freebsd-skq/sys/pci/if_wb.c
Bill Paul f5c444e19e Add sanity check to foo_start() routines: in the unlikely (though
apparently possible) event that the transmit start routine is
called with and empty if_snd queue, bail out instead of dereferencing
unilitialized transmit list pointers and panicking.
1998-12-05 02:21:44 +00:00

2120 lines
50 KiB
C

/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id: if_wb.c,v 1.1 1998/12/04 18:01:21 wpaul Exp $
*/
/*
* Winbond fast ethernet PCI NIC driver
*
* Supports various cheap network adapters based on the Winbond W89C840F
* fast ethernet controller chip. This includes adapters manufactured by
* Winbond itself and some made by Linksys.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Winbond W89C840F chip is a bus master; in some ways it resembles
* a DEC 'tulip' chip, only not as complicated. Unfortunately, it has
* one major difference which is that while the registers do many of
* the same things as a tulip adapter, the offsets are different: where
* tulip registers are typically spaced 8 bytes apart, the Winbond
* registers are spaced 4 bytes apart. The receiver filter is also
* programmed differently.
*
* Like the tulip, the Winbond chip uses small descriptors containing
* a status word, a control word and 32-bit areas that can either be used
* to point to two external data blocks, or to point to a single block
* and another descriptor in a linked list. Descriptors can be grouped
* together in blocks to form fixed length rings or can be chained
* together in linked lists. A single packet may be spread out over
* several descriptors if necessary.
*
* For the receive ring, this driver uses a linked list of descriptors,
* each pointing to a single mbuf cluster buffer, which us large enough
* to hold an entire packet. The link list is looped back to created a
* closed ring.
*
* For transmission, the driver creates a linked list of 'super descriptors'
* which each contain several individual descriptors linked toghether.
* Each 'super descriptor' contains WB_MAXFRAGS descriptors, which we
* abuse as fragment pointers. This allows us to use a buffer managment
* scheme very similar to that used in the ThunderLAN and Etherlink XL
* drivers.
*
* Autonegotiation is performed using the external PHY via the MII bus.
* The sample boards I have all use a Davicom PHY.
*
* Note: the author of the Linux driver for the Winbond chip alludes
* to some sort of flaw in the chip's design that seems to mandate some
* drastic workaround which signigicantly impairs transmit performance.
* I have no idea what he's on about: transmit performance with all
* three of my test boards seems fine.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_memio.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#define WB_USEIOSPACE
/* #define WB_BACKGROUND_AUTONEG */
#include <pci/if_wbreg.h>
#ifndef lint
static char rcsid[] =
"$Id: if_wb.c,v 1.1 1998/12/04 18:01:21 wpaul Exp $";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct wb_type wb_devs[] = {
{ WB_VENDORID, WB_DEVICEID_840F,
"Winbond W89C840F 10/100BaseTX" },
{ CP_VENDORID, CP_DEVICEID_RL100,
"Compex RL100-ATX 10/100baseTX" },
{ 0, 0, NULL }
};
/*
* Various supported PHY vendors/types and their names. Note that
* this driver will work with pretty much any MII-compliant PHY,
* so failure to positively identify the chip is not a fatal error.
*/
static struct wb_type wb_phys[] = {
{ TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
{ TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
{ NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
{ LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
{ INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
{ SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
{ 0, 0, "<MII-compliant physical interface>" }
};
static unsigned long wb_count = 0;
static char *wb_probe __P((pcici_t, pcidi_t));
static void wb_attach __P((pcici_t, int));
static int wb_newbuf __P((struct wb_softc *,
struct wb_chain_onefrag *));
static int wb_encap __P((struct wb_softc *, struct wb_chain *,
struct mbuf *));
static void wb_rxeof __P((struct wb_softc *));
static void wb_rxeoc __P((struct wb_softc *));
static void wb_txeof __P((struct wb_softc *));
static void wb_txeoc __P((struct wb_softc *));
static void wb_intr __P((void *));
static void wb_start __P((struct ifnet *));
static int wb_ioctl __P((struct ifnet *, u_long, caddr_t));
static void wb_init __P((void *));
static void wb_stop __P((struct wb_softc *));
static void wb_watchdog __P((struct ifnet *));
static void wb_shutdown __P((int, void *));
static int wb_ifmedia_upd __P((struct ifnet *));
static void wb_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static void wb_eeprom_putbyte __P((struct wb_softc *, u_int8_t));
static void wb_eeprom_getword __P((struct wb_softc *, u_int8_t, u_int16_t *));
static void wb_read_eeprom __P((struct wb_softc *, caddr_t, int,
int, int));
static void wb_mii_sync __P((struct wb_softc *));
static void wb_mii_send __P((struct wb_softc *, u_int32_t, int));
static int wb_mii_readreg __P((struct wb_softc *, struct wb_mii_frame *));
static int wb_mii_writereg __P((struct wb_softc *, struct wb_mii_frame *));
static u_int16_t wb_phy_readreg __P((struct wb_softc *, int));
static void wb_phy_writereg __P((struct wb_softc *, u_int16_t, u_int16_t));
static void wb_autoneg_xmit __P((struct wb_softc *));
static void wb_autoneg_mii __P((struct wb_softc *, int, int));
static void wb_setmode_mii __P((struct wb_softc *, int));
static void wb_getmode_mii __P((struct wb_softc *));
static void wb_setcfg __P((struct wb_softc *, u_int16_t));
static u_int8_t wb_calchash __P((u_int8_t *));
static void wb_setmulti __P((struct wb_softc *));
static void wb_reset __P((struct wb_softc *));
static int wb_list_rx_init __P((struct wb_softc *));
static int wb_list_tx_init __P((struct wb_softc *));
#define WB_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | x)
#define WB_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~x)
#define SIO_SET(x) \
CSR_WRITE_4(sc, WB_SIO, \
CSR_READ_4(sc, WB_SIO) | x)
#define SIO_CLR(x) \
CSR_WRITE_4(sc, WB_SIO, \
CSR_READ_4(sc, WB_SIO) & ~x)
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void wb_eeprom_putbyte(sc, addr)
struct wb_softc *sc;
u_int8_t addr;
{
register int d, i;
d = addr | WB_EECMD_READ;
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
SIO_SET(WB_SIO_EE_DATAIN);
} else {
SIO_CLR(WB_SIO_EE_DATAIN);
}
DELAY(100);
SIO_SET(WB_SIO_EE_CLK);
DELAY(150);
SIO_CLR(WB_SIO_EE_CLK);
DELAY(100);
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void wb_eeprom_getword(sc, addr, dest)
struct wb_softc *sc;
u_int8_t addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/* Enter EEPROM access mode. */
CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
/*
* Send address of word we want to read.
*/
wb_eeprom_putbyte(sc, addr);
CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(WB_SIO_EE_CLK);
DELAY(100);
if (CSR_READ_4(sc, WB_SIO) & WB_SIO_EE_DATAOUT)
word |= i;
SIO_CLR(WB_SIO_EE_CLK);
DELAY(100);
}
/* Turn off EEPROM access mode. */
CSR_WRITE_4(sc, WB_SIO, 0);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void wb_read_eeprom(sc, dest, off, cnt, swap)
struct wb_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
wb_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void wb_mii_sync(sc)
struct wb_softc *sc;
{
register int i;
SIO_SET(WB_SIO_MII_DIR|WB_SIO_MII_DATAIN);
for (i = 0; i < 32; i++) {
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
}
return;
}
/*
* Clock a series of bits through the MII.
*/
static void wb_mii_send(sc, bits, cnt)
struct wb_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
SIO_CLR(WB_SIO_MII_CLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i) {
SIO_SET(WB_SIO_MII_DATAIN);
} else {
SIO_CLR(WB_SIO_MII_DATAIN);
}
DELAY(1);
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
SIO_SET(WB_SIO_MII_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
static int wb_mii_readreg(sc, frame)
struct wb_softc *sc;
struct wb_mii_frame *frame;
{
int i, ack, s;
s = splimp();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = WB_MII_STARTDELIM;
frame->mii_opcode = WB_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
CSR_WRITE_4(sc, WB_SIO, 0);
/*
* Turn on data xmit.
*/
SIO_SET(WB_SIO_MII_DIR);
wb_mii_sync(sc);
/*
* Send command/address info.
*/
wb_mii_send(sc, frame->mii_stdelim, 2);
wb_mii_send(sc, frame->mii_opcode, 2);
wb_mii_send(sc, frame->mii_phyaddr, 5);
wb_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
SIO_CLR((WB_SIO_MII_CLK|WB_SIO_MII_DATAIN));
DELAY(1);
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
/* Turn off xmit. */
SIO_CLR(WB_SIO_MII_DIR);
/* Check for ack */
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
ack = CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT;
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
if (!ack) {
if (CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT)
frame->mii_data |= i;
DELAY(1);
}
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
}
fail:
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int wb_mii_writereg(sc, frame)
struct wb_softc *sc;
struct wb_mii_frame *frame;
{
int s;
s = splimp();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = WB_MII_STARTDELIM;
frame->mii_opcode = WB_MII_WRITEOP;
frame->mii_turnaround = WB_MII_TURNAROUND;
/*
* Turn on data output.
*/
SIO_SET(WB_SIO_MII_DIR);
wb_mii_sync(sc);
wb_mii_send(sc, frame->mii_stdelim, 2);
wb_mii_send(sc, frame->mii_opcode, 2);
wb_mii_send(sc, frame->mii_phyaddr, 5);
wb_mii_send(sc, frame->mii_regaddr, 5);
wb_mii_send(sc, frame->mii_turnaround, 2);
wb_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
/*
* Turn off xmit.
*/
SIO_CLR(WB_SIO_MII_DIR);
splx(s);
return(0);
}
static u_int16_t wb_phy_readreg(sc, reg)
struct wb_softc *sc;
int reg;
{
struct wb_mii_frame frame;
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = sc->wb_phy_addr;
frame.mii_regaddr = reg;
wb_mii_readreg(sc, &frame);
return(frame.mii_data);
}
static void wb_phy_writereg(sc, reg, data)
struct wb_softc *sc;
u_int16_t reg;
u_int16_t data;
{
struct wb_mii_frame frame;
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = sc->wb_phy_addr;
frame.mii_regaddr = reg;
frame.mii_data = data;
wb_mii_writereg(sc, &frame);
return;
}
static u_int8_t wb_calchash(addr)
u_int8_t *addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/*
* return the filter bit position
* Note: I arrived at the following nonsense
* through experimentation. It's not the usual way to
* generate the bit position but it's the only thing
* I could come up with that works.
*/
return(~(crc >> 26) & 0x0000003F);
}
/*
* Program the 64-bit multicast hash filter.
*/
static void wb_setmulti(sc)
struct wb_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
u_int32_t rxfilt;
int mcnt = 0;
ifp = &sc->arpcom.ac_if;
rxfilt = CSR_READ_4(sc, WB_NETCFG);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= WB_NETCFG_RX_MULTI;
CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
CSR_WRITE_4(sc, WB_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, WB_MAR1, 0xFFFFFFFF);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, WB_MAR0, 0);
CSR_WRITE_4(sc, WB_MAR1, 0);
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = wb_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
}
if (mcnt)
rxfilt |= WB_NETCFG_RX_MULTI;
else
rxfilt &= ~WB_NETCFG_RX_MULTI;
CSR_WRITE_4(sc, WB_MAR0, hashes[0]);
CSR_WRITE_4(sc, WB_MAR1, hashes[1]);
CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
return;
}
/*
* Initiate an autonegotiation session.
*/
static void wb_autoneg_xmit(sc)
struct wb_softc *sc;
{
u_int16_t phy_sts;
wb_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while(wb_phy_readreg(sc, PHY_BMCR)
& PHY_BMCR_RESET);
phy_sts = wb_phy_readreg(sc, PHY_BMCR);
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
wb_phy_writereg(sc, PHY_BMCR, phy_sts);
return;
}
/*
* Invoke autonegotiation on a PHY.
*/
static void wb_autoneg_mii(sc, flag, verbose)
struct wb_softc *sc;
int flag;
int verbose;
{
u_int16_t phy_sts = 0, media, advert, ability;
struct ifnet *ifp;
struct ifmedia *ifm;
ifm = &sc->ifmedia;
ifp = &sc->arpcom.ac_if;
ifm->ifm_media = IFM_ETHER | IFM_AUTO;
/*
* The 100baseT4 PHY on the 3c905-T4 has the 'autoneg supported'
* bit cleared in the status register, but has the 'autoneg enabled'
* bit set in the control register. This is a contradiction, and
* I'm not sure how to handle it. If you want to force an attempt
* to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR
* and see what happens.
*/
#ifndef FORCE_AUTONEG_TFOUR
/*
* First, see if autoneg is supported. If not, there's
* no point in continuing.
*/
phy_sts = wb_phy_readreg(sc, PHY_BMSR);
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
if (verbose)
printf("wb%d: autonegotiation not supported\n",
sc->wb_unit);
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
return;
}
#endif
switch (flag) {
case WB_FLAG_FORCEDELAY:
/*
* XXX Never use this option anywhere but in the probe
* routine: making the kernel stop dead in its tracks
* for three whole seconds after we've gone multi-user
* is really bad manners.
*/
wb_autoneg_xmit(sc);
DELAY(5000000);
break;
case WB_FLAG_SCHEDDELAY:
/*
* Wait for the transmitter to go idle before starting
* an autoneg session, otherwise wb_start() may clobber
* our timeout, and we don't want to allow transmission
* during an autoneg session since that can screw it up.
*/
if (sc->wb_cdata.wb_tx_head != NULL) {
sc->wb_want_auto = 1;
return;
}
wb_autoneg_xmit(sc);
ifp->if_timer = 5;
sc->wb_autoneg = 1;
sc->wb_want_auto = 0;
return;
break;
case WB_FLAG_DELAYTIMEO:
ifp->if_timer = 0;
sc->wb_autoneg = 0;
break;
default:
printf("wb%d: invalid autoneg flag: %d\n", sc->wb_unit, flag);
return;
}
if (wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
if (verbose)
printf("wb%d: autoneg complete, ", sc->wb_unit);
phy_sts = wb_phy_readreg(sc, PHY_BMSR);
} else {
if (verbose)
printf("wb%d: autoneg not complete, ", sc->wb_unit);
}
media = wb_phy_readreg(sc, PHY_BMCR);
/* Link is good. Report modes and set duplex mode. */
if (wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
if (verbose)
printf("link status good ");
advert = wb_phy_readreg(sc, PHY_ANAR);
ability = wb_phy_readreg(sc, PHY_LPAR);
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
ifm->ifm_media = IFM_ETHER|IFM_100_T4;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(100baseT4)\n");
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
media |= PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
media &= ~PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 10Mbps)\n");
} else /* if (advert & PHY_ANAR_10BTHALF &&
ability & PHY_ANAR_10BTHALF) */ {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
media &= ~PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 10Mbps)\n");
}
media &= ~PHY_BMCR_AUTONEGENBL;
/* Set ASIC's duplex mode to match the PHY. */
wb_setcfg(sc, media);
wb_phy_writereg(sc, PHY_BMCR, media);
} else {
if (verbose)
printf("no carrier\n");
}
wb_init(sc);
if (sc->wb_tx_pend) {
sc->wb_autoneg = 0;
sc->wb_tx_pend = 0;
wb_start(ifp);
}
return;
}
static void wb_getmode_mii(sc)
struct wb_softc *sc;
{
u_int16_t bmsr;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
bmsr = wb_phy_readreg(sc, PHY_BMSR);
if (bootverbose)
printf("wb%d: PHY status word: %x\n", sc->wb_unit, bmsr);
/* fallback */
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
if (bmsr & PHY_BMSR_10BTHALF) {
if (bootverbose)
printf("wb%d: 10Mbps half-duplex mode supported\n",
sc->wb_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
}
if (bmsr & PHY_BMSR_10BTFULL) {
if (bootverbose)
printf("wb%d: 10Mbps full-duplex mode supported\n",
sc->wb_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
}
if (bmsr & PHY_BMSR_100BTXHALF) {
if (bootverbose)
printf("wb%d: 100Mbps half-duplex mode supported\n",
sc->wb_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
}
if (bmsr & PHY_BMSR_100BTXFULL) {
if (bootverbose)
printf("wb%d: 100Mbps full-duplex mode supported\n",
sc->wb_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
}
/* Some also support 100BaseT4. */
if (bmsr & PHY_BMSR_100BT4) {
if (bootverbose)
printf("wb%d: 100baseT4 mode supported\n", sc->wb_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
#ifdef FORCE_AUTONEG_TFOUR
if (bootverbose)
printf("wb%d: forcing on autoneg support for BT4\n",
sc->wb_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL):
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
#endif
}
if (bmsr & PHY_BMSR_CANAUTONEG) {
if (bootverbose)
printf("wb%d: autoneg supported\n", sc->wb_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
}
return;
}
/*
* Set speed and duplex mode.
*/
static void wb_setmode_mii(sc, media)
struct wb_softc *sc;
int media;
{
u_int16_t bmcr;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/*
* If an autoneg session is in progress, stop it.
*/
if (sc->wb_autoneg) {
printf("wb%d: canceling autoneg session\n", sc->wb_unit);
ifp->if_timer = sc->wb_autoneg = sc->wb_want_auto = 0;
bmcr = wb_phy_readreg(sc, PHY_BMCR);
bmcr &= ~PHY_BMCR_AUTONEGENBL;
wb_phy_writereg(sc, PHY_BMCR, bmcr);
}
printf("wb%d: selecting MII, ", sc->wb_unit);
bmcr = wb_phy_readreg(sc, PHY_BMCR);
bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
if (IFM_SUBTYPE(media) == IFM_100_T4) {
printf("100Mbps/T4, half-duplex\n");
bmcr |= PHY_BMCR_SPEEDSEL;
bmcr &= ~PHY_BMCR_DUPLEX;
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
printf("100Mbps, ");
bmcr |= PHY_BMCR_SPEEDSEL;
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
printf("10Mbps, ");
bmcr &= ~PHY_BMCR_SPEEDSEL;
}
if ((media & IFM_GMASK) == IFM_FDX) {
printf("full duplex\n");
bmcr |= PHY_BMCR_DUPLEX;
} else {
printf("half duplex\n");
bmcr &= ~PHY_BMCR_DUPLEX;
}
wb_setcfg(sc, bmcr);
wb_phy_writereg(sc, PHY_BMCR, bmcr);
return;
}
/*
* The Winbond manual states that in order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
static void wb_setcfg(sc, bmcr)
struct wb_softc *sc;
u_int16_t bmcr;
{
int i, restart = 0;
if (CSR_READ_4(sc, WB_NETCFG) & (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON)) {
restart = 1;
WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON));
for (i = 0; i < WB_TIMEOUT; i++) {
DELAY(10);
if ((CSR_READ_4(sc, WB_ISR) & WB_ISR_TX_IDLE) &&
(CSR_READ_4(sc, WB_ISR) & WB_ISR_RX_IDLE))
break;
}
if (i == WB_TIMEOUT)
printf("wb%d: failed to force tx and "
"rx to idle state\n", sc->wb_unit);
}
if (bmcr & PHY_BMCR_SPEEDSEL)
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
else
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
if (bmcr & PHY_BMCR_DUPLEX)
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
else
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
if (restart)
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON|WB_NETCFG_RX_ON);
return;
}
static void wb_reset(sc)
struct wb_softc *sc;
{
register int i;
WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
for (i = 0; i < WB_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, WB_BUSCTL) & WB_BUSCTL_RESET))
break;
}
if (i == WB_TIMEOUT)
printf("wb%d: reset never completed!\n", sc->wb_unit);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
/* Reset the damn PHY too. */
if (sc->wb_pinfo != NULL)
wb_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
return;
}
/*
* Probe for a Winbond chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static char *
wb_probe(config_id, device_id)
pcici_t config_id;
pcidi_t device_id;
{
struct wb_type *t;
t = wb_devs;
while(t->wb_name != NULL) {
if ((device_id & 0xFFFF) == t->wb_vid &&
((device_id >> 16) & 0xFFFF) == t->wb_did) {
return(t->wb_name);
}
t++;
}
return(NULL);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static void
wb_attach(config_id, unit)
pcici_t config_id;
int unit;
{
int s, i;
#ifndef WB_USEIOSPACE
vm_offset_t pbase, vbase;
#endif
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct wb_softc *sc;
struct ifnet *ifp;
int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
unsigned int round;
caddr_t roundptr;
struct wb_type *p;
u_int16_t phy_vid, phy_did, phy_sts;
s = splimp();
sc = malloc(sizeof(struct wb_softc), M_DEVBUF, M_NOWAIT);
if (sc == NULL) {
printf("wb%d: no memory for softc struct!\n", unit);
return;
}
bzero(sc, sizeof(struct wb_softc));
/*
* Handle power management nonsense.
*/
command = pci_conf_read(config_id, WB_PCI_CAPID) & 0x000000FF;
if (command == 0x01) {
command = pci_conf_read(config_id, WB_PCI_PWRMGMTCTRL);
if (command & WB_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_conf_read(config_id, WB_PCI_LOIO);
membase = pci_conf_read(config_id, WB_PCI_LOMEM);
irq = pci_conf_read(config_id, WB_PCI_INTLINE);
/* Reset the power state. */
printf("wb%d: chip is in D%d power mode "
"-- setting to D0\n", unit, command & WB_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_conf_write(config_id, WB_PCI_PWRMGMTCTRL, command);
/* Restore PCI config data. */
pci_conf_write(config_id, WB_PCI_LOIO, iobase);
pci_conf_write(config_id, WB_PCI_LOMEM, membase);
pci_conf_write(config_id, WB_PCI_INTLINE, irq);
}
}
/*
* Map control/status registers.
*/
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command);
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
#ifdef WB_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("wb%d: failed to enable I/O ports!\n", unit);
free(sc, M_DEVBUF);
goto fail;
}
if (!pci_map_port(config_id, WB_PCI_LOIO,
(u_int16_t *)&(sc->wb_bhandle))) {
printf ("wb%d: couldn't map ports\n", unit);
goto fail;
}
sc->wb_btag = I386_BUS_SPACE_IO;
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("wb%d: failed to enable memory mapping!\n", unit);
goto fail;
}
if (!pci_map_mem(config_id, WB_PCI_LOMEM, &vbase, &pbase)) {
printf ("wb%d: couldn't map memory\n", unit);
goto fail;
}
sc->csr = (volatile caddr_t)vbase;
sc->wb_btag = I386_BUS_SPACE_MEM;
sc->wb_bhandle = vbase;
#endif
/* Allocate interrupt */
if (!pci_map_int(config_id, wb_intr, sc, &net_imask)) {
printf("wb%d: couldn't map interrupt\n", unit);
goto fail;
}
/* Reset the adapter. */
wb_reset(sc);
/*
* Get station address from the EEPROM.
*/
wb_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 0);
/*
* A Winbond chip was detected. Inform the world.
*/
printf("wb%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->wb_unit = unit;
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
sc->wb_ldata_ptr = malloc(sizeof(struct wb_list_data) + 8,
M_DEVBUF, M_NOWAIT);
if (sc->wb_ldata_ptr == NULL) {
free(sc, M_DEVBUF);
printf("wb%d: no memory for list buffers!\n", unit);
return;
}
sc->wb_ldata = (struct wb_list_data *)sc->wb_ldata_ptr;
round = (unsigned int)sc->wb_ldata_ptr & 0xF;
roundptr = sc->wb_ldata_ptr;
for (i = 0; i < 8; i++) {
if (round % 8) {
round++;
roundptr++;
} else
break;
}
sc->wb_ldata = (struct wb_list_data *)roundptr;
bzero(sc->wb_ldata, sizeof(struct wb_list_data));
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "wb";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = wb_ioctl;
ifp->if_output = ether_output;
ifp->if_start = wb_start;
ifp->if_watchdog = wb_watchdog;
ifp->if_init = wb_init;
ifp->if_baudrate = 10000000;
if (bootverbose)
printf("wb%d: probing for a PHY\n", sc->wb_unit);
for (i = WB_PHYADDR_MIN; i < WB_PHYADDR_MAX + 1; i++) {
if (bootverbose)
printf("wb%d: checking address: %d\n",
sc->wb_unit, i);
sc->wb_phy_addr = i;
wb_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while(wb_phy_readreg(sc, PHY_BMCR)
& PHY_BMCR_RESET);
if ((phy_sts = wb_phy_readreg(sc, PHY_BMSR)))
break;
}
if (phy_sts) {
phy_vid = wb_phy_readreg(sc, PHY_VENID);
phy_did = wb_phy_readreg(sc, PHY_DEVID);
if (bootverbose)
printf("wb%d: found PHY at address %d, ",
sc->wb_unit, sc->wb_phy_addr);
if (bootverbose)
printf("vendor id: %x device id: %x\n",
phy_vid, phy_did);
p = wb_phys;
while(p->wb_vid) {
if (phy_vid == p->wb_vid &&
(phy_did | 0x000F) == p->wb_did) {
sc->wb_pinfo = p;
break;
}
p++;
}
if (sc->wb_pinfo == NULL)
sc->wb_pinfo = &wb_phys[PHY_UNKNOWN];
if (bootverbose)
printf("wb%d: PHY type: %s\n",
sc->wb_unit, sc->wb_pinfo->wb_name);
} else {
printf("wb%d: MII without any phy!\n", sc->wb_unit);
goto fail;
}
/*
* Do ifmedia setup.
*/
ifmedia_init(&sc->ifmedia, 0, wb_ifmedia_upd, wb_ifmedia_sts);
wb_getmode_mii(sc);
wb_autoneg_mii(sc, WB_FLAG_FORCEDELAY, 1);
media = sc->ifmedia.ifm_media;
wb_stop(sc);
ifmedia_set(&sc->ifmedia, media);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
#if NBPFILTER > 0
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
at_shutdown(wb_shutdown, sc, SHUTDOWN_POST_SYNC);
fail:
splx(s);
return;
}
/*
* Initialize the transmit descriptors.
*/
static int wb_list_tx_init(sc)
struct wb_softc *sc;
{
struct wb_chain_data *cd;
struct wb_list_data *ld;
int i;
cd = &sc->wb_cdata;
ld = sc->wb_ldata;
for (i = 0; i < WB_TX_LIST_CNT; i++) {
cd->wb_tx_chain[i].wb_ptr = &ld->wb_tx_list[i];
if (i == (WB_TX_LIST_CNT - 1)) {
cd->wb_tx_chain[i].wb_nextdesc =
&cd->wb_tx_chain[0];
} else {
cd->wb_tx_chain[i].wb_nextdesc =
&cd->wb_tx_chain[i + 1];
}
}
cd->wb_tx_free = &cd->wb_tx_chain[0];
cd->wb_tx_tail = cd->wb_tx_head = NULL;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int wb_list_rx_init(sc)
struct wb_softc *sc;
{
struct wb_chain_data *cd;
struct wb_list_data *ld;
int i;
cd = &sc->wb_cdata;
ld = sc->wb_ldata;
for (i = 0; i < WB_RX_LIST_CNT; i++) {
cd->wb_rx_chain[i].wb_ptr =
(struct wb_desc *)&ld->wb_rx_list[i];
if (wb_newbuf(sc, &cd->wb_rx_chain[i]) == ENOBUFS)
return(ENOBUFS);
if (i == (WB_RX_LIST_CNT - 1)) {
cd->wb_rx_chain[i].wb_nextdesc = &cd->wb_rx_chain[0];
ld->wb_rx_list[i].wb_next =
vtophys(&ld->wb_rx_list[0]);
} else {
cd->wb_rx_chain[i].wb_nextdesc =
&cd->wb_rx_chain[i + 1];
ld->wb_rx_list[i].wb_next =
vtophys(&ld->wb_rx_list[i + 1]);
}
}
cd->wb_rx_head = &cd->wb_rx_chain[0];
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int wb_newbuf(sc, c)
struct wb_softc *sc;
struct wb_chain_onefrag *c;
{
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("wb%d: no memory for rx list -- packet dropped!\n",
sc->wb_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("wb%d: no memory for rx list -- packet dropped!\n",
sc->wb_unit);
m_freem(m_new);
return(ENOBUFS);
}
c->wb_mbuf = m_new;
c->wb_ptr->wb_data = vtophys(mtod(m_new, caddr_t));
c->wb_ptr->wb_ctl = WB_RXCTL_RLINK | (MCLBYTES - 1);
c->wb_ptr->wb_status = WB_RXSTAT;
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void wb_rxeof(sc)
struct wb_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct wb_chain_onefrag *cur_rx;
int total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
while(!((rxstat = sc->wb_cdata.wb_rx_head->wb_ptr->wb_status) &
WB_RXSTAT_OWN)) {
cur_rx = sc->wb_cdata.wb_rx_head;
sc->wb_cdata.wb_rx_head = cur_rx->wb_nextdesc;
if ((rxstat & WB_RXSTAT_RXERR) || (rxstat & WB_RXSTAT_MIIERR)
|| WB_RXBYTES(cur_rx->wb_ptr->wb_status) == 0) {
ifp->if_ierrors++;
wb_reset(sc);
printf("wb%x: receiver babbling: possible chip "
"bug, forcing reset\n", sc->wb_unit);
ifp->if_flags |= IFF_OACTIVE;
ifp->if_timer = 2;
return;
}
/* No errors; receive the packet. */
m = cur_rx->wb_mbuf;
total_len = WB_RXBYTES(cur_rx->wb_ptr->wb_status);
/*
* Try to conjure up a new mbuf cluster. If that
* fails, it means we have an out of memory condition and
* should leave the buffer in place and continue. This will
* result in a lost packet, but there's little else we
* can do in this situation.
*/
if (wb_newbuf(sc, cur_rx) == ENOBUFS) {
ifp->if_ierrors++;
cur_rx->wb_ptr->wb_ctl =
WB_RXCTL_RLINK | (MCLBYTES - 1);
cur_rx->wb_ptr->wb_status = WB_RXSTAT;
continue;
}
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
#if NBPFILTER > 0
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp, m);
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN) &&
(eh->ether_dhost[0] & 1) == 0)) {
m_freem(m);
continue;
}
}
#endif
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
return;
}
void wb_rxeoc(sc)
struct wb_softc *sc;
{
wb_rxeof(sc);
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
if (CSR_READ_4(sc, WB_ISR) & WB_RXSTATE_SUSPEND)
CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void wb_txeof(sc)
struct wb_softc *sc;
{
struct wb_chain *cur_tx;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
if (sc->wb_cdata.wb_tx_head == NULL)
return;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
while(sc->wb_cdata.wb_tx_head->wb_mbuf != NULL) {
u_int32_t txstat;
cur_tx = sc->wb_cdata.wb_tx_head;
txstat = WB_TXSTATUS(cur_tx);
if ((txstat & WB_TXSTAT_OWN) || txstat == WB_UNSENT)
break;
if (txstat & WB_TXSTAT_TXERR) {
ifp->if_oerrors++;
if (txstat & WB_TXSTAT_ABORT)
ifp->if_collisions++;
if (txstat & WB_TXSTAT_LATECOLL)
ifp->if_collisions++;
}
ifp->if_collisions += (txstat & WB_TXSTAT_COLLCNT) >> 3;
ifp->if_opackets++;
m_freem(cur_tx->wb_mbuf);
cur_tx->wb_mbuf = NULL;
if (sc->wb_cdata.wb_tx_head == sc->wb_cdata.wb_tx_tail) {
sc->wb_cdata.wb_tx_head = NULL;
sc->wb_cdata.wb_tx_tail = NULL;
break;
}
sc->wb_cdata.wb_tx_head = cur_tx->wb_nextdesc;
}
return;
}
/*
* TX 'end of channel' interrupt handler.
*/
static void wb_txeoc(sc)
struct wb_softc *sc;
{
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
if (sc->wb_cdata.wb_tx_head == NULL) {
ifp->if_flags &= ~IFF_OACTIVE;
sc->wb_cdata.wb_tx_tail = NULL;
if (sc->wb_want_auto)
wb_autoneg_mii(sc, WB_FLAG_SCHEDDELAY, 1);
} else {
if (WB_TXOWN(sc->wb_cdata.wb_tx_head) == WB_UNSENT) {
WB_TXOWN(sc->wb_cdata.wb_tx_head) = WB_TXSTAT_OWN;
ifp->if_timer = 5;
CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
}
}
return;
}
static void wb_intr(arg)
void *arg;
{
struct wb_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
if (!(ifp->if_flags & IFF_UP))
return;
/* Disable interrupts. */
CSR_WRITE_4(sc, WB_IMR, 0x00000000);
for (;;) {
status = CSR_READ_4(sc, WB_ISR);
if (status)
CSR_WRITE_4(sc, WB_ISR, status);
if ((status & WB_INTRS) == 0)
break;
if (status & WB_ISR_RX_OK)
wb_rxeof(sc);
if (status & WB_ISR_RX_IDLE)
wb_rxeoc(sc);
if ((status & WB_ISR_RX_NOBUF) || (status & WB_ISR_RX_ERR)) {
ifp->if_ierrors++;
wb_stop(sc);
wb_reset(sc);
wb_init(sc);
}
if (status & WB_ISR_TX_OK)
wb_txeof(sc);
if (status & WB_ISR_TX_NOBUF)
wb_txeoc(sc);
if (status & WB_ISR_TX_IDLE) {
wb_txeof(sc);
if (sc->wb_cdata.wb_tx_head != NULL) {
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
}
}
if (status & WB_ISR_TX_UNDERRUN) {
ifp->if_oerrors++;
wb_txeof(sc);
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
/* Jack up TX threshold */
sc->wb_txthresh += WB_TXTHRESH_CHUNK;
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
}
if (status & WB_ISR_BUS_ERR) {
wb_reset(sc);
wb_init(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
if (ifp->if_snd.ifq_head != NULL) {
wb_start(ifp);
}
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int wb_encap(sc, c, m_head)
struct wb_softc *sc;
struct wb_chain *c;
struct mbuf *m_head;
{
int frag = 0;
struct wb_desc *f = NULL;
int total_len;
struct mbuf *m;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
total_len = 0;
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == WB_MAXFRAGS)
break;
total_len += m->m_len;
f = &c->wb_ptr->wb_frag[frag];
f->wb_ctl = WB_TXCTL_TLINK | m->m_len;
if (frag == 0) {
f->wb_ctl |= WB_TXCTL_FIRSTFRAG;
f->wb_status = 0;
} else
f->wb_status = WB_TXSTAT_OWN;
f->wb_next = vtophys(&c->wb_ptr->wb_frag[frag + 1]);
f->wb_data = vtophys(mtod(m, vm_offset_t));
frag++;
}
}
/*
* Handle special case: we used up all 16 fragments,
* but we have more mbufs left in the chain. Copy the
* data into an mbuf cluster. Note that we don't
* bother clearing the values in the other fragment
* pointers/counters; it wouldn't gain us anything,
* and would waste cycles.
*/
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("wb%d: no memory for tx list", sc->wb_unit);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("wb%d: no memory for tx list",
sc->wb_unit);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->wb_ptr->wb_frag[0];
f->wb_status = 0;
f->wb_data = vtophys(mtod(m_new, caddr_t));
f->wb_ctl = total_len = m_new->m_len;
f->wb_ctl |= WB_TXCTL_TLINK|WB_TXCTL_FIRSTFRAG;
frag = 1;
}
if (total_len < WB_MIN_FRAMELEN) {
f = &c->wb_ptr->wb_frag[frag];
f->wb_ctl = WB_MIN_FRAMELEN - total_len;
f->wb_data = vtophys(&sc->wb_cdata.wb_pad);
f->wb_ctl |= WB_TXCTL_TLINK;
f->wb_status = WB_TXSTAT_OWN;
frag++;
}
c->wb_mbuf = m_head;
c->wb_lastdesc = frag - 1;
WB_TXCTL(c) |= WB_TXCTL_LASTFRAG;
WB_TXNEXT(c) = vtophys(&c->wb_nextdesc->wb_ptr->wb_frag[0]);
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void wb_start(ifp)
struct ifnet *ifp;
{
struct wb_softc *sc;
struct mbuf *m_head = NULL;
struct wb_chain *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
if (sc->wb_autoneg) {
sc->wb_tx_pend = 1;
return;
}
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->wb_cdata.wb_tx_free->wb_mbuf != NULL) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
start_tx = sc->wb_cdata.wb_tx_free;
while(sc->wb_cdata.wb_tx_free->wb_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
cur_tx = sc->wb_cdata.wb_tx_free;
sc->wb_cdata.wb_tx_free = cur_tx->wb_nextdesc;
/* Pack the data into the descriptor. */
wb_encap(sc, cur_tx, m_head);
if (cur_tx != start_tx)
WB_TXOWN(cur_tx) = WB_TXSTAT_OWN;
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, cur_tx->wb_mbuf);
#endif
}
/*
* If there are no packets queued, bail.
*/
if (cur_tx == NULL)
return;
/*
* Place the request for the upload interrupt
* in the last descriptor in the chain. This way, if
* we're chaining several packets at once, we'll only
* get an interupt once for the whole chain rather than
* once for each packet.
*/
WB_TXCTL(cur_tx) |= WB_TXCTL_FINT;
sc->wb_cdata.wb_tx_tail = cur_tx;
if (sc->wb_cdata.wb_tx_head == NULL) {
sc->wb_cdata.wb_tx_head = start_tx;
WB_TXOWN(start_tx) = WB_TXSTAT_OWN;
CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
} else {
/*
* We need to distinguish between the case where
* the own bit is clear because the chip cleared it
* and where the own bit is clear because we haven't
* set it yet. The magic value WB_UNSET is just some
* ramdomly chosen number which doesn't have the own
* bit set. When we actually transmit the frame, the
* status word will have _only_ the own bit set, so
* the txeoc handler will be able to tell if it needs
* to initiate another transmission to flush out pending
* frames.
*/
WB_TXOWN(start_tx) = WB_UNSENT;
}
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void wb_init(xsc)
void *xsc;
{
struct wb_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
int s, i;
u_int16_t phy_bmcr = 0;
if (sc->wb_autoneg)
return;
s = splimp();
if (sc->wb_pinfo != NULL)
phy_bmcr = wb_phy_readreg(sc, PHY_BMCR);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
wb_stop(sc);
wb_reset(sc);
sc->wb_txthresh = WB_TXTHRESH_INIT;
/*
* Set cache alignment and burst length.
*/
CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_CONFIG);
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
/* This doesn't tend to work too well at 100Mbps. */
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_EARLY_ON);
wb_setcfg(sc, phy_bmcr);
/* Init our MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++) {
CSR_WRITE_1(sc, WB_NODE0 + i, sc->arpcom.ac_enaddr[i]);
}
/* Init circular RX list. */
if (wb_list_rx_init(sc) == ENOBUFS) {
printf("wb%d: initialization failed: no "
"memory for rx buffers\n", sc->wb_unit);
wb_stop(sc);
(void)splx(s);
return;
}
/* Init TX descriptors. */
wb_list_tx_init(sc);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
} else {
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
}
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
} else {
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
}
/*
* Program the multicast filter, if necessary.
*/
wb_setmulti(sc);
/*
* Load the address of the RX list.
*/
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
CSR_WRITE_4(sc, WB_ISR, 0xFFFFFFFF);
/* Enable receiver and transmitter. */
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
CSR_WRITE_4(sc, WB_TXADDR, vtophys(&sc->wb_ldata->wb_tx_list[0]));
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
/* Restore state of BMCR */
if (sc->wb_pinfo != NULL)
wb_phy_writereg(sc, PHY_BMCR, phy_bmcr);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
return;
}
/*
* Set media options.
*/
static int wb_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct wb_softc *sc;
struct ifmedia *ifm;
sc = ifp->if_softc;
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return(EINVAL);
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
wb_autoneg_mii(sc, WB_FLAG_SCHEDDELAY, 1);
else
wb_setmode_mii(sc, ifm->ifm_media);
return(0);
}
/*
* Report current media status.
*/
static void wb_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct wb_softc *sc;
u_int16_t advert = 0, ability = 0;
sc = ifp->if_softc;
ifmr->ifm_active = IFM_ETHER;
if (!(wb_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
if (wb_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
else
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
if (wb_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
return;
}
ability = wb_phy_readreg(sc, PHY_LPAR);
advert = wb_phy_readreg(sc, PHY_ANAR);
if (advert & PHY_ANAR_100BT4 &&
ability & PHY_ANAR_100BT4) {
ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
} else if (advert & PHY_ANAR_10BTHALF &&
ability & PHY_ANAR_10BTHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
}
return;
}
static int wb_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct wb_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
wb_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
wb_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
wb_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
static void wb_watchdog(ifp)
struct ifnet *ifp;
{
struct wb_softc *sc;
sc = ifp->if_softc;
if (sc->wb_autoneg) {
wb_autoneg_mii(sc, WB_FLAG_DELAYTIMEO, 1);
return;
}
ifp->if_oerrors++;
printf("wb%d: watchdog timeout\n", sc->wb_unit);
if (!(wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
printf("wb%d: no carrier - transceiver cable problem?\n",
sc->wb_unit);
wb_stop(sc);
wb_reset(sc);
wb_init(sc);
if (ifp->if_snd.ifq_head != NULL)
wb_start(ifp);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void wb_stop(sc)
struct wb_softc *sc;
{
register int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_RX_ON|WB_NETCFG_TX_ON));
CSR_WRITE_4(sc, WB_IMR, 0x00000000);
CSR_WRITE_4(sc, WB_TXADDR, 0x00000000);
CSR_WRITE_4(sc, WB_RXADDR, 0x00000000);
/*
* Free data in the RX lists.
*/
for (i = 0; i < WB_RX_LIST_CNT; i++) {
if (sc->wb_cdata.wb_rx_chain[i].wb_mbuf != NULL) {
m_freem(sc->wb_cdata.wb_rx_chain[i].wb_mbuf);
sc->wb_cdata.wb_rx_chain[i].wb_mbuf = NULL;
}
}
bzero((char *)&sc->wb_ldata->wb_rx_list,
sizeof(sc->wb_ldata->wb_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < WB_TX_LIST_CNT; i++) {
if (sc->wb_cdata.wb_tx_chain[i].wb_mbuf != NULL) {
m_freem(sc->wb_cdata.wb_tx_chain[i].wb_mbuf);
sc->wb_cdata.wb_tx_chain[i].wb_mbuf = NULL;
}
}
bzero((char *)&sc->wb_ldata->wb_tx_list,
sizeof(sc->wb_ldata->wb_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void wb_shutdown(howto, arg)
int howto;
void *arg;
{
struct wb_softc *sc = (struct wb_softc *)arg;
wb_stop(sc);
return;
}
static struct pci_device wb_device = {
"wb",
wb_probe,
wb_attach,
&wb_count,
NULL
};
DATA_SET(pcidevice_set, wb_device);