51ad68ca2d
modeventhand_t.
1612 lines
34 KiB
C
1612 lines
34 KiB
C
/*
|
|
* linux/kernel/math/math_emulate.c
|
|
*
|
|
* (C) 1991 Linus Torvalds
|
|
*
|
|
* [expediant "port" of linux 8087 emulator to 386BSD, with apologies -wfj]
|
|
*
|
|
* from: 386BSD 0.1
|
|
* $Id: math_emulate.c,v 1.30 1998/10/21 17:10:49 rnordier Exp $
|
|
*/
|
|
|
|
/*
|
|
* Limited emulation 27.12.91 - mostly loads/stores, which gcc wants
|
|
* even for soft-float, unless you use bruce evans' patches. The patches
|
|
* are great, but they have to be re-applied for every version, and the
|
|
* library is different for soft-float and 80387. So emulation is more
|
|
* practical, even though it's slower.
|
|
*
|
|
* 28.12.91 - loads/stores work, even BCD. I'll have to start thinking
|
|
* about add/sub/mul/div. Urgel. I should find some good source, but I'll
|
|
* just fake up something.
|
|
*
|
|
* 30.12.91 - add/sub/mul/div/com seem to work mostly. I should really
|
|
* test every possible combination.
|
|
*/
|
|
|
|
/*
|
|
* This file is full of ugly macros etc: one problem was that gcc simply
|
|
* didn't want to make the structures as they should be: it has to try to
|
|
* align them. Sickening code, but at least I've hidden the ugly things
|
|
* in this one file: the other files don't need to know about these things.
|
|
*
|
|
* The other files also don't care about ST(x) etc - they just get addresses
|
|
* to 80-bit temporary reals, and do with them as they please. I wanted to
|
|
* hide most of the 387-specific things here.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <machine/frame.h>
|
|
#include <machine/reg.h>
|
|
|
|
#include <sys/proc.h>
|
|
#include <sys/kernel.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <sys/lock.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <sys/user.h>
|
|
|
|
#define __ALIGNED_TEMP_REAL 1
|
|
#include <i386/i386/math_emu.h>
|
|
|
|
#define bswapw(x) __asm__("xchgb %%al,%%ah":"=a" (x):"0" ((short)x))
|
|
#define ST(x) (*__st((x)))
|
|
#define PST(x) ((const temp_real *) __st((x)))
|
|
#define math_abort(tfp, signo) tfp->tf_eip = oldeip; return (signo);
|
|
|
|
/*
|
|
* We don't want these inlined - it gets too messy in the machine-code.
|
|
*/
|
|
static void fpop(void);
|
|
static void fpush(void);
|
|
static void fxchg(temp_real_unaligned * a, temp_real_unaligned * b);
|
|
static temp_real_unaligned * __st(int i);
|
|
|
|
static unsigned char
|
|
get_fs_byte(char *adr)
|
|
{ return(fubyte(adr)); }
|
|
|
|
static unsigned short
|
|
get_fs_word(unsigned short *adr)
|
|
{ return(fuword(adr)); }
|
|
|
|
static u_int32_t
|
|
get_fs_long(u_int32_t *adr)
|
|
{ return(fuword(adr)); }
|
|
|
|
static void
|
|
put_fs_byte(unsigned char val, char *adr)
|
|
{ (void)subyte(adr,val); }
|
|
|
|
static void
|
|
put_fs_word(unsigned short val, short *adr)
|
|
{ (void)susword(adr,val); }
|
|
|
|
static void
|
|
put_fs_long(u_long val, u_int32_t *adr)
|
|
{ (void)suword(adr,val); }
|
|
|
|
static int
|
|
math_emulate(struct trapframe * info)
|
|
{
|
|
unsigned short code;
|
|
temp_real tmp;
|
|
char * address;
|
|
u_int32_t oldeip;
|
|
|
|
/* ever used fp? */
|
|
if ((((struct pcb *)curproc->p_addr)->pcb_flags & FP_SOFTFP) == 0) {
|
|
((struct pcb *)curproc->p_addr)->pcb_flags |= FP_SOFTFP;
|
|
I387.cwd = 0x037f;
|
|
I387.swd = 0x0000;
|
|
I387.twd = 0x0000;
|
|
}
|
|
|
|
if (I387.cwd & I387.swd & 0x3f)
|
|
I387.swd |= 0x8000;
|
|
else
|
|
I387.swd &= 0x7fff;
|
|
oldeip = info->tf_eip;
|
|
/* 0x001f means user code space */
|
|
if ((u_short)info->tf_cs != 0x001F) {
|
|
printf("math_emulate: %04x:%08lx\n", (u_short)info->tf_cs,
|
|
(u_long)oldeip);
|
|
panic("?Math emulation needed in kernel?");
|
|
}
|
|
/* completely ignore an operand-size prefix */
|
|
if (get_fs_byte((char *) info->tf_eip) == 0x66)
|
|
info->tf_eip++;
|
|
code = get_fs_word((unsigned short *) info->tf_eip);
|
|
bswapw(code);
|
|
code &= 0x7ff;
|
|
I387.fip = oldeip;
|
|
*(unsigned short *) &I387.fcs = (u_short) info->tf_cs;
|
|
*(1+(unsigned short *) &I387.fcs) = code;
|
|
info->tf_eip += 2;
|
|
switch (code) {
|
|
case 0x1d0: /* fnop */
|
|
return(0);
|
|
case 0x1d1: case 0x1d2: case 0x1d3: /* fst to 32-bit mem */
|
|
case 0x1d4: case 0x1d5: case 0x1d6: case 0x1d7:
|
|
math_abort(info,SIGILL);
|
|
case 0x1e0: /* fchs */
|
|
ST(0).exponent ^= 0x8000;
|
|
return(0);
|
|
case 0x1e1: /* fabs */
|
|
ST(0).exponent &= 0x7fff;
|
|
return(0);
|
|
case 0x1e2: case 0x1e3:
|
|
math_abort(info,SIGILL);
|
|
case 0x1e4: /* ftst */
|
|
ftst(PST(0));
|
|
return(0);
|
|
case 0x1e5: /* fxam */
|
|
printf("fxam not implemented\n");
|
|
math_abort(info,SIGILL);
|
|
case 0x1e6: case 0x1e7: /* fldenv */
|
|
math_abort(info,SIGILL);
|
|
case 0x1e8: /* fld1 */
|
|
fpush();
|
|
ST(0) = CONST1;
|
|
return(0);
|
|
case 0x1e9: /* fld2t */
|
|
fpush();
|
|
ST(0) = CONSTL2T;
|
|
return(0);
|
|
case 0x1ea: /* fld2e */
|
|
fpush();
|
|
ST(0) = CONSTL2E;
|
|
return(0);
|
|
case 0x1eb: /* fldpi */
|
|
fpush();
|
|
ST(0) = CONSTPI;
|
|
return(0);
|
|
case 0x1ec: /* fldlg2 */
|
|
fpush();
|
|
ST(0) = CONSTLG2;
|
|
return(0);
|
|
case 0x1ed: /* fldln2 */
|
|
fpush();
|
|
ST(0) = CONSTLN2;
|
|
return(0);
|
|
case 0x1ee: /* fldz */
|
|
fpush();
|
|
ST(0) = CONSTZ;
|
|
return(0);
|
|
case 0x1ef:
|
|
math_abort(info,SIGILL);
|
|
case 0x1f0: /* f2xm1 */
|
|
case 0x1f1: /* fyl2x */
|
|
case 0x1f2: /* fptan */
|
|
case 0x1f3: /* fpatan */
|
|
case 0x1f4: /* fxtract */
|
|
case 0x1f5: /* fprem1 */
|
|
case 0x1f6: /* fdecstp */
|
|
case 0x1f7: /* fincstp */
|
|
case 0x1f8: /* fprem */
|
|
case 0x1f9: /* fyl2xp1 */
|
|
case 0x1fa: /* fsqrt */
|
|
case 0x1fb: /* fsincos */
|
|
case 0x1fe: /* fsin */
|
|
case 0x1ff: /* fcos */
|
|
uprintf(
|
|
"math_emulate: instruction %04x not implemented\n",
|
|
code + 0xd800);
|
|
math_abort(info,SIGILL);
|
|
case 0x1fc: /* frndint */
|
|
frndint(PST(0),&tmp);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
case 0x1fd: /* fscale */
|
|
/* incomplete and totally inadequate -wfj */
|
|
Fscale(PST(0), PST(1), &tmp);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0); /* 19 Sep 92*/
|
|
case 0x2e9: /* ????? */
|
|
/* if this should be a fucomp ST(0),ST(1) , it must be a 0x3e9 ATS */
|
|
fucom(PST(1),PST(0));
|
|
fpop(); fpop();
|
|
return(0);
|
|
case 0x3d0: case 0x3d1: /* fist ?? */
|
|
return(0);
|
|
case 0x3e2: /* fclex */
|
|
I387.swd &= 0x7f00;
|
|
return(0);
|
|
case 0x3e3: /* fninit */
|
|
I387.cwd = 0x037f;
|
|
I387.swd = 0x0000;
|
|
I387.twd = 0x0000;
|
|
return(0);
|
|
case 0x3e4:
|
|
return(0);
|
|
case 0x6d9: /* fcompp */
|
|
fcom(PST(1),PST(0));
|
|
fpop(); fpop();
|
|
return(0);
|
|
case 0x7e0: /* fstsw ax */
|
|
*(short *) &info->tf_eax = I387.swd;
|
|
return(0);
|
|
}
|
|
switch (code >> 3) {
|
|
case 0x18: /* fadd */
|
|
fadd(PST(0),PST(code & 7),&tmp);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
case 0x19: /* fmul */
|
|
fmul(PST(0),PST(code & 7),&tmp);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
case 0x1a: /* fcom */
|
|
fcom(PST(code & 7),PST(0));
|
|
return(0);
|
|
case 0x1b: /* fcomp */
|
|
fcom(PST(code & 7),PST(0));
|
|
fpop();
|
|
return(0);
|
|
case 0x1c: /* fsubr */
|
|
real_to_real(&ST(code & 7),&tmp);
|
|
tmp.exponent ^= 0x8000;
|
|
fadd(PST(0),&tmp,&tmp);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
case 0x1d: /* fsub */
|
|
ST(0).exponent ^= 0x8000;
|
|
fadd(PST(0),PST(code & 7),&tmp);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
case 0x1e: /* fdivr */
|
|
fdiv(PST(0),PST(code & 7),&tmp);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
case 0x1f: /* fdiv */
|
|
fdiv(PST(code & 7),PST(0),&tmp);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
case 0x38: /* fld */
|
|
fpush();
|
|
ST(0) = ST((code & 7)+1); /* why plus 1 ????? ATS */
|
|
return(0);
|
|
case 0x39: /* fxch */
|
|
fxchg(&ST(0),&ST(code & 7));
|
|
return(0);
|
|
case 0x3b: /* ??? ??? wrong ???? ATS */
|
|
ST(code & 7) = ST(0);
|
|
fpop();
|
|
return(0);
|
|
case 0x98: /* fadd */
|
|
fadd(PST(0),PST(code & 7),&tmp);
|
|
real_to_real(&tmp,&ST(code & 7));
|
|
return(0);
|
|
case 0x99: /* fmul */
|
|
fmul(PST(0),PST(code & 7),&tmp);
|
|
real_to_real(&tmp,&ST(code & 7));
|
|
return(0);
|
|
case 0x9a: /* ???? , my manual don't list a direction bit
|
|
for fcom , ??? ATS */
|
|
fcom(PST(code & 7),PST(0));
|
|
return(0);
|
|
case 0x9b: /* same as above , ATS */
|
|
fcom(PST(code & 7),PST(0));
|
|
fpop();
|
|
return(0);
|
|
case 0x9c: /* fsubr */
|
|
ST(code & 7).exponent ^= 0x8000;
|
|
fadd(PST(0),PST(code & 7),&tmp);
|
|
real_to_real(&tmp,&ST(code & 7));
|
|
return(0);
|
|
case 0x9d: /* fsub */
|
|
real_to_real(&ST(0),&tmp);
|
|
tmp.exponent ^= 0x8000;
|
|
fadd(PST(code & 7),&tmp,&tmp);
|
|
real_to_real(&tmp,&ST(code & 7));
|
|
return(0);
|
|
case 0x9e: /* fdivr */
|
|
fdiv(PST(0),PST(code & 7),&tmp);
|
|
real_to_real(&tmp,&ST(code & 7));
|
|
return(0);
|
|
case 0x9f: /* fdiv */
|
|
fdiv(PST(code & 7),PST(0),&tmp);
|
|
real_to_real(&tmp,&ST(code & 7));
|
|
return(0);
|
|
case 0xb8: /* ffree */
|
|
printf("ffree not implemented\n");
|
|
math_abort(info,SIGILL);
|
|
case 0xb9: /* fstp ???? where is the pop ? ATS */
|
|
fxchg(&ST(0),&ST(code & 7));
|
|
return(0);
|
|
case 0xba: /* fst */
|
|
ST(code & 7) = ST(0);
|
|
return(0);
|
|
case 0xbb: /* ????? encoding of fstp to mem ? ATS */
|
|
ST(code & 7) = ST(0);
|
|
fpop();
|
|
return(0);
|
|
case 0xbc: /* fucom */
|
|
fucom(PST(code & 7),PST(0));
|
|
return(0);
|
|
case 0xbd: /* fucomp */
|
|
fucom(PST(code & 7),PST(0));
|
|
fpop();
|
|
return(0);
|
|
case 0xd8: /* faddp */
|
|
fadd(PST(code & 7),PST(0),&tmp);
|
|
real_to_real(&tmp,&ST(code & 7));
|
|
fpop();
|
|
return(0);
|
|
case 0xd9: /* fmulp */
|
|
fmul(PST(code & 7),PST(0),&tmp);
|
|
real_to_real(&tmp,&ST(code & 7));
|
|
fpop();
|
|
return(0);
|
|
case 0xda: /* ??? encoding of ficom with 16 bit mem ? ATS */
|
|
fcom(PST(code & 7),PST(0));
|
|
fpop();
|
|
return(0);
|
|
case 0xdc: /* fsubrp */
|
|
ST(code & 7).exponent ^= 0x8000;
|
|
fadd(PST(0),PST(code & 7),&tmp);
|
|
real_to_real(&tmp,&ST(code & 7));
|
|
fpop();
|
|
return(0);
|
|
case 0xdd: /* fsubp */
|
|
real_to_real(&ST(0),&tmp);
|
|
tmp.exponent ^= 0x8000;
|
|
fadd(PST(code & 7),&tmp,&tmp);
|
|
real_to_real(&tmp,&ST(code & 7));
|
|
fpop();
|
|
return(0);
|
|
case 0xde: /* fdivrp */
|
|
fdiv(PST(0),PST(code & 7),&tmp);
|
|
real_to_real(&tmp,&ST(code & 7));
|
|
fpop();
|
|
return(0);
|
|
case 0xdf: /* fdivp */
|
|
fdiv(PST(code & 7),PST(0),&tmp);
|
|
real_to_real(&tmp,&ST(code & 7));
|
|
fpop();
|
|
return(0);
|
|
case 0xf8: /* fild 16-bit mem ???? ATS */
|
|
printf("ffree not implemented\n");
|
|
math_abort(info,SIGILL);
|
|
fpop();
|
|
return(0);
|
|
case 0xf9: /* ????? ATS */
|
|
fxchg(&ST(0),&ST(code & 7));
|
|
return(0);
|
|
case 0xfa: /* fist 16-bit mem ? ATS */
|
|
case 0xfb: /* fistp 16-bit mem ? ATS */
|
|
ST(code & 7) = ST(0);
|
|
fpop();
|
|
return(0);
|
|
}
|
|
switch ((code>>3) & 0xe7) {
|
|
case 0x22:
|
|
put_short_real(PST(0),info,code);
|
|
return(0);
|
|
case 0x23:
|
|
put_short_real(PST(0),info,code);
|
|
fpop();
|
|
return(0);
|
|
case 0x24:
|
|
address = ea(info,code);
|
|
for (code = 0 ; code < 7 ; code++) {
|
|
((int32_t *) & I387)[code] =
|
|
get_fs_long((u_int32_t *) address);
|
|
address += 4;
|
|
}
|
|
return(0);
|
|
case 0x25:
|
|
address = ea(info,code);
|
|
*(unsigned short *) &I387.cwd =
|
|
get_fs_word((unsigned short *) address);
|
|
return(0);
|
|
case 0x26:
|
|
address = ea(info,code);
|
|
/*verify_area(address,28);*/
|
|
for (code = 0 ; code < 7 ; code++) {
|
|
put_fs_long( ((int32_t *) & I387)[code],
|
|
(u_int32_t *) address);
|
|
address += 4;
|
|
}
|
|
return(0);
|
|
case 0x27:
|
|
address = ea(info,code);
|
|
/*verify_area(address,2);*/
|
|
put_fs_word(I387.cwd,(short *) address);
|
|
return(0);
|
|
case 0x62:
|
|
put_long_int(PST(0),info,code);
|
|
return(0);
|
|
case 0x63:
|
|
put_long_int(PST(0),info,code);
|
|
fpop();
|
|
return(0);
|
|
case 0x65:
|
|
fpush();
|
|
get_temp_real(&tmp,info,code);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
case 0x67:
|
|
put_temp_real(PST(0),info,code);
|
|
fpop();
|
|
return(0);
|
|
case 0xa2:
|
|
put_long_real(PST(0),info,code);
|
|
return(0);
|
|
case 0xa3:
|
|
put_long_real(PST(0),info,code);
|
|
fpop();
|
|
return(0);
|
|
case 0xa4:
|
|
address = ea(info,code);
|
|
for (code = 0 ; code < 27 ; code++) {
|
|
((int32_t *) & I387)[code] =
|
|
get_fs_long((u_int32_t *) address);
|
|
address += 4;
|
|
}
|
|
return(0);
|
|
case 0xa6:
|
|
address = ea(info,code);
|
|
/*verify_area(address,108);*/
|
|
for (code = 0 ; code < 27 ; code++) {
|
|
put_fs_long( ((int32_t *) & I387)[code],
|
|
(u_int32_t *) address);
|
|
address += 4;
|
|
}
|
|
I387.cwd = 0x037f;
|
|
I387.swd = 0x0000;
|
|
I387.twd = 0x0000;
|
|
return(0);
|
|
case 0xa7:
|
|
address = ea(info,code);
|
|
/*verify_area(address,2);*/
|
|
put_fs_word(I387.swd,(short *) address);
|
|
return(0);
|
|
case 0xe2:
|
|
put_short_int(PST(0),info,code);
|
|
return(0);
|
|
case 0xe3:
|
|
put_short_int(PST(0),info,code);
|
|
fpop();
|
|
return(0);
|
|
case 0xe4:
|
|
fpush();
|
|
get_BCD(&tmp,info,code);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
case 0xe5:
|
|
fpush();
|
|
get_longlong_int(&tmp,info,code);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
case 0xe6:
|
|
put_BCD(PST(0),info,code);
|
|
fpop();
|
|
return(0);
|
|
case 0xe7:
|
|
put_longlong_int(PST(0),info,code);
|
|
fpop();
|
|
return(0);
|
|
}
|
|
switch (code >> 9) {
|
|
case 0:
|
|
get_short_real(&tmp,info,code);
|
|
break;
|
|
case 1:
|
|
get_long_int(&tmp,info,code);
|
|
break;
|
|
case 2:
|
|
get_long_real(&tmp,info,code);
|
|
break;
|
|
case 4:
|
|
get_short_int(&tmp,info,code);
|
|
}
|
|
switch ((code>>3) & 0x27) {
|
|
case 0:
|
|
fadd(&tmp,PST(0),&tmp);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
case 1:
|
|
fmul(&tmp,PST(0),&tmp);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
case 2:
|
|
fcom(&tmp,PST(0));
|
|
return(0);
|
|
case 3:
|
|
fcom(&tmp,PST(0));
|
|
fpop();
|
|
return(0);
|
|
case 4:
|
|
tmp.exponent ^= 0x8000;
|
|
fadd(&tmp,PST(0),&tmp);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
case 5:
|
|
ST(0).exponent ^= 0x8000;
|
|
fadd(&tmp,PST(0),&tmp);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
case 6:
|
|
fdiv(PST(0),&tmp,&tmp);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
case 7:
|
|
fdiv(&tmp,PST(0),&tmp);
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
}
|
|
if ((code & 0x138) == 0x100) {
|
|
fpush();
|
|
real_to_real(&tmp,&ST(0));
|
|
return(0);
|
|
}
|
|
printf("Unknown math-insns: %04x:%08x %04x\n",(u_short)info->tf_cs,
|
|
info->tf_eip,code);
|
|
math_abort(info,SIGFPE);
|
|
}
|
|
|
|
static void
|
|
fpop(void)
|
|
{
|
|
u_int32_t tmp;
|
|
|
|
tmp = I387.swd & 0xffffc7ffUL;
|
|
I387.swd += 0x00000800;
|
|
I387.swd &= 0x00003800;
|
|
I387.swd |= tmp;
|
|
}
|
|
|
|
static void
|
|
fpush(void)
|
|
{
|
|
u_int32_t tmp;
|
|
|
|
tmp = I387.swd & 0xffffc7ffUL;
|
|
I387.swd += 0x00003800;
|
|
I387.swd &= 0x00003800;
|
|
I387.swd |= tmp;
|
|
}
|
|
|
|
static void
|
|
fxchg(temp_real_unaligned * a, temp_real_unaligned * b)
|
|
{
|
|
temp_real_unaligned c;
|
|
|
|
c = *a;
|
|
*a = *b;
|
|
*b = c;
|
|
}
|
|
|
|
static temp_real_unaligned *
|
|
__st(int i)
|
|
{
|
|
i += I387.swd >> 11;
|
|
i &= 7;
|
|
return (temp_real_unaligned *) (i*10 + (char *)(I387.st_space));
|
|
}
|
|
|
|
/*
|
|
* linux/kernel/math/ea.c
|
|
*
|
|
* (C) 1991 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* Calculate the effective address.
|
|
*/
|
|
|
|
|
|
static int __regoffset[] = {
|
|
tEAX, tECX, tEDX, tEBX, tESP, tEBP, tESI, tEDI
|
|
};
|
|
|
|
#define REG(x) (((int *)curproc->p_md.md_regs)[__regoffset[(x)]])
|
|
|
|
static char *
|
|
sib(struct trapframe * info, int mod)
|
|
{
|
|
unsigned char ss,index,base;
|
|
int32_t offset = 0;
|
|
|
|
base = get_fs_byte((char *) info->tf_eip);
|
|
info->tf_eip++;
|
|
ss = base >> 6;
|
|
index = (base >> 3) & 7;
|
|
base &= 7;
|
|
if (index == 4)
|
|
offset = 0;
|
|
else
|
|
offset = REG(index);
|
|
offset <<= ss;
|
|
if (mod || base != 5)
|
|
offset += REG(base);
|
|
if (mod == 1) {
|
|
offset += (signed char) get_fs_byte((char *) info->tf_eip);
|
|
info->tf_eip++;
|
|
} else if (mod == 2 || base == 5) {
|
|
offset += (signed) get_fs_long((u_int32_t *) info->tf_eip);
|
|
info->tf_eip += 4;
|
|
}
|
|
I387.foo = offset;
|
|
I387.fos = 0x17;
|
|
return (char *) offset;
|
|
}
|
|
|
|
static char *
|
|
ea(struct trapframe * info, unsigned short code)
|
|
{
|
|
unsigned char mod,rm;
|
|
int32_t * tmp;
|
|
int offset = 0;
|
|
|
|
mod = (code >> 6) & 3;
|
|
rm = code & 7;
|
|
if (rm == 4 && mod != 3)
|
|
return sib(info,mod);
|
|
if (rm == 5 && !mod) {
|
|
offset = get_fs_long((u_int32_t *) info->tf_eip);
|
|
info->tf_eip += 4;
|
|
I387.foo = offset;
|
|
I387.fos = 0x17;
|
|
return (char *) offset;
|
|
}
|
|
tmp = (int32_t *) ®(rm);
|
|
switch (mod) {
|
|
case 0: offset = 0; break;
|
|
case 1:
|
|
offset = (signed char) get_fs_byte((char *) info->tf_eip);
|
|
info->tf_eip++;
|
|
break;
|
|
case 2:
|
|
offset = (signed) get_fs_long((u_int32_t *) info->tf_eip);
|
|
info->tf_eip += 4;
|
|
break;
|
|
#ifdef notyet
|
|
case 3:
|
|
math_abort(info,1<<(SIGILL-1));
|
|
#endif
|
|
}
|
|
I387.foo = offset;
|
|
I387.fos = 0x17;
|
|
return offset + (char *) *tmp;
|
|
}
|
|
/*
|
|
* linux/kernel/math/get_put.c
|
|
*
|
|
* (C) 1991 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* This file handles all accesses to user memory: getting and putting
|
|
* ints/reals/BCD etc. This is the only part that concerns itself with
|
|
* other than temporary real format. All other cals are strictly temp_real.
|
|
*/
|
|
|
|
static void
|
|
get_short_real(temp_real * tmp, struct trapframe * info, unsigned short code)
|
|
{
|
|
char * addr;
|
|
short_real sr;
|
|
|
|
addr = ea(info,code);
|
|
sr = get_fs_long((u_int32_t *) addr);
|
|
short_to_temp(&sr,tmp);
|
|
}
|
|
|
|
static void
|
|
get_long_real(temp_real * tmp, struct trapframe * info, unsigned short code)
|
|
{
|
|
char * addr;
|
|
long_real lr;
|
|
|
|
addr = ea(info,code);
|
|
lr.a = get_fs_long((u_int32_t *) addr);
|
|
lr.b = get_fs_long(1 + (u_int32_t *) addr);
|
|
long_to_temp(&lr,tmp);
|
|
}
|
|
|
|
static void
|
|
get_temp_real(temp_real * tmp, struct trapframe * info, unsigned short code)
|
|
{
|
|
char * addr;
|
|
|
|
addr = ea(info,code);
|
|
tmp->a = get_fs_long((u_int32_t *) addr);
|
|
tmp->b = get_fs_long(1 + (u_int32_t *) addr);
|
|
tmp->exponent = get_fs_word(4 + (unsigned short *) addr);
|
|
}
|
|
|
|
static void
|
|
get_short_int(temp_real * tmp, struct trapframe * info, unsigned short code)
|
|
{
|
|
char * addr;
|
|
temp_int ti;
|
|
|
|
addr = ea(info,code);
|
|
ti.a = (signed short) get_fs_word((unsigned short *) addr);
|
|
ti.b = 0;
|
|
if (ti.sign = (ti.a < 0))
|
|
ti.a = - ti.a;
|
|
int_to_real(&ti,tmp);
|
|
}
|
|
|
|
static void
|
|
get_long_int(temp_real * tmp, struct trapframe * info, unsigned short code)
|
|
{
|
|
char * addr;
|
|
temp_int ti;
|
|
|
|
addr = ea(info,code);
|
|
ti.a = get_fs_long((u_int32_t *) addr);
|
|
ti.b = 0;
|
|
if (ti.sign = (ti.a < 0))
|
|
ti.a = - ti.a;
|
|
int_to_real(&ti,tmp);
|
|
}
|
|
|
|
static void
|
|
get_longlong_int(temp_real * tmp, struct trapframe * info, unsigned short code)
|
|
{
|
|
char * addr;
|
|
temp_int ti;
|
|
|
|
addr = ea(info,code);
|
|
ti.a = get_fs_long((u_int32_t *) addr);
|
|
ti.b = get_fs_long(1 + (u_int32_t *) addr);
|
|
if (ti.sign = (ti.b < 0))
|
|
__asm__("notl %0 ; notl %1\n\t"
|
|
"addl $1,%0 ; adcl $0,%1"
|
|
:"=r" (ti.a),"=r" (ti.b)
|
|
:"0" (ti.a),"1" (ti.b));
|
|
int_to_real(&ti,tmp);
|
|
}
|
|
|
|
#define MUL10(low,high) \
|
|
__asm__("addl %0,%0 ; adcl %1,%1\n\t" \
|
|
"movl %0,%%ecx ; movl %1,%%ebx\n\t" \
|
|
"addl %0,%0 ; adcl %1,%1\n\t" \
|
|
"addl %0,%0 ; adcl %1,%1\n\t" \
|
|
"addl %%ecx,%0 ; adcl %%ebx,%1" \
|
|
:"=a" (low),"=d" (high) \
|
|
:"0" (low),"1" (high):"cx","bx")
|
|
|
|
#define ADD64(val,low,high) \
|
|
__asm__("addl %4,%0 ; adcl $0,%1":"=r" (low),"=r" (high) \
|
|
:"0" (low),"1" (high),"r" ((u_int32_t) (val)))
|
|
|
|
static void
|
|
get_BCD(temp_real * tmp, struct trapframe * info, unsigned short code)
|
|
{
|
|
int k;
|
|
char * addr;
|
|
temp_int i;
|
|
unsigned char c;
|
|
|
|
addr = ea(info,code);
|
|
addr += 9;
|
|
i.sign = 0x80 & get_fs_byte(addr--);
|
|
i.a = i.b = 0;
|
|
for (k = 0; k < 9; k++) {
|
|
c = get_fs_byte(addr--);
|
|
MUL10(i.a, i.b);
|
|
ADD64((c>>4), i.a, i.b);
|
|
MUL10(i.a, i.b);
|
|
ADD64((c&0xf), i.a, i.b);
|
|
}
|
|
int_to_real(&i,tmp);
|
|
}
|
|
|
|
static void
|
|
put_short_real(const temp_real * tmp,
|
|
struct trapframe * info, unsigned short code)
|
|
{
|
|
char * addr;
|
|
short_real sr;
|
|
|
|
addr = ea(info,code);
|
|
/*verify_area(addr,4);*/
|
|
temp_to_short(tmp,&sr);
|
|
put_fs_long(sr,(u_int32_t *) addr);
|
|
}
|
|
|
|
static void
|
|
put_long_real(const temp_real * tmp,
|
|
struct trapframe * info, unsigned short code)
|
|
{
|
|
char * addr;
|
|
long_real lr;
|
|
|
|
addr = ea(info,code);
|
|
/*verify_area(addr,8);*/
|
|
temp_to_long(tmp,&lr);
|
|
put_fs_long(lr.a, (u_int32_t *) addr);
|
|
put_fs_long(lr.b, 1 + (u_int32_t *) addr);
|
|
}
|
|
|
|
static void
|
|
put_temp_real(const temp_real * tmp,
|
|
struct trapframe * info, unsigned short code)
|
|
{
|
|
char * addr;
|
|
|
|
addr = ea(info,code);
|
|
/*verify_area(addr,10);*/
|
|
put_fs_long(tmp->a, (u_int32_t *) addr);
|
|
put_fs_long(tmp->b, 1 + (u_int32_t *) addr);
|
|
put_fs_word(tmp->exponent, 4 + (short *) addr);
|
|
}
|
|
|
|
static void
|
|
put_short_int(const temp_real * tmp,
|
|
struct trapframe * info, unsigned short code)
|
|
{
|
|
char * addr;
|
|
temp_int ti;
|
|
|
|
addr = ea(info,code);
|
|
real_to_int(tmp,&ti);
|
|
/*verify_area(addr,2);*/
|
|
if (ti.sign)
|
|
ti.a = -ti.a;
|
|
put_fs_word(ti.a,(short *) addr);
|
|
}
|
|
|
|
static void
|
|
put_long_int(const temp_real * tmp,
|
|
struct trapframe * info, unsigned short code)
|
|
{
|
|
char * addr;
|
|
temp_int ti;
|
|
|
|
addr = ea(info,code);
|
|
real_to_int(tmp,&ti);
|
|
/*verify_area(addr,4);*/
|
|
if (ti.sign)
|
|
ti.a = -ti.a;
|
|
put_fs_long(ti.a,(u_int32_t *) addr);
|
|
}
|
|
|
|
static void
|
|
put_longlong_int(const temp_real * tmp,
|
|
struct trapframe * info, unsigned short code)
|
|
{
|
|
char * addr;
|
|
temp_int ti;
|
|
|
|
addr = ea(info,code);
|
|
real_to_int(tmp,&ti);
|
|
/*verify_area(addr,8);*/
|
|
if (ti.sign)
|
|
__asm__("notl %0 ; notl %1\n\t"
|
|
"addl $1,%0 ; adcl $0,%1"
|
|
:"=r" (ti.a),"=r" (ti.b)
|
|
:"0" (ti.a),"1" (ti.b));
|
|
put_fs_long(ti.a,(u_int32_t *) addr);
|
|
put_fs_long(ti.b,1 + (u_int32_t *) addr);
|
|
}
|
|
|
|
#define DIV10(low,high,rem) \
|
|
__asm__("divl %6 ; xchgl %1,%2 ; divl %6" \
|
|
:"=d" (rem),"=a" (low),"=r" (high) \
|
|
:"0" (0),"1" (high),"2" (low),"c" (10))
|
|
|
|
static void
|
|
put_BCD(const temp_real * tmp,struct trapframe * info, unsigned short code)
|
|
{
|
|
int k,rem;
|
|
char * addr;
|
|
temp_int i;
|
|
unsigned char c;
|
|
|
|
addr = ea(info,code);
|
|
/*verify_area(addr,10);*/
|
|
real_to_int(tmp,&i);
|
|
if (i.sign)
|
|
put_fs_byte(0x80, addr+9);
|
|
else
|
|
put_fs_byte(0, addr+9);
|
|
for (k = 0; k < 9; k++) {
|
|
DIV10(i.a,i.b,rem);
|
|
c = rem;
|
|
DIV10(i.a,i.b,rem);
|
|
c += rem<<4;
|
|
put_fs_byte(c,addr++);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* linux/kernel/math/mul.c
|
|
*
|
|
* (C) 1991 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* temporary real multiplication routine.
|
|
*/
|
|
|
|
|
|
static void
|
|
shift(int * c)
|
|
{
|
|
__asm__("movl (%0),%%eax ; addl %%eax,(%0)\n\t"
|
|
"movl 4(%0),%%eax ; adcl %%eax,4(%0)\n\t"
|
|
"movl 8(%0),%%eax ; adcl %%eax,8(%0)\n\t"
|
|
"movl 12(%0),%%eax ; adcl %%eax,12(%0)"
|
|
::"r" (c):"ax");
|
|
}
|
|
|
|
static void
|
|
mul64(const temp_real * a, const temp_real * b, int * c)
|
|
{
|
|
__asm__("movl (%0),%%eax\n\t"
|
|
"mull (%1)\n\t"
|
|
"movl %%eax,(%2)\n\t"
|
|
"movl %%edx,4(%2)\n\t"
|
|
"movl 4(%0),%%eax\n\t"
|
|
"mull 4(%1)\n\t"
|
|
"movl %%eax,8(%2)\n\t"
|
|
"movl %%edx,12(%2)\n\t"
|
|
"movl (%0),%%eax\n\t"
|
|
"mull 4(%1)\n\t"
|
|
"addl %%eax,4(%2)\n\t"
|
|
"adcl %%edx,8(%2)\n\t"
|
|
"adcl $0,12(%2)\n\t"
|
|
"movl 4(%0),%%eax\n\t"
|
|
"mull (%1)\n\t"
|
|
"addl %%eax,4(%2)\n\t"
|
|
"adcl %%edx,8(%2)\n\t"
|
|
"adcl $0,12(%2)"
|
|
::"S" (a),"c" (b),"D" (c)
|
|
:"ax","dx");
|
|
}
|
|
|
|
static void
|
|
fmul(const temp_real * src1, const temp_real * src2, temp_real * result)
|
|
{
|
|
int i,sign;
|
|
int tmp[4] = {0,0,0,0};
|
|
|
|
sign = (src1->exponent ^ src2->exponent) & 0x8000;
|
|
i = (src1->exponent & 0x7fff) + (src2->exponent & 0x7fff) - 16383 + 1;
|
|
if (i<0) {
|
|
result->exponent = sign;
|
|
result->a = result->b = 0;
|
|
return;
|
|
}
|
|
if (i>0x7fff) {
|
|
set_OE();
|
|
return;
|
|
}
|
|
mul64(src1,src2,tmp);
|
|
if (tmp[0] || tmp[1] || tmp[2] || tmp[3])
|
|
while (i && tmp[3] >= 0) {
|
|
i--;
|
|
shift(tmp);
|
|
}
|
|
else
|
|
i = 0;
|
|
result->exponent = i | sign;
|
|
result->a = tmp[2];
|
|
result->b = tmp[3];
|
|
}
|
|
|
|
/*
|
|
* linux/kernel/math/div.c
|
|
*
|
|
* (C) 1991 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* temporary real division routine.
|
|
*/
|
|
|
|
static void
|
|
shift_left(int * c)
|
|
{
|
|
__asm__ __volatile__("movl (%0),%%eax ; addl %%eax,(%0)\n\t"
|
|
"movl 4(%0),%%eax ; adcl %%eax,4(%0)\n\t"
|
|
"movl 8(%0),%%eax ; adcl %%eax,8(%0)\n\t"
|
|
"movl 12(%0),%%eax ; adcl %%eax,12(%0)"
|
|
::"r" (c):"ax");
|
|
}
|
|
|
|
static void
|
|
shift_right(int * c)
|
|
{
|
|
__asm__("shrl $1,12(%0) ; rcrl $1,8(%0) ; rcrl $1,4(%0) ; rcrl $1,(%0)"
|
|
::"r" (c));
|
|
}
|
|
|
|
static int
|
|
try_sub(int * a, int * b)
|
|
{
|
|
char ok;
|
|
|
|
__asm__ __volatile__("movl (%1),%%eax ; subl %%eax,(%2)\n\t"
|
|
"movl 4(%1),%%eax ; sbbl %%eax,4(%2)\n\t"
|
|
"movl 8(%1),%%eax ; sbbl %%eax,8(%2)\n\t"
|
|
"movl 12(%1),%%eax ; sbbl %%eax,12(%2)\n\t"
|
|
"setae %%al":"=a" (ok):"c" (a),"d" (b));
|
|
return ok;
|
|
}
|
|
|
|
static void
|
|
div64(int * a, int * b, int * c)
|
|
{
|
|
int tmp[4];
|
|
int i;
|
|
unsigned int mask = 0;
|
|
|
|
c += 4;
|
|
for (i = 0 ; i<64 ; i++) {
|
|
if (!(mask >>= 1)) {
|
|
c--;
|
|
mask = 0x80000000UL;
|
|
}
|
|
tmp[0] = a[0]; tmp[1] = a[1];
|
|
tmp[2] = a[2]; tmp[3] = a[3];
|
|
if (try_sub(b,tmp)) {
|
|
*c |= mask;
|
|
a[0] = tmp[0]; a[1] = tmp[1];
|
|
a[2] = tmp[2]; a[3] = tmp[3];
|
|
}
|
|
shift_right(b);
|
|
}
|
|
}
|
|
|
|
static void
|
|
fdiv(const temp_real * src1, const temp_real * src2, temp_real * result)
|
|
{
|
|
int i,sign;
|
|
int a[4],b[4],tmp[4] = {0,0,0,0};
|
|
|
|
sign = (src1->exponent ^ src2->exponent) & 0x8000;
|
|
if (!(src2->a || src2->b)) {
|
|
set_ZE();
|
|
return;
|
|
}
|
|
i = (src1->exponent & 0x7fff) - (src2->exponent & 0x7fff) + 16383;
|
|
if (i<0) {
|
|
set_UE();
|
|
result->exponent = sign;
|
|
result->a = result->b = 0;
|
|
return;
|
|
}
|
|
a[0] = a[1] = 0;
|
|
a[2] = src1->a;
|
|
a[3] = src1->b;
|
|
b[0] = b[1] = 0;
|
|
b[2] = src2->a;
|
|
b[3] = src2->b;
|
|
while (b[3] >= 0) {
|
|
i++;
|
|
shift_left(b);
|
|
}
|
|
div64(a,b,tmp);
|
|
if (tmp[0] || tmp[1] || tmp[2] || tmp[3]) {
|
|
while (i && tmp[3] >= 0) {
|
|
i--;
|
|
shift_left(tmp);
|
|
}
|
|
if (tmp[3] >= 0)
|
|
set_DE();
|
|
} else
|
|
i = 0;
|
|
if (i>0x7fff) {
|
|
set_OE();
|
|
return;
|
|
}
|
|
if (tmp[0] || tmp[1])
|
|
set_PE();
|
|
result->exponent = i | sign;
|
|
result->a = tmp[2];
|
|
result->b = tmp[3];
|
|
}
|
|
|
|
/*
|
|
* linux/kernel/math/add.c
|
|
*
|
|
* (C) 1991 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* temporary real addition routine.
|
|
*
|
|
* NOTE! These aren't exact: they are only 62 bits wide, and don't do
|
|
* correct rounding. Fast hack. The reason is that we shift right the
|
|
* values by two, in order not to have overflow (1 bit), and to be able
|
|
* to move the sign into the mantissa (1 bit). Much simpler algorithms,
|
|
* and 62 bits (61 really - no rounding) accuracy is usually enough. The
|
|
* only time you should notice anything weird is when adding 64-bit
|
|
* integers together. When using doubles (52 bits accuracy), the
|
|
* 61-bit accuracy never shows at all.
|
|
*/
|
|
|
|
#define NEGINT(a) \
|
|
__asm__("notl %0 ; notl %1 ; addl $1,%0 ; adcl $0,%1" \
|
|
:"=r" (a->a),"=r" (a->b) \
|
|
:"0" (a->a),"1" (a->b))
|
|
|
|
static void signify(temp_real * a)
|
|
{
|
|
a->exponent += 2;
|
|
__asm__("shrdl $2,%1,%0 ; shrl $2,%1"
|
|
:"=r" (a->a),"=r" (a->b)
|
|
:"0" (a->a),"1" (a->b));
|
|
if (a->exponent < 0)
|
|
NEGINT(a);
|
|
a->exponent &= 0x7fff;
|
|
}
|
|
|
|
static void unsignify(temp_real * a)
|
|
{
|
|
if (!(a->a || a->b)) {
|
|
a->exponent = 0;
|
|
return;
|
|
}
|
|
a->exponent &= 0x7fff;
|
|
if (a->b < 0) {
|
|
NEGINT(a);
|
|
a->exponent |= 0x8000;
|
|
}
|
|
while (a->b >= 0) {
|
|
a->exponent--;
|
|
__asm__("addl %0,%0 ; adcl %1,%1"
|
|
:"=r" (a->a),"=r" (a->b)
|
|
:"0" (a->a),"1" (a->b));
|
|
}
|
|
}
|
|
|
|
static void
|
|
fadd(const temp_real * src1, const temp_real * src2, temp_real * result)
|
|
{
|
|
temp_real a,b;
|
|
int x1,x2,shift;
|
|
|
|
x1 = src1->exponent & 0x7fff;
|
|
x2 = src2->exponent & 0x7fff;
|
|
if (x1 > x2) {
|
|
a = *src1;
|
|
b = *src2;
|
|
shift = x1-x2;
|
|
} else {
|
|
a = *src2;
|
|
b = *src1;
|
|
shift = x2-x1;
|
|
}
|
|
if (shift >= 64) {
|
|
*result = a;
|
|
return;
|
|
}
|
|
if (shift >= 32) {
|
|
b.a = b.b;
|
|
b.b = 0;
|
|
shift -= 32;
|
|
}
|
|
__asm__("shrdl %4,%1,%0 ; shrl %4,%1"
|
|
:"=r" (b.a),"=r" (b.b)
|
|
:"0" (b.a),"1" (b.b),"c" ((char) shift));
|
|
signify(&a);
|
|
signify(&b);
|
|
__asm__("addl %4,%0 ; adcl %5,%1"
|
|
:"=r" (a.a),"=r" (a.b)
|
|
:"0" (a.a),"1" (a.b),"g" (b.a),"g" (b.b));
|
|
unsignify(&a);
|
|
*result = a;
|
|
}
|
|
|
|
/*
|
|
* linux/kernel/math/compare.c
|
|
*
|
|
* (C) 1991 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* temporary real comparison routines
|
|
*/
|
|
|
|
|
|
#define clear_Cx() (I387.swd &= ~0x4500)
|
|
|
|
static void
|
|
normalize(temp_real * a)
|
|
{
|
|
int i = a->exponent & 0x7fff;
|
|
int sign = a->exponent & 0x8000;
|
|
|
|
if (!(a->a || a->b)) {
|
|
a->exponent = 0;
|
|
return;
|
|
}
|
|
while (i && a->b >= 0) {
|
|
i--;
|
|
__asm__("addl %0,%0 ; adcl %1,%1"
|
|
:"=r" (a->a),"=r" (a->b)
|
|
:"0" (a->a),"1" (a->b));
|
|
}
|
|
a->exponent = i | sign;
|
|
}
|
|
|
|
static void
|
|
ftst(const temp_real * a)
|
|
{
|
|
temp_real b;
|
|
|
|
clear_Cx();
|
|
b = *a;
|
|
normalize(&b);
|
|
if (b.a || b.b || b.exponent) {
|
|
if (b.exponent < 0)
|
|
set_C0();
|
|
} else
|
|
set_C3();
|
|
}
|
|
|
|
static void
|
|
fcom(const temp_real * src1, const temp_real * src2)
|
|
{
|
|
temp_real a;
|
|
|
|
a = *src1;
|
|
a.exponent ^= 0x8000;
|
|
fadd(&a,src2,&a);
|
|
ftst(&a);
|
|
}
|
|
|
|
static void
|
|
fucom(const temp_real * src1, const temp_real * src2)
|
|
{
|
|
fcom(src1,src2);
|
|
}
|
|
|
|
/*
|
|
* linux/kernel/math/convert.c
|
|
*
|
|
* (C) 1991 Linus Torvalds
|
|
*/
|
|
|
|
|
|
/*
|
|
* NOTE!!! There is some "non-obvious" optimisations in the temp_to_long
|
|
* and temp_to_short conversion routines: don't touch them if you don't
|
|
* know what's going on. They are the adding of one in the rounding: the
|
|
* overflow bit is also used for adding one into the exponent. Thus it
|
|
* looks like the overflow would be incorrectly handled, but due to the
|
|
* way the IEEE numbers work, things are correct.
|
|
*
|
|
* There is no checking for total overflow in the conversions, though (ie
|
|
* if the temp-real number simply won't fit in a short- or long-real.)
|
|
*/
|
|
|
|
static void
|
|
short_to_temp(const short_real * a, temp_real * b)
|
|
{
|
|
if (!(*a & 0x7fffffff)) {
|
|
b->a = b->b = 0;
|
|
if (*a)
|
|
b->exponent = 0x8000;
|
|
else
|
|
b->exponent = 0;
|
|
return;
|
|
}
|
|
b->exponent = ((*a>>23) & 0xff)-127+16383;
|
|
if (*a<0)
|
|
b->exponent |= 0x8000;
|
|
b->b = (*a<<8) | 0x80000000UL;
|
|
b->a = 0;
|
|
}
|
|
|
|
static void
|
|
long_to_temp(const long_real * a, temp_real * b)
|
|
{
|
|
if (!a->a && !(a->b & 0x7fffffff)) {
|
|
b->a = b->b = 0;
|
|
if (a->b)
|
|
b->exponent = 0x8000;
|
|
else
|
|
b->exponent = 0;
|
|
return;
|
|
}
|
|
b->exponent = ((a->b >> 20) & 0x7ff)-1023+16383;
|
|
if (a->b<0)
|
|
b->exponent |= 0x8000;
|
|
b->b = 0x80000000UL | (a->b<<11) | (((u_int32_t)a->a)>>21);
|
|
b->a = a->a<<11;
|
|
}
|
|
|
|
static void
|
|
temp_to_short(const temp_real * a, short_real * b)
|
|
{
|
|
if (!(a->exponent & 0x7fff)) {
|
|
*b = (a->exponent)?0x80000000UL:0;
|
|
return;
|
|
}
|
|
*b = ((((int32_t) a->exponent)-16383+127) << 23) & 0x7f800000;
|
|
if (a->exponent < 0)
|
|
*b |= 0x80000000UL;
|
|
*b |= (a->b >> 8) & 0x007fffff;
|
|
switch ((int)ROUNDING) {
|
|
case ROUND_NEAREST:
|
|
if ((a->b & 0xff) > 0x80)
|
|
++*b;
|
|
break;
|
|
case ROUND_DOWN:
|
|
if ((a->exponent & 0x8000) && (a->b & 0xff))
|
|
++*b;
|
|
break;
|
|
case ROUND_UP:
|
|
if (!(a->exponent & 0x8000) && (a->b & 0xff))
|
|
++*b;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
temp_to_long(const temp_real * a, long_real * b)
|
|
{
|
|
if (!(a->exponent & 0x7fff)) {
|
|
b->a = 0;
|
|
b->b = (a->exponent)?0x80000000UL:0;
|
|
return;
|
|
}
|
|
b->b = (((0x7fff & (int32_t) a->exponent)-16383+1023) << 20) &
|
|
0x7ff00000;
|
|
if (a->exponent < 0)
|
|
b->b |= 0x80000000UL;
|
|
b->b |= (a->b >> 11) & 0x000fffff;
|
|
b->a = a->b << 21;
|
|
b->a |= (a->a >> 11) & 0x001fffff;
|
|
switch ((int)ROUNDING) {
|
|
case ROUND_NEAREST:
|
|
if ((a->a & 0x7ff) > 0x400)
|
|
__asm__("addl $1,%0 ; adcl $0,%1"
|
|
:"=r" (b->a),"=r" (b->b)
|
|
:"0" (b->a),"1" (b->b));
|
|
break;
|
|
case ROUND_DOWN:
|
|
if ((a->exponent & 0x8000) && (a->b & 0xff))
|
|
__asm__("addl $1,%0 ; adcl $0,%1"
|
|
:"=r" (b->a),"=r" (b->b)
|
|
:"0" (b->a),"1" (b->b));
|
|
break;
|
|
case ROUND_UP:
|
|
if (!(a->exponent & 0x8000) && (a->b & 0xff))
|
|
__asm__("addl $1,%0 ; adcl $0,%1"
|
|
:"=r" (b->a),"=r" (b->b)
|
|
:"0" (b->a),"1" (b->b));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
frndint(const temp_real * a, temp_real * b)
|
|
{
|
|
int shift = 16383 + 63 - (a->exponent & 0x7fff);
|
|
u_int32_t underflow;
|
|
|
|
if ((shift < 0) || (shift == 16383+63)) {
|
|
*b = *a;
|
|
return;
|
|
}
|
|
b->a = b->b = underflow = 0;
|
|
b->exponent = a->exponent;
|
|
if (shift < 32) {
|
|
b->b = a->b; b->a = a->a;
|
|
} else if (shift < 64) {
|
|
b->a = a->b; underflow = a->a;
|
|
shift -= 32;
|
|
b->exponent += 32;
|
|
} else if (shift < 96) {
|
|
underflow = a->b;
|
|
shift -= 64;
|
|
b->exponent += 64;
|
|
} else {
|
|
underflow = 1;
|
|
shift = 0;
|
|
}
|
|
b->exponent += shift;
|
|
__asm__("shrdl %2,%1,%0"
|
|
:"=r" (underflow),"=r" (b->a)
|
|
:"c" ((char) shift),"0" (underflow),"1" (b->a));
|
|
__asm__("shrdl %2,%1,%0"
|
|
:"=r" (b->a),"=r" (b->b)
|
|
:"c" ((char) shift),"0" (b->a),"1" (b->b));
|
|
__asm__("shrl %1,%0"
|
|
:"=r" (b->b)
|
|
:"c" ((char) shift),"0" (b->b));
|
|
switch ((int)ROUNDING) {
|
|
case ROUND_NEAREST:
|
|
__asm__("addl %4,%5 ; adcl $0,%0 ; adcl $0,%1"
|
|
:"=r" (b->a),"=r" (b->b)
|
|
:"0" (b->a),"1" (b->b)
|
|
,"r" (0x7fffffff + (b->a & 1))
|
|
,"m" (*&underflow));
|
|
break;
|
|
case ROUND_UP:
|
|
if ((b->exponent >= 0) && underflow)
|
|
__asm__("addl $1,%0 ; adcl $0,%1"
|
|
:"=r" (b->a),"=r" (b->b)
|
|
:"0" (b->a),"1" (b->b));
|
|
break;
|
|
case ROUND_DOWN:
|
|
if ((b->exponent < 0) && underflow)
|
|
__asm__("addl $1,%0 ; adcl $0,%1"
|
|
:"=r" (b->a),"=r" (b->b)
|
|
:"0" (b->a),"1" (b->b));
|
|
break;
|
|
}
|
|
if (b->a || b->b)
|
|
while (b->b >= 0) {
|
|
b->exponent--;
|
|
__asm__("addl %0,%0 ; adcl %1,%1"
|
|
:"=r" (b->a),"=r" (b->b)
|
|
:"0" (b->a),"1" (b->b));
|
|
}
|
|
else
|
|
b->exponent = 0;
|
|
}
|
|
|
|
static void
|
|
Fscale(const temp_real *a, const temp_real *b, temp_real *c)
|
|
{
|
|
temp_int ti;
|
|
|
|
*c = *a;
|
|
if(!c->a && !c->b) { /* 19 Sep 92*/
|
|
c->exponent = 0;
|
|
return;
|
|
}
|
|
real_to_int(b, &ti);
|
|
if(ti.sign)
|
|
c->exponent -= ti.a;
|
|
else
|
|
c->exponent += ti.a;
|
|
}
|
|
|
|
static void
|
|
real_to_int(const temp_real * a, temp_int * b)
|
|
{
|
|
int shift = 16383 + 63 - (a->exponent & 0x7fff);
|
|
u_int32_t underflow;
|
|
|
|
b->a = b->b = underflow = 0;
|
|
b->sign = (a->exponent < 0);
|
|
if (shift < 0) {
|
|
set_OE();
|
|
return;
|
|
}
|
|
if (shift < 32) {
|
|
b->b = a->b; b->a = a->a;
|
|
} else if (shift < 64) {
|
|
b->a = a->b; underflow = a->a;
|
|
shift -= 32;
|
|
} else if (shift < 96) {
|
|
underflow = a->b;
|
|
shift -= 64;
|
|
} else {
|
|
underflow = 1;
|
|
shift = 0;
|
|
}
|
|
__asm__("shrdl %2,%1,%0"
|
|
:"=r" (underflow),"=r" (b->a)
|
|
:"c" ((char) shift),"0" (underflow),"1" (b->a));
|
|
__asm__("shrdl %2,%1,%0"
|
|
:"=r" (b->a),"=r" (b->b)
|
|
:"c" ((char) shift),"0" (b->a),"1" (b->b));
|
|
__asm__("shrl %1,%0"
|
|
:"=r" (b->b)
|
|
:"c" ((char) shift),"0" (b->b));
|
|
switch ((int)ROUNDING) {
|
|
case ROUND_NEAREST:
|
|
__asm__("addl %4,%5 ; adcl $0,%0 ; adcl $0,%1"
|
|
:"=r" (b->a),"=r" (b->b)
|
|
:"0" (b->a),"1" (b->b)
|
|
,"r" (0x7fffffff + (b->a & 1))
|
|
,"m" (*&underflow));
|
|
break;
|
|
case ROUND_UP:
|
|
if (!b->sign && underflow)
|
|
__asm__("addl $1,%0 ; adcl $0,%1"
|
|
:"=r" (b->a),"=r" (b->b)
|
|
:"0" (b->a),"1" (b->b));
|
|
break;
|
|
case ROUND_DOWN:
|
|
if (b->sign && underflow)
|
|
__asm__("addl $1,%0 ; adcl $0,%1"
|
|
:"=r" (b->a),"=r" (b->b)
|
|
:"0" (b->a),"1" (b->b));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
int_to_real(const temp_int * a, temp_real * b)
|
|
{
|
|
b->a = a->a;
|
|
b->b = a->b;
|
|
if (b->a || b->b)
|
|
b->exponent = 16383 + 63 + (a->sign? 0x8000:0);
|
|
else {
|
|
b->exponent = 0;
|
|
return;
|
|
}
|
|
while (b->b >= 0) {
|
|
b->exponent--;
|
|
__asm__("addl %0,%0 ; adcl %1,%1"
|
|
:"=r" (b->a),"=r" (b->b)
|
|
:"0" (b->a),"1" (b->b));
|
|
}
|
|
}
|
|
|
|
#ifdef LKM
|
|
MOD_MISC(fpu);
|
|
static int
|
|
fpu_load(struct lkm_table *lkmtp, int cmd)
|
|
{
|
|
if (pmath_emulate) {
|
|
printf("Math emulator already present\n");
|
|
return EBUSY;
|
|
}
|
|
pmath_emulate = math_emulate;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fpu_unload(struct lkm_table *lkmtp, int cmd)
|
|
{
|
|
if (pmath_emulate != math_emulate) {
|
|
printf("Cannot unload another math emulator\n");
|
|
return EACCES;
|
|
}
|
|
pmath_emulate = 0;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
fpu_mod(struct lkm_table *lkmtp, int cmd, int ver)
|
|
{
|
|
MOD_DISPATCH(fpu, lkmtp, cmd, ver, fpu_load, fpu_unload, lkm_nullcmd);
|
|
}
|
|
#else /* !LKM */
|
|
|
|
static int
|
|
fpu_modevent(module_t mod, int type, void *unused)
|
|
{
|
|
switch (type) {
|
|
case MOD_LOAD:
|
|
if (pmath_emulate) {
|
|
printf("Another Math emulator already present\n");
|
|
return EBUSY;
|
|
}
|
|
pmath_emulate = math_emulate;
|
|
if (bootverbose)
|
|
printf("Math emulator present\n");
|
|
break;
|
|
case MOD_UNLOAD:
|
|
if (pmath_emulate != math_emulate) {
|
|
printf("Cannot unload another math emulator\n");
|
|
return EACCES;
|
|
}
|
|
pmath_emulate = 0;
|
|
if (bootverbose)
|
|
printf("Math emulator unloaded\n");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
moduledata_t fpumod = {
|
|
"fpu",
|
|
fpu_modevent,
|
|
0
|
|
};
|
|
DECLARE_MODULE(fpu, fpumod, SI_SUB_DRIVERS, SI_ORDER_ANY);
|
|
|
|
#endif /* LKM */
|