fbe7e9c7e4
Convert all remaining references to that field to "ref_count" and update comments accordingly. No functional change intended. Reviewed by: alc, kib Sponsored by: Intel, Netflix Differential Revision: https://reviews.freebsd.org/D21768
935 lines
34 KiB
C
935 lines
34 KiB
C
/*-
|
|
* SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
|
|
*
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* Resident memory system definitions.
|
|
*/
|
|
|
|
#ifndef _VM_PAGE_
|
|
#define _VM_PAGE_
|
|
|
|
#include <vm/pmap.h>
|
|
|
|
/*
|
|
* Management of resident (logical) pages.
|
|
*
|
|
* A small structure is kept for each resident
|
|
* page, indexed by page number. Each structure
|
|
* is an element of several collections:
|
|
*
|
|
* A radix tree used to quickly
|
|
* perform object/offset lookups
|
|
*
|
|
* A list of all pages for a given object,
|
|
* so they can be quickly deactivated at
|
|
* time of deallocation.
|
|
*
|
|
* An ordered list of pages due for pageout.
|
|
*
|
|
* In addition, the structure contains the object
|
|
* and offset to which this page belongs (for pageout),
|
|
* and sundry status bits.
|
|
*
|
|
* In general, operations on this structure's mutable fields are
|
|
* synchronized using either one of or a combination of the lock on the
|
|
* object that the page belongs to (O), the page lock (P),
|
|
* the per-domain lock for the free queues (F), or the page's queue
|
|
* lock (Q). The physical address of a page is used to select its page
|
|
* lock from a pool. The queue lock for a page depends on the value of
|
|
* its queue field and described in detail below. If a field is
|
|
* annotated below with two of these locks, then holding either lock is
|
|
* sufficient for read access, but both locks are required for write
|
|
* access. An annotation of (C) indicates that the field is immutable.
|
|
* An annotation of (A) indicates that modifications to the field must
|
|
* be atomic. Accesses to such fields may require additional
|
|
* synchronization depending on the context.
|
|
*
|
|
* In contrast, the synchronization of accesses to the page's
|
|
* dirty field is machine dependent (M). In the
|
|
* machine-independent layer, the lock on the object that the
|
|
* page belongs to must be held in order to operate on the field.
|
|
* However, the pmap layer is permitted to set all bits within
|
|
* the field without holding that lock. If the underlying
|
|
* architecture does not support atomic read-modify-write
|
|
* operations on the field's type, then the machine-independent
|
|
* layer uses a 32-bit atomic on the aligned 32-bit word that
|
|
* contains the dirty field. In the machine-independent layer,
|
|
* the implementation of read-modify-write operations on the
|
|
* field is encapsulated in vm_page_clear_dirty_mask().
|
|
*
|
|
* The ref_count field tracks references to the page. References that
|
|
* prevent the page from being reclaimable are called wirings and are
|
|
* counted in the low bits of ref_count. The containing object's
|
|
* reference, if one exists, is counted using the VPRC_OBJREF bit in the
|
|
* ref_count field. Additionally, the VPRC_BLOCKED bit is used to
|
|
* atomically check for wirings and prevent new wirings via
|
|
* pmap_extract_and_hold(). When a page belongs to an object, it may be
|
|
* wired only when the object is locked, or the page is busy, or by
|
|
* pmap_extract_and_hold(). As a result, if the object is locked and the
|
|
* page is not busy (or is exclusively busied by the current thread), and
|
|
* the page is unmapped, its wire count will not increase. The ref_count
|
|
* field is updated using atomic operations in most cases, except when it
|
|
* is known that no other references to the page exist, such as in the page
|
|
* allocator. A page may be present in the page queues, or even actively
|
|
* scanned by the page daemon, without an explicitly counted referenced.
|
|
* The page daemon must therefore handle the possibility of a concurrent
|
|
* free of the page.
|
|
*
|
|
* The busy lock is an embedded reader-writer lock which protects the
|
|
* page's contents and identity (i.e., its <object, pindex> tuple) and
|
|
* interlocks with the object lock (O). In particular, a page may be
|
|
* busied or unbusied only with the object write lock held. To avoid
|
|
* bloating the page structure, the busy lock lacks some of the
|
|
* features available to the kernel's general-purpose synchronization
|
|
* primitives. As a result, busy lock ordering rules are not verified,
|
|
* lock recursion is not detected, and an attempt to xbusy a busy page
|
|
* or sbusy an xbusy page results will trigger a panic rather than
|
|
* causing the thread to block. vm_page_sleep_if_busy() can be used to
|
|
* sleep until the page's busy state changes, after which the caller
|
|
* must re-lookup the page and re-evaluate its state.
|
|
*
|
|
* The queue field is the index of the page queue containing the page,
|
|
* or PQ_NONE if the page is not enqueued. The queue lock of a page is
|
|
* the page queue lock corresponding to the page queue index, or the
|
|
* page lock (P) for the page if it is not enqueued. To modify the
|
|
* queue field, the queue lock for the old value of the field must be
|
|
* held. There is one exception to this rule: the page daemon may
|
|
* transition the queue field from PQ_INACTIVE to PQ_NONE immediately
|
|
* prior to freeing a page during an inactive queue scan. At that
|
|
* point the page has already been physically dequeued and no other
|
|
* references to that vm_page structure exist.
|
|
*
|
|
* To avoid contention on page queue locks, page queue operations
|
|
* (enqueue, dequeue, requeue) are batched using per-CPU queues. A
|
|
* deferred operation is requested by inserting an entry into a batch
|
|
* queue; the entry is simply a pointer to the page, and the request
|
|
* type is encoded in the page's aflags field using the values in
|
|
* PGA_QUEUE_STATE_MASK. The type-stability of struct vm_pages is
|
|
* crucial to this scheme since the processing of entries in a given
|
|
* batch queue may be deferred indefinitely. In particular, a page may
|
|
* be freed before its pending batch queue entries have been processed.
|
|
* The page lock (P) must be held to schedule a batched queue
|
|
* operation, and the page queue lock must be held in order to process
|
|
* batch queue entries for the page queue. There is one exception to
|
|
* this rule: the thread freeing a page may schedule a dequeue without
|
|
* holding the page lock. In this scenario the only other thread which
|
|
* may hold a reference to the page is the page daemon, which is
|
|
* careful to avoid modifying the page's queue state once the dequeue
|
|
* has been requested by setting PGA_DEQUEUE.
|
|
*/
|
|
|
|
#if PAGE_SIZE == 4096
|
|
#define VM_PAGE_BITS_ALL 0xffu
|
|
typedef uint8_t vm_page_bits_t;
|
|
#elif PAGE_SIZE == 8192
|
|
#define VM_PAGE_BITS_ALL 0xffffu
|
|
typedef uint16_t vm_page_bits_t;
|
|
#elif PAGE_SIZE == 16384
|
|
#define VM_PAGE_BITS_ALL 0xffffffffu
|
|
typedef uint32_t vm_page_bits_t;
|
|
#elif PAGE_SIZE == 32768
|
|
#define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
|
|
typedef uint64_t vm_page_bits_t;
|
|
#endif
|
|
|
|
struct vm_page {
|
|
union {
|
|
TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */
|
|
struct {
|
|
SLIST_ENTRY(vm_page) ss; /* private slists */
|
|
void *pv;
|
|
} s;
|
|
struct {
|
|
u_long p;
|
|
u_long v;
|
|
} memguard;
|
|
} plinks;
|
|
TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */
|
|
vm_object_t object; /* which object am I in (O) */
|
|
vm_pindex_t pindex; /* offset into object (O,P) */
|
|
vm_paddr_t phys_addr; /* physical address of page (C) */
|
|
struct md_page md; /* machine dependent stuff */
|
|
u_int ref_count; /* page references (A) */
|
|
volatile u_int busy_lock; /* busy owners lock */
|
|
uint16_t flags; /* page PG_* flags (P) */
|
|
uint8_t order; /* index of the buddy queue (F) */
|
|
uint8_t pool; /* vm_phys freepool index (F) */
|
|
uint8_t aflags; /* access is atomic */
|
|
uint8_t oflags; /* page VPO_* flags (O) */
|
|
uint8_t queue; /* page queue index (Q) */
|
|
int8_t psind; /* pagesizes[] index (O) */
|
|
int8_t segind; /* vm_phys segment index (C) */
|
|
u_char act_count; /* page usage count (P) */
|
|
/* NOTE that these must support one bit per DEV_BSIZE in a page */
|
|
/* so, on normal X86 kernels, they must be at least 8 bits wide */
|
|
vm_page_bits_t valid; /* map of valid DEV_BSIZE chunks (O) */
|
|
vm_page_bits_t dirty; /* map of dirty DEV_BSIZE chunks (M) */
|
|
};
|
|
|
|
/*
|
|
* Special bits used in the ref_count field.
|
|
*
|
|
* ref_count is normally used to count wirings that prevent the page from being
|
|
* reclaimed, but also supports several special types of references that do not
|
|
* prevent reclamation. Accesses to the ref_count field must be atomic unless
|
|
* the page is unallocated.
|
|
*
|
|
* VPRC_OBJREF is the reference held by the containing object. It can set or
|
|
* cleared only when the corresponding object's write lock is held.
|
|
*
|
|
* VPRC_BLOCKED is used to atomically block wirings via pmap lookups while
|
|
* attempting to tear down all mappings of a given page. The page lock and
|
|
* object write lock must both be held in order to set or clear this bit.
|
|
*/
|
|
#define VPRC_BLOCKED 0x40000000u /* mappings are being removed */
|
|
#define VPRC_OBJREF 0x80000000u /* object reference, cleared with (O) */
|
|
#define VPRC_WIRE_COUNT(c) ((c) & ~(VPRC_BLOCKED | VPRC_OBJREF))
|
|
#define VPRC_WIRE_COUNT_MAX (~(VPRC_BLOCKED | VPRC_OBJREF))
|
|
|
|
/*
|
|
* Page flags stored in oflags:
|
|
*
|
|
* Access to these page flags is synchronized by the lock on the object
|
|
* containing the page (O).
|
|
*
|
|
* Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
|
|
* indicates that the page is not under PV management but
|
|
* otherwise should be treated as a normal page. Pages not
|
|
* under PV management cannot be paged out via the
|
|
* object/vm_page_t because there is no knowledge of their pte
|
|
* mappings, and such pages are also not on any PQ queue.
|
|
*
|
|
*/
|
|
#define VPO_KMEM_EXEC 0x01 /* kmem mapping allows execution */
|
|
#define VPO_SWAPSLEEP 0x02 /* waiting for swap to finish */
|
|
#define VPO_UNMANAGED 0x04 /* no PV management for page */
|
|
#define VPO_SWAPINPROG 0x08 /* swap I/O in progress on page */
|
|
#define VPO_NOSYNC 0x10 /* do not collect for syncer */
|
|
|
|
/*
|
|
* Busy page implementation details.
|
|
* The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation,
|
|
* even if the support for owner identity is removed because of size
|
|
* constraints. Checks on lock recursion are then not possible, while the
|
|
* lock assertions effectiveness is someway reduced.
|
|
*/
|
|
#define VPB_BIT_SHARED 0x01
|
|
#define VPB_BIT_EXCLUSIVE 0x02
|
|
#define VPB_BIT_WAITERS 0x04
|
|
#define VPB_BIT_FLAGMASK \
|
|
(VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS)
|
|
|
|
#define VPB_SHARERS_SHIFT 3
|
|
#define VPB_SHARERS(x) \
|
|
(((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT)
|
|
#define VPB_SHARERS_WORD(x) ((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED)
|
|
#define VPB_ONE_SHARER (1 << VPB_SHARERS_SHIFT)
|
|
|
|
#define VPB_SINGLE_EXCLUSIVER VPB_BIT_EXCLUSIVE
|
|
|
|
#define VPB_UNBUSIED VPB_SHARERS_WORD(0)
|
|
|
|
#define PQ_NONE 255
|
|
#define PQ_INACTIVE 0
|
|
#define PQ_ACTIVE 1
|
|
#define PQ_LAUNDRY 2
|
|
#define PQ_UNSWAPPABLE 3
|
|
#define PQ_COUNT 4
|
|
|
|
#ifndef VM_PAGE_HAVE_PGLIST
|
|
TAILQ_HEAD(pglist, vm_page);
|
|
#define VM_PAGE_HAVE_PGLIST
|
|
#endif
|
|
SLIST_HEAD(spglist, vm_page);
|
|
|
|
#ifdef _KERNEL
|
|
extern vm_page_t bogus_page;
|
|
#endif /* _KERNEL */
|
|
|
|
extern struct mtx_padalign pa_lock[];
|
|
|
|
#if defined(__arm__)
|
|
#define PDRSHIFT PDR_SHIFT
|
|
#elif !defined(PDRSHIFT)
|
|
#define PDRSHIFT 21
|
|
#endif
|
|
|
|
#define pa_index(pa) ((pa) >> PDRSHIFT)
|
|
#define PA_LOCKPTR(pa) ((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT]))
|
|
#define PA_LOCKOBJPTR(pa) ((struct lock_object *)PA_LOCKPTR((pa)))
|
|
#define PA_LOCK(pa) mtx_lock(PA_LOCKPTR(pa))
|
|
#define PA_TRYLOCK(pa) mtx_trylock(PA_LOCKPTR(pa))
|
|
#define PA_UNLOCK(pa) mtx_unlock(PA_LOCKPTR(pa))
|
|
#define PA_UNLOCK_COND(pa) \
|
|
do { \
|
|
if ((pa) != 0) { \
|
|
PA_UNLOCK((pa)); \
|
|
(pa) = 0; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define PA_LOCK_ASSERT(pa, a) mtx_assert(PA_LOCKPTR(pa), (a))
|
|
|
|
#if defined(KLD_MODULE) && !defined(KLD_TIED)
|
|
#define vm_page_lock(m) vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE)
|
|
#define vm_page_unlock(m) vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE)
|
|
#define vm_page_trylock(m) vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE)
|
|
#else /* !KLD_MODULE */
|
|
#define vm_page_lockptr(m) (PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
|
|
#define vm_page_lock(m) mtx_lock(vm_page_lockptr((m)))
|
|
#define vm_page_unlock(m) mtx_unlock(vm_page_lockptr((m)))
|
|
#define vm_page_trylock(m) mtx_trylock(vm_page_lockptr((m)))
|
|
#endif
|
|
#if defined(INVARIANTS)
|
|
#define vm_page_assert_locked(m) \
|
|
vm_page_assert_locked_KBI((m), __FILE__, __LINE__)
|
|
#define vm_page_lock_assert(m, a) \
|
|
vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__)
|
|
#else
|
|
#define vm_page_assert_locked(m)
|
|
#define vm_page_lock_assert(m, a)
|
|
#endif
|
|
|
|
/*
|
|
* The vm_page's aflags are updated using atomic operations. To set or clear
|
|
* these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear()
|
|
* must be used. Neither these flags nor these functions are part of the KBI.
|
|
*
|
|
* PGA_REFERENCED may be cleared only if the page is locked. It is set by
|
|
* both the MI and MD VM layers. However, kernel loadable modules should not
|
|
* directly set this flag. They should call vm_page_reference() instead.
|
|
*
|
|
* PGA_WRITEABLE is set exclusively on managed pages by pmap_enter().
|
|
* When it does so, the object must be locked, or the page must be
|
|
* exclusive busied. The MI VM layer must never access this flag
|
|
* directly. Instead, it should call pmap_page_is_write_mapped().
|
|
*
|
|
* PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has
|
|
* at least one executable mapping. It is not consumed by the MI VM layer.
|
|
*
|
|
* PGA_ENQUEUED is set and cleared when a page is inserted into or removed
|
|
* from a page queue, respectively. It determines whether the plinks.q field
|
|
* of the page is valid. To set or clear this flag, the queue lock for the
|
|
* page must be held: the page queue lock corresponding to the page's "queue"
|
|
* field if its value is not PQ_NONE, and the page lock otherwise.
|
|
*
|
|
* PGA_DEQUEUE is set when the page is scheduled to be dequeued from a page
|
|
* queue, and cleared when the dequeue request is processed. A page may
|
|
* have PGA_DEQUEUE set and PGA_ENQUEUED cleared, for instance if a dequeue
|
|
* is requested after the page is scheduled to be enqueued but before it is
|
|
* actually inserted into the page queue. For allocated pages, the page lock
|
|
* must be held to set this flag, but it may be set by vm_page_free_prep()
|
|
* without the page lock held. The page queue lock must be held to clear the
|
|
* PGA_DEQUEUE flag.
|
|
*
|
|
* PGA_REQUEUE is set when the page is scheduled to be enqueued or requeued
|
|
* in its page queue. The page lock must be held to set this flag, and the
|
|
* queue lock for the page must be held to clear it.
|
|
*
|
|
* PGA_REQUEUE_HEAD is a special flag for enqueuing pages near the head of
|
|
* the inactive queue, thus bypassing LRU. The page lock must be held to
|
|
* set this flag, and the queue lock for the page must be held to clear it.
|
|
*/
|
|
#define PGA_WRITEABLE 0x01 /* page may be mapped writeable */
|
|
#define PGA_REFERENCED 0x02 /* page has been referenced */
|
|
#define PGA_EXECUTABLE 0x04 /* page may be mapped executable */
|
|
#define PGA_ENQUEUED 0x08 /* page is enqueued in a page queue */
|
|
#define PGA_DEQUEUE 0x10 /* page is due to be dequeued */
|
|
#define PGA_REQUEUE 0x20 /* page is due to be requeued */
|
|
#define PGA_REQUEUE_HEAD 0x40 /* page requeue should bypass LRU */
|
|
|
|
#define PGA_QUEUE_STATE_MASK (PGA_ENQUEUED | PGA_DEQUEUE | PGA_REQUEUE | \
|
|
PGA_REQUEUE_HEAD)
|
|
|
|
/*
|
|
* Page flags. If changed at any other time than page allocation or
|
|
* freeing, the modification must be protected by the vm_page lock.
|
|
*
|
|
* The PG_PCPU_CACHE flag is set at allocation time if the page was
|
|
* allocated from a per-CPU cache. It is cleared the next time that the
|
|
* page is allocated from the physical memory allocator.
|
|
*/
|
|
#define PG_PCPU_CACHE 0x0001 /* was allocated from per-CPU caches */
|
|
#define PG_FICTITIOUS 0x0004 /* physical page doesn't exist */
|
|
#define PG_ZERO 0x0008 /* page is zeroed */
|
|
#define PG_MARKER 0x0010 /* special queue marker page */
|
|
#define PG_NODUMP 0x0080 /* don't include this page in a dump */
|
|
|
|
/*
|
|
* Misc constants.
|
|
*/
|
|
#define ACT_DECLINE 1
|
|
#define ACT_ADVANCE 3
|
|
#define ACT_INIT 5
|
|
#define ACT_MAX 64
|
|
|
|
#ifdef _KERNEL
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <machine/atomic.h>
|
|
|
|
/*
|
|
* Each pageable resident page falls into one of five lists:
|
|
*
|
|
* free
|
|
* Available for allocation now.
|
|
*
|
|
* inactive
|
|
* Low activity, candidates for reclamation.
|
|
* This list is approximately LRU ordered.
|
|
*
|
|
* laundry
|
|
* This is the list of pages that should be
|
|
* paged out next.
|
|
*
|
|
* unswappable
|
|
* Dirty anonymous pages that cannot be paged
|
|
* out because no swap device is configured.
|
|
*
|
|
* active
|
|
* Pages that are "active", i.e., they have been
|
|
* recently referenced.
|
|
*
|
|
*/
|
|
|
|
extern vm_page_t vm_page_array; /* First resident page in table */
|
|
extern long vm_page_array_size; /* number of vm_page_t's */
|
|
extern long first_page; /* first physical page number */
|
|
|
|
#define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr)
|
|
|
|
/*
|
|
* PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory
|
|
* page to which the given physical address belongs. The correct vm_page_t
|
|
* object is returned for addresses that are not page-aligned.
|
|
*/
|
|
vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
|
|
|
|
/*
|
|
* Page allocation parameters for vm_page for the functions
|
|
* vm_page_alloc(), vm_page_grab(), vm_page_alloc_contig() and
|
|
* vm_page_alloc_freelist(). Some functions support only a subset
|
|
* of the flags, and ignore others, see the flags legend.
|
|
*
|
|
* The meaning of VM_ALLOC_ZERO differs slightly between the vm_page_alloc*()
|
|
* and the vm_page_grab*() functions. See these functions for details.
|
|
*
|
|
* Bits 0 - 1 define class.
|
|
* Bits 2 - 15 dedicated for flags.
|
|
* Legend:
|
|
* (a) - vm_page_alloc() supports the flag.
|
|
* (c) - vm_page_alloc_contig() supports the flag.
|
|
* (f) - vm_page_alloc_freelist() supports the flag.
|
|
* (g) - vm_page_grab() supports the flag.
|
|
* (p) - vm_page_grab_pages() supports the flag.
|
|
* Bits above 15 define the count of additional pages that the caller
|
|
* intends to allocate.
|
|
*/
|
|
#define VM_ALLOC_NORMAL 0
|
|
#define VM_ALLOC_INTERRUPT 1
|
|
#define VM_ALLOC_SYSTEM 2
|
|
#define VM_ALLOC_CLASS_MASK 3
|
|
#define VM_ALLOC_WAITOK 0x0008 /* (acf) Sleep and retry */
|
|
#define VM_ALLOC_WAITFAIL 0x0010 /* (acf) Sleep and return error */
|
|
#define VM_ALLOC_WIRED 0x0020 /* (acfgp) Allocate a wired page */
|
|
#define VM_ALLOC_ZERO 0x0040 /* (acfgp) Allocate a prezeroed page */
|
|
#define VM_ALLOC_NOOBJ 0x0100 /* (acg) No associated object */
|
|
#define VM_ALLOC_NOBUSY 0x0200 /* (acgp) Do not excl busy the page */
|
|
#define VM_ALLOC_NOCREAT 0x0400 /* (gp) Don't create a page */
|
|
#define VM_ALLOC_IGN_SBUSY 0x1000 /* (gp) Ignore shared busy flag */
|
|
#define VM_ALLOC_NODUMP 0x2000 /* (ag) don't include in dump */
|
|
#define VM_ALLOC_SBUSY 0x4000 /* (acgp) Shared busy the page */
|
|
#define VM_ALLOC_NOWAIT 0x8000 /* (acfgp) Do not sleep */
|
|
#define VM_ALLOC_COUNT_SHIFT 16
|
|
#define VM_ALLOC_COUNT(count) ((count) << VM_ALLOC_COUNT_SHIFT)
|
|
|
|
#ifdef M_NOWAIT
|
|
static inline int
|
|
malloc2vm_flags(int malloc_flags)
|
|
{
|
|
int pflags;
|
|
|
|
KASSERT((malloc_flags & M_USE_RESERVE) == 0 ||
|
|
(malloc_flags & M_NOWAIT) != 0,
|
|
("M_USE_RESERVE requires M_NOWAIT"));
|
|
pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT :
|
|
VM_ALLOC_SYSTEM;
|
|
if ((malloc_flags & M_ZERO) != 0)
|
|
pflags |= VM_ALLOC_ZERO;
|
|
if ((malloc_flags & M_NODUMP) != 0)
|
|
pflags |= VM_ALLOC_NODUMP;
|
|
if ((malloc_flags & M_NOWAIT))
|
|
pflags |= VM_ALLOC_NOWAIT;
|
|
if ((malloc_flags & M_WAITOK))
|
|
pflags |= VM_ALLOC_WAITOK;
|
|
return (pflags);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Predicates supported by vm_page_ps_test():
|
|
*
|
|
* PS_ALL_DIRTY is true only if the entire (super)page is dirty.
|
|
* However, it can be spuriously false when the (super)page has become
|
|
* dirty in the pmap but that information has not been propagated to the
|
|
* machine-independent layer.
|
|
*/
|
|
#define PS_ALL_DIRTY 0x1
|
|
#define PS_ALL_VALID 0x2
|
|
#define PS_NONE_BUSY 0x4
|
|
|
|
int vm_page_busy_acquire(vm_page_t m, int allocflags);
|
|
void vm_page_busy_downgrade(vm_page_t m);
|
|
void vm_page_busy_sleep(vm_page_t m, const char *msg, bool nonshared);
|
|
void vm_page_free(vm_page_t m);
|
|
void vm_page_free_zero(vm_page_t m);
|
|
|
|
void vm_page_activate (vm_page_t);
|
|
void vm_page_advise(vm_page_t m, int advice);
|
|
vm_page_t vm_page_alloc(vm_object_t, vm_pindex_t, int);
|
|
vm_page_t vm_page_alloc_domain(vm_object_t, vm_pindex_t, int, int);
|
|
vm_page_t vm_page_alloc_after(vm_object_t, vm_pindex_t, int, vm_page_t);
|
|
vm_page_t vm_page_alloc_domain_after(vm_object_t, vm_pindex_t, int, int,
|
|
vm_page_t);
|
|
vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
|
|
u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
|
|
vm_paddr_t boundary, vm_memattr_t memattr);
|
|
vm_page_t vm_page_alloc_contig_domain(vm_object_t object,
|
|
vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low,
|
|
vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
|
|
vm_memattr_t memattr);
|
|
vm_page_t vm_page_alloc_freelist(int, int);
|
|
vm_page_t vm_page_alloc_freelist_domain(int, int, int);
|
|
bool vm_page_blacklist_add(vm_paddr_t pa, bool verbose);
|
|
void vm_page_change_lock(vm_page_t m, struct mtx **mtx);
|
|
vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
|
|
int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
|
|
vm_page_t *ma, int count);
|
|
int vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
|
|
int allocflags);
|
|
void vm_page_deactivate(vm_page_t);
|
|
void vm_page_deactivate_noreuse(vm_page_t);
|
|
void vm_page_dequeue(vm_page_t m);
|
|
void vm_page_dequeue_deferred(vm_page_t m);
|
|
vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
|
|
bool vm_page_free_prep(vm_page_t m);
|
|
vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
|
|
void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
|
|
int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
|
|
void vm_page_launder(vm_page_t m);
|
|
vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
|
|
vm_page_t vm_page_next(vm_page_t m);
|
|
int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *);
|
|
void vm_page_pqbatch_drain(void);
|
|
void vm_page_pqbatch_submit(vm_page_t m, uint8_t queue);
|
|
vm_page_t vm_page_prev(vm_page_t m);
|
|
bool vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m);
|
|
void vm_page_putfake(vm_page_t m);
|
|
void vm_page_readahead_finish(vm_page_t m);
|
|
bool vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low,
|
|
vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
|
|
bool vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
|
|
vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
|
|
void vm_page_reference(vm_page_t m);
|
|
#define VPR_TRYFREE 0x01
|
|
#define VPR_NOREUSE 0x02
|
|
void vm_page_release(vm_page_t m, int flags);
|
|
void vm_page_release_locked(vm_page_t m, int flags);
|
|
bool vm_page_remove(vm_page_t);
|
|
int vm_page_rename(vm_page_t, vm_object_t, vm_pindex_t);
|
|
vm_page_t vm_page_replace(vm_page_t mnew, vm_object_t object,
|
|
vm_pindex_t pindex);
|
|
void vm_page_requeue(vm_page_t m);
|
|
int vm_page_sbusied(vm_page_t m);
|
|
vm_page_t vm_page_scan_contig(u_long npages, vm_page_t m_start,
|
|
vm_page_t m_end, u_long alignment, vm_paddr_t boundary, int options);
|
|
void vm_page_set_valid_range(vm_page_t m, int base, int size);
|
|
int vm_page_sleep_if_busy(vm_page_t m, const char *msg);
|
|
int vm_page_sleep_if_xbusy(vm_page_t m, const char *msg);
|
|
vm_offset_t vm_page_startup(vm_offset_t vaddr);
|
|
void vm_page_sunbusy(vm_page_t m);
|
|
void vm_page_swapqueue(vm_page_t m, uint8_t oldq, uint8_t newq);
|
|
bool vm_page_try_remove_all(vm_page_t m);
|
|
bool vm_page_try_remove_write(vm_page_t m);
|
|
int vm_page_trysbusy(vm_page_t m);
|
|
void vm_page_unhold_pages(vm_page_t *ma, int count);
|
|
void vm_page_unswappable(vm_page_t m);
|
|
void vm_page_unwire(vm_page_t m, uint8_t queue);
|
|
bool vm_page_unwire_noq(vm_page_t m);
|
|
void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
|
|
void vm_page_wire(vm_page_t);
|
|
bool vm_page_wire_mapped(vm_page_t m);
|
|
void vm_page_xunbusy_hard(vm_page_t m);
|
|
void vm_page_set_validclean (vm_page_t, int, int);
|
|
void vm_page_clear_dirty (vm_page_t, int, int);
|
|
void vm_page_set_invalid (vm_page_t, int, int);
|
|
int vm_page_is_valid (vm_page_t, int, int);
|
|
void vm_page_test_dirty (vm_page_t);
|
|
vm_page_bits_t vm_page_bits(int base, int size);
|
|
void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
|
|
void vm_page_free_toq(vm_page_t m);
|
|
void vm_page_free_pages_toq(struct spglist *free, bool update_wire_count);
|
|
|
|
void vm_page_dirty_KBI(vm_page_t m);
|
|
void vm_page_lock_KBI(vm_page_t m, const char *file, int line);
|
|
void vm_page_unlock_KBI(vm_page_t m, const char *file, int line);
|
|
int vm_page_trylock_KBI(vm_page_t m, const char *file, int line);
|
|
#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
|
|
void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line);
|
|
void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line);
|
|
#endif
|
|
|
|
#define vm_page_assert_sbusied(m) \
|
|
KASSERT(vm_page_sbusied(m), \
|
|
("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \
|
|
(m), __FILE__, __LINE__))
|
|
|
|
#define vm_page_assert_unbusied(m) \
|
|
KASSERT(!vm_page_busied(m), \
|
|
("vm_page_assert_unbusied: page %p busy @ %s:%d", \
|
|
(m), __FILE__, __LINE__))
|
|
|
|
#define vm_page_assert_xbusied(m) \
|
|
KASSERT(vm_page_xbusied(m), \
|
|
("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \
|
|
(m), __FILE__, __LINE__))
|
|
|
|
#define vm_page_busied(m) \
|
|
((m)->busy_lock != VPB_UNBUSIED)
|
|
|
|
#define vm_page_sbusy(m) do { \
|
|
if (!vm_page_trysbusy(m)) \
|
|
panic("%s: page %p failed shared busying", __func__, \
|
|
(m)); \
|
|
} while (0)
|
|
|
|
#define vm_page_tryxbusy(m) \
|
|
(atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED, \
|
|
VPB_SINGLE_EXCLUSIVER))
|
|
|
|
#define vm_page_xbusied(m) \
|
|
(((m)->busy_lock & VPB_SINGLE_EXCLUSIVER) != 0)
|
|
|
|
#define vm_page_xbusy(m) do { \
|
|
if (!vm_page_tryxbusy(m)) \
|
|
panic("%s: page %p failed exclusive busying", __func__, \
|
|
(m)); \
|
|
} while (0)
|
|
|
|
/* Note: page m's lock must not be owned by the caller. */
|
|
#define vm_page_xunbusy(m) do { \
|
|
if (!atomic_cmpset_rel_int(&(m)->busy_lock, \
|
|
VPB_SINGLE_EXCLUSIVER, VPB_UNBUSIED)) \
|
|
vm_page_xunbusy_hard(m); \
|
|
} while (0)
|
|
|
|
#ifdef INVARIANTS
|
|
void vm_page_object_lock_assert(vm_page_t m);
|
|
#define VM_PAGE_OBJECT_LOCK_ASSERT(m) vm_page_object_lock_assert(m)
|
|
void vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits);
|
|
#define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) \
|
|
vm_page_assert_pga_writeable(m, bits)
|
|
#else
|
|
#define VM_PAGE_OBJECT_LOCK_ASSERT(m) (void)0
|
|
#define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) (void)0
|
|
#endif
|
|
|
|
/*
|
|
* We want to use atomic updates for the aflags field, which is 8 bits wide.
|
|
* However, not all architectures support atomic operations on 8-bit
|
|
* destinations. In order that we can easily use a 32-bit operation, we
|
|
* require that the aflags field be 32-bit aligned.
|
|
*/
|
|
_Static_assert(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0,
|
|
"aflags field is not 32-bit aligned");
|
|
|
|
/*
|
|
* We want to be able to update the aflags and queue fields atomically in
|
|
* the same operation.
|
|
*/
|
|
_Static_assert(offsetof(struct vm_page, aflags) / sizeof(uint32_t) ==
|
|
offsetof(struct vm_page, queue) / sizeof(uint32_t),
|
|
"aflags and queue fields do not belong to the same 32-bit word");
|
|
_Static_assert(offsetof(struct vm_page, queue) % sizeof(uint32_t) == 2,
|
|
"queue field is at an unexpected offset");
|
|
_Static_assert(sizeof(((struct vm_page *)NULL)->queue) == 1,
|
|
"queue field has an unexpected size");
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
#define VM_PAGE_AFLAG_SHIFT 0
|
|
#define VM_PAGE_QUEUE_SHIFT 16
|
|
#else
|
|
#define VM_PAGE_AFLAG_SHIFT 24
|
|
#define VM_PAGE_QUEUE_SHIFT 8
|
|
#endif
|
|
#define VM_PAGE_QUEUE_MASK (0xff << VM_PAGE_QUEUE_SHIFT)
|
|
|
|
/*
|
|
* Clear the given bits in the specified page.
|
|
*/
|
|
static inline void
|
|
vm_page_aflag_clear(vm_page_t m, uint8_t bits)
|
|
{
|
|
uint32_t *addr, val;
|
|
|
|
/*
|
|
* The PGA_REFERENCED flag can only be cleared if the page is locked.
|
|
*/
|
|
if ((bits & PGA_REFERENCED) != 0)
|
|
vm_page_assert_locked(m);
|
|
|
|
/*
|
|
* Access the whole 32-bit word containing the aflags field with an
|
|
* atomic update. Parallel non-atomic updates to the other fields
|
|
* within this word are handled properly by the atomic update.
|
|
*/
|
|
addr = (void *)&m->aflags;
|
|
val = bits << VM_PAGE_AFLAG_SHIFT;
|
|
atomic_clear_32(addr, val);
|
|
}
|
|
|
|
/*
|
|
* Set the given bits in the specified page.
|
|
*/
|
|
static inline void
|
|
vm_page_aflag_set(vm_page_t m, uint8_t bits)
|
|
{
|
|
uint32_t *addr, val;
|
|
|
|
VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits);
|
|
|
|
/*
|
|
* Access the whole 32-bit word containing the aflags field with an
|
|
* atomic update. Parallel non-atomic updates to the other fields
|
|
* within this word are handled properly by the atomic update.
|
|
*/
|
|
addr = (void *)&m->aflags;
|
|
val = bits << VM_PAGE_AFLAG_SHIFT;
|
|
atomic_set_32(addr, val);
|
|
}
|
|
|
|
/*
|
|
* Atomically update the queue state of the page. The operation fails if
|
|
* any of the queue flags in "fflags" are set or if the "queue" field of
|
|
* the page does not match the expected value; if the operation is
|
|
* successful, the flags in "nflags" are set and all other queue state
|
|
* flags are cleared.
|
|
*/
|
|
static inline bool
|
|
vm_page_pqstate_cmpset(vm_page_t m, uint32_t oldq, uint32_t newq,
|
|
uint32_t fflags, uint32_t nflags)
|
|
{
|
|
uint32_t *addr, nval, oval, qsmask;
|
|
|
|
fflags <<= VM_PAGE_AFLAG_SHIFT;
|
|
nflags <<= VM_PAGE_AFLAG_SHIFT;
|
|
newq <<= VM_PAGE_QUEUE_SHIFT;
|
|
oldq <<= VM_PAGE_QUEUE_SHIFT;
|
|
qsmask = ((PGA_DEQUEUE | PGA_REQUEUE | PGA_REQUEUE_HEAD) <<
|
|
VM_PAGE_AFLAG_SHIFT) | VM_PAGE_QUEUE_MASK;
|
|
|
|
addr = (void *)&m->aflags;
|
|
oval = atomic_load_32(addr);
|
|
do {
|
|
if ((oval & fflags) != 0)
|
|
return (false);
|
|
if ((oval & VM_PAGE_QUEUE_MASK) != oldq)
|
|
return (false);
|
|
nval = (oval & ~qsmask) | nflags | newq;
|
|
} while (!atomic_fcmpset_32(addr, &oval, nval));
|
|
|
|
return (true);
|
|
}
|
|
|
|
/*
|
|
* vm_page_dirty:
|
|
*
|
|
* Set all bits in the page's dirty field.
|
|
*
|
|
* The object containing the specified page must be locked if the
|
|
* call is made from the machine-independent layer.
|
|
*
|
|
* See vm_page_clear_dirty_mask().
|
|
*/
|
|
static __inline void
|
|
vm_page_dirty(vm_page_t m)
|
|
{
|
|
|
|
/* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */
|
|
#if (defined(KLD_MODULE) && !defined(KLD_TIED)) || defined(INVARIANTS)
|
|
vm_page_dirty_KBI(m);
|
|
#else
|
|
m->dirty = VM_PAGE_BITS_ALL;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* vm_page_undirty:
|
|
*
|
|
* Set page to not be dirty. Note: does not clear pmap modify bits
|
|
*/
|
|
static __inline void
|
|
vm_page_undirty(vm_page_t m)
|
|
{
|
|
|
|
VM_PAGE_OBJECT_LOCK_ASSERT(m);
|
|
m->dirty = 0;
|
|
}
|
|
|
|
static inline void
|
|
vm_page_replace_checked(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
|
|
vm_page_t mold)
|
|
{
|
|
vm_page_t mret;
|
|
|
|
mret = vm_page_replace(mnew, object, pindex);
|
|
KASSERT(mret == mold,
|
|
("invalid page replacement, mold=%p, mret=%p", mold, mret));
|
|
|
|
/* Unused if !INVARIANTS. */
|
|
(void)mold;
|
|
(void)mret;
|
|
}
|
|
|
|
/*
|
|
* vm_page_queue:
|
|
*
|
|
* Return the index of the queue containing m. This index is guaranteed
|
|
* not to change while the page lock is held.
|
|
*/
|
|
static inline uint8_t
|
|
vm_page_queue(vm_page_t m)
|
|
{
|
|
|
|
vm_page_assert_locked(m);
|
|
|
|
if ((m->aflags & PGA_DEQUEUE) != 0)
|
|
return (PQ_NONE);
|
|
atomic_thread_fence_acq();
|
|
return (m->queue);
|
|
}
|
|
|
|
static inline bool
|
|
vm_page_active(vm_page_t m)
|
|
{
|
|
|
|
return (vm_page_queue(m) == PQ_ACTIVE);
|
|
}
|
|
|
|
static inline bool
|
|
vm_page_inactive(vm_page_t m)
|
|
{
|
|
|
|
return (vm_page_queue(m) == PQ_INACTIVE);
|
|
}
|
|
|
|
static inline bool
|
|
vm_page_in_laundry(vm_page_t m)
|
|
{
|
|
uint8_t queue;
|
|
|
|
queue = vm_page_queue(m);
|
|
return (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE);
|
|
}
|
|
|
|
/*
|
|
* vm_page_drop:
|
|
*
|
|
* Release a reference to a page and return the old reference count.
|
|
*/
|
|
static inline u_int
|
|
vm_page_drop(vm_page_t m, u_int val)
|
|
{
|
|
u_int old;
|
|
|
|
/*
|
|
* Synchronize with vm_page_free_prep(): ensure that all updates to the
|
|
* page structure are visible before it is freed.
|
|
*/
|
|
atomic_thread_fence_rel();
|
|
old = atomic_fetchadd_int(&m->ref_count, -val);
|
|
KASSERT(old != VPRC_BLOCKED,
|
|
("vm_page_drop: page %p has an invalid refcount value", m));
|
|
return (old);
|
|
}
|
|
|
|
/*
|
|
* vm_page_wired:
|
|
*
|
|
* Perform a racy check to determine whether a reference prevents the page
|
|
* from being reclaimable. If the page's object is locked, and the page is
|
|
* unmapped and unbusied or exclusively busied by the current thread, no
|
|
* new wirings may be created.
|
|
*/
|
|
static inline bool
|
|
vm_page_wired(vm_page_t m)
|
|
{
|
|
|
|
return (VPRC_WIRE_COUNT(m->ref_count) > 0);
|
|
}
|
|
|
|
#endif /* _KERNEL */
|
|
#endif /* !_VM_PAGE_ */
|