freebsd-skq/sys/pci/if_vr.c
Poul-Henning Kamp 88647b6de5 Be consistent about functions being static.
Properly put macro args in ().

Spotted by:	FlexeLint.
2002-10-16 09:14:59 +00:00

1708 lines
37 KiB
C

/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* VIA Rhine fast ethernet PCI NIC driver
*
* Supports various network adapters based on the VIA Rhine
* and Rhine II PCI controllers, including the D-Link DFE530TX.
* Datasheets are available at http://www.via.com.tw.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The VIA Rhine controllers are similar in some respects to the
* the DEC tulip chips, except less complicated. The controller
* uses an MII bus and an external physical layer interface. The
* receiver has a one entry perfect filter and a 64-bit hash table
* multicast filter. Transmit and receive descriptors are similar
* to the tulip.
*
* The Rhine has a serious flaw in its transmit DMA mechanism:
* transmit buffers must be longword aligned. Unfortunately,
* FreeBSD doesn't guarantee that mbufs will be filled in starting
* at longword boundaries, so we have to do a buffer copy before
* transmission.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#define VR_USEIOSPACE
#include <pci/if_vrreg.h>
MODULE_DEPEND(vr, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct vr_type vr_devs[] = {
{ VIA_VENDORID, VIA_DEVICEID_RHINE,
"VIA VT3043 Rhine I 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
"VIA VT86C100A Rhine II 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
"VIA VT6102 Rhine II 10/100BaseTX" },
{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
"Delta Electronics Rhine II 10/100BaseTX" },
{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
"Addtron Technology Rhine II 10/100BaseTX" },
{ 0, 0, NULL }
};
static int vr_probe (device_t);
static int vr_attach (device_t);
static int vr_detach (device_t);
static int vr_newbuf (struct vr_softc *,
struct vr_chain_onefrag *,
struct mbuf *);
static int vr_encap (struct vr_softc *, struct vr_chain *,
struct mbuf * );
static void vr_rxeof (struct vr_softc *);
static void vr_rxeoc (struct vr_softc *);
static void vr_txeof (struct vr_softc *);
static void vr_txeoc (struct vr_softc *);
static void vr_tick (void *);
static void vr_intr (void *);
static void vr_start (struct ifnet *);
static int vr_ioctl (struct ifnet *, u_long, caddr_t);
static void vr_init (void *);
static void vr_stop (struct vr_softc *);
static void vr_watchdog (struct ifnet *);
static void vr_shutdown (device_t);
static int vr_ifmedia_upd (struct ifnet *);
static void vr_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static void vr_mii_sync (struct vr_softc *);
static void vr_mii_send (struct vr_softc *, u_int32_t, int);
static int vr_mii_readreg (struct vr_softc *, struct vr_mii_frame *);
static int vr_mii_writereg (struct vr_softc *, struct vr_mii_frame *);
static int vr_miibus_readreg (device_t, int, int);
static int vr_miibus_writereg (device_t, int, int, int);
static void vr_miibus_statchg (device_t);
static void vr_setcfg (struct vr_softc *, int);
static u_int8_t vr_calchash (u_int8_t *);
static void vr_setmulti (struct vr_softc *);
static void vr_reset (struct vr_softc *);
static int vr_list_rx_init (struct vr_softc *);
static int vr_list_tx_init (struct vr_softc *);
#ifdef VR_USEIOSPACE
#define VR_RES SYS_RES_IOPORT
#define VR_RID VR_PCI_LOIO
#else
#define VR_RES SYS_RES_MEMORY
#define VR_RID VR_PCI_LOMEM
#endif
static device_method_t vr_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, vr_probe),
DEVMETHOD(device_attach, vr_attach),
DEVMETHOD(device_detach, vr_detach),
DEVMETHOD(device_shutdown, vr_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, vr_miibus_readreg),
DEVMETHOD(miibus_writereg, vr_miibus_writereg),
DEVMETHOD(miibus_statchg, vr_miibus_statchg),
{ 0, 0 }
};
static driver_t vr_driver = {
"vr",
vr_methods,
sizeof(struct vr_softc)
};
static devclass_t vr_devclass;
DRIVER_MODULE(if_vr, pci, vr_driver, vr_devclass, 0, 0);
DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
#define VR_SETBIT(sc, reg, x) \
CSR_WRITE_1(sc, reg, \
CSR_READ_1(sc, reg) | (x))
#define VR_CLRBIT(sc, reg, x) \
CSR_WRITE_1(sc, reg, \
CSR_READ_1(sc, reg) & ~(x))
#define VR_SETBIT16(sc, reg, x) \
CSR_WRITE_2(sc, reg, \
CSR_READ_2(sc, reg) | (x))
#define VR_CLRBIT16(sc, reg, x) \
CSR_WRITE_2(sc, reg, \
CSR_READ_2(sc, reg) & ~(x))
#define VR_SETBIT32(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | (x))
#define VR_CLRBIT32(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~(x))
#define SIO_SET(x) \
CSR_WRITE_1(sc, VR_MIICMD, \
CSR_READ_1(sc, VR_MIICMD) | (x))
#define SIO_CLR(x) \
CSR_WRITE_1(sc, VR_MIICMD, \
CSR_READ_1(sc, VR_MIICMD) & ~(x))
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void
vr_mii_sync(sc)
struct vr_softc *sc;
{
register int i;
SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAIN);
for (i = 0; i < 32; i++) {
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
}
return;
}
/*
* Clock a series of bits through the MII.
*/
static void
vr_mii_send(sc, bits, cnt)
struct vr_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
SIO_CLR(VR_MIICMD_CLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i) {
SIO_SET(VR_MIICMD_DATAIN);
} else {
SIO_CLR(VR_MIICMD_DATAIN);
}
DELAY(1);
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
SIO_SET(VR_MIICMD_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
static int
vr_mii_readreg(sc, frame)
struct vr_softc *sc;
struct vr_mii_frame *frame;
{
int i, ack;
VR_LOCK(sc);
/*
* Set up frame for RX.
*/
frame->mii_stdelim = VR_MII_STARTDELIM;
frame->mii_opcode = VR_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
CSR_WRITE_1(sc, VR_MIICMD, 0);
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
/*
* Turn on data xmit.
*/
SIO_SET(VR_MIICMD_DIR);
vr_mii_sync(sc);
/*
* Send command/address info.
*/
vr_mii_send(sc, frame->mii_stdelim, 2);
vr_mii_send(sc, frame->mii_opcode, 2);
vr_mii_send(sc, frame->mii_phyaddr, 5);
vr_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAIN));
DELAY(1);
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
/* Turn off xmit. */
SIO_CLR(VR_MIICMD_DIR);
/* Check for ack */
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT;
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
if (!ack) {
if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT)
frame->mii_data |= i;
DELAY(1);
}
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
}
fail:
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
VR_UNLOCK(sc);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int
vr_mii_writereg(sc, frame)
struct vr_softc *sc;
struct vr_mii_frame *frame;
{
VR_LOCK(sc);
CSR_WRITE_1(sc, VR_MIICMD, 0);
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
/*
* Set up frame for TX.
*/
frame->mii_stdelim = VR_MII_STARTDELIM;
frame->mii_opcode = VR_MII_WRITEOP;
frame->mii_turnaround = VR_MII_TURNAROUND;
/*
* Turn on data output.
*/
SIO_SET(VR_MIICMD_DIR);
vr_mii_sync(sc);
vr_mii_send(sc, frame->mii_stdelim, 2);
vr_mii_send(sc, frame->mii_opcode, 2);
vr_mii_send(sc, frame->mii_phyaddr, 5);
vr_mii_send(sc, frame->mii_regaddr, 5);
vr_mii_send(sc, frame->mii_turnaround, 2);
vr_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
/*
* Turn off xmit.
*/
SIO_CLR(VR_MIICMD_DIR);
VR_UNLOCK(sc);
return(0);
}
static int
vr_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct vr_softc *sc;
struct vr_mii_frame frame;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
vr_mii_readreg(sc, &frame);
return(frame.mii_data);
}
static int
vr_miibus_writereg(dev, phy, reg, data)
device_t dev;
u_int16_t phy, reg, data;
{
struct vr_softc *sc;
struct vr_mii_frame frame;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
vr_mii_writereg(sc, &frame);
return(0);
}
static void
vr_miibus_statchg(dev)
device_t dev;
{
struct vr_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
VR_LOCK(sc);
mii = device_get_softc(sc->vr_miibus);
vr_setcfg(sc, mii->mii_media_active);
VR_UNLOCK(sc);
return;
}
/*
* Calculate CRC of a multicast group address, return the lower 6 bits.
*/
static u_int8_t vr_calchash(addr)
u_int8_t *addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/* return the filter bit position */
return((crc >> 26) & 0x0000003F);
}
/*
* Program the 64-bit multicast hash filter.
*/
static void
vr_setmulti(sc)
struct vr_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
u_int8_t rxfilt;
int mcnt = 0;
ifp = &sc->arpcom.ac_if;
rxfilt = CSR_READ_1(sc, VR_RXCFG);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= VR_RXCFG_RX_MULTI;
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, VR_MAR0, 0);
CSR_WRITE_4(sc, VR_MAR1, 0);
/* now program new ones */
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = vr_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
}
if (mcnt)
rxfilt |= VR_RXCFG_RX_MULTI;
else
rxfilt &= ~VR_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
return;
}
/*
* In order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
static void
vr_setcfg(sc, media)
struct vr_softc *sc;
int media;
{
int restart = 0;
if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)) {
restart = 1;
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
}
if ((media & IFM_GMASK) == IFM_FDX)
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
else
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
if (restart)
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
return;
}
static void
vr_reset(sc)
struct vr_softc *sc;
{
register int i;
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
for (i = 0; i < VR_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
break;
}
if (i == VR_TIMEOUT)
printf("vr%d: reset never completed!\n", sc->vr_unit);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
return;
}
/*
* Probe for a VIA Rhine chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
vr_probe(dev)
device_t dev;
{
struct vr_type *t;
t = vr_devs;
while(t->vr_name != NULL) {
if ((pci_get_vendor(dev) == t->vr_vid) &&
(pci_get_device(dev) == t->vr_did)) {
device_set_desc(dev, t->vr_name);
return(0);
}
t++;
}
return(ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
vr_attach(dev)
device_t dev;
{
int i;
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct vr_softc *sc;
struct ifnet *ifp;
int unit, error = 0, rid;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
bzero(sc, sizeof(struct vr_softc *));
mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
VR_LOCK(sc);
/*
* Handle power management nonsense.
*/
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, VR_PCI_LOIO, 4);
membase = pci_read_config(dev, VR_PCI_LOMEM, 4);
irq = pci_read_config(dev, VR_PCI_INTLINE, 4);
/* Reset the power state. */
printf("vr%d: chip is in D%d power mode "
"-- setting to D0\n", unit,
pci_get_powerstate(dev));
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
/* Restore PCI config data. */
pci_write_config(dev, VR_PCI_LOIO, iobase, 4);
pci_write_config(dev, VR_PCI_LOMEM, membase, 4);
pci_write_config(dev, VR_PCI_INTLINE, irq, 4);
}
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
pci_enable_io(dev, SYS_RES_IOPORT);
pci_enable_io(dev, SYS_RES_MEMORY);
command = pci_read_config(dev, PCIR_COMMAND, 4);
#ifdef VR_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("vr%d: failed to enable I/O ports!\n", unit);
free(sc, M_DEVBUF);
goto fail;
}
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("vr%d: failed to enable memory mapping!\n", unit);
goto fail;
}
#endif
rid = VR_RID;
sc->vr_res = bus_alloc_resource(dev, VR_RES, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->vr_res == NULL) {
printf("vr%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->vr_btag = rman_get_bustag(sc->vr_res);
sc->vr_bhandle = rman_get_bushandle(sc->vr_res);
/* Allocate interrupt */
rid = 0;
sc->vr_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->vr_irq == NULL) {
printf("vr%d: couldn't map interrupt\n", unit);
bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET,
vr_intr, sc, &sc->vr_intrhand);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res);
printf("vr%d: couldn't set up irq\n", unit);
goto fail;
}
/*
* Windows may put the chip in suspend mode when it
* shuts down. Be sure to kick it in the head to wake it
* up again.
*/
VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
/* Reset the adapter. */
vr_reset(sc);
/*
* Get station address. The way the Rhine chips work,
* you're not allowed to directly access the EEPROM once
* they've been programmed a special way. Consequently,
* we need to read the node address from the PAR0 and PAR1
* registers.
*/
VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
DELAY(200);
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
/*
* A Rhine chip was detected. Inform the world.
*/
printf("vr%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->vr_unit = unit;
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
sc->vr_ldata = contigmalloc(sizeof(struct vr_list_data), M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->vr_ldata == NULL) {
printf("vr%d: no memory for list buffers!\n", unit);
bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res);
error = ENXIO;
goto fail;
}
bzero(sc->vr_ldata, sizeof(struct vr_list_data));
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "vr";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = vr_ioctl;
ifp->if_output = ether_output;
ifp->if_start = vr_start;
ifp->if_watchdog = vr_watchdog;
ifp->if_init = vr_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = VR_TX_LIST_CNT - 1;
/*
* Do MII setup.
*/
if (mii_phy_probe(dev, &sc->vr_miibus,
vr_ifmedia_upd, vr_ifmedia_sts)) {
printf("vr%d: MII without any phy!\n", sc->vr_unit);
bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res);
contigfree(sc->vr_ldata,
sizeof(struct vr_list_data), M_DEVBUF);
error = ENXIO;
goto fail;
}
callout_handle_init(&sc->vr_stat_ch);
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
VR_UNLOCK(sc);
return(0);
fail:
VR_UNLOCK(sc);
mtx_destroy(&sc->vr_mtx);
return(error);
}
static int
vr_detach(dev)
device_t dev;
{
struct vr_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
VR_LOCK(sc);
ifp = &sc->arpcom.ac_if;
vr_stop(sc);
ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
bus_generic_detach(dev);
device_delete_child(dev, sc->vr_miibus);
bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res);
contigfree(sc->vr_ldata, sizeof(struct vr_list_data), M_DEVBUF);
VR_UNLOCK(sc);
mtx_destroy(&sc->vr_mtx);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int
vr_list_tx_init(sc)
struct vr_softc *sc;
{
struct vr_chain_data *cd;
struct vr_list_data *ld;
int i;
cd = &sc->vr_cdata;
ld = sc->vr_ldata;
for (i = 0; i < VR_TX_LIST_CNT; i++) {
cd->vr_tx_chain[i].vr_ptr = &ld->vr_tx_list[i];
if (i == (VR_TX_LIST_CNT - 1))
cd->vr_tx_chain[i].vr_nextdesc =
&cd->vr_tx_chain[0];
else
cd->vr_tx_chain[i].vr_nextdesc =
&cd->vr_tx_chain[i + 1];
}
cd->vr_tx_free = &cd->vr_tx_chain[0];
cd->vr_tx_tail = cd->vr_tx_head = NULL;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
vr_list_rx_init(sc)
struct vr_softc *sc;
{
struct vr_chain_data *cd;
struct vr_list_data *ld;
int i;
cd = &sc->vr_cdata;
ld = sc->vr_ldata;
for (i = 0; i < VR_RX_LIST_CNT; i++) {
cd->vr_rx_chain[i].vr_ptr =
(struct vr_desc *)&ld->vr_rx_list[i];
if (vr_newbuf(sc, &cd->vr_rx_chain[i], NULL) == ENOBUFS)
return(ENOBUFS);
if (i == (VR_RX_LIST_CNT - 1)) {
cd->vr_rx_chain[i].vr_nextdesc =
&cd->vr_rx_chain[0];
ld->vr_rx_list[i].vr_next =
vtophys(&ld->vr_rx_list[0]);
} else {
cd->vr_rx_chain[i].vr_nextdesc =
&cd->vr_rx_chain[i + 1];
ld->vr_rx_list[i].vr_next =
vtophys(&ld->vr_rx_list[i + 1]);
}
}
cd->vr_rx_head = &cd->vr_rx_chain[0];
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
* Note: the length fields are only 11 bits wide, which means the
* largest size we can specify is 2047. This is important because
* MCLBYTES is 2048, so we have to subtract one otherwise we'll
* overflow the field and make a mess.
*/
static int
vr_newbuf(sc, c, m)
struct vr_softc *sc;
struct vr_chain_onefrag *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return(ENOBUFS);
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, sizeof(u_int64_t));
c->vr_mbuf = m_new;
c->vr_ptr->vr_status = VR_RXSTAT;
c->vr_ptr->vr_data = vtophys(mtod(m_new, caddr_t));
c->vr_ptr->vr_ctl = VR_RXCTL | VR_RXLEN;
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void
vr_rxeof(sc)
struct vr_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct vr_chain_onefrag *cur_rx;
int total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
while(!((rxstat = sc->vr_cdata.vr_rx_head->vr_ptr->vr_status) &
VR_RXSTAT_OWN)) {
struct mbuf *m0 = NULL;
cur_rx = sc->vr_cdata.vr_rx_head;
sc->vr_cdata.vr_rx_head = cur_rx->vr_nextdesc;
m = cur_rx->vr_mbuf;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & VR_RXSTAT_RXERR) {
ifp->if_ierrors++;
printf("vr%d: rx error: ", sc->vr_unit);
switch(rxstat & 0x000000FF) {
case VR_RXSTAT_CRCERR:
printf("crc error\n");
break;
case VR_RXSTAT_FRAMEALIGNERR:
printf("frame alignment error\n");
break;
case VR_RXSTAT_FIFOOFLOW:
printf("FIFO overflow\n");
break;
case VR_RXSTAT_GIANT:
printf("received giant packet\n");
break;
case VR_RXSTAT_RUNT:
printf("received runt packet\n");
break;
case VR_RXSTAT_BUSERR:
printf("system bus error\n");
break;
case VR_RXSTAT_BUFFERR:
printf("rx buffer error\n");
break;
default:
printf("unknown rx error\n");
break;
}
vr_newbuf(sc, cur_rx, m);
continue;
}
/* No errors; receive the packet. */
total_len = VR_RXBYTES(cur_rx->vr_ptr->vr_status);
/*
* XXX The VIA Rhine chip includes the CRC with every
* received frame, and there's no way to turn this
* behavior off (at least, I can't find anything in
* the manual that explains how to do it) so we have
* to trim off the CRC manually.
*/
total_len -= ETHER_CRC_LEN;
m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, ifp,
NULL);
vr_newbuf(sc, cur_rx, m);
if (m0 == NULL) {
ifp->if_ierrors++;
continue;
}
m = m0;
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
return;
}
static void
vr_rxeoc(sc)
struct vr_softc *sc;
{
vr_rxeof(sc);
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr));
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
vr_txeof(sc)
struct vr_softc *sc;
{
struct vr_chain *cur_tx;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/* Reset the timeout timer; if_txeoc will clear it. */
ifp->if_timer = 5;
/* Sanity check. */
if (sc->vr_cdata.vr_tx_head == NULL)
return;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
while(sc->vr_cdata.vr_tx_head->vr_mbuf != NULL) {
u_int32_t txstat;
cur_tx = sc->vr_cdata.vr_tx_head;
txstat = cur_tx->vr_ptr->vr_status;
if ((txstat & VR_TXSTAT_ABRT) ||
(txstat & VR_TXSTAT_UDF)) {
while (CSR_READ_2(sc, VR_COMMAND) & VR_CMD_TX_ON)
; /* Wait for chip to shutdown */
VR_TXOWN(cur_tx) = VR_TXSTAT_OWN;
CSR_WRITE_4(sc, VR_TXADDR, vtophys(cur_tx->vr_ptr));
break;
}
if (txstat & VR_TXSTAT_OWN)
break;
if (txstat & VR_TXSTAT_ERRSUM) {
ifp->if_oerrors++;
if (txstat & VR_TXSTAT_DEFER)
ifp->if_collisions++;
if (txstat & VR_TXSTAT_LATECOLL)
ifp->if_collisions++;
}
ifp->if_collisions +=(txstat & VR_TXSTAT_COLLCNT) >> 3;
ifp->if_opackets++;
if (cur_tx->vr_mbuf != NULL) {
m_freem(cur_tx->vr_mbuf);
cur_tx->vr_mbuf = NULL;
}
if (sc->vr_cdata.vr_tx_head == sc->vr_cdata.vr_tx_tail) {
sc->vr_cdata.vr_tx_head = NULL;
sc->vr_cdata.vr_tx_tail = NULL;
break;
}
sc->vr_cdata.vr_tx_head = cur_tx->vr_nextdesc;
}
return;
}
/*
* TX 'end of channel' interrupt handler.
*/
static void
vr_txeoc(sc)
struct vr_softc *sc;
{
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
if (sc->vr_cdata.vr_tx_head == NULL) {
ifp->if_flags &= ~IFF_OACTIVE;
sc->vr_cdata.vr_tx_tail = NULL;
ifp->if_timer = 0;
}
return;
}
static void
vr_tick(xsc)
void *xsc;
{
struct vr_softc *sc;
struct mii_data *mii;
sc = xsc;
VR_LOCK(sc);
mii = device_get_softc(sc->vr_miibus);
mii_tick(mii);
sc->vr_stat_ch = timeout(vr_tick, sc, hz);
VR_UNLOCK(sc);
return;
}
static void
vr_intr(arg)
void *arg;
{
struct vr_softc *sc;
struct ifnet *ifp;
u_int16_t status;
sc = arg;
VR_LOCK(sc);
ifp = &sc->arpcom.ac_if;
/* Supress unwanted interrupts. */
if (!(ifp->if_flags & IFF_UP)) {
vr_stop(sc);
VR_UNLOCK(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_2(sc, VR_IMR, 0x0000);
for (;;) {
status = CSR_READ_2(sc, VR_ISR);
if (status)
CSR_WRITE_2(sc, VR_ISR, status);
if ((status & VR_INTRS) == 0)
break;
if (status & VR_ISR_RX_OK)
vr_rxeof(sc);
if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) ||
(status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_OFLOW) ||
(status & VR_ISR_RX_DROPPED)) {
vr_rxeof(sc);
vr_rxeoc(sc);
}
if ((status & VR_ISR_BUSERR) || (status & VR_ISR_TX_UNDERRUN)) {
vr_reset(sc);
vr_init(sc);
break;
}
if ((status & VR_ISR_TX_OK) || (status & VR_ISR_TX_ABRT) ||
(status & VR_ISR_TX_ABRT2) || (status & VR_ISR_UDFI)) {
vr_txeof(sc);
if ((status & VR_ISR_UDFI) ||
(status & VR_ISR_TX_ABRT2) ||
(status & VR_ISR_TX_ABRT)) {
ifp->if_oerrors++;
if (sc->vr_cdata.vr_tx_head != NULL) {
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
}
} else
vr_txeoc(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
if (ifp->if_snd.ifq_head != NULL) {
vr_start(ifp);
}
VR_UNLOCK(sc);
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
vr_encap(sc, c, m_head)
struct vr_softc *sc;
struct vr_chain *c;
struct mbuf *m_head;
{
int frag = 0;
struct vr_desc *f = NULL;
int total_len;
struct mbuf *m;
m = m_head;
total_len = 0;
/*
* The VIA Rhine wants packet buffers to be longword
* aligned, but very often our mbufs aren't. Rather than
* waste time trying to decide when to copy and when not
* to copy, just do it all the time.
*/
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("vr%d: no memory for tx list\n", sc->vr_unit);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("vr%d: no memory for tx list\n",
sc->vr_unit);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
/*
* The Rhine chip doesn't auto-pad, so we have to make
* sure to pad short frames out to the minimum frame length
* ourselves.
*/
if (m_head->m_len < VR_MIN_FRAMELEN) {
m_new->m_pkthdr.len += VR_MIN_FRAMELEN - m_new->m_len;
m_new->m_len = m_new->m_pkthdr.len;
}
f = c->vr_ptr;
f->vr_data = vtophys(mtod(m_new, caddr_t));
f->vr_ctl = total_len = m_new->m_len;
f->vr_ctl |= VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG;
f->vr_status = 0;
frag = 1;
}
c->vr_mbuf = m_head;
c->vr_ptr->vr_ctl |= VR_TXCTL_LASTFRAG|VR_TXCTL_FINT;
c->vr_ptr->vr_next = vtophys(c->vr_nextdesc->vr_ptr);
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void
vr_start(ifp)
struct ifnet *ifp;
{
struct vr_softc *sc;
struct mbuf *m_head = NULL;
struct vr_chain *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
VR_LOCK(sc);
if (ifp->if_flags & IFF_OACTIVE) {
VR_UNLOCK(sc);
return;
}
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->vr_cdata.vr_tx_free->vr_mbuf != NULL) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
start_tx = sc->vr_cdata.vr_tx_free;
while(sc->vr_cdata.vr_tx_free->vr_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
cur_tx = sc->vr_cdata.vr_tx_free;
sc->vr_cdata.vr_tx_free = cur_tx->vr_nextdesc;
/* Pack the data into the descriptor. */
if (vr_encap(sc, cur_tx, m_head)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
cur_tx = NULL;
break;
}
if (cur_tx != start_tx)
VR_TXOWN(cur_tx) = VR_TXSTAT_OWN;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, cur_tx->vr_mbuf);
VR_TXOWN(cur_tx) = VR_TXSTAT_OWN;
VR_SETBIT16(sc, VR_COMMAND, /*VR_CMD_TX_ON|*/VR_CMD_TX_GO);
}
/*
* If there are no frames queued, bail.
*/
if (cur_tx == NULL) {
VR_UNLOCK(sc);
return;
}
sc->vr_cdata.vr_tx_tail = cur_tx;
if (sc->vr_cdata.vr_tx_head == NULL)
sc->vr_cdata.vr_tx_head = start_tx;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
VR_UNLOCK(sc);
return;
}
static void
vr_init(xsc)
void *xsc;
{
struct vr_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii;
int i;
VR_LOCK(sc);
mii = device_get_softc(sc->vr_miibus);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
vr_stop(sc);
vr_reset(sc);
/*
* Set our station address.
*/
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, VR_PAR0 + i, sc->arpcom.ac_enaddr[i]);
/* Set DMA size */
VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
/*
* BCR0 and BCR1 can override the RXCFG and TXCFG registers,
* so we must set both.
*/
VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESHSTORENFWD);
VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTHRESHSTORENFWD);
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
/* Init circular RX list. */
if (vr_list_rx_init(sc) == ENOBUFS) {
printf("vr%d: initialization failed: no "
"memory for rx buffers\n", sc->vr_unit);
vr_stop(sc);
VR_UNLOCK(sc);
return;
}
/*
* Init tx descriptors.
*/
vr_list_tx_init(sc);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
else
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
/* Set capture broadcast bit to capture broadcast frames. */
if (ifp->if_flags & IFF_BROADCAST)
VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
else
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
/*
* Program the multicast filter, if necessary.
*/
vr_setmulti(sc);
/*
* Load the address of the RX list.
*/
CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr));
/* Enable receiver and transmitter. */
CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
VR_CMD_TX_ON|VR_CMD_RX_ON|
VR_CMD_RX_GO);
CSR_WRITE_4(sc, VR_TXADDR, vtophys(&sc->vr_ldata->vr_tx_list[0]));
/*
* Enable interrupts.
*/
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
mii_mediachg(mii);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->vr_stat_ch = timeout(vr_tick, sc, hz);
VR_UNLOCK(sc);
return;
}
/*
* Set media options.
*/
static int
vr_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct vr_softc *sc;
sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP)
vr_init(sc);
return(0);
}
/*
* Report current media status.
*/
static void
vr_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct vr_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->vr_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int
vr_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct vr_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0;
VR_LOCK(sc);
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
vr_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
vr_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
vr_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->vr_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = EINVAL;
break;
}
VR_UNLOCK(sc);
return(error);
}
static void
vr_watchdog(ifp)
struct ifnet *ifp;
{
struct vr_softc *sc;
sc = ifp->if_softc;
VR_LOCK(sc);
ifp->if_oerrors++;
printf("vr%d: watchdog timeout\n", sc->vr_unit);
vr_stop(sc);
vr_reset(sc);
vr_init(sc);
if (ifp->if_snd.ifq_head != NULL)
vr_start(ifp);
VR_UNLOCK(sc);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
vr_stop(sc)
struct vr_softc *sc;
{
register int i;
struct ifnet *ifp;
VR_LOCK(sc);
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
untimeout(vr_tick, sc, sc->vr_stat_ch);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
CSR_WRITE_2(sc, VR_IMR, 0x0000);
CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
/*
* Free data in the RX lists.
*/
for (i = 0; i < VR_RX_LIST_CNT; i++) {
if (sc->vr_cdata.vr_rx_chain[i].vr_mbuf != NULL) {
m_freem(sc->vr_cdata.vr_rx_chain[i].vr_mbuf);
sc->vr_cdata.vr_rx_chain[i].vr_mbuf = NULL;
}
}
bzero((char *)&sc->vr_ldata->vr_rx_list,
sizeof(sc->vr_ldata->vr_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < VR_TX_LIST_CNT; i++) {
if (sc->vr_cdata.vr_tx_chain[i].vr_mbuf != NULL) {
m_freem(sc->vr_cdata.vr_tx_chain[i].vr_mbuf);
sc->vr_cdata.vr_tx_chain[i].vr_mbuf = NULL;
}
}
bzero((char *)&sc->vr_ldata->vr_tx_list,
sizeof(sc->vr_ldata->vr_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
VR_UNLOCK(sc);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
vr_shutdown(dev)
device_t dev;
{
struct vr_softc *sc;
sc = device_get_softc(dev);
vr_stop(sc);
return;
}