scottl cd4455d638 MFC Alexander Motin's direct dispatch, multi-queue, and finer-grained
locking support for CAM

r256826:
Fix several target mode SIMs to not blindly clear ccb_h.flags field of
ATIO CCBs.  Not all CCB flags there belong to them.

r256836:
Remove hard limit on number of BIOs handled with one ATA TRIM request.

r256843:
Merge CAM locking changes from the projects/camlock branch to radically
reduce lock congestion and improve SMP scalability of the SCSI/ATA stack,
preparing the ground for the coming next GEOM direct dispatch support.

r256888:
Unconditionally acquire periph reference on CCB allocation failure.

r256895:
Fix memory and references leak due to unfreed path.

r256960:
Move CAM_UNQUEUED_INDEX setting to the last moment and under the periph lock.
This fixes race condition with cam_periph_ccbwait(), causing use-after-free.

r256975:
Minor (mostly cosmetical) addition to r256960.

r257054:
Some microoptimizations for da and ada drivers:
 - Replace ordered_tag_count counter with single flag;
 - From da remove outstanding_cmds counter, duplicating pending_ccbs list;
 - From da_softc remove unused links field.

r257482:
Fix lock recursion, triggered by `smartctl -a /dev/adaX`.

r257501:
Make getenv_*() functions and respectively TUNABLE_*_FETCH() macros not
allocate memory and so not require sleepable environment.  getenv() has
already used on-stack temporary storage, so just use it more rationally.
getenv_string() receives buffer as argument, so don't need another one.

r257914:
Some CAM locks polishing:
 - Fix LOR and possible lock recursion when handling high-power commands.
Introduce new lock to protect left power quota and list of frozen devices.
 - Correct locking around xpt periph creation.
 - Remove seems never used XPT_FLAG_OPEN xpt periph flag.

Again, Netflix assisted with testing the merge, but all of the credit goes
to Alexander and iX Systems.

Submitted by:	mav
Sponsored by:	iX Systems
2014-01-07 01:51:48 +00:00

2456 lines
71 KiB
C

/*-
* Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/module.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ata.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/endian.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <vm/uma.h>
#include <machine/stdarg.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcivar.h>
#include "mvs.h"
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
/* local prototypes */
static int mvs_ch_init(device_t dev);
static int mvs_ch_deinit(device_t dev);
static int mvs_ch_suspend(device_t dev);
static int mvs_ch_resume(device_t dev);
static void mvs_dmainit(device_t dev);
static void mvs_dmasetupc_cb(void *xsc,
bus_dma_segment_t *segs, int nsegs, int error);
static void mvs_dmafini(device_t dev);
static void mvs_slotsalloc(device_t dev);
static void mvs_slotsfree(device_t dev);
static void mvs_setup_edma_queues(device_t dev);
static void mvs_set_edma_mode(device_t dev, enum mvs_edma_mode mode);
static void mvs_ch_pm(void *arg);
static void mvs_ch_intr_locked(void *data);
static void mvs_ch_intr(void *data);
static void mvs_reset(device_t dev);
static void mvs_softreset(device_t dev, union ccb *ccb);
static int mvs_sata_connect(struct mvs_channel *ch);
static int mvs_sata_phy_reset(device_t dev);
static int mvs_wait(device_t dev, u_int s, u_int c, int t);
static void mvs_tfd_read(device_t dev, union ccb *ccb);
static void mvs_tfd_write(device_t dev, union ccb *ccb);
static void mvs_legacy_intr(device_t dev, int poll);
static void mvs_crbq_intr(device_t dev);
static void mvs_begin_transaction(device_t dev, union ccb *ccb);
static void mvs_legacy_execute_transaction(struct mvs_slot *slot);
static void mvs_timeout(struct mvs_slot *slot);
static void mvs_dmasetprd(void *arg,
bus_dma_segment_t *segs, int nsegs, int error);
static void mvs_requeue_frozen(device_t dev);
static void mvs_execute_transaction(struct mvs_slot *slot);
static void mvs_end_transaction(struct mvs_slot *slot, enum mvs_err_type et);
static void mvs_issue_recovery(device_t dev);
static void mvs_process_read_log(device_t dev, union ccb *ccb);
static void mvs_process_request_sense(device_t dev, union ccb *ccb);
static void mvsaction(struct cam_sim *sim, union ccb *ccb);
static void mvspoll(struct cam_sim *sim);
static MALLOC_DEFINE(M_MVS, "MVS driver", "MVS driver data buffers");
#define recovery_type spriv_field0
#define RECOVERY_NONE 0
#define RECOVERY_READ_LOG 1
#define RECOVERY_REQUEST_SENSE 2
#define recovery_slot spriv_field1
static int
mvs_ch_probe(device_t dev)
{
device_set_desc_copy(dev, "Marvell SATA channel");
return (0);
}
static int
mvs_ch_attach(device_t dev)
{
struct mvs_controller *ctlr = device_get_softc(device_get_parent(dev));
struct mvs_channel *ch = device_get_softc(dev);
struct cam_devq *devq;
int rid, error, i, sata_rev = 0;
ch->dev = dev;
ch->unit = (intptr_t)device_get_ivars(dev);
ch->quirks = ctlr->quirks;
mtx_init(&ch->mtx, "MVS channel lock", NULL, MTX_DEF);
resource_int_value(device_get_name(dev),
device_get_unit(dev), "pm_level", &ch->pm_level);
if (ch->pm_level > 3)
callout_init_mtx(&ch->pm_timer, &ch->mtx, 0);
callout_init_mtx(&ch->reset_timer, &ch->mtx, 0);
resource_int_value(device_get_name(dev),
device_get_unit(dev), "sata_rev", &sata_rev);
for (i = 0; i < 16; i++) {
ch->user[i].revision = sata_rev;
ch->user[i].mode = 0;
ch->user[i].bytecount = (ch->quirks & MVS_Q_GENIIE) ? 8192 : 2048;
ch->user[i].tags = MVS_MAX_SLOTS;
ch->curr[i] = ch->user[i];
if (ch->pm_level) {
ch->user[i].caps = CTS_SATA_CAPS_H_PMREQ |
CTS_SATA_CAPS_H_APST |
CTS_SATA_CAPS_D_PMREQ | CTS_SATA_CAPS_D_APST;
}
ch->user[i].caps |= CTS_SATA_CAPS_H_AN;
}
rid = ch->unit;
if (!(ch->r_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE)))
return (ENXIO);
mvs_dmainit(dev);
mvs_slotsalloc(dev);
mvs_ch_init(dev);
mtx_lock(&ch->mtx);
rid = ATA_IRQ_RID;
if (!(ch->r_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&rid, RF_SHAREABLE | RF_ACTIVE))) {
device_printf(dev, "Unable to map interrupt\n");
error = ENXIO;
goto err0;
}
if ((bus_setup_intr(dev, ch->r_irq, ATA_INTR_FLAGS, NULL,
mvs_ch_intr_locked, dev, &ch->ih))) {
device_printf(dev, "Unable to setup interrupt\n");
error = ENXIO;
goto err1;
}
/* Create the device queue for our SIM. */
devq = cam_simq_alloc(MVS_MAX_SLOTS - 1);
if (devq == NULL) {
device_printf(dev, "Unable to allocate simq\n");
error = ENOMEM;
goto err1;
}
/* Construct SIM entry */
ch->sim = cam_sim_alloc(mvsaction, mvspoll, "mvsch", ch,
device_get_unit(dev), &ch->mtx,
2, (ch->quirks & MVS_Q_GENI) ? 0 : MVS_MAX_SLOTS - 1,
devq);
if (ch->sim == NULL) {
cam_simq_free(devq);
device_printf(dev, "unable to allocate sim\n");
error = ENOMEM;
goto err1;
}
if (xpt_bus_register(ch->sim, dev, 0) != CAM_SUCCESS) {
device_printf(dev, "unable to register xpt bus\n");
error = ENXIO;
goto err2;
}
if (xpt_create_path(&ch->path, /*periph*/NULL, cam_sim_path(ch->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
device_printf(dev, "unable to create path\n");
error = ENXIO;
goto err3;
}
if (ch->pm_level > 3) {
callout_reset(&ch->pm_timer,
(ch->pm_level == 4) ? hz / 1000 : hz / 8,
mvs_ch_pm, dev);
}
mtx_unlock(&ch->mtx);
return (0);
err3:
xpt_bus_deregister(cam_sim_path(ch->sim));
err2:
cam_sim_free(ch->sim, /*free_devq*/TRUE);
err1:
bus_release_resource(dev, SYS_RES_IRQ, ATA_IRQ_RID, ch->r_irq);
err0:
bus_release_resource(dev, SYS_RES_MEMORY, ch->unit, ch->r_mem);
mtx_unlock(&ch->mtx);
mtx_destroy(&ch->mtx);
return (error);
}
static int
mvs_ch_detach(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
mtx_lock(&ch->mtx);
xpt_async(AC_LOST_DEVICE, ch->path, NULL);
/* Forget about reset. */
if (ch->resetting) {
ch->resetting = 0;
xpt_release_simq(ch->sim, TRUE);
}
xpt_free_path(ch->path);
xpt_bus_deregister(cam_sim_path(ch->sim));
cam_sim_free(ch->sim, /*free_devq*/TRUE);
mtx_unlock(&ch->mtx);
if (ch->pm_level > 3)
callout_drain(&ch->pm_timer);
callout_drain(&ch->reset_timer);
bus_teardown_intr(dev, ch->r_irq, ch->ih);
bus_release_resource(dev, SYS_RES_IRQ, ATA_IRQ_RID, ch->r_irq);
mvs_ch_deinit(dev);
mvs_slotsfree(dev);
mvs_dmafini(dev);
bus_release_resource(dev, SYS_RES_MEMORY, ch->unit, ch->r_mem);
mtx_destroy(&ch->mtx);
return (0);
}
static int
mvs_ch_init(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
uint32_t reg;
/* Disable port interrupts */
ATA_OUTL(ch->r_mem, EDMA_IEM, 0);
/* Stop EDMA */
ch->curr_mode = MVS_EDMA_UNKNOWN;
mvs_set_edma_mode(dev, MVS_EDMA_OFF);
/* Clear and configure FIS interrupts. */
ATA_OUTL(ch->r_mem, SATA_FISIC, 0);
reg = ATA_INL(ch->r_mem, SATA_FISC);
reg |= SATA_FISC_FISWAIT4HOSTRDYEN_B1;
ATA_OUTL(ch->r_mem, SATA_FISC, reg);
reg = ATA_INL(ch->r_mem, SATA_FISIM);
reg |= SATA_FISC_FISWAIT4HOSTRDYEN_B1;
ATA_OUTL(ch->r_mem, SATA_FISC, reg);
/* Clear SATA error register. */
ATA_OUTL(ch->r_mem, SATA_SE, 0xffffffff);
/* Clear any outstanding error interrupts. */
ATA_OUTL(ch->r_mem, EDMA_IEC, 0);
/* Unmask all error interrupts */
ATA_OUTL(ch->r_mem, EDMA_IEM, ~EDMA_IE_TRANSIENT);
return (0);
}
static int
mvs_ch_deinit(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
/* Stop EDMA */
mvs_set_edma_mode(dev, MVS_EDMA_OFF);
/* Disable port interrupts. */
ATA_OUTL(ch->r_mem, EDMA_IEM, 0);
return (0);
}
static int
mvs_ch_suspend(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
mtx_lock(&ch->mtx);
xpt_freeze_simq(ch->sim, 1);
while (ch->oslots)
msleep(ch, &ch->mtx, PRIBIO, "mvssusp", hz/100);
/* Forget about reset. */
if (ch->resetting) {
ch->resetting = 0;
callout_stop(&ch->reset_timer);
xpt_release_simq(ch->sim, TRUE);
}
mvs_ch_deinit(dev);
mtx_unlock(&ch->mtx);
return (0);
}
static int
mvs_ch_resume(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
mtx_lock(&ch->mtx);
mvs_ch_init(dev);
mvs_reset(dev);
xpt_release_simq(ch->sim, TRUE);
mtx_unlock(&ch->mtx);
return (0);
}
struct mvs_dc_cb_args {
bus_addr_t maddr;
int error;
};
static void
mvs_dmainit(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
struct mvs_dc_cb_args dcba;
/* EDMA command request area. */
if (bus_dma_tag_create(bus_get_dma_tag(dev), 1024, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
NULL, NULL, MVS_WORKRQ_SIZE, 1, MVS_WORKRQ_SIZE,
0, NULL, NULL, &ch->dma.workrq_tag))
goto error;
if (bus_dmamem_alloc(ch->dma.workrq_tag, (void **)&ch->dma.workrq, 0,
&ch->dma.workrq_map))
goto error;
if (bus_dmamap_load(ch->dma.workrq_tag, ch->dma.workrq_map,
ch->dma.workrq, MVS_WORKRQ_SIZE, mvs_dmasetupc_cb, &dcba, 0) ||
dcba.error) {
bus_dmamem_free(ch->dma.workrq_tag,
ch->dma.workrq, ch->dma.workrq_map);
goto error;
}
ch->dma.workrq_bus = dcba.maddr;
/* EDMA command response area. */
if (bus_dma_tag_create(bus_get_dma_tag(dev), 256, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
NULL, NULL, MVS_WORKRP_SIZE, 1, MVS_WORKRP_SIZE,
0, NULL, NULL, &ch->dma.workrp_tag))
goto error;
if (bus_dmamem_alloc(ch->dma.workrp_tag, (void **)&ch->dma.workrp, 0,
&ch->dma.workrp_map))
goto error;
if (bus_dmamap_load(ch->dma.workrp_tag, ch->dma.workrp_map,
ch->dma.workrp, MVS_WORKRP_SIZE, mvs_dmasetupc_cb, &dcba, 0) ||
dcba.error) {
bus_dmamem_free(ch->dma.workrp_tag,
ch->dma.workrp, ch->dma.workrp_map);
goto error;
}
ch->dma.workrp_bus = dcba.maddr;
/* Data area. */
if (bus_dma_tag_create(bus_get_dma_tag(dev), 2, MVS_EPRD_MAX,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
NULL, NULL,
MVS_SG_ENTRIES * PAGE_SIZE * MVS_MAX_SLOTS,
MVS_SG_ENTRIES, MVS_EPRD_MAX,
0, busdma_lock_mutex, &ch->mtx, &ch->dma.data_tag)) {
goto error;
}
return;
error:
device_printf(dev, "WARNING - DMA initialization failed\n");
mvs_dmafini(dev);
}
static void
mvs_dmasetupc_cb(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
{
struct mvs_dc_cb_args *dcba = (struct mvs_dc_cb_args *)xsc;
if (!(dcba->error = error))
dcba->maddr = segs[0].ds_addr;
}
static void
mvs_dmafini(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
if (ch->dma.data_tag) {
bus_dma_tag_destroy(ch->dma.data_tag);
ch->dma.data_tag = NULL;
}
if (ch->dma.workrp_bus) {
bus_dmamap_unload(ch->dma.workrp_tag, ch->dma.workrp_map);
bus_dmamem_free(ch->dma.workrp_tag,
ch->dma.workrp, ch->dma.workrp_map);
ch->dma.workrp_bus = 0;
ch->dma.workrp_map = NULL;
ch->dma.workrp = NULL;
}
if (ch->dma.workrp_tag) {
bus_dma_tag_destroy(ch->dma.workrp_tag);
ch->dma.workrp_tag = NULL;
}
if (ch->dma.workrq_bus) {
bus_dmamap_unload(ch->dma.workrq_tag, ch->dma.workrq_map);
bus_dmamem_free(ch->dma.workrq_tag,
ch->dma.workrq, ch->dma.workrq_map);
ch->dma.workrq_bus = 0;
ch->dma.workrq_map = NULL;
ch->dma.workrq = NULL;
}
if (ch->dma.workrq_tag) {
bus_dma_tag_destroy(ch->dma.workrq_tag);
ch->dma.workrq_tag = NULL;
}
}
static void
mvs_slotsalloc(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
int i;
/* Alloc and setup command/dma slots */
bzero(ch->slot, sizeof(ch->slot));
for (i = 0; i < MVS_MAX_SLOTS; i++) {
struct mvs_slot *slot = &ch->slot[i];
slot->dev = dev;
slot->slot = i;
slot->state = MVS_SLOT_EMPTY;
slot->ccb = NULL;
callout_init_mtx(&slot->timeout, &ch->mtx, 0);
if (bus_dmamap_create(ch->dma.data_tag, 0, &slot->dma.data_map))
device_printf(ch->dev, "FAILURE - create data_map\n");
}
}
static void
mvs_slotsfree(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
int i;
/* Free all dma slots */
for (i = 0; i < MVS_MAX_SLOTS; i++) {
struct mvs_slot *slot = &ch->slot[i];
callout_drain(&slot->timeout);
if (slot->dma.data_map) {
bus_dmamap_destroy(ch->dma.data_tag, slot->dma.data_map);
slot->dma.data_map = NULL;
}
}
}
static void
mvs_setup_edma_queues(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
uint64_t work;
/* Requests queue. */
work = ch->dma.workrq_bus;
ATA_OUTL(ch->r_mem, EDMA_REQQBAH, work >> 32);
ATA_OUTL(ch->r_mem, EDMA_REQQIP, work & 0xffffffff);
ATA_OUTL(ch->r_mem, EDMA_REQQOP, work & 0xffffffff);
bus_dmamap_sync(ch->dma.workrq_tag, ch->dma.workrq_map,
BUS_DMASYNC_PREWRITE);
/* Reponses queue. */
memset(ch->dma.workrp, 0xff, MVS_WORKRP_SIZE);
work = ch->dma.workrp_bus;
ATA_OUTL(ch->r_mem, EDMA_RESQBAH, work >> 32);
ATA_OUTL(ch->r_mem, EDMA_RESQIP, work & 0xffffffff);
ATA_OUTL(ch->r_mem, EDMA_RESQOP, work & 0xffffffff);
bus_dmamap_sync(ch->dma.workrp_tag, ch->dma.workrp_map,
BUS_DMASYNC_PREREAD);
ch->out_idx = 0;
ch->in_idx = 0;
}
static void
mvs_set_edma_mode(device_t dev, enum mvs_edma_mode mode)
{
struct mvs_channel *ch = device_get_softc(dev);
int timeout;
uint32_t ecfg, fcfg, hc, ltm, unkn;
if (mode == ch->curr_mode)
return;
/* If we are running, we should stop first. */
if (ch->curr_mode != MVS_EDMA_OFF) {
ATA_OUTL(ch->r_mem, EDMA_CMD, EDMA_CMD_EDSEDMA);
timeout = 0;
while (ATA_INL(ch->r_mem, EDMA_CMD) & EDMA_CMD_EENEDMA) {
DELAY(1000);
if (timeout++ > 1000) {
device_printf(dev, "stopping EDMA engine failed\n");
break;
}
};
}
ch->curr_mode = mode;
ch->fbs_enabled = 0;
ch->fake_busy = 0;
/* Report mode to controller. Needed for correct CCC operation. */
MVS_EDMA(device_get_parent(dev), dev, mode);
/* Configure new mode. */
ecfg = EDMA_CFG_RESERVED | EDMA_CFG_RESERVED2 | EDMA_CFG_EHOSTQUEUECACHEEN;
if (ch->pm_present) {
ecfg |= EDMA_CFG_EMASKRXPM;
if (ch->quirks & MVS_Q_GENIIE) {
ecfg |= EDMA_CFG_EEDMAFBS;
ch->fbs_enabled = 1;
}
}
if (ch->quirks & MVS_Q_GENI)
ecfg |= EDMA_CFG_ERDBSZ;
else if (ch->quirks & MVS_Q_GENII)
ecfg |= EDMA_CFG_ERDBSZEXT | EDMA_CFG_EWRBUFFERLEN;
if (ch->quirks & MVS_Q_CT)
ecfg |= EDMA_CFG_ECUTTHROUGHEN;
if (mode != MVS_EDMA_OFF)
ecfg |= EDMA_CFG_EEARLYCOMPLETIONEN;
if (mode == MVS_EDMA_QUEUED)
ecfg |= EDMA_CFG_EQUE;
else if (mode == MVS_EDMA_NCQ)
ecfg |= EDMA_CFG_ESATANATVCMDQUE;
ATA_OUTL(ch->r_mem, EDMA_CFG, ecfg);
mvs_setup_edma_queues(dev);
if (ch->quirks & MVS_Q_GENIIE) {
/* Configure FBS-related registers */
fcfg = ATA_INL(ch->r_mem, SATA_FISC);
ltm = ATA_INL(ch->r_mem, SATA_LTM);
hc = ATA_INL(ch->r_mem, EDMA_HC);
if (ch->fbs_enabled) {
fcfg |= SATA_FISC_FISDMAACTIVATESYNCRESP;
if (mode == MVS_EDMA_NCQ) {
fcfg &= ~SATA_FISC_FISWAIT4HOSTRDYEN_B0;
hc &= ~EDMA_IE_EDEVERR;
} else {
fcfg |= SATA_FISC_FISWAIT4HOSTRDYEN_B0;
hc |= EDMA_IE_EDEVERR;
}
ltm |= (1 << 8);
} else {
fcfg &= ~SATA_FISC_FISDMAACTIVATESYNCRESP;
fcfg &= ~SATA_FISC_FISWAIT4HOSTRDYEN_B0;
hc |= EDMA_IE_EDEVERR;
ltm &= ~(1 << 8);
}
ATA_OUTL(ch->r_mem, SATA_FISC, fcfg);
ATA_OUTL(ch->r_mem, SATA_LTM, ltm);
ATA_OUTL(ch->r_mem, EDMA_HC, hc);
/* This is some magic, required to handle several DRQs
* with basic DMA. */
unkn = ATA_INL(ch->r_mem, EDMA_UNKN_RESD);
if (mode == MVS_EDMA_OFF)
unkn |= 1;
else
unkn &= ~1;
ATA_OUTL(ch->r_mem, EDMA_UNKN_RESD, unkn);
}
/* Run EDMA. */
if (mode != MVS_EDMA_OFF)
ATA_OUTL(ch->r_mem, EDMA_CMD, EDMA_CMD_EENEDMA);
}
devclass_t mvs_devclass;
devclass_t mvsch_devclass;
static device_method_t mvsch_methods[] = {
DEVMETHOD(device_probe, mvs_ch_probe),
DEVMETHOD(device_attach, mvs_ch_attach),
DEVMETHOD(device_detach, mvs_ch_detach),
DEVMETHOD(device_suspend, mvs_ch_suspend),
DEVMETHOD(device_resume, mvs_ch_resume),
{ 0, 0 }
};
static driver_t mvsch_driver = {
"mvsch",
mvsch_methods,
sizeof(struct mvs_channel)
};
DRIVER_MODULE(mvsch, mvs, mvsch_driver, mvsch_devclass, 0, 0);
DRIVER_MODULE(mvsch, sata, mvsch_driver, mvsch_devclass, 0, 0);
static void
mvs_phy_check_events(device_t dev, u_int32_t serr)
{
struct mvs_channel *ch = device_get_softc(dev);
if (ch->pm_level == 0) {
u_int32_t status = ATA_INL(ch->r_mem, SATA_SS);
union ccb *ccb;
if (bootverbose) {
if (((status & SATA_SS_DET_MASK) == SATA_SS_DET_PHY_ONLINE) &&
((status & SATA_SS_SPD_MASK) != SATA_SS_SPD_NO_SPEED) &&
((status & SATA_SS_IPM_MASK) == SATA_SS_IPM_ACTIVE)) {
device_printf(dev, "CONNECT requested\n");
} else
device_printf(dev, "DISCONNECT requested\n");
}
mvs_reset(dev);
if ((ccb = xpt_alloc_ccb_nowait()) == NULL)
return;
if (xpt_create_path(&ccb->ccb_h.path, NULL,
cam_sim_path(ch->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_free_ccb(ccb);
return;
}
xpt_rescan(ccb);
}
}
static void
mvs_notify_events(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
struct cam_path *dpath;
uint32_t fis;
int d;
/* Try to read PMP field from SDB FIS. Present only for Gen-IIe. */
fis = ATA_INL(ch->r_mem, SATA_FISDW0);
if ((fis & 0x80ff) == 0x80a1)
d = (fis & 0x0f00) >> 8;
else
d = ch->pm_present ? 15 : 0;
if (bootverbose)
device_printf(dev, "SNTF %d\n", d);
if (xpt_create_path(&dpath, NULL,
xpt_path_path_id(ch->path), d, 0) == CAM_REQ_CMP) {
xpt_async(AC_SCSI_AEN, dpath, NULL);
xpt_free_path(dpath);
}
}
static void
mvs_ch_intr_locked(void *data)
{
struct mvs_intr_arg *arg = (struct mvs_intr_arg *)data;
device_t dev = (device_t)arg->arg;
struct mvs_channel *ch = device_get_softc(dev);
mtx_lock(&ch->mtx);
mvs_ch_intr(data);
mtx_unlock(&ch->mtx);
}
static void
mvs_ch_pm(void *arg)
{
device_t dev = (device_t)arg;
struct mvs_channel *ch = device_get_softc(dev);
uint32_t work;
if (ch->numrslots != 0)
return;
/* If we are idle - request power state transition. */
work = ATA_INL(ch->r_mem, SATA_SC);
work &= ~SATA_SC_SPM_MASK;
if (ch->pm_level == 4)
work |= SATA_SC_SPM_PARTIAL;
else
work |= SATA_SC_SPM_SLUMBER;
ATA_OUTL(ch->r_mem, SATA_SC, work);
}
static void
mvs_ch_pm_wake(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
uint32_t work;
int timeout = 0;
work = ATA_INL(ch->r_mem, SATA_SS);
if (work & SATA_SS_IPM_ACTIVE)
return;
/* If we are not in active state - request power state transition. */
work = ATA_INL(ch->r_mem, SATA_SC);
work &= ~SATA_SC_SPM_MASK;
work |= SATA_SC_SPM_ACTIVE;
ATA_OUTL(ch->r_mem, SATA_SC, work);
/* Wait for transition to happen. */
while ((ATA_INL(ch->r_mem, SATA_SS) & SATA_SS_IPM_ACTIVE) == 0 &&
timeout++ < 100) {
DELAY(100);
}
}
static void
mvs_ch_intr(void *data)
{
struct mvs_intr_arg *arg = (struct mvs_intr_arg *)data;
device_t dev = (device_t)arg->arg;
struct mvs_channel *ch = device_get_softc(dev);
uint32_t iec, serr = 0, fisic = 0;
enum mvs_err_type et;
int i, ccs, port = -1, selfdis = 0;
int edma = (ch->numtslots != 0 || ch->numdslots != 0);
/* New item in response queue. */
if ((arg->cause & 2) && edma)
mvs_crbq_intr(dev);
/* Some error or special event. */
if (arg->cause & 1) {
iec = ATA_INL(ch->r_mem, EDMA_IEC);
if (iec & EDMA_IE_SERRINT) {
serr = ATA_INL(ch->r_mem, SATA_SE);
ATA_OUTL(ch->r_mem, SATA_SE, serr);
}
/* EDMA self-disabled due to error. */
if (iec & EDMA_IE_ESELFDIS)
selfdis = 1;
/* Transport interrupt. */
if (iec & EDMA_IE_ETRANSINT) {
/* For Gen-I this bit means self-disable. */
if (ch->quirks & MVS_Q_GENI)
selfdis = 1;
/* For Gen-II this bit means SDB-N. */
else if (ch->quirks & MVS_Q_GENII)
fisic = SATA_FISC_FISWAIT4HOSTRDYEN_B1;
else /* For Gen-IIe - read FIS interrupt cause. */
fisic = ATA_INL(ch->r_mem, SATA_FISIC);
}
if (selfdis)
ch->curr_mode = MVS_EDMA_UNKNOWN;
ATA_OUTL(ch->r_mem, EDMA_IEC, ~iec);
/* Interface errors or Device error. */
if (iec & (0xfc1e9000 | EDMA_IE_EDEVERR)) {
port = -1;
if (ch->numpslots != 0) {
ccs = 0;
} else {
if (ch->quirks & MVS_Q_GENIIE)
ccs = EDMA_S_EIOID(ATA_INL(ch->r_mem, EDMA_S));
else
ccs = EDMA_S_EDEVQUETAG(ATA_INL(ch->r_mem, EDMA_S));
/* Check if error is one-PMP-port-specific, */
if (ch->fbs_enabled) {
/* Which ports were active. */
for (i = 0; i < 16; i++) {
if (ch->numrslotspd[i] == 0)
continue;
if (port == -1)
port = i;
else if (port != i) {
port = -2;
break;
}
}
/* If several ports were active and EDMA still enabled -
* other ports are probably unaffected and may continue.
*/
if (port == -2 && !selfdis) {
uint16_t p = ATA_INL(ch->r_mem, SATA_SATAITC) >> 16;
port = ffs(p) - 1;
if (port != (fls(p) - 1))
port = -2;
}
}
}
mvs_requeue_frozen(dev);
for (i = 0; i < MVS_MAX_SLOTS; i++) {
/* XXX: reqests in loading state. */
if (((ch->rslots >> i) & 1) == 0)
continue;
if (port >= 0 &&
ch->slot[i].ccb->ccb_h.target_id != port)
continue;
if (iec & EDMA_IE_EDEVERR) { /* Device error. */
if (port != -2) {
if (ch->numtslots == 0) {
/* Untagged operation. */
if (i == ccs)
et = MVS_ERR_TFE;
else
et = MVS_ERR_INNOCENT;
} else {
/* Tagged operation. */
et = MVS_ERR_NCQ;
}
} else {
et = MVS_ERR_TFE;
ch->fatalerr = 1;
}
} else if (iec & 0xfc1e9000) {
if (ch->numtslots == 0 &&
i != ccs && port != -2)
et = MVS_ERR_INNOCENT;
else
et = MVS_ERR_SATA;
} else
et = MVS_ERR_INVALID;
mvs_end_transaction(&ch->slot[i], et);
}
}
/* Process SDB-N. */
if (fisic & SATA_FISC_FISWAIT4HOSTRDYEN_B1)
mvs_notify_events(dev);
if (fisic)
ATA_OUTL(ch->r_mem, SATA_FISIC, ~fisic);
/* Process hot-plug. */
if ((iec & (EDMA_IE_EDEVDIS | EDMA_IE_EDEVCON)) ||
(serr & SATA_SE_PHY_CHANGED))
mvs_phy_check_events(dev, serr);
}
/* Legacy mode device interrupt. */
if ((arg->cause & 2) && !edma)
mvs_legacy_intr(dev, arg->cause & 4);
}
static uint8_t
mvs_getstatus(device_t dev, int clear)
{
struct mvs_channel *ch = device_get_softc(dev);
uint8_t status = ATA_INB(ch->r_mem, clear ? ATA_STATUS : ATA_ALTSTAT);
if (ch->fake_busy) {
if (status & (ATA_S_BUSY | ATA_S_DRQ | ATA_S_ERROR))
ch->fake_busy = 0;
else
status |= ATA_S_BUSY;
}
return (status);
}
static void
mvs_legacy_intr(device_t dev, int poll)
{
struct mvs_channel *ch = device_get_softc(dev);
struct mvs_slot *slot = &ch->slot[0]; /* PIO is always in slot 0. */
union ccb *ccb = slot->ccb;
enum mvs_err_type et = MVS_ERR_NONE;
int port;
u_int length, resid, size;
uint8_t buf[2];
uint8_t status, ireason;
/* Clear interrupt and get status. */
status = mvs_getstatus(dev, 1);
if (slot->state < MVS_SLOT_RUNNING)
return;
port = ccb->ccb_h.target_id & 0x0f;
/* Wait a bit for late !BUSY status update. */
if (status & ATA_S_BUSY) {
if (poll)
return;
DELAY(100);
if ((status = mvs_getstatus(dev, 1)) & ATA_S_BUSY) {
DELAY(1000);
if ((status = mvs_getstatus(dev, 1)) & ATA_S_BUSY)
return;
}
}
/* If we got an error, we are done. */
if (status & ATA_S_ERROR) {
et = MVS_ERR_TFE;
goto end_finished;
}
if (ccb->ccb_h.func_code == XPT_ATA_IO) { /* ATA PIO */
ccb->ataio.res.status = status;
/* Are we moving data? */
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
/* If data read command - get them. */
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
if (mvs_wait(dev, ATA_S_DRQ, ATA_S_BUSY, 1000) < 0) {
device_printf(dev, "timeout waiting for read DRQ\n");
et = MVS_ERR_TIMEOUT;
xpt_freeze_simq(ch->sim, 1);
ch->toslots |= (1 << slot->slot);
goto end_finished;
}
ATA_INSW_STRM(ch->r_mem, ATA_DATA,
(uint16_t *)(ccb->ataio.data_ptr + ch->donecount),
ch->transfersize / 2);
}
/* Update how far we've gotten. */
ch->donecount += ch->transfersize;
/* Do we need more? */
if (ccb->ataio.dxfer_len > ch->donecount) {
/* Set this transfer size according to HW capabilities */
ch->transfersize = min(ccb->ataio.dxfer_len - ch->donecount,
ch->transfersize);
/* If data write command - put them */
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
if (mvs_wait(dev, ATA_S_DRQ, ATA_S_BUSY, 1000) < 0) {
device_printf(dev,
"timeout waiting for write DRQ\n");
et = MVS_ERR_TIMEOUT;
xpt_freeze_simq(ch->sim, 1);
ch->toslots |= (1 << slot->slot);
goto end_finished;
}
ATA_OUTSW_STRM(ch->r_mem, ATA_DATA,
(uint16_t *)(ccb->ataio.data_ptr + ch->donecount),
ch->transfersize / 2);
return;
}
/* If data read command, return & wait for interrupt */
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
return;
}
}
} else if (ch->basic_dma) { /* ATAPI DMA */
if (status & ATA_S_DWF)
et = MVS_ERR_TFE;
else if (ATA_INL(ch->r_mem, DMA_S) & DMA_S_ERR)
et = MVS_ERR_TFE;
/* Stop basic DMA. */
ATA_OUTL(ch->r_mem, DMA_C, 0);
goto end_finished;
} else { /* ATAPI PIO */
length = ATA_INB(ch->r_mem,ATA_CYL_LSB) |
(ATA_INB(ch->r_mem,ATA_CYL_MSB) << 8);
size = min(ch->transfersize, length);
ireason = ATA_INB(ch->r_mem,ATA_IREASON);
switch ((ireason & (ATA_I_CMD | ATA_I_IN)) |
(status & ATA_S_DRQ)) {
case ATAPI_P_CMDOUT:
device_printf(dev, "ATAPI CMDOUT\n");
/* Return wait for interrupt */
return;
case ATAPI_P_WRITE:
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
device_printf(dev, "trying to write on read buffer\n");
et = MVS_ERR_TFE;
goto end_finished;
break;
}
ATA_OUTSW_STRM(ch->r_mem, ATA_DATA,
(uint16_t *)(ccb->csio.data_ptr + ch->donecount),
(size + 1) / 2);
for (resid = ch->transfersize + (size & 1);
resid < length; resid += sizeof(int16_t))
ATA_OUTW(ch->r_mem, ATA_DATA, 0);
ch->donecount += length;
/* Set next transfer size according to HW capabilities */
ch->transfersize = min(ccb->csio.dxfer_len - ch->donecount,
ch->curr[ccb->ccb_h.target_id].bytecount);
/* Return wait for interrupt */
return;
case ATAPI_P_READ:
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
device_printf(dev, "trying to read on write buffer\n");
et = MVS_ERR_TFE;
goto end_finished;
}
if (size >= 2) {
ATA_INSW_STRM(ch->r_mem, ATA_DATA,
(uint16_t *)(ccb->csio.data_ptr + ch->donecount),
size / 2);
}
if (size & 1) {
ATA_INSW_STRM(ch->r_mem, ATA_DATA, (void*)buf, 1);
((uint8_t *)ccb->csio.data_ptr + ch->donecount +
(size & ~1))[0] = buf[0];
}
for (resid = ch->transfersize + (size & 1);
resid < length; resid += sizeof(int16_t))
ATA_INW(ch->r_mem, ATA_DATA);
ch->donecount += length;
/* Set next transfer size according to HW capabilities */
ch->transfersize = min(ccb->csio.dxfer_len - ch->donecount,
ch->curr[ccb->ccb_h.target_id].bytecount);
/* Return wait for interrupt */
return;
case ATAPI_P_DONEDRQ:
device_printf(dev,
"WARNING - DONEDRQ non conformant device\n");
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
ATA_INSW_STRM(ch->r_mem, ATA_DATA,
(uint16_t *)(ccb->csio.data_ptr + ch->donecount),
length / 2);
ch->donecount += length;
}
else if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
ATA_OUTSW_STRM(ch->r_mem, ATA_DATA,
(uint16_t *)(ccb->csio.data_ptr + ch->donecount),
length / 2);
ch->donecount += length;
}
else
et = MVS_ERR_TFE;
/* FALLTHROUGH */
case ATAPI_P_ABORT:
case ATAPI_P_DONE:
if (status & (ATA_S_ERROR | ATA_S_DWF))
et = MVS_ERR_TFE;
goto end_finished;
default:
device_printf(dev, "unknown transfer phase"
" (status %02x, ireason %02x)\n",
status, ireason);
et = MVS_ERR_TFE;
}
}
end_finished:
mvs_end_transaction(slot, et);
}
static void
mvs_crbq_intr(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
struct mvs_crpb *crpb;
union ccb *ccb;
int in_idx, fin_idx, cin_idx, slot;
uint32_t val;
uint16_t flags;
val = ATA_INL(ch->r_mem, EDMA_RESQIP);
if (val == 0)
val = ATA_INL(ch->r_mem, EDMA_RESQIP);
in_idx = (val & EDMA_RESQP_ERPQP_MASK) >>
EDMA_RESQP_ERPQP_SHIFT;
bus_dmamap_sync(ch->dma.workrp_tag, ch->dma.workrp_map,
BUS_DMASYNC_POSTREAD);
fin_idx = cin_idx = ch->in_idx;
ch->in_idx = in_idx;
while (in_idx != cin_idx) {
crpb = (struct mvs_crpb *)
(ch->dma.workrp + MVS_CRPB_OFFSET +
(MVS_CRPB_SIZE * cin_idx));
slot = le16toh(crpb->id) & MVS_CRPB_TAG_MASK;
flags = le16toh(crpb->rspflg);
/*
* Handle only successfull completions here.
* Errors will be handled by main intr handler.
*/
#if defined(__i386__) || defined(__amd64__)
if (crpb->id == 0xffff && crpb->rspflg == 0xffff) {
device_printf(dev, "Unfilled CRPB "
"%d (%d->%d) tag %d flags %04x rs %08x\n",
cin_idx, fin_idx, in_idx, slot, flags, ch->rslots);
} else
#endif
if (ch->numtslots != 0 ||
(flags & EDMA_IE_EDEVERR) == 0) {
#if defined(__i386__) || defined(__amd64__)
crpb->id = 0xffff;
crpb->rspflg = 0xffff;
#endif
if (ch->slot[slot].state >= MVS_SLOT_RUNNING) {
ccb = ch->slot[slot].ccb;
ccb->ataio.res.status =
(flags & MVS_CRPB_ATASTS_MASK) >>
MVS_CRPB_ATASTS_SHIFT;
mvs_end_transaction(&ch->slot[slot], MVS_ERR_NONE);
} else {
device_printf(dev, "Unused tag in CRPB "
"%d (%d->%d) tag %d flags %04x rs %08x\n",
cin_idx, fin_idx, in_idx, slot, flags,
ch->rslots);
}
} else {
device_printf(dev,
"CRPB with error %d tag %d flags %04x\n",
cin_idx, slot, flags);
}
cin_idx = (cin_idx + 1) & (MVS_MAX_SLOTS - 1);
}
bus_dmamap_sync(ch->dma.workrp_tag, ch->dma.workrp_map,
BUS_DMASYNC_PREREAD);
if (cin_idx == ch->in_idx) {
ATA_OUTL(ch->r_mem, EDMA_RESQOP,
ch->dma.workrp_bus | (cin_idx << EDMA_RESQP_ERPQP_SHIFT));
}
}
/* Must be called with channel locked. */
static int
mvs_check_collision(device_t dev, union ccb *ccb)
{
struct mvs_channel *ch = device_get_softc(dev);
if (ccb->ccb_h.func_code == XPT_ATA_IO) {
/* NCQ DMA */
if (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA) {
/* Can't mix NCQ and non-NCQ DMA commands. */
if (ch->numdslots != 0)
return (1);
/* Can't mix NCQ and PIO commands. */
if (ch->numpslots != 0)
return (1);
/* If we have no FBS */
if (!ch->fbs_enabled) {
/* Tagged command while tagged to other target is active. */
if (ch->numtslots != 0 &&
ch->taggedtarget != ccb->ccb_h.target_id)
return (1);
}
/* Non-NCQ DMA */
} else if (ccb->ataio.cmd.flags & CAM_ATAIO_DMA) {
/* Can't mix non-NCQ DMA and NCQ commands. */
if (ch->numtslots != 0)
return (1);
/* Can't mix non-NCQ DMA and PIO commands. */
if (ch->numpslots != 0)
return (1);
/* PIO */
} else {
/* Can't mix PIO with anything. */
if (ch->numrslots != 0)
return (1);
}
if (ccb->ataio.cmd.flags & (CAM_ATAIO_CONTROL | CAM_ATAIO_NEEDRESULT)) {
/* Atomic command while anything active. */
if (ch->numrslots != 0)
return (1);
}
} else { /* ATAPI */
/* ATAPI goes without EDMA, so can't mix it with anything. */
if (ch->numrslots != 0)
return (1);
}
/* We have some atomic command running. */
if (ch->aslots != 0)
return (1);
return (0);
}
static void
mvs_tfd_read(device_t dev, union ccb *ccb)
{
struct mvs_channel *ch = device_get_softc(dev);
struct ata_res *res = &ccb->ataio.res;
res->status = ATA_INB(ch->r_mem, ATA_ALTSTAT);
res->error = ATA_INB(ch->r_mem, ATA_ERROR);
res->device = ATA_INB(ch->r_mem, ATA_DRIVE);
ATA_OUTB(ch->r_mem, ATA_CONTROL, ATA_A_HOB);
res->sector_count_exp = ATA_INB(ch->r_mem, ATA_COUNT);
res->lba_low_exp = ATA_INB(ch->r_mem, ATA_SECTOR);
res->lba_mid_exp = ATA_INB(ch->r_mem, ATA_CYL_LSB);
res->lba_high_exp = ATA_INB(ch->r_mem, ATA_CYL_MSB);
ATA_OUTB(ch->r_mem, ATA_CONTROL, 0);
res->sector_count = ATA_INB(ch->r_mem, ATA_COUNT);
res->lba_low = ATA_INB(ch->r_mem, ATA_SECTOR);
res->lba_mid = ATA_INB(ch->r_mem, ATA_CYL_LSB);
res->lba_high = ATA_INB(ch->r_mem, ATA_CYL_MSB);
}
static void
mvs_tfd_write(device_t dev, union ccb *ccb)
{
struct mvs_channel *ch = device_get_softc(dev);
struct ata_cmd *cmd = &ccb->ataio.cmd;
ATA_OUTB(ch->r_mem, ATA_DRIVE, cmd->device);
ATA_OUTB(ch->r_mem, ATA_CONTROL, cmd->control);
ATA_OUTB(ch->r_mem, ATA_FEATURE, cmd->features_exp);
ATA_OUTB(ch->r_mem, ATA_FEATURE, cmd->features);
ATA_OUTB(ch->r_mem, ATA_COUNT, cmd->sector_count_exp);
ATA_OUTB(ch->r_mem, ATA_COUNT, cmd->sector_count);
ATA_OUTB(ch->r_mem, ATA_SECTOR, cmd->lba_low_exp);
ATA_OUTB(ch->r_mem, ATA_SECTOR, cmd->lba_low);
ATA_OUTB(ch->r_mem, ATA_CYL_LSB, cmd->lba_mid_exp);
ATA_OUTB(ch->r_mem, ATA_CYL_LSB, cmd->lba_mid);
ATA_OUTB(ch->r_mem, ATA_CYL_MSB, cmd->lba_high_exp);
ATA_OUTB(ch->r_mem, ATA_CYL_MSB, cmd->lba_high);
ATA_OUTB(ch->r_mem, ATA_COMMAND, cmd->command);
}
/* Must be called with channel locked. */
static void
mvs_begin_transaction(device_t dev, union ccb *ccb)
{
struct mvs_channel *ch = device_get_softc(dev);
struct mvs_slot *slot;
int slotn, tag;
if (ch->pm_level > 0)
mvs_ch_pm_wake(dev);
/* Softreset is a special case. */
if (ccb->ccb_h.func_code == XPT_ATA_IO &&
(ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL)) {
mvs_softreset(dev, ccb);
return;
}
/* Choose empty slot. */
slotn = ffs(~ch->oslots) - 1;
if ((ccb->ccb_h.func_code == XPT_ATA_IO) &&
(ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA)) {
if (ch->quirks & MVS_Q_GENIIE)
tag = ffs(~ch->otagspd[ccb->ccb_h.target_id]) - 1;
else
tag = slotn;
} else
tag = 0;
/* Occupy chosen slot. */
slot = &ch->slot[slotn];
slot->ccb = ccb;
slot->tag = tag;
/* Stop PM timer. */
if (ch->numrslots == 0 && ch->pm_level > 3)
callout_stop(&ch->pm_timer);
/* Update channel stats. */
ch->oslots |= (1 << slot->slot);
ch->numrslots++;
ch->numrslotspd[ccb->ccb_h.target_id]++;
if (ccb->ccb_h.func_code == XPT_ATA_IO) {
if (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA) {
ch->otagspd[ccb->ccb_h.target_id] |= (1 << slot->tag);
ch->numtslots++;
ch->numtslotspd[ccb->ccb_h.target_id]++;
ch->taggedtarget = ccb->ccb_h.target_id;
mvs_set_edma_mode(dev, MVS_EDMA_NCQ);
} else if (ccb->ataio.cmd.flags & CAM_ATAIO_DMA) {
ch->numdslots++;
mvs_set_edma_mode(dev, MVS_EDMA_ON);
} else {
ch->numpslots++;
mvs_set_edma_mode(dev, MVS_EDMA_OFF);
}
if (ccb->ataio.cmd.flags &
(CAM_ATAIO_CONTROL | CAM_ATAIO_NEEDRESULT)) {
ch->aslots |= (1 << slot->slot);
}
} else {
uint8_t *cdb = (ccb->ccb_h.flags & CAM_CDB_POINTER) ?
ccb->csio.cdb_io.cdb_ptr : ccb->csio.cdb_io.cdb_bytes;
ch->numpslots++;
/* Use ATAPI DMA only for commands without under-/overruns. */
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE &&
ch->curr[ccb->ccb_h.target_id].mode >= ATA_DMA &&
(ch->quirks & MVS_Q_SOC) == 0 &&
(cdb[0] == 0x08 ||
cdb[0] == 0x0a ||
cdb[0] == 0x28 ||
cdb[0] == 0x2a ||
cdb[0] == 0x88 ||
cdb[0] == 0x8a ||
cdb[0] == 0xa8 ||
cdb[0] == 0xaa ||
cdb[0] == 0xbe)) {
ch->basic_dma = 1;
}
mvs_set_edma_mode(dev, MVS_EDMA_OFF);
}
if (ch->numpslots == 0 || ch->basic_dma) {
slot->state = MVS_SLOT_LOADING;
bus_dmamap_load_ccb(ch->dma.data_tag, slot->dma.data_map,
ccb, mvs_dmasetprd, slot, 0);
} else
mvs_legacy_execute_transaction(slot);
}
/* Locked by busdma engine. */
static void
mvs_dmasetprd(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct mvs_slot *slot = arg;
struct mvs_channel *ch = device_get_softc(slot->dev);
struct mvs_eprd *eprd;
int i;
if (error) {
device_printf(slot->dev, "DMA load error\n");
mvs_end_transaction(slot, MVS_ERR_INVALID);
return;
}
KASSERT(nsegs <= MVS_SG_ENTRIES, ("too many DMA segment entries\n"));
/* If there is only one segment - no need to use S/G table on Gen-IIe. */
if (nsegs == 1 && ch->basic_dma == 0 && (ch->quirks & MVS_Q_GENIIE)) {
slot->dma.addr = segs[0].ds_addr;
slot->dma.len = segs[0].ds_len;
} else {
slot->dma.addr = 0;
/* Get a piece of the workspace for this EPRD */
eprd = (struct mvs_eprd *)
(ch->dma.workrq + MVS_EPRD_OFFSET + (MVS_EPRD_SIZE * slot->slot));
/* Fill S/G table */
for (i = 0; i < nsegs; i++) {
eprd[i].prdbal = htole32(segs[i].ds_addr);
eprd[i].bytecount = htole32(segs[i].ds_len & MVS_EPRD_MASK);
eprd[i].prdbah = htole32((segs[i].ds_addr >> 16) >> 16);
}
eprd[i - 1].bytecount |= htole32(MVS_EPRD_EOF);
}
bus_dmamap_sync(ch->dma.data_tag, slot->dma.data_map,
((slot->ccb->ccb_h.flags & CAM_DIR_IN) ?
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
if (ch->basic_dma)
mvs_legacy_execute_transaction(slot);
else
mvs_execute_transaction(slot);
}
static void
mvs_legacy_execute_transaction(struct mvs_slot *slot)
{
device_t dev = slot->dev;
struct mvs_channel *ch = device_get_softc(dev);
bus_addr_t eprd;
union ccb *ccb = slot->ccb;
int port = ccb->ccb_h.target_id & 0x0f;
int timeout;
slot->state = MVS_SLOT_RUNNING;
ch->rslots |= (1 << slot->slot);
ATA_OUTB(ch->r_mem, SATA_SATAICTL, port << SATA_SATAICTL_PMPTX_SHIFT);
if (ccb->ccb_h.func_code == XPT_ATA_IO) {
mvs_tfd_write(dev, ccb);
/* Device reset doesn't interrupt. */
if (ccb->ataio.cmd.command == ATA_DEVICE_RESET) {
int timeout = 1000000;
do {
DELAY(10);
ccb->ataio.res.status = ATA_INB(ch->r_mem, ATA_STATUS);
} while (ccb->ataio.res.status & ATA_S_BUSY && timeout--);
mvs_legacy_intr(dev, 1);
return;
}
ch->donecount = 0;
if (ccb->ataio.cmd.command == ATA_READ_MUL ||
ccb->ataio.cmd.command == ATA_READ_MUL48 ||
ccb->ataio.cmd.command == ATA_WRITE_MUL ||
ccb->ataio.cmd.command == ATA_WRITE_MUL48) {
ch->transfersize = min(ccb->ataio.dxfer_len,
ch->curr[port].bytecount);
} else
ch->transfersize = min(ccb->ataio.dxfer_len, 512);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE)
ch->fake_busy = 1;
/* If data write command - output the data */
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
if (mvs_wait(dev, ATA_S_DRQ, ATA_S_BUSY, 1000) < 0) {
device_printf(dev,
"timeout waiting for write DRQ\n");
xpt_freeze_simq(ch->sim, 1);
ch->toslots |= (1 << slot->slot);
mvs_end_transaction(slot, MVS_ERR_TIMEOUT);
return;
}
ATA_OUTSW_STRM(ch->r_mem, ATA_DATA,
(uint16_t *)(ccb->ataio.data_ptr + ch->donecount),
ch->transfersize / 2);
}
} else {
ch->donecount = 0;
ch->transfersize = min(ccb->csio.dxfer_len,
ch->curr[port].bytecount);
/* Write ATA PACKET command. */
if (ch->basic_dma) {
ATA_OUTB(ch->r_mem, ATA_FEATURE, ATA_F_DMA);
ATA_OUTB(ch->r_mem, ATA_CYL_LSB, 0);
ATA_OUTB(ch->r_mem, ATA_CYL_MSB, 0);
} else {
ATA_OUTB(ch->r_mem, ATA_FEATURE, 0);
ATA_OUTB(ch->r_mem, ATA_CYL_LSB, ch->transfersize);
ATA_OUTB(ch->r_mem, ATA_CYL_MSB, ch->transfersize >> 8);
}
ATA_OUTB(ch->r_mem, ATA_COMMAND, ATA_PACKET_CMD);
ch->fake_busy = 1;
/* Wait for ready to write ATAPI command block */
if (mvs_wait(dev, 0, ATA_S_BUSY, 1000) < 0) {
device_printf(dev, "timeout waiting for ATAPI !BUSY\n");
xpt_freeze_simq(ch->sim, 1);
ch->toslots |= (1 << slot->slot);
mvs_end_transaction(slot, MVS_ERR_TIMEOUT);
return;
}
timeout = 5000;
while (timeout--) {
int reason = ATA_INB(ch->r_mem, ATA_IREASON);
int status = ATA_INB(ch->r_mem, ATA_STATUS);
if (((reason & (ATA_I_CMD | ATA_I_IN)) |
(status & (ATA_S_DRQ | ATA_S_BUSY))) == ATAPI_P_CMDOUT)
break;
DELAY(20);
}
if (timeout <= 0) {
device_printf(dev,
"timeout waiting for ATAPI command ready\n");
xpt_freeze_simq(ch->sim, 1);
ch->toslots |= (1 << slot->slot);
mvs_end_transaction(slot, MVS_ERR_TIMEOUT);
return;
}
/* Write ATAPI command. */
ATA_OUTSW_STRM(ch->r_mem, ATA_DATA,
(uint16_t *)((ccb->ccb_h.flags & CAM_CDB_POINTER) ?
ccb->csio.cdb_io.cdb_ptr : ccb->csio.cdb_io.cdb_bytes),
ch->curr[port].atapi / 2);
DELAY(10);
if (ch->basic_dma) {
/* Start basic DMA. */
eprd = ch->dma.workrq_bus + MVS_EPRD_OFFSET +
(MVS_EPRD_SIZE * slot->slot);
ATA_OUTL(ch->r_mem, DMA_DTLBA, eprd);
ATA_OUTL(ch->r_mem, DMA_DTHBA, (eprd >> 16) >> 16);
ATA_OUTL(ch->r_mem, DMA_C, DMA_C_START |
(((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) ?
DMA_C_READ : 0));
}
}
/* Start command execution timeout */
callout_reset(&slot->timeout, (int)ccb->ccb_h.timeout * hz / 1000,
(timeout_t*)mvs_timeout, slot);
}
/* Must be called with channel locked. */
static void
mvs_execute_transaction(struct mvs_slot *slot)
{
device_t dev = slot->dev;
struct mvs_channel *ch = device_get_softc(dev);
bus_addr_t eprd;
struct mvs_crqb *crqb;
struct mvs_crqb_gen2e *crqb2e;
union ccb *ccb = slot->ccb;
int port = ccb->ccb_h.target_id & 0x0f;
int i;
/* Get address of the prepared EPRD */
eprd = ch->dma.workrq_bus + MVS_EPRD_OFFSET + (MVS_EPRD_SIZE * slot->slot);
/* Prepare CRQB. Gen IIe uses different CRQB format. */
if (ch->quirks & MVS_Q_GENIIE) {
crqb2e = (struct mvs_crqb_gen2e *)
(ch->dma.workrq + MVS_CRQB_OFFSET + (MVS_CRQB_SIZE * ch->out_idx));
crqb2e->ctrlflg = htole32(
((ccb->ccb_h.flags & CAM_DIR_IN) ? MVS_CRQB2E_READ : 0) |
(slot->tag << MVS_CRQB2E_DTAG_SHIFT) |
(port << MVS_CRQB2E_PMP_SHIFT) |
(slot->slot << MVS_CRQB2E_HTAG_SHIFT));
/* If there is only one segment - no need to use S/G table. */
if (slot->dma.addr != 0) {
eprd = slot->dma.addr;
crqb2e->ctrlflg |= htole32(MVS_CRQB2E_CPRD);
crqb2e->drbc = slot->dma.len;
}
crqb2e->cprdbl = htole32(eprd);
crqb2e->cprdbh = htole32((eprd >> 16) >> 16);
crqb2e->cmd[0] = 0;
crqb2e->cmd[1] = 0;
crqb2e->cmd[2] = ccb->ataio.cmd.command;
crqb2e->cmd[3] = ccb->ataio.cmd.features;
crqb2e->cmd[4] = ccb->ataio.cmd.lba_low;
crqb2e->cmd[5] = ccb->ataio.cmd.lba_mid;
crqb2e->cmd[6] = ccb->ataio.cmd.lba_high;
crqb2e->cmd[7] = ccb->ataio.cmd.device;
crqb2e->cmd[8] = ccb->ataio.cmd.lba_low_exp;
crqb2e->cmd[9] = ccb->ataio.cmd.lba_mid_exp;
crqb2e->cmd[10] = ccb->ataio.cmd.lba_high_exp;
crqb2e->cmd[11] = ccb->ataio.cmd.features_exp;
if (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA) {
crqb2e->cmd[12] = slot->tag << 3;
crqb2e->cmd[13] = 0;
} else {
crqb2e->cmd[12] = ccb->ataio.cmd.sector_count;
crqb2e->cmd[13] = ccb->ataio.cmd.sector_count_exp;
}
crqb2e->cmd[14] = 0;
crqb2e->cmd[15] = 0;
} else {
crqb = (struct mvs_crqb *)
(ch->dma.workrq + MVS_CRQB_OFFSET + (MVS_CRQB_SIZE * ch->out_idx));
crqb->cprdbl = htole32(eprd);
crqb->cprdbh = htole32((eprd >> 16) >> 16);
crqb->ctrlflg = htole16(
((ccb->ccb_h.flags & CAM_DIR_IN) ? MVS_CRQB_READ : 0) |
(slot->slot << MVS_CRQB_TAG_SHIFT) |
(port << MVS_CRQB_PMP_SHIFT));
i = 0;
/*
* Controller can handle only 11 of 12 ATA registers,
* so we have to choose which one to skip.
*/
if (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA) {
crqb->cmd[i++] = ccb->ataio.cmd.features_exp;
crqb->cmd[i++] = 0x11;
}
crqb->cmd[i++] = ccb->ataio.cmd.features;
crqb->cmd[i++] = 0x11;
if (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA) {
crqb->cmd[i++] = slot->tag << 3;
crqb->cmd[i++] = 0x12;
} else {
crqb->cmd[i++] = ccb->ataio.cmd.sector_count_exp;
crqb->cmd[i++] = 0x12;
crqb->cmd[i++] = ccb->ataio.cmd.sector_count;
crqb->cmd[i++] = 0x12;
}
crqb->cmd[i++] = ccb->ataio.cmd.lba_low_exp;
crqb->cmd[i++] = 0x13;
crqb->cmd[i++] = ccb->ataio.cmd.lba_low;
crqb->cmd[i++] = 0x13;
crqb->cmd[i++] = ccb->ataio.cmd.lba_mid_exp;
crqb->cmd[i++] = 0x14;
crqb->cmd[i++] = ccb->ataio.cmd.lba_mid;
crqb->cmd[i++] = 0x14;
crqb->cmd[i++] = ccb->ataio.cmd.lba_high_exp;
crqb->cmd[i++] = 0x15;
crqb->cmd[i++] = ccb->ataio.cmd.lba_high;
crqb->cmd[i++] = 0x15;
crqb->cmd[i++] = ccb->ataio.cmd.device;
crqb->cmd[i++] = 0x16;
crqb->cmd[i++] = ccb->ataio.cmd.command;
crqb->cmd[i++] = 0x97;
}
bus_dmamap_sync(ch->dma.workrq_tag, ch->dma.workrq_map,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(ch->dma.workrp_tag, ch->dma.workrp_map,
BUS_DMASYNC_PREREAD);
slot->state = MVS_SLOT_RUNNING;
ch->rslots |= (1 << slot->slot);
/* Issue command to the controller. */
ch->out_idx = (ch->out_idx + 1) & (MVS_MAX_SLOTS - 1);
ATA_OUTL(ch->r_mem, EDMA_REQQIP,
ch->dma.workrq_bus + MVS_CRQB_OFFSET + (MVS_CRQB_SIZE * ch->out_idx));
/* Start command execution timeout */
callout_reset(&slot->timeout, (int)ccb->ccb_h.timeout * hz / 1000,
(timeout_t*)mvs_timeout, slot);
return;
}
/* Must be called with channel locked. */
static void
mvs_process_timeout(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
int i;
mtx_assert(&ch->mtx, MA_OWNED);
/* Handle the rest of commands. */
for (i = 0; i < MVS_MAX_SLOTS; i++) {
/* Do we have a running request on slot? */
if (ch->slot[i].state < MVS_SLOT_RUNNING)
continue;
mvs_end_transaction(&ch->slot[i], MVS_ERR_TIMEOUT);
}
}
/* Must be called with channel locked. */
static void
mvs_rearm_timeout(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
int i;
mtx_assert(&ch->mtx, MA_OWNED);
for (i = 0; i < MVS_MAX_SLOTS; i++) {
struct mvs_slot *slot = &ch->slot[i];
/* Do we have a running request on slot? */
if (slot->state < MVS_SLOT_RUNNING)
continue;
if ((ch->toslots & (1 << i)) == 0)
continue;
callout_reset(&slot->timeout,
(int)slot->ccb->ccb_h.timeout * hz / 2000,
(timeout_t*)mvs_timeout, slot);
}
}
/* Locked by callout mechanism. */
static void
mvs_timeout(struct mvs_slot *slot)
{
device_t dev = slot->dev;
struct mvs_channel *ch = device_get_softc(dev);
/* Check for stale timeout. */
if (slot->state < MVS_SLOT_RUNNING)
return;
device_printf(dev, "Timeout on slot %d\n", slot->slot);
device_printf(dev, "iec %08x sstat %08x serr %08x edma_s %08x "
"dma_c %08x dma_s %08x rs %08x status %02x\n",
ATA_INL(ch->r_mem, EDMA_IEC),
ATA_INL(ch->r_mem, SATA_SS), ATA_INL(ch->r_mem, SATA_SE),
ATA_INL(ch->r_mem, EDMA_S), ATA_INL(ch->r_mem, DMA_C),
ATA_INL(ch->r_mem, DMA_S), ch->rslots,
ATA_INB(ch->r_mem, ATA_ALTSTAT));
/* Handle frozen command. */
mvs_requeue_frozen(dev);
/* We wait for other commands timeout and pray. */
if (ch->toslots == 0)
xpt_freeze_simq(ch->sim, 1);
ch->toslots |= (1 << slot->slot);
if ((ch->rslots & ~ch->toslots) == 0)
mvs_process_timeout(dev);
else
device_printf(dev, " ... waiting for slots %08x\n",
ch->rslots & ~ch->toslots);
}
/* Must be called with channel locked. */
static void
mvs_end_transaction(struct mvs_slot *slot, enum mvs_err_type et)
{
device_t dev = slot->dev;
struct mvs_channel *ch = device_get_softc(dev);
union ccb *ccb = slot->ccb;
int lastto;
bus_dmamap_sync(ch->dma.workrq_tag, ch->dma.workrq_map,
BUS_DMASYNC_POSTWRITE);
/* Read result registers to the result struct
* May be incorrect if several commands finished same time,
* so read only when sure or have to.
*/
if (ccb->ccb_h.func_code == XPT_ATA_IO) {
struct ata_res *res = &ccb->ataio.res;
if ((et == MVS_ERR_TFE) ||
(ccb->ataio.cmd.flags & CAM_ATAIO_NEEDRESULT)) {
mvs_tfd_read(dev, ccb);
} else
bzero(res, sizeof(*res));
} else {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE &&
ch->basic_dma == 0)
ccb->csio.resid = ccb->csio.dxfer_len - ch->donecount;
}
if (ch->numpslots == 0 || ch->basic_dma) {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmamap_sync(ch->dma.data_tag, slot->dma.data_map,
(ccb->ccb_h.flags & CAM_DIR_IN) ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ch->dma.data_tag, slot->dma.data_map);
}
}
if (et != MVS_ERR_NONE)
ch->eslots |= (1 << slot->slot);
/* In case of error, freeze device for proper recovery. */
if ((et != MVS_ERR_NONE) && (!ch->recoverycmd) &&
!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
xpt_freeze_devq(ccb->ccb_h.path, 1);
ccb->ccb_h.status |= CAM_DEV_QFRZN;
}
/* Set proper result status. */
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
switch (et) {
case MVS_ERR_NONE:
ccb->ccb_h.status |= CAM_REQ_CMP;
if (ccb->ccb_h.func_code == XPT_SCSI_IO)
ccb->csio.scsi_status = SCSI_STATUS_OK;
break;
case MVS_ERR_INVALID:
ch->fatalerr = 1;
ccb->ccb_h.status |= CAM_REQ_INVALID;
break;
case MVS_ERR_INNOCENT:
ccb->ccb_h.status |= CAM_REQUEUE_REQ;
break;
case MVS_ERR_TFE:
case MVS_ERR_NCQ:
if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
ccb->csio.scsi_status = SCSI_STATUS_CHECK_COND;
} else {
ccb->ccb_h.status |= CAM_ATA_STATUS_ERROR;
}
break;
case MVS_ERR_SATA:
ch->fatalerr = 1;
if (!ch->recoverycmd) {
xpt_freeze_simq(ch->sim, 1);
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
}
ccb->ccb_h.status |= CAM_UNCOR_PARITY;
break;
case MVS_ERR_TIMEOUT:
if (!ch->recoverycmd) {
xpt_freeze_simq(ch->sim, 1);
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
}
ccb->ccb_h.status |= CAM_CMD_TIMEOUT;
break;
default:
ch->fatalerr = 1;
ccb->ccb_h.status |= CAM_REQ_CMP_ERR;
}
/* Free slot. */
ch->oslots &= ~(1 << slot->slot);
ch->rslots &= ~(1 << slot->slot);
ch->aslots &= ~(1 << slot->slot);
slot->state = MVS_SLOT_EMPTY;
slot->ccb = NULL;
/* Update channel stats. */
ch->numrslots--;
ch->numrslotspd[ccb->ccb_h.target_id]--;
if (ccb->ccb_h.func_code == XPT_ATA_IO) {
if (ccb->ataio.cmd.flags & CAM_ATAIO_FPDMA) {
ch->otagspd[ccb->ccb_h.target_id] &= ~(1 << slot->tag);
ch->numtslots--;
ch->numtslotspd[ccb->ccb_h.target_id]--;
} else if (ccb->ataio.cmd.flags & CAM_ATAIO_DMA) {
ch->numdslots--;
} else {
ch->numpslots--;
}
} else {
ch->numpslots--;
ch->basic_dma = 0;
}
/* Cancel timeout state if request completed normally. */
if (et != MVS_ERR_TIMEOUT) {
lastto = (ch->toslots == (1 << slot->slot));
ch->toslots &= ~(1 << slot->slot);
if (lastto)
xpt_release_simq(ch->sim, TRUE);
}
/* If it was our READ LOG command - process it. */
if (ccb->ccb_h.recovery_type == RECOVERY_READ_LOG) {
mvs_process_read_log(dev, ccb);
/* If it was our REQUEST SENSE command - process it. */
} else if (ccb->ccb_h.recovery_type == RECOVERY_REQUEST_SENSE) {
mvs_process_request_sense(dev, ccb);
/* If it was NCQ or ATAPI command error, put result on hold. */
} else if (et == MVS_ERR_NCQ ||
((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR &&
(ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)) {
ch->hold[slot->slot] = ccb;
ch->holdtag[slot->slot] = slot->tag;
ch->numhslots++;
} else
xpt_done(ccb);
/* If we have no other active commands, ... */
if (ch->rslots == 0) {
/* if there was fatal error - reset port. */
if (ch->toslots != 0 || ch->fatalerr) {
mvs_reset(dev);
} else {
/* if we have slots in error, we can reinit port. */
if (ch->eslots != 0) {
mvs_set_edma_mode(dev, MVS_EDMA_OFF);
ch->eslots = 0;
}
/* if there commands on hold, we can do READ LOG. */
if (!ch->recoverycmd && ch->numhslots)
mvs_issue_recovery(dev);
}
/* If all the rest of commands are in timeout - give them chance. */
} else if ((ch->rslots & ~ch->toslots) == 0 &&
et != MVS_ERR_TIMEOUT)
mvs_rearm_timeout(dev);
/* Unfreeze frozen command. */
if (ch->frozen && !mvs_check_collision(dev, ch->frozen)) {
union ccb *fccb = ch->frozen;
ch->frozen = NULL;
mvs_begin_transaction(dev, fccb);
xpt_release_simq(ch->sim, TRUE);
}
/* Start PM timer. */
if (ch->numrslots == 0 && ch->pm_level > 3 &&
(ch->curr[ch->pm_present ? 15 : 0].caps & CTS_SATA_CAPS_D_PMREQ)) {
callout_schedule(&ch->pm_timer,
(ch->pm_level == 4) ? hz / 1000 : hz / 8);
}
}
static void
mvs_issue_recovery(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
union ccb *ccb;
struct ccb_ataio *ataio;
struct ccb_scsiio *csio;
int i;
/* Find some held command. */
for (i = 0; i < MVS_MAX_SLOTS; i++) {
if (ch->hold[i])
break;
}
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
device_printf(dev, "Unable to allocate recovery command\n");
completeall:
/* We can't do anything -- complete held commands. */
for (i = 0; i < MVS_MAX_SLOTS; i++) {
if (ch->hold[i] == NULL)
continue;
ch->hold[i]->ccb_h.status &= ~CAM_STATUS_MASK;
ch->hold[i]->ccb_h.status |= CAM_RESRC_UNAVAIL;
xpt_done(ch->hold[i]);
ch->hold[i] = NULL;
ch->numhslots--;
}
mvs_reset(dev);
return;
}
ccb->ccb_h = ch->hold[i]->ccb_h; /* Reuse old header. */
if (ccb->ccb_h.func_code == XPT_ATA_IO) {
/* READ LOG */
ccb->ccb_h.recovery_type = RECOVERY_READ_LOG;
ccb->ccb_h.func_code = XPT_ATA_IO;
ccb->ccb_h.flags = CAM_DIR_IN;
ccb->ccb_h.timeout = 1000; /* 1s should be enough. */
ataio = &ccb->ataio;
ataio->data_ptr = malloc(512, M_MVS, M_NOWAIT);
if (ataio->data_ptr == NULL) {
xpt_free_ccb(ccb);
device_printf(dev,
"Unable to allocate memory for READ LOG command\n");
goto completeall;
}
ataio->dxfer_len = 512;
bzero(&ataio->cmd, sizeof(ataio->cmd));
ataio->cmd.flags = CAM_ATAIO_48BIT;
ataio->cmd.command = 0x2F; /* READ LOG EXT */
ataio->cmd.sector_count = 1;
ataio->cmd.sector_count_exp = 0;
ataio->cmd.lba_low = 0x10;
ataio->cmd.lba_mid = 0;
ataio->cmd.lba_mid_exp = 0;
} else {
/* REQUEST SENSE */
ccb->ccb_h.recovery_type = RECOVERY_REQUEST_SENSE;
ccb->ccb_h.recovery_slot = i;
ccb->ccb_h.func_code = XPT_SCSI_IO;
ccb->ccb_h.flags = CAM_DIR_IN;
ccb->ccb_h.status = 0;
ccb->ccb_h.timeout = 1000; /* 1s should be enough. */
csio = &ccb->csio;
csio->data_ptr = (void *)&ch->hold[i]->csio.sense_data;
csio->dxfer_len = ch->hold[i]->csio.sense_len;
csio->cdb_len = 6;
bzero(&csio->cdb_io, sizeof(csio->cdb_io));
csio->cdb_io.cdb_bytes[0] = 0x03;
csio->cdb_io.cdb_bytes[4] = csio->dxfer_len;
}
/* Freeze SIM while doing recovery. */
ch->recoverycmd = 1;
xpt_freeze_simq(ch->sim, 1);
mvs_begin_transaction(dev, ccb);
}
static void
mvs_process_read_log(device_t dev, union ccb *ccb)
{
struct mvs_channel *ch = device_get_softc(dev);
uint8_t *data;
struct ata_res *res;
int i;
ch->recoverycmd = 0;
data = ccb->ataio.data_ptr;
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP &&
(data[0] & 0x80) == 0) {
for (i = 0; i < MVS_MAX_SLOTS; i++) {
if (!ch->hold[i])
continue;
if (ch->hold[i]->ccb_h.target_id != ccb->ccb_h.target_id)
continue;
if ((data[0] & 0x1F) == ch->holdtag[i]) {
res = &ch->hold[i]->ataio.res;
res->status = data[2];
res->error = data[3];
res->lba_low = data[4];
res->lba_mid = data[5];
res->lba_high = data[6];
res->device = data[7];
res->lba_low_exp = data[8];
res->lba_mid_exp = data[9];
res->lba_high_exp = data[10];
res->sector_count = data[12];
res->sector_count_exp = data[13];
} else {
ch->hold[i]->ccb_h.status &= ~CAM_STATUS_MASK;
ch->hold[i]->ccb_h.status |= CAM_REQUEUE_REQ;
}
xpt_done(ch->hold[i]);
ch->hold[i] = NULL;
ch->numhslots--;
}
} else {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
device_printf(dev, "Error while READ LOG EXT\n");
else if ((data[0] & 0x80) == 0) {
device_printf(dev,
"Non-queued command error in READ LOG EXT\n");
}
for (i = 0; i < MVS_MAX_SLOTS; i++) {
if (!ch->hold[i])
continue;
if (ch->hold[i]->ccb_h.target_id != ccb->ccb_h.target_id)
continue;
xpt_done(ch->hold[i]);
ch->hold[i] = NULL;
ch->numhslots--;
}
}
free(ccb->ataio.data_ptr, M_MVS);
xpt_free_ccb(ccb);
xpt_release_simq(ch->sim, TRUE);
}
static void
mvs_process_request_sense(device_t dev, union ccb *ccb)
{
struct mvs_channel *ch = device_get_softc(dev);
int i;
ch->recoverycmd = 0;
i = ccb->ccb_h.recovery_slot;
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
ch->hold[i]->ccb_h.status |= CAM_AUTOSNS_VALID;
} else {
ch->hold[i]->ccb_h.status &= ~CAM_STATUS_MASK;
ch->hold[i]->ccb_h.status |= CAM_AUTOSENSE_FAIL;
}
xpt_done(ch->hold[i]);
ch->hold[i] = NULL;
ch->numhslots--;
xpt_free_ccb(ccb);
xpt_release_simq(ch->sim, TRUE);
}
static int
mvs_wait(device_t dev, u_int s, u_int c, int t)
{
int timeout = 0;
uint8_t st;
while (((st = mvs_getstatus(dev, 0)) & (s | c)) != s) {
if (timeout >= t) {
if (t != 0)
device_printf(dev, "Wait status %02x\n", st);
return (-1);
}
DELAY(1000);
timeout++;
}
return (timeout);
}
static void
mvs_requeue_frozen(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
union ccb *fccb = ch->frozen;
if (fccb) {
ch->frozen = NULL;
fccb->ccb_h.status = CAM_REQUEUE_REQ | CAM_RELEASE_SIMQ;
if (!(fccb->ccb_h.status & CAM_DEV_QFRZN)) {
xpt_freeze_devq(fccb->ccb_h.path, 1);
fccb->ccb_h.status |= CAM_DEV_QFRZN;
}
xpt_done(fccb);
}
}
static void
mvs_reset_to(void *arg)
{
device_t dev = arg;
struct mvs_channel *ch = device_get_softc(dev);
int t;
if (ch->resetting == 0)
return;
ch->resetting--;
if ((t = mvs_wait(dev, 0, ATA_S_BUSY | ATA_S_DRQ, 0)) >= 0) {
if (bootverbose) {
device_printf(dev,
"MVS reset: device ready after %dms\n",
(310 - ch->resetting) * 100);
}
ch->resetting = 0;
xpt_release_simq(ch->sim, TRUE);
return;
}
if (ch->resetting == 0) {
device_printf(dev,
"MVS reset: device not ready after 31000ms\n");
xpt_release_simq(ch->sim, TRUE);
return;
}
callout_schedule(&ch->reset_timer, hz / 10);
}
static void
mvs_errata(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
uint32_t val;
if (ch->quirks & MVS_Q_SOC65) {
val = ATA_INL(ch->r_mem, SATA_PHYM3);
val &= ~(0x3 << 27); /* SELMUPF = 1 */
val |= (0x1 << 27);
val &= ~(0x3 << 29); /* SELMUPI = 1 */
val |= (0x1 << 29);
ATA_OUTL(ch->r_mem, SATA_PHYM3, val);
val = ATA_INL(ch->r_mem, SATA_PHYM4);
val &= ~0x1; /* SATU_OD8 = 0 */
val |= (0x1 << 16); /* reserved bit 16 = 1 */
ATA_OUTL(ch->r_mem, SATA_PHYM4, val);
val = ATA_INL(ch->r_mem, SATA_PHYM9_GEN2);
val &= ~0xf; /* TXAMP[3:0] = 8 */
val |= 0x8;
val &= ~(0x1 << 14); /* TXAMP[4] = 0 */
ATA_OUTL(ch->r_mem, SATA_PHYM9_GEN2, val);
val = ATA_INL(ch->r_mem, SATA_PHYM9_GEN1);
val &= ~0xf; /* TXAMP[3:0] = 8 */
val |= 0x8;
val &= ~(0x1 << 14); /* TXAMP[4] = 0 */
ATA_OUTL(ch->r_mem, SATA_PHYM9_GEN1, val);
}
}
static void
mvs_reset(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
int i;
xpt_freeze_simq(ch->sim, 1);
if (bootverbose)
device_printf(dev, "MVS reset...\n");
/* Forget about previous reset. */
if (ch->resetting) {
ch->resetting = 0;
callout_stop(&ch->reset_timer);
xpt_release_simq(ch->sim, TRUE);
}
/* Requeue freezed command. */
mvs_requeue_frozen(dev);
/* Kill the engine and requeue all running commands. */
mvs_set_edma_mode(dev, MVS_EDMA_OFF);
ATA_OUTL(ch->r_mem, DMA_C, 0);
for (i = 0; i < MVS_MAX_SLOTS; i++) {
/* Do we have a running request on slot? */
if (ch->slot[i].state < MVS_SLOT_RUNNING)
continue;
/* XXX; Commands in loading state. */
mvs_end_transaction(&ch->slot[i], MVS_ERR_INNOCENT);
}
for (i = 0; i < MVS_MAX_SLOTS; i++) {
if (!ch->hold[i])
continue;
xpt_done(ch->hold[i]);
ch->hold[i] = NULL;
ch->numhslots--;
}
if (ch->toslots != 0)
xpt_release_simq(ch->sim, TRUE);
ch->eslots = 0;
ch->toslots = 0;
ch->fatalerr = 0;
ch->fake_busy = 0;
/* Tell the XPT about the event */
xpt_async(AC_BUS_RESET, ch->path, NULL);
ATA_OUTL(ch->r_mem, EDMA_IEM, 0);
ATA_OUTL(ch->r_mem, EDMA_CMD, EDMA_CMD_EATARST);
DELAY(25);
ATA_OUTL(ch->r_mem, EDMA_CMD, 0);
mvs_errata(dev);
/* Reset and reconnect PHY, */
if (!mvs_sata_phy_reset(dev)) {
if (bootverbose)
device_printf(dev, "MVS reset: device not found\n");
ch->devices = 0;
ATA_OUTL(ch->r_mem, SATA_SE, 0xffffffff);
ATA_OUTL(ch->r_mem, EDMA_IEC, 0);
ATA_OUTL(ch->r_mem, EDMA_IEM, ~EDMA_IE_TRANSIENT);
xpt_release_simq(ch->sim, TRUE);
return;
}
if (bootverbose)
device_printf(dev, "MVS reset: device found\n");
/* Wait for clearing busy status. */
if ((i = mvs_wait(dev, 0, ATA_S_BUSY | ATA_S_DRQ,
dumping ? 31000 : 0)) < 0) {
if (dumping) {
device_printf(dev,
"MVS reset: device not ready after 31000ms\n");
} else
ch->resetting = 310;
} else if (bootverbose)
device_printf(dev, "MVS reset: device ready after %dms\n", i);
ch->devices = 1;
ATA_OUTL(ch->r_mem, SATA_SE, 0xffffffff);
ATA_OUTL(ch->r_mem, EDMA_IEC, 0);
ATA_OUTL(ch->r_mem, EDMA_IEM, ~EDMA_IE_TRANSIENT);
if (ch->resetting)
callout_reset(&ch->reset_timer, hz / 10, mvs_reset_to, dev);
else
xpt_release_simq(ch->sim, TRUE);
}
static void
mvs_softreset(device_t dev, union ccb *ccb)
{
struct mvs_channel *ch = device_get_softc(dev);
int port = ccb->ccb_h.target_id & 0x0f;
int i, stuck;
uint8_t status;
mvs_set_edma_mode(dev, MVS_EDMA_OFF);
ATA_OUTB(ch->r_mem, SATA_SATAICTL, port << SATA_SATAICTL_PMPTX_SHIFT);
ATA_OUTB(ch->r_mem, ATA_CONTROL, ATA_A_RESET);
DELAY(10000);
ATA_OUTB(ch->r_mem, ATA_CONTROL, 0);
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
/* Wait for clearing busy status. */
if ((i = mvs_wait(dev, 0, ATA_S_BUSY, ccb->ccb_h.timeout)) < 0) {
ccb->ccb_h.status |= CAM_CMD_TIMEOUT;
stuck = 1;
} else {
status = mvs_getstatus(dev, 0);
if (status & ATA_S_ERROR)
ccb->ccb_h.status |= CAM_ATA_STATUS_ERROR;
else
ccb->ccb_h.status |= CAM_REQ_CMP;
if (status & ATA_S_DRQ)
stuck = 1;
else
stuck = 0;
}
mvs_tfd_read(dev, ccb);
/*
* XXX: If some device on PMP failed to soft-reset,
* try to recover by sending dummy soft-reset to PMP.
*/
if (stuck && ch->pm_present && port != 15) {
ATA_OUTB(ch->r_mem, SATA_SATAICTL,
15 << SATA_SATAICTL_PMPTX_SHIFT);
ATA_OUTB(ch->r_mem, ATA_CONTROL, ATA_A_RESET);
DELAY(10000);
ATA_OUTB(ch->r_mem, ATA_CONTROL, 0);
mvs_wait(dev, 0, ATA_S_BUSY | ATA_S_DRQ, ccb->ccb_h.timeout);
}
xpt_done(ccb);
}
static int
mvs_sata_connect(struct mvs_channel *ch)
{
u_int32_t status;
int timeout, found = 0;
/* Wait up to 100ms for "connect well" */
for (timeout = 0; timeout < 1000 ; timeout++) {
status = ATA_INL(ch->r_mem, SATA_SS);
if ((status & SATA_SS_DET_MASK) != SATA_SS_DET_NO_DEVICE)
found = 1;
if (((status & SATA_SS_DET_MASK) == SATA_SS_DET_PHY_ONLINE) &&
((status & SATA_SS_SPD_MASK) != SATA_SS_SPD_NO_SPEED) &&
((status & SATA_SS_IPM_MASK) == SATA_SS_IPM_ACTIVE))
break;
if ((status & SATA_SS_DET_MASK) == SATA_SS_DET_PHY_OFFLINE) {
if (bootverbose) {
device_printf(ch->dev, "SATA offline status=%08x\n",
status);
}
return (0);
}
if (found == 0 && timeout >= 100)
break;
DELAY(100);
}
if (timeout >= 1000 || !found) {
if (bootverbose) {
device_printf(ch->dev,
"SATA connect timeout time=%dus status=%08x\n",
timeout * 100, status);
}
return (0);
}
if (bootverbose) {
device_printf(ch->dev, "SATA connect time=%dus status=%08x\n",
timeout * 100, status);
}
/* Clear SATA error register */
ATA_OUTL(ch->r_mem, SATA_SE, 0xffffffff);
return (1);
}
static int
mvs_sata_phy_reset(device_t dev)
{
struct mvs_channel *ch = device_get_softc(dev);
int sata_rev;
uint32_t val;
sata_rev = ch->user[ch->pm_present ? 15 : 0].revision;
if (sata_rev == 1)
val = SATA_SC_SPD_SPEED_GEN1;
else if (sata_rev == 2)
val = SATA_SC_SPD_SPEED_GEN2;
else if (sata_rev == 3)
val = SATA_SC_SPD_SPEED_GEN3;
else
val = 0;
ATA_OUTL(ch->r_mem, SATA_SC,
SATA_SC_DET_RESET | val |
SATA_SC_IPM_DIS_PARTIAL | SATA_SC_IPM_DIS_SLUMBER);
DELAY(1000);
ATA_OUTL(ch->r_mem, SATA_SC,
SATA_SC_DET_IDLE | val | ((ch->pm_level > 0) ? 0 :
(SATA_SC_IPM_DIS_PARTIAL | SATA_SC_IPM_DIS_SLUMBER)));
if (!mvs_sata_connect(ch)) {
if (ch->pm_level > 0)
ATA_OUTL(ch->r_mem, SATA_SC, SATA_SC_DET_DISABLE);
return (0);
}
return (1);
}
static int
mvs_check_ids(device_t dev, union ccb *ccb)
{
struct mvs_channel *ch = device_get_softc(dev);
if (ccb->ccb_h.target_id > ((ch->quirks & MVS_Q_GENI) ? 0 : 15)) {
ccb->ccb_h.status = CAM_TID_INVALID;
xpt_done(ccb);
return (-1);
}
if (ccb->ccb_h.target_lun != 0) {
ccb->ccb_h.status = CAM_LUN_INVALID;
xpt_done(ccb);
return (-1);
}
return (0);
}
static void
mvsaction(struct cam_sim *sim, union ccb *ccb)
{
device_t dev, parent;
struct mvs_channel *ch;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("mvsaction func_code=%x\n",
ccb->ccb_h.func_code));
ch = (struct mvs_channel *)cam_sim_softc(sim);
dev = ch->dev;
switch (ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_ATA_IO: /* Execute the requested I/O operation */
case XPT_SCSI_IO:
if (mvs_check_ids(dev, ccb))
return;
if (ch->devices == 0 ||
(ch->pm_present == 0 &&
ccb->ccb_h.target_id > 0 && ccb->ccb_h.target_id < 15)) {
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
break;
}
ccb->ccb_h.recovery_type = RECOVERY_NONE;
/* Check for command collision. */
if (mvs_check_collision(dev, ccb)) {
/* Freeze command. */
ch->frozen = ccb;
/* We have only one frozen slot, so freeze simq also. */
xpt_freeze_simq(ch->sim, 1);
return;
}
mvs_begin_transaction(dev, ccb);
return;
case XPT_EN_LUN: /* Enable LUN as a target */
case XPT_TARGET_IO: /* Execute target I/O request */
case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/
case XPT_ABORT: /* Abort the specified CCB */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
case XPT_SET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &ccb->cts;
struct mvs_device *d;
if (mvs_check_ids(dev, ccb))
return;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS)
d = &ch->curr[ccb->ccb_h.target_id];
else
d = &ch->user[ccb->ccb_h.target_id];
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_REVISION)
d->revision = cts->xport_specific.sata.revision;
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_MODE)
d->mode = cts->xport_specific.sata.mode;
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_BYTECOUNT) {
d->bytecount = min((ch->quirks & MVS_Q_GENIIE) ? 8192 : 2048,
cts->xport_specific.sata.bytecount);
}
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_TAGS)
d->tags = min(MVS_MAX_SLOTS, cts->xport_specific.sata.tags);
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_PM)
ch->pm_present = cts->xport_specific.sata.pm_present;
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_ATAPI)
d->atapi = cts->xport_specific.sata.atapi;
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_CAPS)
d->caps = cts->xport_specific.sata.caps;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_GET_TRAN_SETTINGS:
/* Get default/user set transfer settings for the target */
{
struct ccb_trans_settings *cts = &ccb->cts;
struct mvs_device *d;
uint32_t status;
if (mvs_check_ids(dev, ccb))
return;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS)
d = &ch->curr[ccb->ccb_h.target_id];
else
d = &ch->user[ccb->ccb_h.target_id];
cts->protocol = PROTO_UNSPECIFIED;
cts->protocol_version = PROTO_VERSION_UNSPECIFIED;
cts->transport = XPORT_SATA;
cts->transport_version = XPORT_VERSION_UNSPECIFIED;
cts->proto_specific.valid = 0;
cts->xport_specific.sata.valid = 0;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS &&
(ccb->ccb_h.target_id == 15 ||
(ccb->ccb_h.target_id == 0 && !ch->pm_present))) {
status = ATA_INL(ch->r_mem, SATA_SS) & SATA_SS_SPD_MASK;
if (status & 0x0f0) {
cts->xport_specific.sata.revision =
(status & 0x0f0) >> 4;
cts->xport_specific.sata.valid |=
CTS_SATA_VALID_REVISION;
}
cts->xport_specific.sata.caps = d->caps & CTS_SATA_CAPS_D;
// if (ch->pm_level)
// cts->xport_specific.sata.caps |= CTS_SATA_CAPS_H_PMREQ;
cts->xport_specific.sata.caps |= CTS_SATA_CAPS_H_AN;
cts->xport_specific.sata.caps &=
ch->user[ccb->ccb_h.target_id].caps;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_CAPS;
} else {
cts->xport_specific.sata.revision = d->revision;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_REVISION;
cts->xport_specific.sata.caps = d->caps;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS/* &&
(ch->quirks & MVS_Q_GENIIE) == 0*/)
cts->xport_specific.sata.caps &= ~CTS_SATA_CAPS_H_AN;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_CAPS;
}
cts->xport_specific.sata.mode = d->mode;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_MODE;
cts->xport_specific.sata.bytecount = d->bytecount;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_BYTECOUNT;
cts->xport_specific.sata.pm_present = ch->pm_present;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_PM;
cts->xport_specific.sata.tags = d->tags;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_TAGS;
cts->xport_specific.sata.atapi = d->atapi;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_ATAPI;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
mvs_reset(dev);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
parent = device_get_parent(dev);
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE;
if (!(ch->quirks & MVS_Q_GENI)) {
cpi->hba_inquiry |= PI_SATAPM;
/* Gen-II is extremely slow with NCQ on PMP. */
if ((ch->quirks & MVS_Q_GENIIE) || ch->pm_present == 0)
cpi->hba_inquiry |= PI_TAG_ABLE;
}
cpi->target_sprt = 0;
cpi->hba_misc = PIM_SEQSCAN;
cpi->hba_eng_cnt = 0;
if (!(ch->quirks & MVS_Q_GENI))
cpi->max_target = 15;
else
cpi->max_target = 0;
cpi->max_lun = 0;
cpi->initiator_id = 0;
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 150000;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Marvell", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->transport = XPORT_SATA;
cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
cpi->protocol = PROTO_ATA;
cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
cpi->maxio = MAXPHYS;
if ((ch->quirks & MVS_Q_SOC) == 0) {
cpi->hba_vendor = pci_get_vendor(parent);
cpi->hba_device = pci_get_device(parent);
cpi->hba_subvendor = pci_get_subvendor(parent);
cpi->hba_subdevice = pci_get_subdevice(parent);
}
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
}
static void
mvspoll(struct cam_sim *sim)
{
struct mvs_channel *ch = (struct mvs_channel *)cam_sim_softc(sim);
struct mvs_intr_arg arg;
arg.arg = ch->dev;
arg.cause = 2 | 4; /* XXX */
mvs_ch_intr(&arg);
if (ch->resetting != 0 &&
(--ch->resetpolldiv <= 0 || !callout_pending(&ch->reset_timer))) {
ch->resetpolldiv = 1000;
mvs_reset_to(ch->dev);
}
}