freebsd-skq/sys/i386/isa/sound/opl3.c
swallace 5f6a57e19b Revert to earlier code which contains FreeBSD snd[1-7] probe information,
$Id$ information, and other code to make sound driver compile and work
correctly with FreeBSD.

Integrate changes obtained from Sujal Patel.  These changes are:
 o  local.h:  reverse option logic from EXCLUDE_* to AUDIO_*
 o  pas2_mixer.c:  small addition
 o  ad1848.c:  minor change with macro names
 o  sequencer.c:  minor change with note check
 o  many spelling corrections in comments in about every other file
1995-03-05 22:11:57 +00:00

1225 lines
27 KiB
C

/*
* sound/opl3.c
*
* A low level driver for Yamaha YM3812 and OPL-3 -chips
*
* Copyright by Hannu Savolainen 1993
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer. 2.
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* opl3.c,v 1.7 1994/10/01 02:16:50 swallace Exp
*/
/*
* Major improvements to the FM handling 30AUG92 by Rob Hooft,
* hooft@chem.ruu.nl
*/
#include "sound_config.h"
#if defined(CONFIGURE_SOUNDCARD) && !defined(EXCLUDE_YM3812)
#include "opl3.h"
#define MAX_VOICE 18
#define OFFS_4OP 11 /*
* * * Definitions for the operators OP3 and
* * OP4 * * begin here */
static int opl3_enabled = 0;
static int left_address = 0x388, right_address = 0x388, both_address = 0;
static int nr_voices = 9;
static int logical_voices[MAX_VOICE] =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17};
struct voice_info
{
unsigned char keyon_byte;
long bender;
long bender_range;
unsigned long orig_freq;
unsigned long current_freq;
int mode;
};
static struct voice_info voices[MAX_VOICE];
static struct voice_alloc_info *voice_alloc;
static struct channel_info *chn_info;
static struct sbi_instrument *instrmap;
static struct sbi_instrument *active_instrument[MAX_VOICE] =
{NULL};
static struct synth_info fm_info =
{"OPL-2", 0, SYNTH_TYPE_FM, FM_TYPE_ADLIB, 0, 9, 0, SBFM_MAXINSTR, 0};
static int already_initialized = 0;
static int opl3_ok = 0;
static int opl3_busy = 0;
static int fm_model = 0; /*
* * * * 0=no fm, 1=mono, 2=SB Pro 1, 3=SB
* Pro 2 * * */
static int store_instr (int instr_no, struct sbi_instrument *instr);
static void freq_to_fnum (int freq, int *block, int *fnum);
static void opl3_command (int io_addr, unsigned int addr, unsigned int val);
static int opl3_kill_note (int dev, int voice, int note, int velocity);
static unsigned char connection_mask = 0x00;
void
enable_opl3_mode (int left, int right, int both)
{
if (opl3_enabled)
return;
opl3_enabled = 1;
left_address = left;
right_address = right;
both_address = both;
fm_info.capabilities = SYNTH_CAP_OPL3;
fm_info.synth_subtype = FM_TYPE_OPL3;
}
static void
enter_4op_mode (void)
{
int i;
static int voices_4op[MAX_VOICE] =
{0, 1, 2, 9, 10, 11, 6, 7, 8, 15, 16, 17};
connection_mask = 0x3f; /* Connect all possible 4 OP voices */
opl3_command (right_address, CONNECTION_SELECT_REGISTER, 0x3f);
for (i = 0; i < 3; i++)
physical_voices[i].voice_mode = 4;
for (i = 3; i < 6; i++)
physical_voices[i].voice_mode = 0;
for (i = 9; i < 12; i++)
physical_voices[i].voice_mode = 4;
for (i = 12; i < 15; i++)
physical_voices[i].voice_mode = 0;
for (i = 0; i < 12; i++)
logical_voices[i] = voices_4op[i];
voice_alloc->max_voice = nr_voices = 12;
}
static int
opl3_ioctl (int dev,
unsigned int cmd, unsigned int arg)
{
switch (cmd)
{
case SNDCTL_FM_LOAD_INSTR:
{
struct sbi_instrument ins;
IOCTL_FROM_USER ((char *) &ins, (char *) arg, 0, sizeof (ins));
if (ins.channel < 0 || ins.channel >= SBFM_MAXINSTR)
{
printk ("FM Error: Invalid instrument number %d\n", ins.channel);
return RET_ERROR (EINVAL);
}
pmgr_inform (dev, PM_E_PATCH_LOADED, ins.channel, 0, 0, 0);
return store_instr (ins.channel, &ins);
}
break;
case SNDCTL_SYNTH_INFO:
fm_info.nr_voices = (nr_voices == 12) ? 6 : nr_voices;
IOCTL_TO_USER ((char *) arg, 0, &fm_info, sizeof (fm_info));
return 0;
break;
case SNDCTL_SYNTH_MEMAVL:
return 0x7fffffff;
break;
case SNDCTL_FM_4OP_ENABLE:
if (opl3_enabled)
enter_4op_mode ();
return 0;
break;
default:
return RET_ERROR (EINVAL);
}
}
int
opl3_detect (int ioaddr)
{
/*
* This function returns 1 if the FM chicp is present at the given I/O port
* The detection algorithm plays with the timer built in the FM chip and
* looks for a change in the status register.
*
* Note! The timers of the FM chip are not connected to AdLib (and compatible)
* boards.
*
* Note2! The chip is initialized if detected.
*/
unsigned char stat1, stat2;
int i;
if (already_initialized)
{
return 0; /*
* Do avoid duplicate initializations
*/
}
if (opl3_enabled)
ioaddr = left_address;
opl3_command (ioaddr, TIMER_CONTROL_REGISTER, TIMER1_MASK | TIMER2_MASK); /*
* Reset
* timers
* 1
* and
* 2
*/
opl3_command (ioaddr, TIMER_CONTROL_REGISTER, IRQ_RESET); /*
* Reset the
* IRQ of FM
* * chicp
*/
stat1 = INB (ioaddr); /*
* Read status register
*/
if ((stat1 & 0xE0) != 0x00)
{
return 0; /*
* Should be 0x00
*/
}
opl3_command (ioaddr, TIMER1_REGISTER, 0xff); /*
* Set timer 1 to
* 0xff
*/
opl3_command (ioaddr, TIMER_CONTROL_REGISTER,
TIMER2_MASK | TIMER1_START); /*
* Unmask and start timer 1
*/
/*
* Now we have to delay at least 80 msec
*/
for (i = 0; i < 50; i++)
tenmicrosec (); /*
* To be sure
*/
stat2 = INB (ioaddr); /*
* Read status after timers have expired
*/
/*
* Stop the timers
*/
opl3_command (ioaddr, TIMER_CONTROL_REGISTER, TIMER1_MASK | TIMER2_MASK); /*
* Reset
* timers
* 1
* and
* 2
*/
opl3_command (ioaddr, TIMER_CONTROL_REGISTER, IRQ_RESET); /*
* Reset the
* IRQ of FM
* * chicp
*/
if ((stat2 & 0xE0) != 0xc0)
{
return 0; /*
* There is no YM3812
*/
}
/*
* There is a FM chicp in this address. Now set some default values.
*/
for (i = 0; i < 9; i++)
opl3_command (ioaddr, KEYON_BLOCK + i, 0); /*
* Note off
*/
opl3_command (ioaddr, TEST_REGISTER, ENABLE_WAVE_SELECT);
opl3_command (ioaddr, PERCUSSION_REGISTER, 0x00); /*
* Melodic mode.
*/
return 1;
}
static int
opl3_kill_note (int dev, int voice, int note, int velocity)
{
struct physical_voice_info *map;
if (voice < 0 || voice >= nr_voices)
return 0;
voice_alloc->map[voice] = 0;
map = &physical_voices[logical_voices[voice]];
DEB (printk ("Kill note %d\n", voice));
if (map->voice_mode == 0)
return 0;
opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, voices[voice].keyon_byte & ~0x20);
voices[voice].keyon_byte = 0;
voices[voice].bender = 0;
voices[voice].bender_range = 200; /*
* 200 cents = 2 semitones
*/
voices[voice].orig_freq = 0;
voices[voice].current_freq = 0;
voices[voice].mode = 0;
return 0;
}
#define HIHAT 0
#define CYMBAL 1
#define TOMTOM 2
#define SNARE 3
#define BDRUM 4
#define UNDEFINED TOMTOM
#define DEFAULT TOMTOM
static int
store_instr (int instr_no, struct sbi_instrument *instr)
{
if (instr->key != FM_PATCH && (instr->key != OPL3_PATCH || !opl3_enabled))
printk ("FM warning: Invalid patch format field (key) 0x%x\n", instr->key);
memcpy ((char *) &(instrmap[instr_no]), (char *) instr, sizeof (*instr));
return 0;
}
static int
opl3_set_instr (int dev, int voice, int instr_no)
{
if (voice < 0 || voice >= nr_voices)
return 0;
if (instr_no < 0 || instr_no >= SBFM_MAXINSTR)
return 0;
active_instrument[voice] = &instrmap[instr_no];
return 0;
}
/*
* The next table looks magical, but it certainly is not. Its values have
* been calculated as table[i]=8*log(i/64)/log(2) with an obvious exception
* for i=0. This log-table converts a linear volume-scaling (0..127) to a
* logarithmic scaling as present in the FM-synthesizer chips. so : Volume
* 64 = 0 db = relative volume 0 and: Volume 32 = -6 db = relative
* volume -8 it was implemented as a table because it is only 128 bytes and
* it saves a lot of log() calculations. (RH)
*/
char fm_volume_table[128] =
{-64, -48, -40, -35, -32, -29, -27, -26, /*
* 0 - 7
*/
-24, -23, -21, -20, -19, -18, -18, -17, /*
* 8 - 15
*/
-16, -15, -15, -14, -13, -13, -12, -12, /*
* 16 - 23
*/
-11, -11, -10, -10, -10, -9, -9, -8, /*
* 24 - 31
*/
-8, -8, -7, -7, -7, -6, -6, -6,/*
* 32 - 39
*/
-5, -5, -5, -5, -4, -4, -4, -4,/*
* 40 - 47
*/
-3, -3, -3, -3, -2, -2, -2, -2,/*
* 48 - 55
*/
-2, -1, -1, -1, -1, 0, 0, 0, /*
* 56 - 63
*/
0, 0, 0, 1, 1, 1, 1, 1, /*
* 64 - 71
*/
1, 2, 2, 2, 2, 2, 2, 2, /*
* 72 - 79
*/
3, 3, 3, 3, 3, 3, 3, 4, /*
* 80 - 87
*/
4, 4, 4, 4, 4, 4, 4, 5, /*
* 88 - 95
*/
5, 5, 5, 5, 5, 5, 5, 5, /*
* 96 - 103
*/
6, 6, 6, 6, 6, 6, 6, 6, /*
* 104 - 111
*/
6, 7, 7, 7, 7, 7, 7, 7, /*
* 112 - 119
*/
7, 7, 7, 8, 8, 8, 8, 8}; /*
* * * * 120 - 127 */
static void
calc_vol (unsigned char *regbyte, int volume)
{
int level = (~*regbyte & 0x3f);
if (level)
level += fm_volume_table[volume];
if (level > 0x3f)
level = 0x3f;
if (level < 0)
level = 0;
*regbyte = (*regbyte & 0xc0) | (~level & 0x3f);
}
static void
set_voice_volume (int voice, int volume)
{
unsigned char vol1, vol2, vol3, vol4;
struct sbi_instrument *instr;
struct physical_voice_info *map;
if (voice < 0 || voice >= nr_voices)
return;
map = &physical_voices[logical_voices[voice]];
instr = active_instrument[voice];
if (!instr)
instr = &instrmap[0];
if (instr->channel < 0)
return;
if (voices[voice].mode == 0)
return;
if (voices[voice].mode == 2)
{ /*
* 2 OP voice
*/
vol1 = instr->operators[2];
vol2 = instr->operators[3];
if ((instr->operators[10] & 0x01))
{ /*
* Additive synthesis
*/
calc_vol (&vol1, volume);
calc_vol (&vol2, volume);
}
else
{ /*
* FM synthesis
*/
calc_vol (&vol2, volume);
}
opl3_command (map->ioaddr, KSL_LEVEL + map->op[0], vol1); /*
* Modulator
* volume
*/
opl3_command (map->ioaddr, KSL_LEVEL + map->op[1], vol2); /*
* Carrier
* volume
*/
}
else
{ /*
* 4 OP voice
*/
int connection;
vol1 = instr->operators[2];
vol2 = instr->operators[3];
vol3 = instr->operators[OFFS_4OP + 2];
vol4 = instr->operators[OFFS_4OP + 3];
/*
* The connection method for 4 OP voices is defined by the rightmost
* bits at the offsets 10 and 10+OFFS_4OP
*/
connection = ((instr->operators[10] & 0x01) << 1) | (instr->operators[10 + OFFS_4OP] & 0x01);
switch (connection)
{
case 0:
calc_vol (&vol4, volume); /*
* Just the OP 4 is carrier
*/
break;
case 1:
calc_vol (&vol2, volume);
calc_vol (&vol4, volume);
break;
case 2:
calc_vol (&vol1, volume);
calc_vol (&vol4, volume);
break;
case 3:
calc_vol (&vol1, volume);
calc_vol (&vol3, volume);
calc_vol (&vol4, volume);
break;
default: /*
* Why ??
*/ ;
}
opl3_command (map->ioaddr, KSL_LEVEL + map->op[0], vol1);
opl3_command (map->ioaddr, KSL_LEVEL + map->op[1], vol2);
opl3_command (map->ioaddr, KSL_LEVEL + map->op[2], vol3);
opl3_command (map->ioaddr, KSL_LEVEL + map->op[3], vol4);
}
}
static int
opl3_start_note (int dev, int voice, int note, int volume)
{
unsigned char data, fpc;
int block, fnum, freq, voice_mode;
struct sbi_instrument *instr;
struct physical_voice_info *map;
if (voice < 0 || voice >= nr_voices)
return 0;
map = &physical_voices[logical_voices[voice]];
if (map->voice_mode == 0)
return 0;
if (note == 255) /*
* Just change the volume
*/
{
set_voice_volume (voice, volume);
return 0;
}
/*
* Kill previous note before playing
*/
opl3_command (map->ioaddr, KSL_LEVEL + map->op[1], 0xff); /*
* Carrier
* volume to
* min
*/
opl3_command (map->ioaddr, KSL_LEVEL + map->op[0], 0xff); /*
* Modulator
* volume to
*/
if (map->voice_mode == 4)
{
opl3_command (map->ioaddr, KSL_LEVEL + map->op[2], 0xff);
opl3_command (map->ioaddr, KSL_LEVEL + map->op[3], 0xff);
}
opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, 0x00); /*
* Note
* off
*/
instr = active_instrument[voice];
if (!instr)
instr = &instrmap[0];
if (instr->channel < 0)
{
printk (
"OPL3: Initializing voice %d with undefined instrument\n",
voice);
return 0;
}
if (map->voice_mode == 2 && instr->key == OPL3_PATCH)
return 0; /*
* Cannot play
*/
voice_mode = map->voice_mode;
if (voice_mode == 4)
{
int voice_shift;
voice_shift = (map->ioaddr == left_address) ? 0 : 3;
voice_shift += map->voice_num;
if (instr->key != OPL3_PATCH) /*
* Just 2 OP patch
*/
{
voice_mode = 2;
connection_mask &= ~(1 << voice_shift);
}
else
{
connection_mask |= (1 << voice_shift);
}
opl3_command (right_address, CONNECTION_SELECT_REGISTER, connection_mask);
}
/*
* Set Sound Characteristics
*/
opl3_command (map->ioaddr, AM_VIB + map->op[0], instr->operators[0]);
opl3_command (map->ioaddr, AM_VIB + map->op[1], instr->operators[1]);
/*
* Set Attack/Decay
*/
opl3_command (map->ioaddr, ATTACK_DECAY + map->op[0], instr->operators[4]);
opl3_command (map->ioaddr, ATTACK_DECAY + map->op[1], instr->operators[5]);
/*
* Set Sustain/Release
*/
opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[0], instr->operators[6]);
opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[1], instr->operators[7]);
/*
* Set Wave Select
*/
opl3_command (map->ioaddr, WAVE_SELECT + map->op[0], instr->operators[8]);
opl3_command (map->ioaddr, WAVE_SELECT + map->op[1], instr->operators[9]);
/*
* Set Feedback/Connection
*/
fpc = instr->operators[10];
if (!(fpc & 0x30))
fpc |= 0x30; /*
* Ensure that at least one chn is enabled
*/
opl3_command (map->ioaddr, FEEDBACK_CONNECTION + map->voice_num,
fpc);
/*
* If the voice is a 4 OP one, initialize the operators 3 and 4 also
*/
if (voice_mode == 4)
{
/*
* Set Sound Characteristics
*/
opl3_command (map->ioaddr, AM_VIB + map->op[2], instr->operators[OFFS_4OP + 0]);
opl3_command (map->ioaddr, AM_VIB + map->op[3], instr->operators[OFFS_4OP + 1]);
/*
* Set Attack/Decay
*/
opl3_command (map->ioaddr, ATTACK_DECAY + map->op[2], instr->operators[OFFS_4OP + 4]);
opl3_command (map->ioaddr, ATTACK_DECAY + map->op[3], instr->operators[OFFS_4OP + 5]);
/*
* Set Sustain/Release
*/
opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[2], instr->operators[OFFS_4OP + 6]);
opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[3], instr->operators[OFFS_4OP + 7]);
/*
* Set Wave Select
*/
opl3_command (map->ioaddr, WAVE_SELECT + map->op[2], instr->operators[OFFS_4OP + 8]);
opl3_command (map->ioaddr, WAVE_SELECT + map->op[3], instr->operators[OFFS_4OP + 9]);
/*
* Set Feedback/Connection
*/
fpc = instr->operators[OFFS_4OP + 10];
if (!(fpc & 0x30))
fpc |= 0x30; /*
* Ensure that at least one chn is enabled
*/
opl3_command (map->ioaddr, FEEDBACK_CONNECTION + map->voice_num + 3, fpc);
}
voices[voice].mode = voice_mode;
set_voice_volume (voice, volume);
freq = voices[voice].orig_freq = note_to_freq (note) / 1000;
/*
* Since the pitch bender may have been set before playing the note, we
* have to calculate the bending now.
*/
freq = compute_finetune (voices[voice].orig_freq, voices[voice].bender, voices[voice].bender_range);
voices[voice].current_freq = freq;
freq_to_fnum (freq, &block, &fnum);
/*
* Play note
*/
data = fnum & 0xff; /*
* Least significant bits of fnumber
*/
opl3_command (map->ioaddr, FNUM_LOW + map->voice_num, data);
data = 0x20 | ((block & 0x7) << 2) | ((fnum >> 8) & 0x3);
voices[voice].keyon_byte = data;
opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, data);
if (voice_mode == 4)
opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num + 3, data);
return 0;
}
static void
freq_to_fnum (int freq, int *block, int *fnum)
{
int f, octave;
/*
* Converts the note frequency to block and fnum values for the FM chip
*/
/*
* First try to compute the block -value (octave) where the note belongs
*/
f = freq;
octave = 5;
if (f == 0)
octave = 0;
else if (f < 261)
{
while (f < 261)
{
octave--;
f <<= 1;
}
}
else if (f > 493)
{
while (f > 493)
{
octave++;
f >>= 1;
}
}
if (octave > 7)
octave = 7;
*fnum = freq * (1 << (20 - octave)) / 49716;
*block = octave;
}
static void
opl3_command (int io_addr, unsigned int addr, unsigned int val)
{
int i;
/*
* The original 2-OP synth requires a quite long delay after writing to a
* register. The OPL-3 survives with just two INBs
*/
OUTB ((unsigned char) (addr & 0xff), io_addr); /*
* Select register
*
*/
if (!opl3_enabled)
tenmicrosec ();
else
for (i = 0; i < 2; i++)
INB (io_addr);
OUTB ((unsigned char) (val & 0xff), io_addr + 1); /*
* Write to register
*
*/
if (!opl3_enabled)
{
tenmicrosec ();
tenmicrosec ();
tenmicrosec ();
}
else
for (i = 0; i < 2; i++)
INB (io_addr);
}
static void
opl3_reset (int dev)
{
int i;
for (i = 0; i < nr_voices; i++)
{
opl3_command (physical_voices[logical_voices[i]].ioaddr,
KSL_LEVEL + physical_voices[logical_voices[i]].op[0], 0xff);
opl3_command (physical_voices[logical_voices[i]].ioaddr,
KSL_LEVEL + physical_voices[logical_voices[i]].op[1], 0xff);
if (physical_voices[logical_voices[i]].voice_mode == 4)
{
opl3_command (physical_voices[logical_voices[i]].ioaddr,
KSL_LEVEL + physical_voices[logical_voices[i]].op[2], 0xff);
opl3_command (physical_voices[logical_voices[i]].ioaddr,
KSL_LEVEL + physical_voices[logical_voices[i]].op[3], 0xff);
}
opl3_kill_note (dev, i, 0, 64);
}
if (opl3_enabled)
{
voice_alloc->max_voice = nr_voices = 18;
for (i = 0; i < 18; i++)
logical_voices[i] = i;
for (i = 0; i < 18; i++)
physical_voices[i].voice_mode = 2;
}
}
static int
opl3_open (int dev, int mode)
{
if (!opl3_ok)
return RET_ERROR (ENXIO);
if (opl3_busy)
return RET_ERROR (EBUSY);
opl3_busy = 1;
connection_mask = 0x00; /*
* Just 2 OP voices
*/
if (opl3_enabled)
opl3_command (right_address, CONNECTION_SELECT_REGISTER, connection_mask);
return 0;
}
static void
opl3_close (int dev)
{
opl3_busy = 0;
voice_alloc->max_voice = nr_voices = opl3_enabled ? 18 : 9;
fm_info.nr_drums = 0;
fm_info.perc_mode = 0;
opl3_reset (dev);
}
static void
opl3_hw_control (int dev, unsigned char *event)
{
}
static int
opl3_load_patch (int dev, int format, snd_rw_buf * addr,
int offs, int count, int pmgr_flag)
{
struct sbi_instrument ins;
if (count < sizeof (ins))
{
printk ("FM Error: Patch record too short\n");
return RET_ERROR (EINVAL);
}
COPY_FROM_USER (&((char *) &ins)[offs], (char *) addr, offs, sizeof (ins) - offs);
if (ins.channel < 0 || ins.channel >= SBFM_MAXINSTR)
{
printk ("FM Error: Invalid instrument number %d\n", ins.channel);
return RET_ERROR (EINVAL);
}
ins.key = format;
return store_instr (ins.channel, &ins);
}
static void
opl3_panning (int dev, int voice, int pressure)
{
}
static void
opl3_volume_method (int dev, int mode)
{
}
#define SET_VIBRATO(cell) { \
tmp = instr->operators[(cell-1)+(((cell-1)/2)*OFFS_4OP)]; \
if (pressure > 110) \
tmp |= 0x40; /* Vibrato on */ \
opl3_command (map->ioaddr, AM_VIB + map->op[cell-1], tmp);}
static void
opl3_aftertouch (int dev, int voice, int pressure)
{
int tmp;
struct sbi_instrument *instr;
struct physical_voice_info *map;
if (voice < 0 || voice >= nr_voices)
return;
map = &physical_voices[logical_voices[voice]];
DEB (printk ("Aftertouch %d\n", voice));
if (map->voice_mode == 0)
return;
/*
* Adjust the amount of vibrato depending the pressure
*/
instr = active_instrument[voice];
if (!instr)
instr = &instrmap[0];
if (voices[voice].mode == 4)
{
int connection = ((instr->operators[10] & 0x01) << 1) | (instr->operators[10 + OFFS_4OP] & 0x01);
switch (connection)
{
case 0:
SET_VIBRATO (4);
break;
case 1:
SET_VIBRATO (2);
SET_VIBRATO (4);
break;
case 2:
SET_VIBRATO (1);
SET_VIBRATO (4);
break;
case 3:
SET_VIBRATO (1);
SET_VIBRATO (3);
SET_VIBRATO (4);
break;
}
/*
* Not implemented yet
*/
}
else
{
SET_VIBRATO (1);
if ((instr->operators[10] & 0x01)) /*
* Additive synthesis
*/
SET_VIBRATO (2);
}
}
#undef SET_VIBRATO
static void
bend_pitch (int dev, int voice, int value)
{
unsigned char data;
int block, fnum, freq;
struct physical_voice_info *map;
map = &physical_voices[logical_voices[voice]];
if (map->voice_mode == 0)
return;
voices[voice].bender = value;
if (!value)
return;
if (!(voices[voice].keyon_byte & 0x20))
return; /*
* Not keyed on
*/
freq = compute_finetune (voices[voice].orig_freq, voices[voice].bender, voices[voice].bender_range);
voices[voice].current_freq = freq;
freq_to_fnum (freq, &block, &fnum);
data = fnum & 0xff; /*
* Least significant bits of fnumber
*/
opl3_command (map->ioaddr, FNUM_LOW + map->voice_num, data);
data = 0x20 | ((block & 0x7) << 2) | ((fnum >> 8) & 0x3); /*
* *
* KEYON|OCTAVE|MS
*
* * bits * *
* of * f-num
*
*/
voices[voice].keyon_byte = data;
opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, data);
}
static void
opl3_controller (int dev, int voice, int ctrl_num, int value)
{
if (voice < 0 || voice >= nr_voices)
return;
switch (ctrl_num)
{
case CTRL_PITCH_BENDER:
bend_pitch (dev, voice, value);
break;
case CTRL_PITCH_BENDER_RANGE:
voices[voice].bender_range = value;
break;
}
}
static int
opl3_patchmgr (int dev, struct patmgr_info *rec)
{
return RET_ERROR (EINVAL);
}
static void
opl3_bender (int dev, int voice, int value)
{
if (voice < 0 || voice >= nr_voices)
return;
bend_pitch (dev, voice, value);
}
static int
opl3_alloc_voice (int dev, int chn, int note, struct voice_alloc_info *alloc)
{
int i, p, avail_voices;
struct sbi_instrument *instr;
int is4op;
int instr_no;
if (chn < 0 || chn > 15)
instr_no = 0;
else
instr_no = chn_info[chn].pgm_num;
instr = &instrmap[instr_no];
if (instr->channel < 0 || /* Instrument not loaded */
nr_voices != 12) /* Not in 4 OP mode */
is4op = 0;
else if (nr_voices == 12) /* 4 OP mode */
is4op = (instr->key == OPL3_PATCH);
else
is4op = 0;
if (is4op)
{
p = 0;
avail_voices = 6;
}
else
{
if (nr_voices == 12) /* 4 OP mode. Use the '2 OP only' voices first */
p = 6;
else
p = 0;
avail_voices = nr_voices;
}
/*
* Now try to find a free voice
*/
for (i = 0; i < avail_voices; i++)
{
if (alloc->map[p] == 0)
{
return p;
}
p = (p + 1) % nr_voices;
}
/*
* Insert some kind of priority mechanism here.
*/
printk ("OPL3: Out of free voices\n");
return 0; /* All voices in use. Select the first one. */
}
static struct synth_operations opl3_operations =
{
&fm_info,
0,
SYNTH_TYPE_FM,
FM_TYPE_ADLIB,
opl3_open,
opl3_close,
opl3_ioctl,
opl3_kill_note,
opl3_start_note,
opl3_set_instr,
opl3_reset,
opl3_hw_control,
opl3_load_patch,
opl3_aftertouch,
opl3_controller,
opl3_panning,
opl3_volume_method,
opl3_patchmgr,
opl3_bender,
opl3_alloc_voice
};
long
opl3_init (long mem_start)
{
int i;
PERMANENT_MALLOC (struct sbi_instrument *, instrmap,
SBFM_MAXINSTR * sizeof (*instrmap), mem_start);
if (num_synths >= MAX_SYNTH_DEV)
printk ("OPL3 Error: Too many synthesizers\n");
else
{
synth_devs[num_synths++] = &opl3_operations;
voice_alloc = &opl3_operations.alloc;
chn_info = &opl3_operations.chn_info[0];
}
fm_model = 0;
opl3_ok = 1;
if (opl3_enabled)
{
#ifdef __FreeBSD__
printk ("snd1: <Yamaha OPL-3 FM>");
#else
printk (" <Yamaha OPL-3 FM>");
#endif
fm_model = 2;
voice_alloc->max_voice = nr_voices = 18;
fm_info.nr_drums = 0;
fm_info.capabilities |= SYNTH_CAP_OPL3;
#ifndef SCO
strcpy (fm_info.name, "Yamaha OPL-3");
#endif
for (i = 0; i < 18; i++)
if (physical_voices[i].ioaddr == USE_LEFT)
physical_voices[i].ioaddr = left_address;
else
physical_voices[i].ioaddr = right_address;
/* Enable OPL-3 mode */
opl3_command (right_address, OPL3_MODE_REGISTER, OPL3_ENABLE);
/* Select all 2-OP voices */
opl3_command (right_address, CONNECTION_SELECT_REGISTER, 0x00);
}
else
{
#ifdef __FreeBSD__
printk ("snd1: <Yamaha 2-OP FM>");
#else
printk (" <Yamaha 2-OP FM>");
#endif
fm_model = 1;
voice_alloc->max_voice = nr_voices = 9;
fm_info.nr_drums = 0;
for (i = 0; i < 18; i++)
physical_voices[i].ioaddr = left_address;
};
already_initialized = 1;
for (i = 0; i < SBFM_MAXINSTR; i++)
instrmap[i].channel = -1;
return mem_start;
}
#endif