603d3d4a44
unnecessary white space from pipe_destroy_write_buffer().
1554 lines
37 KiB
C
1554 lines
37 KiB
C
/*
|
|
* Copyright (c) 1996 John S. Dyson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice immediately at the beginning of the file, without modification,
|
|
* this list of conditions, and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Absolutely no warranty of function or purpose is made by the author
|
|
* John S. Dyson.
|
|
* 4. Modifications may be freely made to this file if the above conditions
|
|
* are met.
|
|
*/
|
|
|
|
/*
|
|
* This file contains a high-performance replacement for the socket-based
|
|
* pipes scheme originally used in FreeBSD/4.4Lite. It does not support
|
|
* all features of sockets, but does do everything that pipes normally
|
|
* do.
|
|
*/
|
|
|
|
/*
|
|
* This code has two modes of operation, a small write mode and a large
|
|
* write mode. The small write mode acts like conventional pipes with
|
|
* a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
|
|
* "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
|
|
* and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
|
|
* the receiving process can copy it directly from the pages in the sending
|
|
* process.
|
|
*
|
|
* If the sending process receives a signal, it is possible that it will
|
|
* go away, and certainly its address space can change, because control
|
|
* is returned back to the user-mode side. In that case, the pipe code
|
|
* arranges to copy the buffer supplied by the user process, to a pageable
|
|
* kernel buffer, and the receiving process will grab the data from the
|
|
* pageable kernel buffer. Since signals don't happen all that often,
|
|
* the copy operation is normally eliminated.
|
|
*
|
|
* The constant PIPE_MINDIRECT is chosen to make sure that buffering will
|
|
* happen for small transfers so that the system will not spend all of
|
|
* its time context switching.
|
|
*
|
|
* In order to limit the resource use of pipes, two sysctls exist:
|
|
*
|
|
* kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
|
|
* address space available to us in pipe_map. Whenever the amount in use
|
|
* exceeds half of this value, all new pipes will be created with size
|
|
* SMALL_PIPE_SIZE, rather than PIPE_SIZE. Big pipe creation will be limited
|
|
* as well. This value is loader tunable only.
|
|
*
|
|
* kern.ipc.maxpipekvawired - This value limits the amount of memory that may
|
|
* be wired in order to facilitate direct copies using page flipping.
|
|
* Whenever this value is exceeded, pipes will fall back to using regular
|
|
* copies. This value is sysctl controllable at all times.
|
|
*
|
|
* These values are autotuned in subr_param.c.
|
|
*
|
|
* Memory usage may be monitored through the sysctls
|
|
* kern.ipc.pipes, kern.ipc.pipekva and kern.ipc.pipekvawired.
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_mac.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/file.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/filio.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mac.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/ttycom.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/selinfo.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/pipe.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/event.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/uma.h>
|
|
|
|
/*
|
|
* Use this define if you want to disable *fancy* VM things. Expect an
|
|
* approx 30% decrease in transfer rate. This could be useful for
|
|
* NetBSD or OpenBSD.
|
|
*/
|
|
/* #define PIPE_NODIRECT */
|
|
|
|
/*
|
|
* interfaces to the outside world
|
|
*/
|
|
static fo_rdwr_t pipe_read;
|
|
static fo_rdwr_t pipe_write;
|
|
static fo_ioctl_t pipe_ioctl;
|
|
static fo_poll_t pipe_poll;
|
|
static fo_kqfilter_t pipe_kqfilter;
|
|
static fo_stat_t pipe_stat;
|
|
static fo_close_t pipe_close;
|
|
|
|
static struct fileops pipeops = {
|
|
.fo_read = pipe_read,
|
|
.fo_write = pipe_write,
|
|
.fo_ioctl = pipe_ioctl,
|
|
.fo_poll = pipe_poll,
|
|
.fo_kqfilter = pipe_kqfilter,
|
|
.fo_stat = pipe_stat,
|
|
.fo_close = pipe_close,
|
|
.fo_flags = DFLAG_PASSABLE
|
|
};
|
|
|
|
static void filt_pipedetach(struct knote *kn);
|
|
static int filt_piperead(struct knote *kn, long hint);
|
|
static int filt_pipewrite(struct knote *kn, long hint);
|
|
|
|
static struct filterops pipe_rfiltops =
|
|
{ 1, NULL, filt_pipedetach, filt_piperead };
|
|
static struct filterops pipe_wfiltops =
|
|
{ 1, NULL, filt_pipedetach, filt_pipewrite };
|
|
|
|
#define PIPE_GET_GIANT(pipe) \
|
|
do { \
|
|
KASSERT(((pipe)->pipe_state & PIPE_LOCKFL) != 0, \
|
|
("%s:%d PIPE_GET_GIANT: line pipe not locked", \
|
|
__FILE__, __LINE__)); \
|
|
PIPE_UNLOCK(pipe); \
|
|
mtx_lock(&Giant); \
|
|
} while (0)
|
|
|
|
#define PIPE_DROP_GIANT(pipe) \
|
|
do { \
|
|
mtx_unlock(&Giant); \
|
|
PIPE_LOCK(pipe); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Default pipe buffer size(s), this can be kind-of large now because pipe
|
|
* space is pageable. The pipe code will try to maintain locality of
|
|
* reference for performance reasons, so small amounts of outstanding I/O
|
|
* will not wipe the cache.
|
|
*/
|
|
#define MINPIPESIZE (PIPE_SIZE/3)
|
|
#define MAXPIPESIZE (2*PIPE_SIZE/3)
|
|
|
|
/*
|
|
* Limit the number of "big" pipes
|
|
*/
|
|
#define LIMITBIGPIPES 32
|
|
static int nbigpipe;
|
|
|
|
static int amountpipes;
|
|
static int amountpipekva;
|
|
static int amountpipekvawired;
|
|
|
|
SYSCTL_DECL(_kern_ipc);
|
|
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RD,
|
|
&maxpipekva, 0, "Pipe KVA limit");
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekvawired, CTLFLAG_RW,
|
|
&maxpipekvawired, 0, "Pipe KVA wired limit");
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD,
|
|
&amountpipes, 0, "Current # of pipes");
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, bigpipes, CTLFLAG_RD,
|
|
&nbigpipe, 0, "Current # of big pipes");
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
|
|
&amountpipekva, 0, "Pipe KVA usage");
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, pipekvawired, CTLFLAG_RD,
|
|
&amountpipekvawired, 0, "Pipe wired KVA usage");
|
|
|
|
static void pipeinit(void *dummy __unused);
|
|
static void pipeclose(struct pipe *cpipe);
|
|
static void pipe_free_kmem(struct pipe *cpipe);
|
|
static int pipe_create(struct pipe **cpipep);
|
|
static __inline int pipelock(struct pipe *cpipe, int catch);
|
|
static __inline void pipeunlock(struct pipe *cpipe);
|
|
static __inline void pipeselwakeup(struct pipe *cpipe);
|
|
#ifndef PIPE_NODIRECT
|
|
static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
|
|
static void pipe_destroy_write_buffer(struct pipe *wpipe);
|
|
static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
|
|
static void pipe_clone_write_buffer(struct pipe *wpipe);
|
|
#endif
|
|
static int pipespace(struct pipe *cpipe, int size);
|
|
|
|
static uma_zone_t pipe_zone;
|
|
|
|
SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
|
|
|
|
static void
|
|
pipeinit(void *dummy __unused)
|
|
{
|
|
|
|
pipe_zone = uma_zcreate("PIPE", sizeof(struct pipe), NULL,
|
|
NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
|
|
KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
|
|
}
|
|
|
|
/*
|
|
* The pipe system call for the DTYPE_PIPE type of pipes
|
|
*/
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
pipe(td, uap)
|
|
struct thread *td;
|
|
struct pipe_args /* {
|
|
int dummy;
|
|
} */ *uap;
|
|
{
|
|
struct filedesc *fdp = td->td_proc->p_fd;
|
|
struct file *rf, *wf;
|
|
struct pipe *rpipe, *wpipe;
|
|
struct mtx *pmtx;
|
|
int fd, error;
|
|
|
|
pmtx = malloc(sizeof(*pmtx), M_TEMP, M_WAITOK | M_ZERO);
|
|
|
|
rpipe = wpipe = NULL;
|
|
if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
|
|
pipeclose(rpipe);
|
|
pipeclose(wpipe);
|
|
free(pmtx, M_TEMP);
|
|
return (ENFILE);
|
|
}
|
|
|
|
rpipe->pipe_state |= PIPE_DIRECTOK;
|
|
wpipe->pipe_state |= PIPE_DIRECTOK;
|
|
|
|
error = falloc(td, &rf, &fd);
|
|
if (error) {
|
|
pipeclose(rpipe);
|
|
pipeclose(wpipe);
|
|
free(pmtx, M_TEMP);
|
|
return (error);
|
|
}
|
|
fhold(rf);
|
|
td->td_retval[0] = fd;
|
|
|
|
/*
|
|
* Warning: once we've gotten past allocation of the fd for the
|
|
* read-side, we can only drop the read side via fdrop() in order
|
|
* to avoid races against processes which manage to dup() the read
|
|
* side while we are blocked trying to allocate the write side.
|
|
*/
|
|
FILE_LOCK(rf);
|
|
rf->f_flag = FREAD | FWRITE;
|
|
rf->f_type = DTYPE_PIPE;
|
|
rf->f_data = rpipe;
|
|
rf->f_ops = &pipeops;
|
|
FILE_UNLOCK(rf);
|
|
error = falloc(td, &wf, &fd);
|
|
if (error) {
|
|
FILEDESC_LOCK(fdp);
|
|
if (fdp->fd_ofiles[td->td_retval[0]] == rf) {
|
|
fdp->fd_ofiles[td->td_retval[0]] = NULL;
|
|
FILEDESC_UNLOCK(fdp);
|
|
fdrop(rf, td);
|
|
} else
|
|
FILEDESC_UNLOCK(fdp);
|
|
fdrop(rf, td);
|
|
/* rpipe has been closed by fdrop(). */
|
|
pipeclose(wpipe);
|
|
free(pmtx, M_TEMP);
|
|
return (error);
|
|
}
|
|
FILE_LOCK(wf);
|
|
wf->f_flag = FREAD | FWRITE;
|
|
wf->f_type = DTYPE_PIPE;
|
|
wf->f_data = wpipe;
|
|
wf->f_ops = &pipeops;
|
|
FILE_UNLOCK(wf);
|
|
td->td_retval[1] = fd;
|
|
rpipe->pipe_peer = wpipe;
|
|
wpipe->pipe_peer = rpipe;
|
|
#ifdef MAC
|
|
/*
|
|
* struct pipe represents a pipe endpoint. The MAC label is shared
|
|
* between the connected endpoints. As a result mac_init_pipe() and
|
|
* mac_create_pipe() should only be called on one of the endpoints
|
|
* after they have been connected.
|
|
*/
|
|
mac_init_pipe(rpipe);
|
|
mac_create_pipe(td->td_ucred, rpipe);
|
|
#endif
|
|
mtx_init(pmtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
|
|
rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
|
|
fdrop(rf, td);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate kva for pipe circular buffer, the space is pageable
|
|
* This routine will 'realloc' the size of a pipe safely, if it fails
|
|
* it will retain the old buffer.
|
|
* If it fails it will return ENOMEM.
|
|
*/
|
|
static int
|
|
pipespace(cpipe, size)
|
|
struct pipe *cpipe;
|
|
int size;
|
|
{
|
|
struct vm_object *object;
|
|
caddr_t buffer;
|
|
int npages, error;
|
|
static int curfail = 0;
|
|
static struct timeval lastfail;
|
|
|
|
KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
|
|
("pipespace: pipe mutex locked"));
|
|
|
|
size = round_page(size);
|
|
npages = size / PAGE_SIZE;
|
|
/*
|
|
* Create an object, I don't like the idea of paging to/from
|
|
* kernel_object.
|
|
* XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
|
|
*/
|
|
object = vm_object_allocate(OBJT_DEFAULT, npages);
|
|
buffer = (caddr_t) vm_map_min(pipe_map);
|
|
|
|
/*
|
|
* Insert the object into the kernel map, and allocate kva for it.
|
|
* The map entry is, by default, pageable.
|
|
* XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
|
|
*/
|
|
error = vm_map_find(pipe_map, object, 0,
|
|
(vm_offset_t *) &buffer, size, 1,
|
|
VM_PROT_ALL, VM_PROT_ALL, 0);
|
|
|
|
if (error != KERN_SUCCESS) {
|
|
vm_object_deallocate(object);
|
|
if (ppsratecheck(&lastfail, &curfail, 1))
|
|
printf("kern.maxpipekva exceeded, please see tuning(7).\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* free old resources if we're resizing */
|
|
pipe_free_kmem(cpipe);
|
|
cpipe->pipe_buffer.buffer = buffer;
|
|
cpipe->pipe_buffer.size = size;
|
|
cpipe->pipe_buffer.in = 0;
|
|
cpipe->pipe_buffer.out = 0;
|
|
cpipe->pipe_buffer.cnt = 0;
|
|
atomic_add_int(&amountpipes, 1);
|
|
atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* initialize and allocate VM and memory for pipe
|
|
*/
|
|
static int
|
|
pipe_create(cpipep)
|
|
struct pipe **cpipep;
|
|
{
|
|
struct pipe *cpipe;
|
|
int error;
|
|
|
|
*cpipep = uma_zalloc(pipe_zone, M_WAITOK);
|
|
if (*cpipep == NULL)
|
|
return (ENOMEM);
|
|
|
|
cpipe = *cpipep;
|
|
|
|
/*
|
|
* protect so pipeclose() doesn't follow a junk pointer
|
|
* if pipespace() fails.
|
|
*/
|
|
bzero(&cpipe->pipe_sel, sizeof(cpipe->pipe_sel));
|
|
cpipe->pipe_state = 0;
|
|
cpipe->pipe_peer = NULL;
|
|
cpipe->pipe_busy = 0;
|
|
|
|
#ifndef PIPE_NODIRECT
|
|
/*
|
|
* pipe data structure initializations to support direct pipe I/O
|
|
*/
|
|
cpipe->pipe_map.cnt = 0;
|
|
cpipe->pipe_map.kva = 0;
|
|
cpipe->pipe_map.pos = 0;
|
|
cpipe->pipe_map.npages = 0;
|
|
/* cpipe->pipe_map.ms[] = invalid */
|
|
#endif
|
|
|
|
cpipe->pipe_mtxp = NULL; /* avoid pipespace assertion */
|
|
/*
|
|
* Reduce to 1/4th pipe size if we're over our global max.
|
|
*/
|
|
if (amountpipekva > maxpipekva / 2)
|
|
error = pipespace(cpipe, SMALL_PIPE_SIZE);
|
|
else
|
|
error = pipespace(cpipe, PIPE_SIZE);
|
|
if (error)
|
|
return (error);
|
|
|
|
vfs_timestamp(&cpipe->pipe_ctime);
|
|
cpipe->pipe_atime = cpipe->pipe_ctime;
|
|
cpipe->pipe_mtime = cpipe->pipe_ctime;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* lock a pipe for I/O, blocking other access
|
|
*/
|
|
static __inline int
|
|
pipelock(cpipe, catch)
|
|
struct pipe *cpipe;
|
|
int catch;
|
|
{
|
|
int error;
|
|
|
|
PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
|
|
while (cpipe->pipe_state & PIPE_LOCKFL) {
|
|
cpipe->pipe_state |= PIPE_LWANT;
|
|
error = msleep(cpipe, PIPE_MTX(cpipe),
|
|
catch ? (PRIBIO | PCATCH) : PRIBIO,
|
|
"pipelk", 0);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
cpipe->pipe_state |= PIPE_LOCKFL;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* unlock a pipe I/O lock
|
|
*/
|
|
static __inline void
|
|
pipeunlock(cpipe)
|
|
struct pipe *cpipe;
|
|
{
|
|
|
|
PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
|
|
cpipe->pipe_state &= ~PIPE_LOCKFL;
|
|
if (cpipe->pipe_state & PIPE_LWANT) {
|
|
cpipe->pipe_state &= ~PIPE_LWANT;
|
|
wakeup(cpipe);
|
|
}
|
|
}
|
|
|
|
static __inline void
|
|
pipeselwakeup(cpipe)
|
|
struct pipe *cpipe;
|
|
{
|
|
|
|
if (cpipe->pipe_state & PIPE_SEL) {
|
|
cpipe->pipe_state &= ~PIPE_SEL;
|
|
selwakeup(&cpipe->pipe_sel);
|
|
}
|
|
if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
|
|
pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
|
|
KNOTE(&cpipe->pipe_sel.si_note, 0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
pipe_read(fp, uio, active_cred, flags, td)
|
|
struct file *fp;
|
|
struct uio *uio;
|
|
struct ucred *active_cred;
|
|
struct thread *td;
|
|
int flags;
|
|
{
|
|
struct pipe *rpipe = fp->f_data;
|
|
int error;
|
|
int nread = 0;
|
|
u_int size;
|
|
|
|
PIPE_LOCK(rpipe);
|
|
++rpipe->pipe_busy;
|
|
error = pipelock(rpipe, 1);
|
|
if (error)
|
|
goto unlocked_error;
|
|
|
|
#ifdef MAC
|
|
error = mac_check_pipe_read(active_cred, rpipe);
|
|
if (error)
|
|
goto locked_error;
|
|
#endif
|
|
|
|
while (uio->uio_resid) {
|
|
/*
|
|
* normal pipe buffer receive
|
|
*/
|
|
if (rpipe->pipe_buffer.cnt > 0) {
|
|
size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
|
|
if (size > rpipe->pipe_buffer.cnt)
|
|
size = rpipe->pipe_buffer.cnt;
|
|
if (size > (u_int) uio->uio_resid)
|
|
size = (u_int) uio->uio_resid;
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
error = uiomove(
|
|
&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
|
|
size, uio);
|
|
PIPE_LOCK(rpipe);
|
|
if (error)
|
|
break;
|
|
|
|
rpipe->pipe_buffer.out += size;
|
|
if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
|
|
rpipe->pipe_buffer.out = 0;
|
|
|
|
rpipe->pipe_buffer.cnt -= size;
|
|
|
|
/*
|
|
* If there is no more to read in the pipe, reset
|
|
* its pointers to the beginning. This improves
|
|
* cache hit stats.
|
|
*/
|
|
if (rpipe->pipe_buffer.cnt == 0) {
|
|
rpipe->pipe_buffer.in = 0;
|
|
rpipe->pipe_buffer.out = 0;
|
|
}
|
|
nread += size;
|
|
#ifndef PIPE_NODIRECT
|
|
/*
|
|
* Direct copy, bypassing a kernel buffer.
|
|
*/
|
|
} else if ((size = rpipe->pipe_map.cnt) &&
|
|
(rpipe->pipe_state & PIPE_DIRECTW)) {
|
|
caddr_t va;
|
|
if (size > (u_int) uio->uio_resid)
|
|
size = (u_int) uio->uio_resid;
|
|
|
|
va = (caddr_t) rpipe->pipe_map.kva +
|
|
rpipe->pipe_map.pos;
|
|
PIPE_UNLOCK(rpipe);
|
|
error = uiomove(va, size, uio);
|
|
PIPE_LOCK(rpipe);
|
|
if (error)
|
|
break;
|
|
nread += size;
|
|
rpipe->pipe_map.pos += size;
|
|
rpipe->pipe_map.cnt -= size;
|
|
if (rpipe->pipe_map.cnt == 0) {
|
|
rpipe->pipe_state &= ~PIPE_DIRECTW;
|
|
wakeup(rpipe);
|
|
}
|
|
#endif
|
|
} else {
|
|
/*
|
|
* detect EOF condition
|
|
* read returns 0 on EOF, no need to set error
|
|
*/
|
|
if (rpipe->pipe_state & PIPE_EOF)
|
|
break;
|
|
|
|
/*
|
|
* If the "write-side" has been blocked, wake it up now.
|
|
*/
|
|
if (rpipe->pipe_state & PIPE_WANTW) {
|
|
rpipe->pipe_state &= ~PIPE_WANTW;
|
|
wakeup(rpipe);
|
|
}
|
|
|
|
/*
|
|
* Break if some data was read.
|
|
*/
|
|
if (nread > 0)
|
|
break;
|
|
|
|
/*
|
|
* Unlock the pipe buffer for our remaining processing.
|
|
* We will either break out with an error or we will
|
|
* sleep and relock to loop.
|
|
*/
|
|
pipeunlock(rpipe);
|
|
|
|
/*
|
|
* Handle non-blocking mode operation or
|
|
* wait for more data.
|
|
*/
|
|
if (fp->f_flag & FNONBLOCK) {
|
|
error = EAGAIN;
|
|
} else {
|
|
rpipe->pipe_state |= PIPE_WANTR;
|
|
if ((error = msleep(rpipe, PIPE_MTX(rpipe),
|
|
PRIBIO | PCATCH,
|
|
"piperd", 0)) == 0)
|
|
error = pipelock(rpipe, 1);
|
|
}
|
|
if (error)
|
|
goto unlocked_error;
|
|
}
|
|
}
|
|
#ifdef MAC
|
|
locked_error:
|
|
#endif
|
|
pipeunlock(rpipe);
|
|
|
|
/* XXX: should probably do this before getting any locks. */
|
|
if (error == 0)
|
|
vfs_timestamp(&rpipe->pipe_atime);
|
|
unlocked_error:
|
|
--rpipe->pipe_busy;
|
|
|
|
/*
|
|
* PIPE_WANT processing only makes sense if pipe_busy is 0.
|
|
*/
|
|
if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
|
|
rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
|
|
wakeup(rpipe);
|
|
} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
|
|
/*
|
|
* Handle write blocking hysteresis.
|
|
*/
|
|
if (rpipe->pipe_state & PIPE_WANTW) {
|
|
rpipe->pipe_state &= ~PIPE_WANTW;
|
|
wakeup(rpipe);
|
|
}
|
|
}
|
|
|
|
if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
|
|
pipeselwakeup(rpipe);
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
return (error);
|
|
}
|
|
|
|
#ifndef PIPE_NODIRECT
|
|
/*
|
|
* Map the sending processes' buffer into kernel space and wire it.
|
|
* This is similar to a physical write operation.
|
|
*/
|
|
static int
|
|
pipe_build_write_buffer(wpipe, uio)
|
|
struct pipe *wpipe;
|
|
struct uio *uio;
|
|
{
|
|
u_int size;
|
|
int i;
|
|
vm_offset_t addr, endaddr;
|
|
vm_paddr_t paddr;
|
|
|
|
GIANT_REQUIRED;
|
|
PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
|
|
|
|
size = (u_int) uio->uio_iov->iov_len;
|
|
if (size > wpipe->pipe_buffer.size)
|
|
size = wpipe->pipe_buffer.size;
|
|
|
|
endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
|
|
addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
|
|
for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
|
|
vm_page_t m;
|
|
|
|
/*
|
|
* vm_fault_quick() can sleep. Consequently,
|
|
* vm_page_lock_queue() and vm_page_unlock_queue()
|
|
* should not be performed outside of this loop.
|
|
*/
|
|
if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
|
|
(paddr = pmap_extract(vmspace_pmap(curproc->p_vmspace),
|
|
addr)) == 0) {
|
|
int j;
|
|
|
|
vm_page_lock_queues();
|
|
for (j = 0; j < i; j++) {
|
|
vm_page_unhold(wpipe->pipe_map.ms[j]);
|
|
}
|
|
vm_page_unlock_queues();
|
|
return (EFAULT);
|
|
}
|
|
|
|
m = PHYS_TO_VM_PAGE(paddr);
|
|
vm_page_lock_queues();
|
|
vm_page_hold(m);
|
|
vm_page_unlock_queues();
|
|
wpipe->pipe_map.ms[i] = m;
|
|
}
|
|
|
|
/*
|
|
* set up the control block
|
|
*/
|
|
wpipe->pipe_map.npages = i;
|
|
wpipe->pipe_map.pos =
|
|
((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
|
|
wpipe->pipe_map.cnt = size;
|
|
|
|
/*
|
|
* and map the buffer
|
|
*/
|
|
if (wpipe->pipe_map.kva == 0) {
|
|
/*
|
|
* We need to allocate space for an extra page because the
|
|
* address range might (will) span pages at times.
|
|
*/
|
|
wpipe->pipe_map.kva = kmem_alloc_nofault(kernel_map,
|
|
wpipe->pipe_buffer.size + PAGE_SIZE);
|
|
atomic_add_int(&amountpipekvawired,
|
|
wpipe->pipe_buffer.size + PAGE_SIZE);
|
|
}
|
|
pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
|
|
wpipe->pipe_map.npages);
|
|
|
|
/*
|
|
* and update the uio data
|
|
*/
|
|
|
|
uio->uio_iov->iov_len -= size;
|
|
uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
|
|
if (uio->uio_iov->iov_len == 0)
|
|
uio->uio_iov++;
|
|
uio->uio_resid -= size;
|
|
uio->uio_offset += size;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* unmap and unwire the process buffer
|
|
*/
|
|
static void
|
|
pipe_destroy_write_buffer(wpipe)
|
|
struct pipe *wpipe;
|
|
{
|
|
int i;
|
|
|
|
PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
|
|
if (wpipe->pipe_map.kva) {
|
|
pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
|
|
|
|
if (amountpipekvawired > maxpipekvawired / 2) {
|
|
/* Conserve address space */
|
|
vm_offset_t kva = wpipe->pipe_map.kva;
|
|
wpipe->pipe_map.kva = 0;
|
|
kmem_free(kernel_map, kva,
|
|
wpipe->pipe_buffer.size + PAGE_SIZE);
|
|
atomic_subtract_int(&amountpipekvawired,
|
|
wpipe->pipe_buffer.size + PAGE_SIZE);
|
|
}
|
|
}
|
|
vm_page_lock_queues();
|
|
for (i = 0; i < wpipe->pipe_map.npages; i++) {
|
|
vm_page_unhold(wpipe->pipe_map.ms[i]);
|
|
}
|
|
vm_page_unlock_queues();
|
|
wpipe->pipe_map.npages = 0;
|
|
}
|
|
|
|
/*
|
|
* In the case of a signal, the writing process might go away. This
|
|
* code copies the data into the circular buffer so that the source
|
|
* pages can be freed without loss of data.
|
|
*/
|
|
static void
|
|
pipe_clone_write_buffer(wpipe)
|
|
struct pipe *wpipe;
|
|
{
|
|
int size;
|
|
int pos;
|
|
|
|
PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
|
|
size = wpipe->pipe_map.cnt;
|
|
pos = wpipe->pipe_map.pos;
|
|
|
|
wpipe->pipe_buffer.in = size;
|
|
wpipe->pipe_buffer.out = 0;
|
|
wpipe->pipe_buffer.cnt = size;
|
|
wpipe->pipe_state &= ~PIPE_DIRECTW;
|
|
|
|
PIPE_UNLOCK(wpipe);
|
|
bcopy((caddr_t) wpipe->pipe_map.kva + pos,
|
|
wpipe->pipe_buffer.buffer, size);
|
|
pipe_destroy_write_buffer(wpipe);
|
|
PIPE_LOCK(wpipe);
|
|
}
|
|
|
|
/*
|
|
* This implements the pipe buffer write mechanism. Note that only
|
|
* a direct write OR a normal pipe write can be pending at any given time.
|
|
* If there are any characters in the pipe buffer, the direct write will
|
|
* be deferred until the receiving process grabs all of the bytes from
|
|
* the pipe buffer. Then the direct mapping write is set-up.
|
|
*/
|
|
static int
|
|
pipe_direct_write(wpipe, uio)
|
|
struct pipe *wpipe;
|
|
struct uio *uio;
|
|
{
|
|
int error;
|
|
|
|
retry:
|
|
PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
|
|
while (wpipe->pipe_state & PIPE_DIRECTW) {
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
wpipe->pipe_state |= PIPE_WANTW;
|
|
error = msleep(wpipe, PIPE_MTX(wpipe),
|
|
PRIBIO | PCATCH, "pipdww", 0);
|
|
if (error)
|
|
goto error1;
|
|
if (wpipe->pipe_state & PIPE_EOF) {
|
|
error = EPIPE;
|
|
goto error1;
|
|
}
|
|
}
|
|
wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
|
|
if (wpipe->pipe_buffer.cnt > 0) {
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
|
|
wpipe->pipe_state |= PIPE_WANTW;
|
|
error = msleep(wpipe, PIPE_MTX(wpipe),
|
|
PRIBIO | PCATCH, "pipdwc", 0);
|
|
if (error)
|
|
goto error1;
|
|
if (wpipe->pipe_state & PIPE_EOF) {
|
|
error = EPIPE;
|
|
goto error1;
|
|
}
|
|
goto retry;
|
|
}
|
|
|
|
wpipe->pipe_state |= PIPE_DIRECTW;
|
|
|
|
pipelock(wpipe, 0);
|
|
PIPE_GET_GIANT(wpipe);
|
|
error = pipe_build_write_buffer(wpipe, uio);
|
|
PIPE_DROP_GIANT(wpipe);
|
|
pipeunlock(wpipe);
|
|
if (error) {
|
|
wpipe->pipe_state &= ~PIPE_DIRECTW;
|
|
goto error1;
|
|
}
|
|
|
|
error = 0;
|
|
while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
|
|
if (wpipe->pipe_state & PIPE_EOF) {
|
|
pipelock(wpipe, 0);
|
|
PIPE_UNLOCK(wpipe);
|
|
pipe_destroy_write_buffer(wpipe);
|
|
PIPE_LOCK(wpipe);
|
|
pipeselwakeup(wpipe);
|
|
pipeunlock(wpipe);
|
|
error = EPIPE;
|
|
goto error1;
|
|
}
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
pipeselwakeup(wpipe);
|
|
error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
|
|
"pipdwt", 0);
|
|
}
|
|
|
|
pipelock(wpipe,0);
|
|
if (wpipe->pipe_state & PIPE_DIRECTW) {
|
|
/*
|
|
* this bit of trickery substitutes a kernel buffer for
|
|
* the process that might be going away.
|
|
*/
|
|
pipe_clone_write_buffer(wpipe);
|
|
} else {
|
|
PIPE_UNLOCK(wpipe);
|
|
pipe_destroy_write_buffer(wpipe);
|
|
PIPE_LOCK(wpipe);
|
|
}
|
|
pipeunlock(wpipe);
|
|
return (error);
|
|
|
|
error1:
|
|
wakeup(wpipe);
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
pipe_write(fp, uio, active_cred, flags, td)
|
|
struct file *fp;
|
|
struct uio *uio;
|
|
struct ucred *active_cred;
|
|
struct thread *td;
|
|
int flags;
|
|
{
|
|
int error = 0;
|
|
int orig_resid;
|
|
struct pipe *wpipe, *rpipe;
|
|
|
|
rpipe = fp->f_data;
|
|
wpipe = rpipe->pipe_peer;
|
|
|
|
PIPE_LOCK(rpipe);
|
|
/*
|
|
* detect loss of pipe read side, issue SIGPIPE if lost.
|
|
*/
|
|
if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
|
|
PIPE_UNLOCK(rpipe);
|
|
return (EPIPE);
|
|
}
|
|
#ifdef MAC
|
|
error = mac_check_pipe_write(active_cred, wpipe);
|
|
if (error) {
|
|
PIPE_UNLOCK(rpipe);
|
|
return (error);
|
|
}
|
|
#endif
|
|
++wpipe->pipe_busy;
|
|
|
|
/*
|
|
* If it is advantageous to resize the pipe buffer, do
|
|
* so.
|
|
*/
|
|
if ((uio->uio_resid > PIPE_SIZE) &&
|
|
(amountpipekva < maxpipekva / 2) &&
|
|
(nbigpipe < LIMITBIGPIPES) &&
|
|
(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
|
|
(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
|
|
(wpipe->pipe_buffer.cnt == 0)) {
|
|
|
|
if ((error = pipelock(wpipe, 1)) == 0) {
|
|
PIPE_UNLOCK(wpipe);
|
|
if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
|
|
atomic_add_int(&nbigpipe, 1);
|
|
PIPE_LOCK(wpipe);
|
|
pipeunlock(wpipe);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If an early error occured unbusy and return, waking up any pending
|
|
* readers.
|
|
*/
|
|
if (error) {
|
|
--wpipe->pipe_busy;
|
|
if ((wpipe->pipe_busy == 0) &&
|
|
(wpipe->pipe_state & PIPE_WANT)) {
|
|
wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
|
|
wakeup(wpipe);
|
|
}
|
|
PIPE_UNLOCK(rpipe);
|
|
return(error);
|
|
}
|
|
|
|
orig_resid = uio->uio_resid;
|
|
|
|
while (uio->uio_resid) {
|
|
int space;
|
|
|
|
#ifndef PIPE_NODIRECT
|
|
/*
|
|
* If the transfer is large, we can gain performance if
|
|
* we do process-to-process copies directly.
|
|
* If the write is non-blocking, we don't use the
|
|
* direct write mechanism.
|
|
*
|
|
* The direct write mechanism will detect the reader going
|
|
* away on us.
|
|
*/
|
|
if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
|
|
(fp->f_flag & FNONBLOCK) == 0 &&
|
|
amountpipekvawired + uio->uio_resid < maxpipekvawired) {
|
|
error = pipe_direct_write(wpipe, uio);
|
|
if (error)
|
|
break;
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Pipe buffered writes cannot be coincidental with
|
|
* direct writes. We wait until the currently executing
|
|
* direct write is completed before we start filling the
|
|
* pipe buffer. We break out if a signal occurs or the
|
|
* reader goes away.
|
|
*/
|
|
retrywrite:
|
|
while (wpipe->pipe_state & PIPE_DIRECTW) {
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
|
|
"pipbww", 0);
|
|
if (wpipe->pipe_state & PIPE_EOF)
|
|
break;
|
|
if (error)
|
|
break;
|
|
}
|
|
if (wpipe->pipe_state & PIPE_EOF) {
|
|
error = EPIPE;
|
|
break;
|
|
}
|
|
|
|
space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
|
|
|
|
/* Writes of size <= PIPE_BUF must be atomic. */
|
|
if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
|
|
space = 0;
|
|
|
|
if (space > 0) {
|
|
if ((error = pipelock(wpipe,1)) == 0) {
|
|
int size; /* Transfer size */
|
|
int segsize; /* first segment to transfer */
|
|
|
|
/*
|
|
* It is possible for a direct write to
|
|
* slip in on us... handle it here...
|
|
*/
|
|
if (wpipe->pipe_state & PIPE_DIRECTW) {
|
|
pipeunlock(wpipe);
|
|
goto retrywrite;
|
|
}
|
|
/*
|
|
* If a process blocked in uiomove, our
|
|
* value for space might be bad.
|
|
*
|
|
* XXX will we be ok if the reader has gone
|
|
* away here?
|
|
*/
|
|
if (space > wpipe->pipe_buffer.size -
|
|
wpipe->pipe_buffer.cnt) {
|
|
pipeunlock(wpipe);
|
|
goto retrywrite;
|
|
}
|
|
|
|
/*
|
|
* Transfer size is minimum of uio transfer
|
|
* and free space in pipe buffer.
|
|
*/
|
|
if (space > uio->uio_resid)
|
|
size = uio->uio_resid;
|
|
else
|
|
size = space;
|
|
/*
|
|
* First segment to transfer is minimum of
|
|
* transfer size and contiguous space in
|
|
* pipe buffer. If first segment to transfer
|
|
* is less than the transfer size, we've got
|
|
* a wraparound in the buffer.
|
|
*/
|
|
segsize = wpipe->pipe_buffer.size -
|
|
wpipe->pipe_buffer.in;
|
|
if (segsize > size)
|
|
segsize = size;
|
|
|
|
/* Transfer first segment */
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
|
|
segsize, uio);
|
|
PIPE_LOCK(rpipe);
|
|
|
|
if (error == 0 && segsize < size) {
|
|
/*
|
|
* Transfer remaining part now, to
|
|
* support atomic writes. Wraparound
|
|
* happened.
|
|
*/
|
|
if (wpipe->pipe_buffer.in + segsize !=
|
|
wpipe->pipe_buffer.size)
|
|
panic("Expected pipe buffer "
|
|
"wraparound disappeared");
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
error = uiomove(
|
|
&wpipe->pipe_buffer.buffer[0],
|
|
size - segsize, uio);
|
|
PIPE_LOCK(rpipe);
|
|
}
|
|
if (error == 0) {
|
|
wpipe->pipe_buffer.in += size;
|
|
if (wpipe->pipe_buffer.in >=
|
|
wpipe->pipe_buffer.size) {
|
|
if (wpipe->pipe_buffer.in !=
|
|
size - segsize +
|
|
wpipe->pipe_buffer.size)
|
|
panic("Expected "
|
|
"wraparound bad");
|
|
wpipe->pipe_buffer.in = size -
|
|
segsize;
|
|
}
|
|
|
|
wpipe->pipe_buffer.cnt += size;
|
|
if (wpipe->pipe_buffer.cnt >
|
|
wpipe->pipe_buffer.size)
|
|
panic("Pipe buffer overflow");
|
|
|
|
}
|
|
pipeunlock(wpipe);
|
|
}
|
|
if (error)
|
|
break;
|
|
|
|
} else {
|
|
/*
|
|
* If the "read-side" has been blocked, wake it up now.
|
|
*/
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
|
|
/*
|
|
* don't block on non-blocking I/O
|
|
*/
|
|
if (fp->f_flag & FNONBLOCK) {
|
|
error = EAGAIN;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We have no more space and have something to offer,
|
|
* wake up select/poll.
|
|
*/
|
|
pipeselwakeup(wpipe);
|
|
|
|
wpipe->pipe_state |= PIPE_WANTW;
|
|
error = msleep(wpipe, PIPE_MTX(rpipe),
|
|
PRIBIO | PCATCH, "pipewr", 0);
|
|
if (error != 0)
|
|
break;
|
|
/*
|
|
* If read side wants to go away, we just issue a signal
|
|
* to ourselves.
|
|
*/
|
|
if (wpipe->pipe_state & PIPE_EOF) {
|
|
error = EPIPE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
--wpipe->pipe_busy;
|
|
|
|
if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
|
|
wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
|
|
wakeup(wpipe);
|
|
} else if (wpipe->pipe_buffer.cnt > 0) {
|
|
/*
|
|
* If we have put any characters in the buffer, we wake up
|
|
* the reader.
|
|
*/
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Don't return EPIPE if I/O was successful
|
|
*/
|
|
if ((wpipe->pipe_buffer.cnt == 0) &&
|
|
(uio->uio_resid == 0) &&
|
|
(error == EPIPE)) {
|
|
error = 0;
|
|
}
|
|
|
|
if (error == 0)
|
|
vfs_timestamp(&wpipe->pipe_mtime);
|
|
|
|
/*
|
|
* We have something to offer,
|
|
* wake up select/poll.
|
|
*/
|
|
if (wpipe->pipe_buffer.cnt)
|
|
pipeselwakeup(wpipe);
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* we implement a very minimal set of ioctls for compatibility with sockets.
|
|
*/
|
|
static int
|
|
pipe_ioctl(fp, cmd, data, active_cred, td)
|
|
struct file *fp;
|
|
u_long cmd;
|
|
void *data;
|
|
struct ucred *active_cred;
|
|
struct thread *td;
|
|
{
|
|
struct pipe *mpipe = fp->f_data;
|
|
#ifdef MAC
|
|
int error;
|
|
#endif
|
|
|
|
PIPE_LOCK(mpipe);
|
|
|
|
#ifdef MAC
|
|
error = mac_check_pipe_ioctl(active_cred, mpipe, cmd, data);
|
|
if (error)
|
|
return (error);
|
|
#endif
|
|
|
|
switch (cmd) {
|
|
|
|
case FIONBIO:
|
|
PIPE_UNLOCK(mpipe);
|
|
return (0);
|
|
|
|
case FIOASYNC:
|
|
if (*(int *)data) {
|
|
mpipe->pipe_state |= PIPE_ASYNC;
|
|
} else {
|
|
mpipe->pipe_state &= ~PIPE_ASYNC;
|
|
}
|
|
PIPE_UNLOCK(mpipe);
|
|
return (0);
|
|
|
|
case FIONREAD:
|
|
if (mpipe->pipe_state & PIPE_DIRECTW)
|
|
*(int *)data = mpipe->pipe_map.cnt;
|
|
else
|
|
*(int *)data = mpipe->pipe_buffer.cnt;
|
|
PIPE_UNLOCK(mpipe);
|
|
return (0);
|
|
|
|
case FIOSETOWN:
|
|
PIPE_UNLOCK(mpipe);
|
|
return (fsetown(*(int *)data, &mpipe->pipe_sigio));
|
|
|
|
case FIOGETOWN:
|
|
PIPE_UNLOCK(mpipe);
|
|
*(int *)data = fgetown(&mpipe->pipe_sigio);
|
|
return (0);
|
|
|
|
/* This is deprecated, FIOSETOWN should be used instead. */
|
|
case TIOCSPGRP:
|
|
PIPE_UNLOCK(mpipe);
|
|
return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
|
|
|
|
/* This is deprecated, FIOGETOWN should be used instead. */
|
|
case TIOCGPGRP:
|
|
PIPE_UNLOCK(mpipe);
|
|
*(int *)data = -fgetown(&mpipe->pipe_sigio);
|
|
return (0);
|
|
|
|
}
|
|
PIPE_UNLOCK(mpipe);
|
|
return (ENOTTY);
|
|
}
|
|
|
|
static int
|
|
pipe_poll(fp, events, active_cred, td)
|
|
struct file *fp;
|
|
int events;
|
|
struct ucred *active_cred;
|
|
struct thread *td;
|
|
{
|
|
struct pipe *rpipe = fp->f_data;
|
|
struct pipe *wpipe;
|
|
int revents = 0;
|
|
#ifdef MAC
|
|
int error;
|
|
#endif
|
|
|
|
wpipe = rpipe->pipe_peer;
|
|
PIPE_LOCK(rpipe);
|
|
#ifdef MAC
|
|
error = mac_check_pipe_poll(active_cred, rpipe);
|
|
if (error)
|
|
goto locked_error;
|
|
#endif
|
|
if (events & (POLLIN | POLLRDNORM))
|
|
if ((rpipe->pipe_state & PIPE_DIRECTW) ||
|
|
(rpipe->pipe_buffer.cnt > 0) ||
|
|
(rpipe->pipe_state & PIPE_EOF))
|
|
revents |= events & (POLLIN | POLLRDNORM);
|
|
|
|
if (events & (POLLOUT | POLLWRNORM))
|
|
if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
|
|
(((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
|
|
(wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
|
|
revents |= events & (POLLOUT | POLLWRNORM);
|
|
|
|
if ((rpipe->pipe_state & PIPE_EOF) ||
|
|
(wpipe == NULL) ||
|
|
(wpipe->pipe_state & PIPE_EOF))
|
|
revents |= POLLHUP;
|
|
|
|
if (revents == 0) {
|
|
if (events & (POLLIN | POLLRDNORM)) {
|
|
selrecord(td, &rpipe->pipe_sel);
|
|
rpipe->pipe_state |= PIPE_SEL;
|
|
}
|
|
|
|
if (events & (POLLOUT | POLLWRNORM)) {
|
|
selrecord(td, &wpipe->pipe_sel);
|
|
wpipe->pipe_state |= PIPE_SEL;
|
|
}
|
|
}
|
|
#ifdef MAC
|
|
locked_error:
|
|
#endif
|
|
PIPE_UNLOCK(rpipe);
|
|
|
|
return (revents);
|
|
}
|
|
|
|
/*
|
|
* We shouldn't need locks here as we're doing a read and this should
|
|
* be a natural race.
|
|
*/
|
|
static int
|
|
pipe_stat(fp, ub, active_cred, td)
|
|
struct file *fp;
|
|
struct stat *ub;
|
|
struct ucred *active_cred;
|
|
struct thread *td;
|
|
{
|
|
struct pipe *pipe = fp->f_data;
|
|
#ifdef MAC
|
|
int error;
|
|
|
|
PIPE_LOCK(pipe);
|
|
error = mac_check_pipe_stat(active_cred, pipe);
|
|
PIPE_UNLOCK(pipe);
|
|
if (error)
|
|
return (error);
|
|
#endif
|
|
bzero(ub, sizeof(*ub));
|
|
ub->st_mode = S_IFIFO;
|
|
ub->st_blksize = pipe->pipe_buffer.size;
|
|
ub->st_size = pipe->pipe_buffer.cnt;
|
|
ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
|
|
ub->st_atimespec = pipe->pipe_atime;
|
|
ub->st_mtimespec = pipe->pipe_mtime;
|
|
ub->st_ctimespec = pipe->pipe_ctime;
|
|
ub->st_uid = fp->f_cred->cr_uid;
|
|
ub->st_gid = fp->f_cred->cr_gid;
|
|
/*
|
|
* Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
|
|
* XXX (st_dev, st_ino) should be unique.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
pipe_close(fp, td)
|
|
struct file *fp;
|
|
struct thread *td;
|
|
{
|
|
struct pipe *cpipe = fp->f_data;
|
|
|
|
fp->f_ops = &badfileops;
|
|
fp->f_data = NULL;
|
|
funsetown(&cpipe->pipe_sigio);
|
|
pipeclose(cpipe);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
pipe_free_kmem(cpipe)
|
|
struct pipe *cpipe;
|
|
{
|
|
|
|
KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
|
|
("pipespace: pipe mutex locked"));
|
|
|
|
if (cpipe->pipe_buffer.buffer != NULL) {
|
|
if (cpipe->pipe_buffer.size > PIPE_SIZE)
|
|
atomic_subtract_int(&nbigpipe, 1);
|
|
atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size);
|
|
atomic_subtract_int(&amountpipes, 1);
|
|
vm_map_remove(pipe_map,
|
|
(vm_offset_t)cpipe->pipe_buffer.buffer,
|
|
(vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
|
|
cpipe->pipe_buffer.buffer = NULL;
|
|
}
|
|
#ifndef PIPE_NODIRECT
|
|
if (cpipe->pipe_map.kva != 0) {
|
|
atomic_subtract_int(&amountpipekvawired,
|
|
cpipe->pipe_buffer.size + PAGE_SIZE);
|
|
kmem_free(kernel_map,
|
|
cpipe->pipe_map.kva,
|
|
cpipe->pipe_buffer.size + PAGE_SIZE);
|
|
cpipe->pipe_map.cnt = 0;
|
|
cpipe->pipe_map.kva = 0;
|
|
cpipe->pipe_map.pos = 0;
|
|
cpipe->pipe_map.npages = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* shutdown the pipe
|
|
*/
|
|
static void
|
|
pipeclose(cpipe)
|
|
struct pipe *cpipe;
|
|
{
|
|
struct pipe *ppipe;
|
|
int hadpeer;
|
|
|
|
if (cpipe == NULL)
|
|
return;
|
|
|
|
hadpeer = 0;
|
|
|
|
/* partially created pipes won't have a valid mutex. */
|
|
if (PIPE_MTX(cpipe) != NULL)
|
|
PIPE_LOCK(cpipe);
|
|
|
|
pipeselwakeup(cpipe);
|
|
|
|
/*
|
|
* If the other side is blocked, wake it up saying that
|
|
* we want to close it down.
|
|
*/
|
|
while (cpipe->pipe_busy) {
|
|
wakeup(cpipe);
|
|
cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
|
|
msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
|
|
}
|
|
|
|
#ifdef MAC
|
|
if (cpipe->pipe_label != NULL && cpipe->pipe_peer == NULL)
|
|
mac_destroy_pipe(cpipe);
|
|
#endif
|
|
|
|
/*
|
|
* Disconnect from peer
|
|
*/
|
|
if ((ppipe = cpipe->pipe_peer) != NULL) {
|
|
hadpeer++;
|
|
pipeselwakeup(ppipe);
|
|
|
|
ppipe->pipe_state |= PIPE_EOF;
|
|
wakeup(ppipe);
|
|
KNOTE(&ppipe->pipe_sel.si_note, 0);
|
|
ppipe->pipe_peer = NULL;
|
|
}
|
|
/*
|
|
* free resources
|
|
*/
|
|
if (PIPE_MTX(cpipe) != NULL) {
|
|
PIPE_UNLOCK(cpipe);
|
|
if (!hadpeer) {
|
|
mtx_destroy(PIPE_MTX(cpipe));
|
|
free(PIPE_MTX(cpipe), M_TEMP);
|
|
}
|
|
}
|
|
pipe_free_kmem(cpipe);
|
|
uma_zfree(pipe_zone, cpipe);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
pipe_kqfilter(struct file *fp, struct knote *kn)
|
|
{
|
|
struct pipe *cpipe;
|
|
|
|
cpipe = kn->kn_fp->f_data;
|
|
switch (kn->kn_filter) {
|
|
case EVFILT_READ:
|
|
kn->kn_fop = &pipe_rfiltops;
|
|
break;
|
|
case EVFILT_WRITE:
|
|
kn->kn_fop = &pipe_wfiltops;
|
|
cpipe = cpipe->pipe_peer;
|
|
if (cpipe == NULL)
|
|
/* other end of pipe has been closed */
|
|
return (EPIPE);
|
|
break;
|
|
default:
|
|
return (1);
|
|
}
|
|
kn->kn_hook = cpipe;
|
|
|
|
PIPE_LOCK(cpipe);
|
|
SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
|
|
PIPE_UNLOCK(cpipe);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
filt_pipedetach(struct knote *kn)
|
|
{
|
|
struct pipe *cpipe = (struct pipe *)kn->kn_hook;
|
|
|
|
PIPE_LOCK(cpipe);
|
|
SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
|
|
PIPE_UNLOCK(cpipe);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
filt_piperead(struct knote *kn, long hint)
|
|
{
|
|
struct pipe *rpipe = kn->kn_fp->f_data;
|
|
struct pipe *wpipe = rpipe->pipe_peer;
|
|
|
|
PIPE_LOCK(rpipe);
|
|
kn->kn_data = rpipe->pipe_buffer.cnt;
|
|
if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
|
|
kn->kn_data = rpipe->pipe_map.cnt;
|
|
|
|
if ((rpipe->pipe_state & PIPE_EOF) ||
|
|
(wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
|
|
kn->kn_flags |= EV_EOF;
|
|
PIPE_UNLOCK(rpipe);
|
|
return (1);
|
|
}
|
|
PIPE_UNLOCK(rpipe);
|
|
return (kn->kn_data > 0);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
filt_pipewrite(struct knote *kn, long hint)
|
|
{
|
|
struct pipe *rpipe = kn->kn_fp->f_data;
|
|
struct pipe *wpipe = rpipe->pipe_peer;
|
|
|
|
PIPE_LOCK(rpipe);
|
|
if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
|
|
kn->kn_data = 0;
|
|
kn->kn_flags |= EV_EOF;
|
|
PIPE_UNLOCK(rpipe);
|
|
return (1);
|
|
}
|
|
kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
|
|
if (wpipe->pipe_state & PIPE_DIRECTW)
|
|
kn->kn_data = 0;
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
return (kn->kn_data >= PIPE_BUF);
|
|
}
|