2001-04-07 14:12:53 +00:00

959 lines
24 KiB
C

/*
* Copyright (c) 2000 Orion Hodson <O.Hodson@cs.ucl.ac.uk>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHERIN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THEPOSSIBILITY OF
* SUCH DAMAGE.
*
* This driver exists largely as a result of other people's efforts.
* Much of register handling is based on NetBSD CMI8x38 audio driver
* by Takuya Shiozaki <AoiMoe@imou.to>. Chen-Li Tien
* <cltien@cmedia.com.tw> clarified points regarding the DMA related
* registers and the 8738 mixer devices. His Linux was driver a also
* useful reference point.
*
* TODO: MIDI
*
* SPDIF contributed by Gerhard Gonter <gonter@whisky.wu-wien.ac.at>.
*
* This card/code does not always manage to sample at 44100 - actual
* rate drifts slightly between recordings (usually 0-3%). No
* differences visible in register dumps between times that work and
* those that don't.
*
* $FreeBSD$
*/
#include <dev/sound/pcm/sound.h>
#include <dev/sound/pci/cmireg.h>
#include <dev/sound/isa/sb.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#include <sys/sysctl.h>
#include "mixer_if.h"
/* Supported chip ID's */
#define CMI8338A_PCI_ID 0x010013f6
#define CMI8338B_PCI_ID 0x010113f6
#define CMI8738_PCI_ID 0x011113f6
#define CMI8738B_PCI_ID 0x011213f6
/* Buffer size max is 64k for permitted DMA boundaries */
#define CMI_BUFFER_SIZE 16384
/* Interrupts per length of buffer */
#define CMI_INTR_PER_BUFFER 2
/* Clarify meaning of named defines in cmireg.h */
#define CMPCI_REG_DMA0_MAX_SAMPLES CMPCI_REG_DMA0_BYTES
#define CMPCI_REG_DMA0_INTR_SAMPLES CMPCI_REG_DMA0_SAMPLES
#define CMPCI_REG_DMA1_MAX_SAMPLES CMPCI_REG_DMA1_BYTES
#define CMPCI_REG_DMA1_INTR_SAMPLES CMPCI_REG_DMA1_SAMPLES
/* Our indication of custom mixer control */
#define CMPCI_NON_SB16_CONTROL 0xff
/* Debugging macro's */
#undef DEB
#ifndef DEB
#define DEB(x) /* x */
#endif /* DEB */
#ifndef DEBMIX
#define DEBMIX(x) /* x */
#endif /* DEBMIX */
/* ------------------------------------------------------------------------- */
/* Structures */
struct sc_info;
struct sc_chinfo {
struct sc_info *parent;
struct pcm_channel *channel;
struct snd_dbuf *buffer;
u_int32_t fmt, spd, phys_buf, bps;
u_int32_t dma_active:1, dma_was_active:1;
int dir;
};
struct sc_info {
device_t dev;
bus_space_tag_t st;
bus_space_handle_t sh;
bus_dma_tag_t parent_dmat;
struct resource *reg, *irq;
int regid, irqid;
void *ih;
struct sc_chinfo pch, rch;
};
/* Channel caps */
static u_int32_t cmi_fmt[] = {
AFMT_U8,
AFMT_STEREO | AFMT_U8,
AFMT_S16_LE,
AFMT_STEREO | AFMT_S16_LE,
0
};
static struct pcmchan_caps cmi_caps = {5512, 48000, cmi_fmt, 0};
/* ------------------------------------------------------------------------- */
/* Register Utilities */
static u_int32_t
cmi_rd(struct sc_info *sc, int regno, int size)
{
switch (size) {
case 1:
return bus_space_read_1(sc->st, sc->sh, regno);
case 2:
return bus_space_read_2(sc->st, sc->sh, regno);
case 4:
return bus_space_read_4(sc->st, sc->sh, regno);
default:
DEB(printf("cmi_rd: failed 0x%04x %d\n", regno, size));
return 0xFFFFFFFF;
}
}
static void
cmi_wr(struct sc_info *sc, int regno, u_int32_t data, int size)
{
switch (size) {
case 1:
bus_space_write_1(sc->st, sc->sh, regno, data);
break;
case 2:
bus_space_write_2(sc->st, sc->sh, regno, data);
break;
case 4:
bus_space_write_4(sc->st, sc->sh, regno, data);
break;
}
}
static void
cmi_partial_wr4(struct sc_info *sc,
int reg, int shift, u_int32_t mask, u_int32_t val)
{
u_int32_t r;
r = cmi_rd(sc, reg, 4);
r &= ~(mask << shift);
r |= val << shift;
cmi_wr(sc, reg, r, 4);
}
static void
cmi_clr4(struct sc_info *sc, int reg, u_int32_t mask)
{
u_int32_t r;
r = cmi_rd(sc, reg, 4);
r &= ~mask;
cmi_wr(sc, reg, r, 4);
}
static void
cmi_set4(struct sc_info *sc, int reg, u_int32_t mask)
{
u_int32_t r;
r = cmi_rd(sc, reg, 4);
r |= mask;
cmi_wr(sc, reg, r, 4);
}
/* ------------------------------------------------------------------------- */
/* Rate Mapping */
static int cmi_rates[] = {5512, 8000, 11025, 16000,
22050, 32000, 44100, 48000};
#define NUM_CMI_RATES (sizeof(cmi_rates)/sizeof(cmi_rates[0]))
/* cmpci_rate_to_regvalue returns sampling freq selector for FCR1
* register - reg order is 5k,11k,22k,44k,8k,16k,32k,48k */
static u_int32_t
cmpci_rate_to_regvalue(int rate)
{
int i, r;
for(i = 0; i < NUM_CMI_RATES - 1; i++) {
if (rate < ((cmi_rates[i] + cmi_rates[i + 1]) / 2)) {
break;
}
}
DEB(printf("cmpci_rate_to_regvalue: %d -> %d\n", rate, cmi_rates[i]));
r = ((i >> 1) | (i << 2)) & 0x07;
return r;
}
static int
cmpci_regvalue_to_rate(u_int32_t r)
{
int i;
i = ((r << 1) | (r >> 2)) & 0x07;
DEB(printf("cmpci_regvalue_to_rate: %d -> %d\n", r, i));
return cmi_rates[i];
}
/* ------------------------------------------------------------------------- */
/* ADC/DAC control - there are 2 dma channels on 8738, either can be
* playback or capture. We use ch0 for playback and ch1 for capture. */
static void
cmi_dma_prog(struct sc_info *sc, struct sc_chinfo *ch, u_int32_t base)
{
u_int32_t s, i, sz, physbuf;
physbuf = vtophys(sndbuf_getbuf(ch->buffer));
cmi_wr(sc, base, physbuf, 4);
sz = (u_int32_t)sndbuf_getsize(ch->buffer);
s = sz / ch->bps - 1;
cmi_wr(sc, base + 4, s, 2);
i = sz / (ch->bps * CMI_INTR_PER_BUFFER) - 1;
cmi_wr(sc, base + 6, i, 2);
}
static void
cmi_ch0_start(struct sc_info *sc, struct sc_chinfo *ch)
{
cmi_dma_prog(sc, ch, CMPCI_REG_DMA0_BASE);
cmi_set4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
cmi_set4(sc, CMPCI_REG_INTR_CTRL,
CMPCI_REG_CH0_INTR_ENABLE);
ch->dma_active = 1;
}
static u_int32_t
cmi_ch0_stop(struct sc_info *sc, struct sc_chinfo *ch)
{
u_int32_t r = ch->dma_active;
cmi_clr4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
cmi_clr4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
cmi_set4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
cmi_clr4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
ch->dma_active = 0;
return r;
}
static void
cmi_ch1_start(struct sc_info *sc, struct sc_chinfo *ch)
{
cmi_dma_prog(sc, ch, CMPCI_REG_DMA1_BASE);
cmi_set4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
/* Enable Interrupts */
cmi_set4(sc, CMPCI_REG_INTR_CTRL,
CMPCI_REG_CH1_INTR_ENABLE);
DEB(printf("cmi_ch1_start: dma prog\n"));
ch->dma_active = 1;
}
static u_int32_t
cmi_ch1_stop(struct sc_info *sc, struct sc_chinfo *ch)
{
u_int32_t r = ch->dma_active;
cmi_clr4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
cmi_clr4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
cmi_set4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
cmi_clr4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
ch->dma_active = 0;
return r;
}
static void
cmi_spdif_speed(struct sc_info *sc, int speed) {
u_int32_t fcr1, lcr, mcr;
if (speed >= 44100) {
fcr1 = CMPCI_REG_SPDIF0_ENABLE;
lcr = CMPCI_REG_XSPDIF_ENABLE;
mcr = (speed == 48000) ?
CMPCI_REG_W_SPDIF_48L | CMPCI_REG_SPDIF_48K : 0;
} else {
fcr1 = mcr = lcr = 0;
}
cmi_partial_wr4(sc, CMPCI_REG_MISC, 0,
CMPCI_REG_W_SPDIF_48L | CMPCI_REG_SPDIF_48K, mcr);
cmi_partial_wr4(sc, CMPCI_REG_FUNC_1, 0,
CMPCI_REG_SPDIF0_ENABLE, fcr1);
cmi_partial_wr4(sc, CMPCI_REG_LEGACY_CTRL, 0,
CMPCI_REG_XSPDIF_ENABLE, lcr);
}
/* ------------------------------------------------------------------------- */
/* Channel Interface implementation */
static void *
cmichan_init(kobj_t obj, void *devinfo,
struct snd_dbuf *b, struct pcm_channel *c, int dir)
{
struct sc_info *sc = devinfo;
struct sc_chinfo *ch = (dir == PCMDIR_PLAY) ? &sc->pch : &sc->rch;
ch->parent = sc;
ch->channel = c;
ch->bps = 1;
ch->fmt = AFMT_U8;
ch->spd = DSP_DEFAULT_SPEED;
ch->buffer = b;
ch->dma_active = 0;
if (sndbuf_alloc(ch->buffer, sc->parent_dmat, CMI_BUFFER_SIZE) != 0) {
DEB(printf("cmichan_init failed\n"));
return NULL;
}
ch->dir = dir;
if (ch->dir == PCMDIR_PLAY) {
cmi_dma_prog(sc, ch, CMPCI_REG_DMA0_BASE);
} else {
cmi_dma_prog(sc, ch, CMPCI_REG_DMA1_BASE);
}
return ch;
}
static int
cmichan_setformat(kobj_t obj, void *data, u_int32_t format)
{
struct sc_chinfo *ch = data;
u_int32_t f;
if (format & AFMT_S16_LE) {
f = CMPCI_REG_FORMAT_16BIT;
ch->bps = 2;
} else {
f = CMPCI_REG_FORMAT_8BIT;
ch->bps = 1;
}
if (format & AFMT_STEREO) {
f |= CMPCI_REG_FORMAT_STEREO;
ch->bps *= 2;
} else {
f |= CMPCI_REG_FORMAT_MONO;
}
if (ch->dir == PCMDIR_PLAY) {
cmi_partial_wr4(ch->parent,
CMPCI_REG_CHANNEL_FORMAT,
CMPCI_REG_CH0_FORMAT_SHIFT,
CMPCI_REG_CH0_FORMAT_MASK,
f);
} else {
cmi_partial_wr4(ch->parent,
CMPCI_REG_CHANNEL_FORMAT,
CMPCI_REG_CH1_FORMAT_SHIFT,
CMPCI_REG_CH1_FORMAT_MASK,
f);
}
ch->fmt = format;
return 0;
}
static int
cmichan_setspeed(kobj_t obj, void *data, u_int32_t speed)
{
struct sc_chinfo *ch = data;
u_int32_t r, rsp;
r = cmpci_rate_to_regvalue(speed);
if (ch->dir == PCMDIR_PLAY) {
if (speed < 44100) /* disable if req before rate change */
cmi_spdif_speed(ch->parent, speed);
cmi_partial_wr4(ch->parent,
CMPCI_REG_FUNC_1,
CMPCI_REG_DAC_FS_SHIFT,
CMPCI_REG_DAC_FS_MASK,
r);
if (speed >= 44100) /* enable if req after rate change */
cmi_spdif_speed(ch->parent, speed);
rsp = cmi_rd(ch->parent, CMPCI_REG_FUNC_1, 4);
rsp >>= CMPCI_REG_DAC_FS_SHIFT;
rsp &= CMPCI_REG_DAC_FS_MASK;
} else {
cmi_partial_wr4(ch->parent,
CMPCI_REG_FUNC_1,
CMPCI_REG_ADC_FS_SHIFT,
CMPCI_REG_ADC_FS_MASK,
r);
rsp = cmi_rd(ch->parent, CMPCI_REG_FUNC_1, 4);
rsp >>= CMPCI_REG_ADC_FS_SHIFT;
rsp &= CMPCI_REG_ADC_FS_MASK;
}
ch->spd = cmpci_regvalue_to_rate(r);
DEB(printf("cmichan_setspeed (%s) %d -> %d (%d)\n",
(ch->dir == PCMDIR_PLAY) ? "play" : "rec",
speed, ch->spd, cmpci_regvalue_to_rate(rsp)));
return ch->spd;
}
static int
cmichan_setblocksize(kobj_t obj, void *data, u_int32_t blocksize)
{
struct sc_chinfo *ch = data;
/* user has requested interrupts every blocksize bytes */
if (blocksize > CMI_BUFFER_SIZE / CMI_INTR_PER_BUFFER) {
blocksize = CMI_BUFFER_SIZE / CMI_INTR_PER_BUFFER;
}
sndbuf_resize(ch->buffer, CMI_INTR_PER_BUFFER, blocksize);
return sndbuf_getsize(ch->buffer);
}
static int
cmichan_trigger(kobj_t obj, void *data, int go)
{
struct sc_chinfo *ch = data;
struct sc_info *sc = ch->parent;
if (ch->dir == PCMDIR_PLAY) {
switch(go) {
case PCMTRIG_START:
cmi_ch0_start(sc, ch);
break;
case PCMTRIG_ABORT:
cmi_ch0_stop(sc, ch);
break;
}
} else {
switch(go) {
case PCMTRIG_START:
cmi_ch1_start(sc, ch);
break;
case PCMTRIG_ABORT:
cmi_ch1_stop(sc, ch);
break;
}
}
return 0;
}
static int
cmichan_getptr(kobj_t obj, void *data)
{
struct sc_chinfo *ch = data;
struct sc_info *sc = ch->parent;
u_int32_t physptr, bufptr, sz;
if (ch->dir == PCMDIR_PLAY) {
physptr = cmi_rd(sc, CMPCI_REG_DMA0_BASE, 4);
} else {
physptr = cmi_rd(sc, CMPCI_REG_DMA1_BASE, 4);
}
sz = sndbuf_getsize(ch->buffer);
bufptr = (physptr - ch->phys_buf + sz - ch->bps) % sz;
return bufptr;
}
static void
cmi_intr(void *data)
{
struct sc_info *sc = data;
u_int32_t intrstat;
intrstat = cmi_rd(sc, CMPCI_REG_INTR_STATUS, 4);
if ((intrstat & CMPCI_REG_ANY_INTR) == 0) {
return;
}
/* Disable interrupts */
if (intrstat & CMPCI_REG_CH0_INTR) {
cmi_clr4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
}
if (intrstat & CMPCI_REG_CH1_INTR) {
cmi_clr4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
}
/* Signal interrupts to channel */
if (intrstat & CMPCI_REG_CH0_INTR) {
chn_intr(sc->pch.channel);
}
if (intrstat & CMPCI_REG_CH1_INTR) {
chn_intr(sc->rch.channel);
}
/* Enable interrupts */
if (intrstat & CMPCI_REG_CH0_INTR) {
cmi_set4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
}
if (intrstat & CMPCI_REG_CH1_INTR) {
cmi_set4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
}
return;
}
static struct pcmchan_caps *
cmichan_getcaps(kobj_t obj, void *data)
{
return &cmi_caps;
}
static kobj_method_t cmichan_methods[] = {
KOBJMETHOD(channel_init, cmichan_init),
KOBJMETHOD(channel_setformat, cmichan_setformat),
KOBJMETHOD(channel_setspeed, cmichan_setspeed),
KOBJMETHOD(channel_setblocksize, cmichan_setblocksize),
KOBJMETHOD(channel_trigger, cmichan_trigger),
KOBJMETHOD(channel_getptr, cmichan_getptr),
KOBJMETHOD(channel_getcaps, cmichan_getcaps),
{ 0, 0 }
};
CHANNEL_DECLARE(cmichan);
/* ------------------------------------------------------------------------- */
/* Mixer - sb16 with kinks */
static void
cmimix_wr(struct sc_info *sc, u_int8_t port, u_int8_t val)
{
cmi_wr(sc, CMPCI_REG_SBADDR, port, 1);
cmi_wr(sc, CMPCI_REG_SBDATA, val, 1);
}
static u_int8_t
cmimix_rd(struct sc_info *sc, u_int8_t port)
{
cmi_wr(sc, CMPCI_REG_SBADDR, port, 1);
return (u_int8_t)cmi_rd(sc, CMPCI_REG_SBDATA, 1);
}
struct sb16props {
u_int8_t rreg; /* right reg chan register */
u_int8_t stereo:1; /* (no explanation needed, honest) */
u_int8_t rec:1; /* recording source */
u_int8_t bits:3; /* num bits to represent maximum gain rep */
u_int8_t oselect; /* output select mask */
u_int8_t iselect; /* right input select mask */
} static const cmt[SOUND_MIXER_NRDEVICES] = {
[SOUND_MIXER_SYNTH] = {CMPCI_SB16_MIXER_FM_R, 1, 1, 5,
CMPCI_SB16_SW_FM, CMPCI_SB16_MIXER_FM_SRC_R},
[SOUND_MIXER_CD] = {CMPCI_SB16_MIXER_CDDA_R, 1, 1, 5,
CMPCI_SB16_SW_CD, CMPCI_SB16_MIXER_CD_SRC_R},
[SOUND_MIXER_LINE] = {CMPCI_SB16_MIXER_LINE_R, 1, 1, 5,
CMPCI_SB16_SW_LINE, CMPCI_SB16_MIXER_LINE_SRC_R},
[SOUND_MIXER_MIC] = {CMPCI_SB16_MIXER_MIC, 0, 1, 5,
CMPCI_SB16_SW_MIC, CMPCI_SB16_MIXER_MIC_SRC},
[SOUND_MIXER_SPEAKER] = {CMPCI_SB16_MIXER_SPEAKER, 0, 0, 2, 0, 0},
[SOUND_MIXER_PCM] = {CMPCI_SB16_MIXER_VOICE_R, 1, 0, 5, 0, 0},
[SOUND_MIXER_VOLUME] = {CMPCI_SB16_MIXER_MASTER_R, 1, 0, 5, 0, 0},
/* These controls are not implemented in CMI8738, but maybe at a
future date. They are not documented in C-Media documentation,
though appear in other drivers for future h/w (ALSA, Linux, NetBSD).
*/
[SOUND_MIXER_IGAIN] = {CMPCI_SB16_MIXER_INGAIN_R, 1, 0, 2, 0, 0},
[SOUND_MIXER_OGAIN] = {CMPCI_SB16_MIXER_OUTGAIN_R, 1, 0, 2, 0, 0},
[SOUND_MIXER_BASS] = {CMPCI_SB16_MIXER_BASS_R, 1, 0, 4, 0, 0},
[SOUND_MIXER_TREBLE] = {CMPCI_SB16_MIXER_TREBLE_R, 1, 0, 4, 0, 0},
/* The mic pre-amp is implemented with non-SB16 compatible
registers. */
[SOUND_MIXER_MONITOR] = {CMPCI_NON_SB16_CONTROL, 0, 1, 4, 0},
};
#define MIXER_GAIN_REG_RTOL(r) (r - 1)
static int
cmimix_init(struct snd_mixer *m)
{
struct sc_info *sc = mix_getdevinfo(m);
u_int32_t i,v;
for(i = v = 0; i < SOUND_MIXER_NRDEVICES; i++) {
if (cmt[i].bits) v |= 1 << i;
}
mix_setdevs(m, v);
for(i = v = 0; i < SOUND_MIXER_NRDEVICES; i++) {
if (cmt[i].rec) v |= 1 << i;
}
mix_setrecdevs(m, v);
cmimix_wr(sc, CMPCI_SB16_MIXER_RESET, 0);
cmimix_wr(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
cmimix_wr(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
cmimix_wr(sc, CMPCI_SB16_MIXER_OUTMIX,
CMPCI_SB16_SW_CD | CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
return 0;
}
static int
cmimix_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right)
{
struct sc_info *sc = mix_getdevinfo(m);
u_int32_t r, l, max;
u_int8_t v;
max = (1 << cmt[dev].bits) - 1;
if (cmt[dev].rreg == CMPCI_NON_SB16_CONTROL) {
/* For time being this can only be one thing (mic in
* mic/aux reg) */
v = cmi_rd(sc, CMPCI_REG_AUX_MIC, 1) & 0xf0;
l = left * max / 100;
/* 3 bit gain with LSB MICGAIN off(1),on(1) -> 4 bit value */
v |= ((l << 1) | (~l >> 3)) & 0x0f;
cmi_wr(sc, CMPCI_REG_AUX_MIC, v, 1);
return 0;
}
l = (left * max / 100) << (8 - cmt[dev].bits);
if (cmt[dev].stereo) {
r = (right * max / 100) << (8 - cmt[dev].bits);
cmimix_wr(sc, MIXER_GAIN_REG_RTOL(cmt[dev].rreg), l);
cmimix_wr(sc, cmt[dev].rreg, r);
DEBMIX(printf("Mixer stereo write dev %d reg 0x%02x "\
"value 0x%02x:0x%02x\n",
dev, MIXER_GAIN_REG_RTOL(cmt[dev].rreg), l, r));
} else {
r = l;
cmimix_wr(sc, cmt[dev].rreg, l);
DEBMIX(printf("Mixer mono write dev %d reg 0x%02x " \
"value 0x%02x:0x%02x\n",
dev, cmt[dev].rreg, l, l));
}
/* Zero gain does not mute channel from output, but this does... */
v = cmimix_rd(sc, CMPCI_SB16_MIXER_OUTMIX);
if (l == 0 && r == 0) {
v &= ~cmt[dev].oselect;
} else {
v |= cmt[dev].oselect;
}
cmimix_wr(sc, CMPCI_SB16_MIXER_OUTMIX, v);
return 0;
}
static int
cmimix_setrecsrc(struct snd_mixer *m, u_int32_t src)
{
struct sc_info *sc = mix_getdevinfo(m);
u_int32_t i, ml, sl;
ml = sl = 0;
for(i = 0; i < SOUND_MIXER_NRDEVICES; i++) {
if ((1<<i) & src) {
if (cmt[i].stereo) {
sl |= cmt[i].iselect;
} else {
ml |= cmt[i].iselect;
}
}
}
cmimix_wr(sc, CMPCI_SB16_MIXER_ADCMIX_R, sl|ml);
DEBMIX(printf("cmimix_setrecsrc: reg 0x%02x val 0x%02x\n",
CMPCI_SB16_MIXER_ADCMIX_R, sl|ml));
ml = CMPCI_SB16_MIXER_SRC_R_TO_L(ml);
cmimix_wr(sc, CMPCI_SB16_MIXER_ADCMIX_L, sl|ml);
DEBMIX(printf("cmimix_setrecsrc: reg 0x%02x val 0x%02x\n",
CMPCI_SB16_MIXER_ADCMIX_L, sl|ml));
return src;
}
static kobj_method_t cmi_mixer_methods[] = {
KOBJMETHOD(mixer_init, cmimix_init),
KOBJMETHOD(mixer_set, cmimix_set),
KOBJMETHOD(mixer_setrecsrc, cmimix_setrecsrc),
{ 0, 0 }
};
MIXER_DECLARE(cmi_mixer);
/* ------------------------------------------------------------------------- */
/* Power and reset */
static void
cmi_power(struct sc_info *sc, int state)
{
switch (state) {
case 0: /* full power */
cmi_clr4(sc, CMPCI_REG_MISC, CMPCI_REG_POWER_DOWN);
break;
default:
/* power off */
cmi_set4(sc, CMPCI_REG_MISC, CMPCI_REG_POWER_DOWN);
break;
}
}
static int
cmi_init(struct sc_info *sc)
{
/* Effect reset */
cmi_set4(sc, CMPCI_REG_MISC, CMPCI_REG_BUS_AND_DSP_RESET);
DELAY(100);
cmi_clr4(sc, CMPCI_REG_MISC, CMPCI_REG_BUS_AND_DSP_RESET);
/* Disable interrupts and channels */
cmi_clr4(sc, CMPCI_REG_FUNC_0,
CMPCI_REG_CH0_ENABLE | CMPCI_REG_CH1_ENABLE);
cmi_clr4(sc, CMPCI_REG_INTR_CTRL,
CMPCI_REG_CH0_INTR_ENABLE | CMPCI_REG_CH1_INTR_ENABLE);
/* Configure DMA channels, ch0 = play, ch1 = capture */
cmi_clr4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR);
cmi_set4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR);
/* Attempt to enable 4 Channel output */
cmi_set4(sc, CMPCI_REG_MISC, CMPCI_REG_N4SPK3D);
/* Disable SPDIF1 - not compatible with config */
cmi_clr4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF1_ENABLE);
cmi_clr4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
return 0;
}
static void
cmi_uninit(struct sc_info *sc)
{
/* Disable interrupts and channels */
cmi_clr4(sc, CMPCI_REG_INTR_CTRL,
CMPCI_REG_CH0_INTR_ENABLE |
CMPCI_REG_CH1_INTR_ENABLE |
CMPCI_REG_TDMA_INTR_ENABLE);
cmi_clr4(sc, CMPCI_REG_FUNC_0,
CMPCI_REG_CH0_ENABLE | CMPCI_REG_CH1_ENABLE);
}
/* ------------------------------------------------------------------------- */
/* Bus and device registration */
static int
cmi_probe(device_t dev)
{
switch(pci_get_devid(dev)) {
case CMI8338A_PCI_ID:
device_set_desc(dev, "CMedia CMI8338A");
return 0;
case CMI8338B_PCI_ID:
device_set_desc(dev, "CMedia CMI8338B");
return 0;
case CMI8738_PCI_ID:
device_set_desc(dev, "CMedia CMI8738");
return 0;
case CMI8738B_PCI_ID:
device_set_desc(dev, "CMedia CMI8738B");
return 0;
default:
return ENXIO;
}
}
static int
cmi_attach(device_t dev)
{
struct snddev_info *d;
struct sc_info *sc;
u_int32_t data;
char status[SND_STATUSLEN];
d = device_get_softc(dev);
sc = malloc(sizeof(struct sc_info), M_DEVBUF, M_NOWAIT);
if (sc == NULL) {
device_printf(dev, "cannot allocate softc\n");
return ENXIO;
}
bzero(sc, sizeof(*sc));
data = pci_read_config(dev, PCIR_COMMAND, 2);
data |= (PCIM_CMD_PORTEN|PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCIR_COMMAND, data, 2);
data = pci_read_config(dev, PCIR_COMMAND, 2);
sc->regid = PCIR_MAPS;
sc->reg = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->regid,
0, BUS_SPACE_UNRESTRICTED, 1, RF_ACTIVE);
if (!sc->reg) {
device_printf(dev, "cmi_attach: Cannot allocate bus resource\n");
goto bad;
}
sc->st = rman_get_bustag(sc->reg);
sc->sh = rman_get_bushandle(sc->reg);
sc->irqid = 0;
sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irqid,
0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
if (!sc->irq ||
snd_setup_intr(dev, sc->irq, 0, cmi_intr, sc, &sc->ih)){
device_printf(dev, "cmi_attach: Unable to map interrupt\n");
goto bad;
}
if (bus_dma_tag_create(/*parent*/NULL, /*alignment*/2, /*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
/*maxsize*/CMI_BUFFER_SIZE, /*nsegments*/1,
/*maxsegz*/0x3ffff, /*flags*/0,
&sc->parent_dmat) != 0) {
device_printf(dev, "cmi_attach: Unable to create dma tag\n");
goto bad;
}
cmi_power(sc, 0);
if (cmi_init(sc))
goto bad;
if (mixer_init(dev, &cmi_mixer_class, sc))
goto bad;
if (pcm_register(dev, sc, 1, 1))
goto bad;
pcm_addchan(dev, PCMDIR_PLAY, &cmichan_class, sc);
pcm_addchan(dev, PCMDIR_REC, &cmichan_class, sc);
snprintf(status, SND_STATUSLEN, "at io 0x%lx irq %ld",
rman_get_start(sc->reg), rman_get_start(sc->irq));
pcm_setstatus(dev, status);
DEB(printf("cmi_attach: succeeded\n"));
return 0;
bad:
if (sc->parent_dmat)
bus_dma_tag_destroy(sc->parent_dmat);
if (sc->ih)
bus_teardown_intr(dev, sc->irq, sc->ih);
if (sc->irq)
bus_release_resource(dev, SYS_RES_IRQ, sc->irqid, sc->irq);
if (sc->reg)
bus_release_resource(dev, SYS_RES_IOPORT, sc->regid, sc->reg);
if (sc)
free(sc, M_DEVBUF);
return ENXIO;
}
static int
cmi_detach(device_t dev)
{
struct sc_info *sc;
int r;
r = pcm_unregister(dev);
if (r) return r;
sc = pcm_getdevinfo(dev);
cmi_uninit(sc);
cmi_power(sc, 3);
bus_dma_tag_destroy(sc->parent_dmat);
bus_teardown_intr(dev, sc->irq, sc->ih);
bus_release_resource(dev, SYS_RES_IRQ, sc->irqid, sc->irq);
bus_release_resource(dev, SYS_RES_IOPORT, sc->regid, sc->reg);
free(sc, M_DEVBUF);
return 0;
}
static int
cmi_suspend(device_t dev)
{
struct sc_info *sc = pcm_getdevinfo(dev);
sc->pch.dma_was_active = cmi_ch0_stop(sc, &sc->pch);
sc->rch.dma_was_active = cmi_ch1_stop(sc, &sc->rch);
cmi_power(sc, 3);
return 0;
}
static int
cmi_resume(device_t dev)
{
struct sc_info *sc = pcm_getdevinfo(dev);
cmi_power(sc, 0);
if (cmi_init(sc) != 0) {
device_printf(dev, "unable to reinitialize the card\n");
return ENXIO;
}
if (mixer_reinit(dev) == -1) {
device_printf(dev, "unable to reinitialize the mixer\n");
return ENXIO;
}
if (sc->pch.dma_was_active) {
cmichan_setspeed(NULL, &sc->pch, sc->pch.spd);
cmichan_setformat(NULL, &sc->pch, sc->pch.fmt);
cmi_ch0_start(sc, &sc->pch);
}
if (sc->rch.dma_was_active) {
cmichan_setspeed(NULL, &sc->rch, sc->rch.spd);
cmichan_setformat(NULL, &sc->rch, sc->rch.fmt);
cmi_ch1_start(sc, &sc->rch);
}
return 0;
}
static device_method_t cmi_methods[] = {
DEVMETHOD(device_probe, cmi_probe),
DEVMETHOD(device_attach, cmi_attach),
DEVMETHOD(device_detach, cmi_detach),
DEVMETHOD(device_resume, cmi_resume),
DEVMETHOD(device_suspend, cmi_suspend),
{ 0, 0 }
};
static driver_t cmi_driver = {
"pcm",
cmi_methods,
sizeof(struct snddev_info)
};
static devclass_t pcm_devclass;
DRIVER_MODULE(snd_cmipci, pci, cmi_driver, pcm_devclass, 0, 0);
MODULE_DEPEND(snd_cmipci, snd_pcm, PCM_MINVER, PCM_PREFVER, PCM_MAXVER);
MODULE_VERSION(snd_cmipci, 1);