE(p_hwfn, true, "Lock timeout resource=0x%x\n",
resource);
ecore_status = ECORE_TIMEOUT;
}
/* Clear the pending request */
ecore_wr(p_hwfn, p_ptt, hw_lock_cntr_reg, resource);
return ecore_status;
}
enum _ecore_status_t ecore_hw_unlock(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u8 resource)
{
u32 lock_status, hw_lock_cntr_reg;
/* Locate the proper lock register for this function.
* Note This code assumes all the H/W lock registers are sequential
* in memory.
*/
hw_lock_cntr_reg = MISCS_REG_DRIVER_CONTROL_0 +
p_hwfn->rel_pf_id *
MISCS_REG_DRIVER_CONTROL_0_SIZE * sizeof(u32);
/* Validate that the resource is currently taken */
lock_status = ecore_rd(p_hwfn, p_ptt, hw_lock_cntr_reg);
if (!(lock_status & resource)) {
DP_NOTICE(p_hwfn, true,
"resource 0x%x was not taken (lock status 0x%x)\n",
resource, lock_status);
return ECORE_NODEV;
}
/* clear lock for resource */
ecore_wr(p_hwfn, p_ptt, hw_lock_cntr_reg, resource);
return ECORE_SUCCESS;
}
#endif /* HW locks logic */
/* DMAE */
#define ECORE_DMAE_FLAGS_IS_SET(params, flag) \
((params) != OSAL_NULL && ((params)->flags & ECORE_DMAE_FLAG_##flag))
static void ecore_dmae_opcode(struct ecore_hwfn *p_hwfn,
const u8 is_src_type_grc,
const u8 is_dst_type_grc,
struct ecore_dmae_params *p_params)
{
u8 src_pfid, dst_pfid, port_id;
u16 opcode_b = 0;
u32 opcode = 0;
/* Whether the source is the PCIe or the GRC.
* 0- The source is the PCIe
* 1- The source is the GRC.
*/
opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
: DMAE_CMD_SRC_MASK_PCIE) <<
DMAE_CMD_SRC_SHIFT;
src_pfid = ECORE_DMAE_FLAGS_IS_SET(p_params, PF_SRC) ?
p_params->src_pfid : p_hwfn->rel_pf_id;
opcode |= (src_pfid & DMAE_CMD_SRC_PF_ID_MASK) <<
DMAE_CMD_SRC_PF_ID_SHIFT;
/* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
: DMAE_CMD_DST_MASK_PCIE) <<
DMAE_CMD_DST_SHIFT;
dst_pfid = ECORE_DMAE_FLAGS_IS_SET(p_params, PF_DST) ?
p_params->dst_pfid : p_hwfn->rel_pf_id;
opcode |= (dst_pfid & DMAE_CMD_DST_PF_ID_MASK) <<
DMAE_CMD_DST_PF_ID_SHIFT;
/* DMAE_E4_TODO need to check which value to specify here. */
/* opcode |= (!b_complete_to_host)<< DMAE_CMD_C_DST_SHIFT;*/
/* Whether to write a completion word to the completion destination:
* 0-Do not write a completion word
* 1-Write the completion word
*/
opcode |= DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT;
opcode |= DMAE_CMD_SRC_ADDR_RESET_MASK <<
DMAE_CMD_SRC_ADDR_RESET_SHIFT;
if (ECORE_DMAE_FLAGS_IS_SET(p_params, COMPLETION_DST))
opcode |= 1 << DMAE_CMD_COMP_FUNC_SHIFT;
/* swapping mode 3 - big endian there should be a define ifdefed in
* the HSI somewhere. Since it is currently
*/
opcode |= DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT;
port_id = (ECORE_DMAE_FLAGS_IS_SET(p_params, PORT)) ?
p_params->port_id : p_hwfn->port_id;
opcode |= port_id << DMAE_CMD_PORT_ID_SHIFT;
/* reset source address in next go */
opcode |= DMAE_CMD_SRC_ADDR_RESET_MASK <<
DMAE_CMD_SRC_ADDR_RESET_SHIFT;
/* reset dest address in next go */
opcode |= DMAE_CMD_DST_ADDR_RESET_MASK <<
DMAE_CMD_DST_ADDR_RESET_SHIFT;
/* SRC/DST VFID: all 1's - pf, otherwise VF id */
if (ECORE_DMAE_FLAGS_IS_SET(p_params, VF_SRC)) {
opcode |= (1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT);
opcode_b |= (p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT);
} else {
opcode_b |= (DMAE_CMD_SRC_VF_ID_MASK <<
DMAE_CMD_SRC_VF_ID_SHIFT);
}
if (ECORE_DMAE_FLAGS_IS_SET(p_params, VF_DST)) {
opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
} else {
opcode_b |= DMAE_CMD_DST_VF_ID_MASK <<
DMAE_CMD_DST_VF_ID_SHIFT;
}
p_hwfn->dmae_info.p_dmae_cmd->opcode = OSAL_CPU_TO_LE32(opcode);
p_hwfn->dmae_info.p_dmae_cmd->opcode_b = OSAL_CPU_TO_LE16(opcode_b);
}
static u32 ecore_dmae_idx_to_go_cmd(u8 idx)
{
OSAL_BUILD_BUG_ON((DMAE_REG_GO_C31 - DMAE_REG_GO_C0) !=
31 * 4);
/* All the DMAE 'go' registers form an array in internal memory */
return DMAE_REG_GO_C0 + (idx << 2);
}
static enum _ecore_status_t ecore_dmae_post_command(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
u8 idx_cmd = p_hwfn->dmae_info.channel, i;
enum _ecore_status_t ecore_status = ECORE_SUCCESS;
/* verify address is not OSAL_NULL */
if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
DP_NOTICE(p_hwfn, true,
"source or destination address 0 idx_cmd=%d\n"
"opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
idx_cmd,
OSAL_LE32_TO_CPU(p_command->opcode),
OSAL_LE16_TO_CPU(p_command->opcode_b),
OSAL_LE16_TO_CPU(p_command->length_dw),
OSAL_LE32_TO_CPU(p_command->src_addr_hi),
OSAL_LE32_TO_CPU(p_command->src_addr_lo),
OSAL_LE32_TO_CPU(p_command->dst_addr_hi),
OSAL_LE32_TO_CPU(p_command->dst_addr_lo));
return ECORE_INVAL;
}
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
idx_cmd,
OSAL_LE32_TO_CPU(p_command->opcode),
OSAL_LE16_TO_CPU(p_command->opcode_b),
OSAL_LE16_TO_CPU(p_command->length_dw),
OSAL_LE32_TO_CPU(p_command->src_addr_hi),
OSAL_LE32_TO_CPU(p_command->src_addr_lo),
OSAL_LE32_TO_CPU(p_command->dst_addr_hi),
OSAL_LE32_TO_CPU(p_command->dst_addr_lo));
/* Copy the command to DMAE - need to do it before every call
* for source/dest address no reset.
* The number of commands have been increased to 16 (previous was 14)
* The first 9 DWs are the command registers, the 10 DW is the
* GO register, and
* the rest are result registers (which are read only by the client).
*/
for (i = 0; i < DMAE_CMD_SIZE; i++) {
u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
*(((u32 *)p_command) + i) : 0;
ecore_wr(p_hwfn, p_ptt,
DMAE_REG_CMD_MEM +
(idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
(i * sizeof(u32)), data);
}
ecore_wr(p_hwfn, p_ptt,
ecore_dmae_idx_to_go_cmd(idx_cmd),
DMAE_GO_VALUE);
return ecore_status;
}
enum _ecore_status_t ecore_dmae_info_alloc(struct ecore_hwfn *p_hwfn)
{
dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
*p_comp = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, p_addr, sizeof(u32));
if (*p_comp == OSAL_NULL) {
DP_NOTICE(p_hwfn, false,
"Failed to allocate `p_completion_word'\n");
goto err;
}
p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
*p_cmd = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, p_addr,
sizeof(struct dmae_cmd));
if (*p_cmd == OSAL_NULL) {
DP_NOTICE(p_hwfn, false,
"Failed to allocate `struct dmae_cmd'\n");
goto err;
}
p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
*p_buff = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, p_addr,
sizeof(u32) * DMAE_MAX_RW_SIZE);
if (*p_buff == OSAL_NULL) {
DP_NOTICE(p_hwfn, false,
"Failed to allocate `intermediate_buffer'\n");
goto err;
}
p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
p_hwfn->dmae_info.b_mem_ready = true;
return ECORE_SUCCESS;
err:
ecore_dmae_info_free(p_hwfn);
return ECORE_NOMEM;
}
void ecore_dmae_info_free(struct ecore_hwfn *p_hwfn)
{
dma_addr_t p_phys;
OSAL_SPIN_LOCK(&p_hwfn->dmae_info.lock);
p_hwfn->dmae_info.b_mem_ready = false;
OSAL_SPIN_UNLOCK(&p_hwfn->dmae_info.lock);
if (p_hwfn->dmae_info.p_completion_word != OSAL_NULL) {
p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
p_hwfn->dmae_info.p_completion_word,
p_phys, sizeof(u32));
p_hwfn->dmae_info.p_completion_word = OSAL_NULL;
}
if (p_hwfn->dmae_info.p_dmae_cmd != OSAL_NULL) {
p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
p_hwfn->dmae_info.p_dmae_cmd,
p_phys, sizeof(struct dmae_cmd));
p_hwfn->dmae_info.p_dmae_cmd = OSAL_NULL;
}
if (p_hwfn->dmae_info.p_intermediate_buffer != OSAL_NULL) {
p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
p_hwfn->dmae_info.p_intermediate_buffer,
p_phys, sizeof(u32) * DMAE_MAX_RW_SIZE);
p_hwfn->dmae_info.p_intermediate_buffer = OSAL_NULL;
}
}
static enum _ecore_status_t
ecore_dmae_operation_wait(struct ecore_hwfn *p_hwfn)
{
u32 wait_cnt_limit = 10000, wait_cnt = 0;
enum _ecore_status_t ecore_status = ECORE_SUCCESS;
#ifndef ASIC_ONLY
u32 factor = (CHIP_REV_IS_EMUL(p_hwfn->p_dev) ?
ECORE_EMUL_FACTOR :
(CHIP_REV_IS_FPGA(p_hwfn->p_dev) ?
ECORE_FPGA_FACTOR : 1));
wait_cnt_limit *= factor;
#endif
/* DMAE_E4_TODO : TODO check if we have to call any other function
* other than BARRIER to sync the completion_word since we are not
* using the volatile keyword for this
*/
OSAL_BARRIER(p_hwfn->p_dev);
while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
OSAL_UDELAY(DMAE_MIN_WAIT_TIME);
if (++wait_cnt > wait_cnt_limit) {
DP_NOTICE(p_hwfn->p_dev, ECORE_MSG_HW,
"Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
*(p_hwfn->dmae_info.p_completion_word),
DMAE_COMPLETION_VAL);
ecore_status = ECORE_TIMEOUT;
break;
}
/* to sync the completion_word since we are not
* using the volatile keyword for p_completion_word
*/
OSAL_BARRIER(p_hwfn->p_dev);
}
if (ecore_status == ECORE_SUCCESS)
*p_hwfn->dmae_info.p_completion_word = 0;
return ecore_status;
}
static enum _ecore_status_t ecore_dmae_execute_sub_operation(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u64 src_addr,
u64 dst_addr,
u8 src_type,
u8 dst_type,
u32 length_dw)
{
dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
enum _ecore_status_t ecore_status = ECORE_SUCCESS;
switch (src_type) {
case ECORE_DMAE_ADDRESS_GRC:
case ECORE_DMAE_ADDRESS_HOST_PHYS:
cmd->src_addr_hi = OSAL_CPU_TO_LE32(DMA_HI(src_addr));
cmd->src_addr_lo = OSAL_CPU_TO_LE32(DMA_LO(src_addr));
break;
/* for virtual source addresses we use the intermediate buffer. */
case ECORE_DMAE_ADDRESS_HOST_VIRT:
cmd->src_addr_hi = OSAL_CPU_TO_LE32(DMA_HI(phys));
cmd->src_addr_lo = OSAL_CPU_TO_LE32(DMA_LO(phys));
OSAL_MEMCPY(&(p_hwfn->dmae_info.p_intermediate_buffer[0]),
(void *)(osal_uintptr_t)src_addr,
length_dw * sizeof(u32));
break;
default:
return ECORE_INVAL;
}
switch (dst_type) {
case ECORE_DMAE_ADDRESS_GRC:
case ECORE_DMAE_ADDRESS_HOST_PHYS:
cmd->dst_addr_hi = OSAL_CPU_TO_LE32(DMA_HI(dst_addr));
cmd->dst_addr_lo = OSAL_CPU_TO_LE32(DMA_LO(dst_addr));
break;
/* for virtual destination addresses we use the intermediate buffer. */
case ECORE_DMAE_ADDRESS_HOST_VIRT:
cmd->dst_addr_hi = OSAL_CPU_TO_LE32(DMA_HI(phys));
cmd->dst_addr_lo = OSAL_CPU_TO_LE32(DMA_LO(phys));
break;
default:
return ECORE_INVAL;
}
cmd->length_dw = OSAL_CPU_TO_LE16((u16)length_dw);
#ifndef __EXTRACT__LINUX__
if (src_type == ECORE_DMAE_ADDRESS_HOST_VIRT ||
src_type == ECORE_DMAE_ADDRESS_HOST_PHYS)
OSAL_DMA_SYNC(p_hwfn->p_dev,
(void *)HILO_U64(cmd->src_addr_hi,
cmd->src_addr_lo),
length_dw * sizeof(u32), false);
#endif
ecore_dmae_post_command(p_hwfn, p_ptt);
ecore_status = ecore_dmae_operation_wait(p_hwfn);
#ifndef __EXTRACT__LINUX__
/* TODO - is it true ? */
if (src_type == ECORE_DMAE_ADDRESS_HOST_VIRT ||
src_type == ECORE_DMAE_ADDRESS_HOST_PHYS)
OSAL_DMA_SYNC(p_hwfn->p_dev,
(void *)HILO_U64(cmd->src_addr_hi,
cmd->src_addr_lo),
length_dw * sizeof(u32), true);
#endif
if (ecore_status != ECORE_SUCCESS) {
DP_NOTICE(p_hwfn, ECORE_MSG_HW,
"Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x, intermediate buffer 0x%llx.\n",
(unsigned long long)src_addr, (unsigned long long)dst_addr, length_dw,
(unsigned long long)p_hwfn->dmae_info.intermediate_buffer_phys_addr);
return ecore_status;
}
if (dst_type == ECORE_DMAE_ADDRESS_HOST_VIRT)
OSAL_MEMCPY((void *)(osal_uintptr_t)(dst_addr),
&p_hwfn->dmae_info.p_intermediate_buffer[0],
length_dw * sizeof(u32));
return ECORE_SUCCESS;
}
static enum _ecore_status_t ecore_dmae_execute_command(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u64 src_addr, u64 dst_addr,
u8 src_type, u8 dst_type,
u32 size_in_dwords,
struct ecore_dmae_params *p_params)
{
dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
u64 src_addr_split = 0, dst_addr_split = 0;
u16 length_limit = DMAE_MAX_RW_SIZE;
enum _ecore_status_t ecore_status = ECORE_SUCCESS;
u32 offset = 0;
if (!p_hwfn->dmae_info.b_mem_ready) {
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"No buffers allocated. Avoid DMAE transaction [{src: addr 0x%llx, type %d}, {dst: addr 0x%llx, type %d}, size %d].\n",
(unsigned long long)src_addr, src_type, (unsigned long long)dst_addr, dst_type,
size_in_dwords);
return ECORE_NOMEM;
}
if (p_hwfn->p_dev->recov_in_prog) {
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"Recovery is in progress. Avoid DMAE transaction [{src: addr 0x%llx, type %d}, {dst: addr 0x%llx, type %d}, size %d].\n",
(unsigned long long)src_addr, src_type, (unsigned long long)dst_addr, dst_type,
size_in_dwords);
/* Return success to let the flow to be completed successfully
* w/o any error handling.
*/
return ECORE_SUCCESS;
}
if (!cmd) {
DP_NOTICE(p_hwfn, true,
"ecore_dmae_execute_sub_operation failed. Invalid state. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
(unsigned long long)src_addr, (unsigned long long)dst_addr, length_cur);
return ECORE_INVAL;
}
ecore_dmae_opcode(p_hwfn,
(src_type == ECORE_DMAE_ADDRESS_GRC),
(dst_type == ECORE_DMAE_ADDRESS_GRC),
p_params);
cmd->comp_addr_lo = OSAL_CPU_TO_LE32(DMA_LO(phys));
cmd->comp_addr_hi = OSAL_CPU_TO_LE32(DMA_HI(phys));
cmd->comp_val = OSAL_CPU_TO_LE32(DMAE_COMPLETION_VAL);
/* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
cnt_split = size_in_dwords / length_limit;
length_mod = size_in_dwords % length_limit;
src_addr_split = src_addr;
dst_addr_split = dst_addr;
for (i = 0; i <= cnt_split; i++) {
offset = length_limit * i;
if (!ECORE_DMAE_FLAGS_IS_SET(p_params, RW_REPL_SRC)) {
if (src_type == ECORE_DMAE_ADDRESS_GRC)
src_addr_split = src_addr + offset;
else
src_addr_split = src_addr + (offset*4);
}
if (dst_type == ECORE_DMAE_ADDRESS_GRC)
dst_addr_split = dst_addr + offset;
else
dst_addr_split = dst_addr + (offset*4);
length_cur = (cnt_split == i) ? length_mod : length_limit;
/* might be zero on last iteration */
if (!length_cur)
continue;
ecore_status = ecore_dmae_execute_sub_operation(p_hwfn,
p_ptt,
src_addr_split,
dst_addr_split,
src_type,
dst_type,
length_cur);
if (ecore_status != ECORE_SUCCESS) {
DP_NOTICE(p_hwfn, false,
"ecore_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
ecore_status, (unsigned long long)src_addr, (unsigned long long)dst_addr, length_cur);
ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_DMAE_FAIL);
break;
}
}
return ecore_status;
}
enum _ecore_status_t ecore_dmae_host2grc(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u64 source_addr,
u32 grc_addr,
u32 size_in_dwords,
struct ecore_dmae_params *p_params)
{
u32 grc_addr_in_dw = grc_addr / sizeof(u32);
enum _ecore_status_t rc;
OSAL_SPIN_LOCK(&p_hwfn->dmae_info.lock);
rc = ecore_dmae_execute_command(p_hwfn, p_ptt, source_addr,
grc_addr_in_dw,
ECORE_DMAE_ADDRESS_HOST_VIRT,
ECORE_DMAE_ADDRESS_GRC,
size_in_dwords, p_params);
OSAL_SPIN_UNLOCK(&p_hwfn->dmae_info.lock);
return rc;
}
enum _ecore_status_t ecore_dmae_grc2host(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u32 grc_addr,
dma_addr_t dest_addr,
u32 size_in_dwords,
struct ecore_dmae_params *p_params)
{
u32 grc_addr_in_dw = grc_addr / sizeof(u32);
enum _ecore_status_t rc;
OSAL_SPIN_LOCK(&(p_hwfn->dmae_info.lock));
rc = ecore_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
dest_addr, ECORE_DMAE_ADDRESS_GRC,
ECORE_DMAE_ADDRESS_HOST_VIRT,
size_in_dwords, p_params);
OSAL_SPIN_UNLOCK(&(p_hwfn->dmae_info.lock));
return rc;
}
enum _ecore_status_t ecore_dmae_host2host(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
dma_addr_t source_addr,
dma_addr_t dest_addr,
u32 size_in_dwords,
struct ecore_dmae_params *p_params)
{
enum _ecore_status_t rc;
OSAL_SPIN_LOCK(&p_hwfn->dmae_info.lock);
rc = ecore_dmae_execute_command(p_hwfn, p_ptt, source_addr,
dest_addr,
ECORE_DMAE_ADDRESS_HOST_PHYS,
ECORE_DMAE_ADDRESS_HOST_PHYS,
size_in_dwords,
p_params);
OSAL_SPIN_UNLOCK(&p_hwfn->dmae_info.lock);
return rc;
}
void ecore_hw_err_notify(struct ecore_hwfn *p_hwfn,
enum ecore_hw_err_type err_type)
{
/* Fan failure cannot be masked by handling of another HW error */
if (p_hwfn->p_dev->recov_in_prog && err_type != ECORE_HW_ERR_FAN_FAIL) {
DP_VERBOSE(p_hwfn, ECORE_MSG_DRV,
"Recovery is in progress. Avoid notifying about HW error %d.\n",
err_type);
return;
}
OSAL_HW_ERROR_OCCURRED(p_hwfn, err_type);
}
enum _ecore_status_t ecore_dmae_sanity(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
const char *phase)
{
u32 size = OSAL_PAGE_SIZE / 2, val;
enum _ecore_status_t rc = ECORE_SUCCESS;
dma_addr_t p_phys;
void *p_virt;
u32 *p_tmp;
p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, &p_phys, 2 * size);
if (!p_virt) {
DP_NOTICE(p_hwfn, false,
"DMAE sanity [%s]: failed to allocate memory\n",
phase);
return ECORE_NOMEM;
}
/* Fill the bottom half of the allocated memory with a known pattern */
for (p_tmp = (u32 *)p_virt;
p_tmp < (u32 *)((u8 *)p_virt + size);
p_tmp++) {
/* Save the address itself as the value */
val = (u32)(osal_uintptr_t)p_tmp;
*p_tmp = val;
}
/* Zero the top half of the allocated memory */
OSAL_MEM_ZERO((u8 *)p_virt + size, size);
DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
"DMAE sanity [%s]: src_addr={phys 0x%llx, virt %p}, dst_addr={phys 0x%llx, virt %p}, size 0x%x\n",
phase, (unsigned long long)p_phys, p_virt,
(unsigned long long)(p_phys + size), (u8 *)p_virt + size,
size);
rc = ecore_dmae_host2host(p_hwfn, p_ptt, p_phys, p_phys + size,
size / 4 /* size_in_dwords */,
OSAL_NULL /* default parameters */);
if (rc != ECORE_SUCCESS) {
DP_NOTICE(p_hwfn, false,
"DMAE sanity [%s]: ecore_dmae_host2host() failed. rc = %d.\n",
phase, rc);
goto out;
}
/* Verify that the top half of the allocated memory has the pattern */
for (p_tmp = (u32 *)((u8 *)p_virt + size);
p_tmp < (u32 *)((u8 *)p_virt + (2 * size));
p_tmp++) {
/* The corresponding address in the bottom half */
val = (u32)(osal_uintptr_t)p_tmp - size;
if (*p_tmp != val) {
DP_NOTICE(p_hwfn, false,
"DMAE sanity [%s]: addr={phys 0x%llx, virt %p}, read_val 0x%08x, expected_val 0x%08x\n",
phase,
(unsigned long long)(p_phys + (u32)((u8 *)p_tmp - (u8 *)p_virt)),
p_tmp, *p_tmp, val);
rc = ECORE_UNKNOWN_ERROR;
goto out;
}
}
out:
OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_virt, p_phys, 2 * size);
return rc;
}
void ecore_ppfid_wr(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
u8 abs_ppfid, u32 hw_addr, u32 val)
{
u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid);
ecore_fid_pretend(p_hwfn, p_ptt,
pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
ecore_wr(p_hwfn, p_ptt, hw_addr, val);
ecore_fid_pretend(p_hwfn, p_ptt,
p_hwfn->rel_pf_id <<
PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
}
u32 ecore_ppfid_rd(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
u8 abs_ppfid, u32 hw_addr)
{
u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid);
u32 val;
ecore_fid_pretend(p_hwfn, p_ptt,
pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
val = ecore_rd(p_hwfn, p_ptt, hw_addr);
ecore_fid_pretend(p_hwfn, p_ptt,
p_hwfn->rel_pf_id <<
PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
return val;
}
#ifdef _NTDDK_
#pragma warning(pop)
#endif