imp fcac8a2db3 Remove All Rights Reserved
Remove the all rights reserved clause from my copyright, and make
other minor tweaks needed where that might have created ambiguity.
2019-02-05 21:37:34 +00:00

1577 lines
43 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2006 Bernd Walter. All rights reserved.
* Copyright (c) 2006 M. Warner Losh.
* Copyright (c) 2017 Marius Strobl <marius@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Portions of this software may have been developed with reference to
* the SD Simplified Specification. The following disclaimer may apply:
*
* The following conditions apply to the release of the simplified
* specification ("Simplified Specification") by the SD Card Association and
* the SD Group. The Simplified Specification is a subset of the complete SD
* Specification which is owned by the SD Card Association and the SD
* Group. This Simplified Specification is provided on a non-confidential
* basis subject to the disclaimers below. Any implementation of the
* Simplified Specification may require a license from the SD Card
* Association, SD Group, SD-3C LLC or other third parties.
*
* Disclaimers:
*
* The information contained in the Simplified Specification is presented only
* as a standard specification for SD Cards and SD Host/Ancillary products and
* is provided "AS-IS" without any representations or warranties of any
* kind. No responsibility is assumed by the SD Group, SD-3C LLC or the SD
* Card Association for any damages, any infringements of patents or other
* right of the SD Group, SD-3C LLC, the SD Card Association or any third
* parties, which may result from its use. No license is granted by
* implication, estoppel or otherwise under any patent or other rights of the
* SD Group, SD-3C LLC, the SD Card Association or any third party. Nothing
* herein shall be construed as an obligation by the SD Group, the SD-3C LLC
* or the SD Card Association to disclose or distribute any technical
* information, know-how or other confidential information to any third party.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/endian.h>
#include <sys/fcntl.h>
#include <sys/ioccom.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/slicer.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <geom/geom.h>
#include <geom/geom_disk.h>
#include <dev/mmc/bridge.h>
#include <dev/mmc/mmc_ioctl.h>
#include <dev/mmc/mmc_subr.h>
#include <dev/mmc/mmcbrvar.h>
#include <dev/mmc/mmcreg.h>
#include <dev/mmc/mmcvar.h>
#include "mmcbus_if.h"
#if __FreeBSD_version < 800002
#define kproc_create kthread_create
#define kproc_exit kthread_exit
#endif
#define MMCSD_CMD_RETRIES 5
#define MMCSD_FMT_BOOT "mmcsd%dboot"
#define MMCSD_FMT_GP "mmcsd%dgp"
#define MMCSD_FMT_RPMB "mmcsd%drpmb"
#define MMCSD_LABEL_ENH "enh"
#define MMCSD_PART_NAMELEN (16 + 1)
struct mmcsd_softc;
struct mmcsd_part {
struct mtx disk_mtx;
struct mtx ioctl_mtx;
struct mmcsd_softc *sc;
struct disk *disk;
struct proc *p;
struct bio_queue_head bio_queue;
daddr_t eblock, eend; /* Range remaining after the last erase. */
u_int cnt;
u_int type;
int running;
int suspend;
int ioctl;
bool ro;
char name[MMCSD_PART_NAMELEN];
};
struct mmcsd_softc {
device_t dev;
device_t mmcbus;
struct mmcsd_part *part[MMC_PART_MAX];
enum mmc_card_mode mode;
u_int max_data; /* Maximum data size [blocks] */
u_int erase_sector; /* Device native erase sector size [blocks] */
uint8_t high_cap; /* High Capacity device (block addressed) */
uint8_t part_curr; /* Partition currently switched to */
uint8_t ext_csd[MMC_EXTCSD_SIZE];
uint16_t rca;
uint32_t flags;
#define MMCSD_INAND_CMD38 0x0001
#define MMCSD_USE_TRIM 0x0002
#define MMCSD_FLUSH_CACHE 0x0004
#define MMCSD_DIRTY 0x0008
uint32_t cmd6_time; /* Generic switch timeout [us] */
uint32_t part_time; /* Partition switch timeout [us] */
off_t enh_base; /* Enhanced user data area slice base ... */
off_t enh_size; /* ... and size [bytes] */
int log_count;
struct timeval log_time;
struct cdev *rpmb_dev;
};
static const char *errmsg[] =
{
"None",
"Timeout",
"Bad CRC",
"Fifo",
"Failed",
"Invalid",
"NO MEMORY"
};
static SYSCTL_NODE(_hw, OID_AUTO, mmcsd, CTLFLAG_RD, NULL, "mmcsd driver");
static int mmcsd_cache = 1;
SYSCTL_INT(_hw_mmcsd, OID_AUTO, cache, CTLFLAG_RDTUN, &mmcsd_cache, 0,
"Device R/W cache enabled if present");
#define LOG_PPS 5 /* Log no more than 5 errors per second. */
/* bus entry points */
static int mmcsd_attach(device_t dev);
static int mmcsd_detach(device_t dev);
static int mmcsd_probe(device_t dev);
static int mmcsd_shutdown(device_t dev);
/* disk routines */
static int mmcsd_close(struct disk *dp);
static int mmcsd_dump(void *arg, void *virtual, vm_offset_t physical,
off_t offset, size_t length);
static int mmcsd_getattr(struct bio *);
static int mmcsd_ioctl_disk(struct disk *disk, u_long cmd, void *data,
int fflag, struct thread *td);
static void mmcsd_strategy(struct bio *bp);
static void mmcsd_task(void *arg);
/* RMPB cdev interface */
static int mmcsd_ioctl_rpmb(struct cdev *dev, u_long cmd, caddr_t data,
int fflag, struct thread *td);
static void mmcsd_add_part(struct mmcsd_softc *sc, u_int type,
const char *name, u_int cnt, off_t media_size, bool ro);
static int mmcsd_bus_bit_width(device_t dev);
static daddr_t mmcsd_delete(struct mmcsd_part *part, struct bio *bp);
static const char *mmcsd_errmsg(int e);
static int mmcsd_flush_cache(struct mmcsd_softc *sc);
static int mmcsd_ioctl(struct mmcsd_part *part, u_long cmd, void *data,
int fflag, struct thread *td);
static int mmcsd_ioctl_cmd(struct mmcsd_part *part, struct mmc_ioc_cmd *mic,
int fflag);
static uintmax_t mmcsd_pretty_size(off_t size, char *unit);
static daddr_t mmcsd_rw(struct mmcsd_part *part, struct bio *bp);
static int mmcsd_set_blockcount(struct mmcsd_softc *sc, u_int count, bool rel);
static int mmcsd_slicer(device_t dev, const char *provider,
struct flash_slice *slices, int *nslices);
static int mmcsd_switch_part(device_t bus, device_t dev, uint16_t rca,
u_int part);
#define MMCSD_DISK_LOCK(_part) mtx_lock(&(_part)->disk_mtx)
#define MMCSD_DISK_UNLOCK(_part) mtx_unlock(&(_part)->disk_mtx)
#define MMCSD_DISK_LOCK_INIT(_part) \
mtx_init(&(_part)->disk_mtx, (_part)->name, "mmcsd disk", MTX_DEF)
#define MMCSD_DISK_LOCK_DESTROY(_part) mtx_destroy(&(_part)->disk_mtx);
#define MMCSD_DISK_ASSERT_LOCKED(_part) \
mtx_assert(&(_part)->disk_mtx, MA_OWNED);
#define MMCSD_DISK_ASSERT_UNLOCKED(_part) \
mtx_assert(&(_part)->disk_mtx, MA_NOTOWNED);
#define MMCSD_IOCTL_LOCK(_part) mtx_lock(&(_part)->ioctl_mtx)
#define MMCSD_IOCTL_UNLOCK(_part) mtx_unlock(&(_part)->ioctl_mtx)
#define MMCSD_IOCTL_LOCK_INIT(_part) \
mtx_init(&(_part)->ioctl_mtx, (_part)->name, "mmcsd IOCTL", MTX_DEF)
#define MMCSD_IOCTL_LOCK_DESTROY(_part) mtx_destroy(&(_part)->ioctl_mtx);
#define MMCSD_IOCTL_ASSERT_LOCKED(_part) \
mtx_assert(&(_part)->ioctl_mtx, MA_OWNED);
#define MMCSD_IOCLT_ASSERT_UNLOCKED(_part) \
mtx_assert(&(_part)->ioctl_mtx, MA_NOTOWNED);
static int
mmcsd_probe(device_t dev)
{
device_quiet(dev);
device_set_desc(dev, "MMC/SD Memory Card");
return (0);
}
static int
mmcsd_attach(device_t dev)
{
device_t mmcbus;
struct mmcsd_softc *sc;
const uint8_t *ext_csd;
off_t erase_size, sector_size, size, wp_size;
uintmax_t bytes;
int err, i;
uint32_t quirks;
uint8_t rev;
bool comp, ro;
char unit[2];
sc = device_get_softc(dev);
sc->dev = dev;
sc->mmcbus = mmcbus = device_get_parent(dev);
sc->mode = mmc_get_card_type(dev);
/*
* Note that in principle with an SDHCI-like re-tuning implementation,
* the maximum data size can change at runtime due to a device removal/
* insertion that results in switches to/from a transfer mode involving
* re-tuning, iff there are multiple devices on a given bus. Until now
* mmc(4) lacks support for rescanning already attached buses, however,
* and sdhci(4) to date has no support for shared buses in the first
* place either.
*/
sc->max_data = mmc_get_max_data(dev);
sc->high_cap = mmc_get_high_cap(dev);
sc->rca = mmc_get_rca(dev);
sc->cmd6_time = mmc_get_cmd6_timeout(dev);
quirks = mmc_get_quirks(dev);
/* Only MMC >= 4.x devices support EXT_CSD. */
if (mmc_get_spec_vers(dev) >= 4) {
MMCBUS_ACQUIRE_BUS(mmcbus, dev);
err = mmc_send_ext_csd(mmcbus, dev, sc->ext_csd);
MMCBUS_RELEASE_BUS(mmcbus, dev);
if (err != MMC_ERR_NONE) {
device_printf(dev, "Error reading EXT_CSD %s\n",
mmcsd_errmsg(err));
return (ENXIO);
}
}
ext_csd = sc->ext_csd;
if ((quirks & MMC_QUIRK_INAND_CMD38) != 0) {
if (mmc_get_spec_vers(dev) < 4) {
device_printf(dev,
"MMC_QUIRK_INAND_CMD38 set but no EXT_CSD\n");
return (EINVAL);
}
sc->flags |= MMCSD_INAND_CMD38;
}
/*
* EXT_CSD_SEC_FEATURE_SUPPORT_GB_CL_EN denotes support for both
* insecure and secure TRIM.
*/
if ((ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT] &
EXT_CSD_SEC_FEATURE_SUPPORT_GB_CL_EN) != 0 &&
(quirks & MMC_QUIRK_BROKEN_TRIM) == 0) {
if (bootverbose)
device_printf(dev, "taking advantage of TRIM\n");
sc->flags |= MMCSD_USE_TRIM;
sc->erase_sector = 1;
} else
sc->erase_sector = mmc_get_erase_sector(dev);
/*
* Enhanced user data area and general purpose partitions are only
* supported in revision 1.4 (EXT_CSD_REV == 4) and later, the RPMB
* partition in revision 1.5 (MMC v4.41, EXT_CSD_REV == 5) and later.
*/
rev = ext_csd[EXT_CSD_REV];
/*
* With revision 1.5 (MMC v4.5, EXT_CSD_REV == 6) and later, take
* advantage of the device R/W cache if present and useage is not
* disabled.
*/
if (rev >= 6 && mmcsd_cache != 0) {
size = le32dec(&ext_csd[EXT_CSD_CACHE_SIZE]);
if (bootverbose)
device_printf(dev, "cache size %juKB\n", size);
if (size > 0) {
MMCBUS_ACQUIRE_BUS(mmcbus, dev);
err = mmc_switch(mmcbus, dev, sc->rca,
EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CACHE_CTRL,
EXT_CSD_CACHE_CTRL_CACHE_EN, sc->cmd6_time, true);
MMCBUS_RELEASE_BUS(mmcbus, dev);
if (err != MMC_ERR_NONE)
device_printf(dev, "failed to enable cache\n");
else
sc->flags |= MMCSD_FLUSH_CACHE;
}
}
/*
* Ignore user-creatable enhanced user data area and general purpose
* partitions partitions as long as partitioning hasn't been finished.
*/
comp = (ext_csd[EXT_CSD_PART_SET] & EXT_CSD_PART_SET_COMPLETED) != 0;
/*
* Add enhanced user data area slice, unless it spans the entirety of
* the user data area. The enhanced area is of a multiple of high
* capacity write protect groups ((ERASE_GRP_SIZE + HC_WP_GRP_SIZE) *
* 512 KB) and its offset given in either sectors or bytes, depending
* on whether it's a high capacity device or not.
* NB: The slicer and its slices need to be registered before adding
* the disk for the corresponding user data area as re-tasting is
* racy.
*/
sector_size = mmc_get_sector_size(dev);
size = ext_csd[EXT_CSD_ENH_SIZE_MULT] +
(ext_csd[EXT_CSD_ENH_SIZE_MULT + 1] << 8) +
(ext_csd[EXT_CSD_ENH_SIZE_MULT + 2] << 16);
if (rev >= 4 && comp == TRUE && size > 0 &&
(ext_csd[EXT_CSD_PART_SUPPORT] &
EXT_CSD_PART_SUPPORT_ENH_ATTR_EN) != 0 &&
(ext_csd[EXT_CSD_PART_ATTR] & (EXT_CSD_PART_ATTR_ENH_USR)) != 0) {
erase_size = ext_csd[EXT_CSD_ERASE_GRP_SIZE] * 1024 *
MMC_SECTOR_SIZE;
wp_size = ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
size *= erase_size * wp_size;
if (size != mmc_get_media_size(dev) * sector_size) {
sc->enh_size = size;
sc->enh_base =
le32dec(&ext_csd[EXT_CSD_ENH_START_ADDR]) *
(sc->high_cap == 0 ? MMC_SECTOR_SIZE : 1);
} else if (bootverbose)
device_printf(dev,
"enhanced user data area spans entire device\n");
}
/*
* Add default partition. This may be the only one or the user
* data area in case partitions are supported.
*/
ro = mmc_get_read_only(dev);
mmcsd_add_part(sc, EXT_CSD_PART_CONFIG_ACC_DEFAULT, "mmcsd",
device_get_unit(dev), mmc_get_media_size(dev) * sector_size, ro);
if (mmc_get_spec_vers(dev) < 3)
return (0);
/* Belatedly announce enhanced user data slice. */
if (sc->enh_size != 0) {
bytes = mmcsd_pretty_size(size, unit);
printf(FLASH_SLICES_FMT ": %ju%sB enhanced user data area "
"slice offset 0x%jx at %s\n", device_get_nameunit(dev),
MMCSD_LABEL_ENH, bytes, unit, (uintmax_t)sc->enh_base,
device_get_nameunit(dev));
}
/*
* Determine partition switch timeout (provided in units of 10 ms)
* and ensure it's at least 300 ms as some eMMC chips lie.
*/
sc->part_time = max(ext_csd[EXT_CSD_PART_SWITCH_TO] * 10 * 1000,
300 * 1000);
/* Add boot partitions, which are of a fixed multiple of 128 KB. */
size = ext_csd[EXT_CSD_BOOT_SIZE_MULT] * MMC_BOOT_RPMB_BLOCK_SIZE;
if (size > 0 && (mmcbr_get_caps(mmcbus) & MMC_CAP_BOOT_NOACC) == 0) {
mmcsd_add_part(sc, EXT_CSD_PART_CONFIG_ACC_BOOT0,
MMCSD_FMT_BOOT, 0, size,
ro | ((ext_csd[EXT_CSD_BOOT_WP_STATUS] &
EXT_CSD_BOOT_WP_STATUS_BOOT0_MASK) != 0));
mmcsd_add_part(sc, EXT_CSD_PART_CONFIG_ACC_BOOT1,
MMCSD_FMT_BOOT, 1, size,
ro | ((ext_csd[EXT_CSD_BOOT_WP_STATUS] &
EXT_CSD_BOOT_WP_STATUS_BOOT1_MASK) != 0));
}
/* Add RPMB partition, which also is of a fixed multiple of 128 KB. */
size = ext_csd[EXT_CSD_RPMB_MULT] * MMC_BOOT_RPMB_BLOCK_SIZE;
if (rev >= 5 && size > 0)
mmcsd_add_part(sc, EXT_CSD_PART_CONFIG_ACC_RPMB,
MMCSD_FMT_RPMB, 0, size, ro);
if (rev <= 3 || comp == FALSE)
return (0);
/*
* Add general purpose partitions, which are of a multiple of high
* capacity write protect groups, too.
*/
if ((ext_csd[EXT_CSD_PART_SUPPORT] & EXT_CSD_PART_SUPPORT_EN) != 0) {
erase_size = ext_csd[EXT_CSD_ERASE_GRP_SIZE] * 1024 *
MMC_SECTOR_SIZE;
wp_size = ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
for (i = 0; i < MMC_PART_GP_MAX; i++) {
size = ext_csd[EXT_CSD_GP_SIZE_MULT + i * 3] +
(ext_csd[EXT_CSD_GP_SIZE_MULT + i * 3 + 1] << 8) +
(ext_csd[EXT_CSD_GP_SIZE_MULT + i * 3 + 2] << 16);
if (size == 0)
continue;
mmcsd_add_part(sc, EXT_CSD_PART_CONFIG_ACC_GP0 + i,
MMCSD_FMT_GP, i, size * erase_size * wp_size, ro);
}
}
return (0);
}
static uintmax_t
mmcsd_pretty_size(off_t size, char *unit)
{
uintmax_t bytes;
int i;
/*
* Display in most natural units. There's no card < 1MB. However,
* RPMB partitions occasionally are smaller than that, though. The
* SD standard goes to 2 GiB due to its reliance on FAT, but the data
* format supports up to 4 GiB and some card makers push it up to this
* limit. The SDHC standard only goes to 32 GiB due to FAT32, but the
* data format supports up to 2 TiB however. 2048 GB isn't too ugly,
* so we note it in passing here and don't add the code to print TB).
* Since these cards are sold in terms of MB and GB not MiB and GiB,
* report them like that. We also round to the nearest unit, since
* many cards are a few percent short, even of the power of 10 size.
*/
bytes = size;
unit[0] = unit[1] = '\0';
for (i = 0; i <= 2 && bytes >= 1000; i++) {
bytes = (bytes + 1000 / 2 - 1) / 1000;
switch (i) {
case 0:
unit[0] = 'k';
break;
case 1:
unit[0] = 'M';
break;
case 2:
unit[0] = 'G';
break;
default:
break;
}
}
return (bytes);
}
static struct cdevsw mmcsd_rpmb_cdevsw = {
.d_version = D_VERSION,
.d_name = "mmcsdrpmb",
.d_ioctl = mmcsd_ioctl_rpmb
};
static void
mmcsd_add_part(struct mmcsd_softc *sc, u_int type, const char *name, u_int cnt,
off_t media_size, bool ro)
{
struct make_dev_args args;
device_t dev, mmcbus;
const char *ext;
const uint8_t *ext_csd;
struct mmcsd_part *part;
struct disk *d;
uintmax_t bytes;
u_int gp;
uint32_t speed;
uint8_t extattr;
bool enh;
char unit[2];
dev = sc->dev;
mmcbus = sc->mmcbus;
part = sc->part[type] = malloc(sizeof(*part), M_DEVBUF,
M_WAITOK | M_ZERO);
part->sc = sc;
part->cnt = cnt;
part->type = type;
part->ro = ro;
snprintf(part->name, sizeof(part->name), name, device_get_unit(dev));
MMCSD_IOCTL_LOCK_INIT(part);
/*
* For the RPMB partition, allow IOCTL access only.
* NB: If ever attaching RPMB partitions to disk(9), the re-tuning
* implementation and especially its pausing need to be revisited,
* because then re-tuning requests may be issued by the IOCTL half
* of this driver while re-tuning is already paused by the disk(9)
* one and vice versa.
*/
if (type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
make_dev_args_init(&args);
args.mda_flags = MAKEDEV_CHECKNAME | MAKEDEV_WAITOK;
args.mda_devsw = &mmcsd_rpmb_cdevsw;
args.mda_uid = UID_ROOT;
args.mda_gid = GID_OPERATOR;
args.mda_mode = 0640;
args.mda_si_drv1 = part;
if (make_dev_s(&args, &sc->rpmb_dev, "%s", part->name) != 0) {
device_printf(dev, "Failed to make RPMB device\n");
free(part, M_DEVBUF);
return;
}
} else {
MMCSD_DISK_LOCK_INIT(part);
d = part->disk = disk_alloc();
d->d_close = mmcsd_close;
d->d_strategy = mmcsd_strategy;
d->d_ioctl = mmcsd_ioctl_disk;
d->d_dump = mmcsd_dump;
d->d_getattr = mmcsd_getattr;
d->d_name = part->name;
d->d_drv1 = part;
d->d_sectorsize = mmc_get_sector_size(dev);
d->d_maxsize = sc->max_data * d->d_sectorsize;
d->d_mediasize = media_size;
d->d_stripesize = sc->erase_sector * d->d_sectorsize;
d->d_unit = cnt;
d->d_flags = DISKFLAG_CANDELETE;
if ((sc->flags & MMCSD_FLUSH_CACHE) != 0)
d->d_flags |= DISKFLAG_CANFLUSHCACHE;
d->d_delmaxsize = mmc_get_erase_sector(dev) * d->d_sectorsize;
strlcpy(d->d_ident, mmc_get_card_sn_string(dev),
sizeof(d->d_ident));
strlcpy(d->d_descr, mmc_get_card_id_string(dev),
sizeof(d->d_descr));
d->d_rotation_rate = DISK_RR_NON_ROTATING;
disk_create(d, DISK_VERSION);
bioq_init(&part->bio_queue);
part->running = 1;
kproc_create(&mmcsd_task, part, &part->p, 0, 0,
"%s%d: mmc/sd card", part->name, cnt);
}
bytes = mmcsd_pretty_size(media_size, unit);
if (type == EXT_CSD_PART_CONFIG_ACC_DEFAULT) {
speed = mmcbr_get_clock(mmcbus);
printf("%s%d: %ju%sB <%s>%s at %s %d.%01dMHz/%dbit/%d-block\n",
part->name, cnt, bytes, unit, mmc_get_card_id_string(dev),
ro ? " (read-only)" : "", device_get_nameunit(mmcbus),
speed / 1000000, (speed / 100000) % 10,
mmcsd_bus_bit_width(dev), sc->max_data);
} else if (type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
printf("%s: %ju%sB partion %d%s at %s\n", part->name, bytes,
unit, type, ro ? " (read-only)" : "",
device_get_nameunit(dev));
} else {
enh = false;
ext = NULL;
extattr = 0;
if (type >= EXT_CSD_PART_CONFIG_ACC_GP0 &&
type <= EXT_CSD_PART_CONFIG_ACC_GP3) {
ext_csd = sc->ext_csd;
gp = type - EXT_CSD_PART_CONFIG_ACC_GP0;
if ((ext_csd[EXT_CSD_PART_SUPPORT] &
EXT_CSD_PART_SUPPORT_ENH_ATTR_EN) != 0 &&
(ext_csd[EXT_CSD_PART_ATTR] &
(EXT_CSD_PART_ATTR_ENH_GP0 << gp)) != 0)
enh = true;
else if ((ext_csd[EXT_CSD_PART_SUPPORT] &
EXT_CSD_PART_SUPPORT_EXT_ATTR_EN) != 0) {
extattr = (ext_csd[EXT_CSD_EXT_PART_ATTR +
(gp / 2)] >> (4 * (gp % 2))) & 0xF;
switch (extattr) {
case EXT_CSD_EXT_PART_ATTR_DEFAULT:
break;
case EXT_CSD_EXT_PART_ATTR_SYSTEMCODE:
ext = "system code";
break;
case EXT_CSD_EXT_PART_ATTR_NPERSISTENT:
ext = "non-persistent";
break;
default:
ext = "reserved";
break;
}
}
}
if (ext == NULL)
printf("%s%d: %ju%sB partion %d%s%s at %s\n",
part->name, cnt, bytes, unit, type, enh ?
" enhanced" : "", ro ? " (read-only)" : "",
device_get_nameunit(dev));
else
printf("%s%d: %ju%sB partion %d extended 0x%x "
"(%s)%s at %s\n", part->name, cnt, bytes, unit,
type, extattr, ext, ro ? " (read-only)" : "",
device_get_nameunit(dev));
}
}
static int
mmcsd_slicer(device_t dev, const char *provider,
struct flash_slice *slices, int *nslices)
{
char name[MMCSD_PART_NAMELEN];
struct mmcsd_softc *sc;
struct mmcsd_part *part;
*nslices = 0;
if (slices == NULL)
return (ENOMEM);
sc = device_get_softc(dev);
if (sc->enh_size == 0)
return (ENXIO);
part = sc->part[EXT_CSD_PART_CONFIG_ACC_DEFAULT];
snprintf(name, sizeof(name), "%s%d", part->disk->d_name,
part->disk->d_unit);
if (strcmp(name, provider) != 0)
return (ENXIO);
*nslices = 1;
slices[0].base = sc->enh_base;
slices[0].size = sc->enh_size;
slices[0].label = MMCSD_LABEL_ENH;
return (0);
}
static int
mmcsd_detach(device_t dev)
{
struct mmcsd_softc *sc = device_get_softc(dev);
struct mmcsd_part *part;
int i;
for (i = 0; i < MMC_PART_MAX; i++) {
part = sc->part[i];
if (part != NULL) {
if (part->disk != NULL) {
MMCSD_DISK_LOCK(part);
part->suspend = 0;
if (part->running > 0) {
/* kill thread */
part->running = 0;
wakeup(part);
/* wait for thread to finish. */
while (part->running != -1)
msleep(part, &part->disk_mtx, 0,
"mmcsd disk detach", 0);
}
MMCSD_DISK_UNLOCK(part);
}
MMCSD_IOCTL_LOCK(part);
while (part->ioctl > 0)
msleep(part, &part->ioctl_mtx, 0,
"mmcsd IOCTL detach", 0);
part->ioctl = -1;
MMCSD_IOCTL_UNLOCK(part);
}
}
if (sc->rpmb_dev != NULL)
destroy_dev(sc->rpmb_dev);
for (i = 0; i < MMC_PART_MAX; i++) {
part = sc->part[i];
if (part != NULL) {
if (part->disk != NULL) {
/* Flush the request queue. */
bioq_flush(&part->bio_queue, NULL, ENXIO);
/* kill disk */
disk_destroy(part->disk);
MMCSD_DISK_LOCK_DESTROY(part);
}
MMCSD_IOCTL_LOCK_DESTROY(part);
free(part, M_DEVBUF);
}
}
if (mmcsd_flush_cache(sc) != MMC_ERR_NONE)
device_printf(dev, "failed to flush cache\n");
return (0);
}
static int
mmcsd_shutdown(device_t dev)
{
struct mmcsd_softc *sc = device_get_softc(dev);
if (mmcsd_flush_cache(sc) != MMC_ERR_NONE)
device_printf(dev, "failed to flush cache\n");
return (0);
}
static int
mmcsd_suspend(device_t dev)
{
struct mmcsd_softc *sc = device_get_softc(dev);
struct mmcsd_part *part;
int i;
for (i = 0; i < MMC_PART_MAX; i++) {
part = sc->part[i];
if (part != NULL) {
if (part->disk != NULL) {
MMCSD_DISK_LOCK(part);
part->suspend = 1;
if (part->running > 0) {
/* kill thread */
part->running = 0;
wakeup(part);
/* wait for thread to finish. */
while (part->running != -1)
msleep(part, &part->disk_mtx, 0,
"mmcsd disk suspension", 0);
}
MMCSD_DISK_UNLOCK(part);
}
MMCSD_IOCTL_LOCK(part);
while (part->ioctl > 0)
msleep(part, &part->ioctl_mtx, 0,
"mmcsd IOCTL suspension", 0);
part->ioctl = -1;
MMCSD_IOCTL_UNLOCK(part);
}
}
if (mmcsd_flush_cache(sc) != MMC_ERR_NONE)
device_printf(dev, "failed to flush cache\n");
return (0);
}
static int
mmcsd_resume(device_t dev)
{
struct mmcsd_softc *sc = device_get_softc(dev);
struct mmcsd_part *part;
int i;
for (i = 0; i < MMC_PART_MAX; i++) {
part = sc->part[i];
if (part != NULL) {
if (part->disk != NULL) {
MMCSD_DISK_LOCK(part);
part->suspend = 0;
if (part->running <= 0) {
part->running = 1;
MMCSD_DISK_UNLOCK(part);
kproc_create(&mmcsd_task, part,
&part->p, 0, 0, "%s%d: mmc/sd card",
part->name, part->cnt);
} else
MMCSD_DISK_UNLOCK(part);
}
MMCSD_IOCTL_LOCK(part);
part->ioctl = 0;
MMCSD_IOCTL_UNLOCK(part);
}
}
return (0);
}
static int
mmcsd_close(struct disk *dp)
{
struct mmcsd_softc *sc;
if ((dp->d_flags & DISKFLAG_OPEN) != 0) {
sc = ((struct mmcsd_part *)dp->d_drv1)->sc;
if (mmcsd_flush_cache(sc) != MMC_ERR_NONE)
device_printf(sc->dev, "failed to flush cache\n");
}
return (0);
}
static void
mmcsd_strategy(struct bio *bp)
{
struct mmcsd_part *part;
part = bp->bio_disk->d_drv1;
MMCSD_DISK_LOCK(part);
if (part->running > 0 || part->suspend > 0) {
bioq_disksort(&part->bio_queue, bp);
MMCSD_DISK_UNLOCK(part);
wakeup(part);
} else {
MMCSD_DISK_UNLOCK(part);
biofinish(bp, NULL, ENXIO);
}
}
static int
mmcsd_ioctl_rpmb(struct cdev *dev, u_long cmd, caddr_t data,
int fflag, struct thread *td)
{
return (mmcsd_ioctl(dev->si_drv1, cmd, data, fflag, td));
}
static int
mmcsd_ioctl_disk(struct disk *disk, u_long cmd, void *data, int fflag,
struct thread *td)
{
return (mmcsd_ioctl(disk->d_drv1, cmd, data, fflag, td));
}
static int
mmcsd_ioctl(struct mmcsd_part *part, u_long cmd, void *data, int fflag,
struct thread *td)
{
struct mmc_ioc_cmd *mic;
struct mmc_ioc_multi_cmd *mimc;
int i, err;
u_long cnt, size;
if ((fflag & FREAD) == 0)
return (EBADF);
err = priv_check(td, PRIV_DRIVER);
if (err != 0)
return (err);
err = 0;
switch (cmd) {
case MMC_IOC_CMD:
mic = data;
err = mmcsd_ioctl_cmd(part, mic, fflag);
break;
case MMC_IOC_MULTI_CMD:
mimc = data;
if (mimc->num_of_cmds == 0)
break;
if (mimc->num_of_cmds > MMC_IOC_MAX_CMDS)
return (EINVAL);
cnt = mimc->num_of_cmds;
size = sizeof(*mic) * cnt;
mic = malloc(size, M_TEMP, M_WAITOK);
err = copyin((const void *)mimc->cmds, mic, size);
if (err == 0) {
for (i = 0; i < cnt; i++) {
err = mmcsd_ioctl_cmd(part, &mic[i], fflag);
if (err != 0)
break;
}
}
free(mic, M_TEMP);
break;
default:
return (ENOIOCTL);
}
return (err);
}
static int
mmcsd_ioctl_cmd(struct mmcsd_part *part, struct mmc_ioc_cmd *mic, int fflag)
{
struct mmc_command cmd;
struct mmc_data data;
struct mmcsd_softc *sc;
device_t dev, mmcbus;
void *dp;
u_long len;
int err, retries;
uint32_t status;
uint16_t rca;
if ((fflag & FWRITE) == 0 && mic->write_flag != 0)
return (EBADF);
if (part->ro == TRUE && mic->write_flag != 0)
return (EROFS);
/*
* We don't need to explicitly lock against the disk(9) half of this
* driver as MMCBUS_ACQUIRE_BUS() will serialize us. However, it's
* necessary to protect against races with detachment and suspension,
* especially since it's required to switch away from RPMB partitions
* again after an access (see mmcsd_switch_part()).
*/
MMCSD_IOCTL_LOCK(part);
while (part->ioctl != 0) {
if (part->ioctl < 0) {
MMCSD_IOCTL_UNLOCK(part);
return (ENXIO);
}
msleep(part, &part->ioctl_mtx, 0, "mmcsd IOCTL", 0);
}
part->ioctl = 1;
MMCSD_IOCTL_UNLOCK(part);
err = 0;
dp = NULL;
len = mic->blksz * mic->blocks;
if (len > MMC_IOC_MAX_BYTES) {
err = EOVERFLOW;
goto out;
}
if (len != 0) {
dp = malloc(len, M_TEMP, M_WAITOK);
err = copyin((void *)(uintptr_t)mic->data_ptr, dp, len);
if (err != 0)
goto out;
}
memset(&cmd, 0, sizeof(cmd));
memset(&data, 0, sizeof(data));
cmd.opcode = mic->opcode;
cmd.arg = mic->arg;
cmd.flags = mic->flags;
if (len != 0) {
data.len = len;
data.data = dp;
data.flags = mic->write_flag != 0 ? MMC_DATA_WRITE :
MMC_DATA_READ;
cmd.data = &data;
}
sc = part->sc;
rca = sc->rca;
if (mic->is_acmd == 0) {
/* Enforce/patch/restrict RCA-based commands */
switch (cmd.opcode) {
case MMC_SET_RELATIVE_ADDR:
case MMC_SELECT_CARD:
err = EPERM;
goto out;
case MMC_STOP_TRANSMISSION:
if ((cmd.arg & 0x1) == 0)
break;
/* FALLTHROUGH */
case MMC_SLEEP_AWAKE:
case MMC_SEND_CSD:
case MMC_SEND_CID:
case MMC_SEND_STATUS:
case MMC_GO_INACTIVE_STATE:
case MMC_FAST_IO:
case MMC_APP_CMD:
cmd.arg = (cmd.arg & 0x0000FFFF) | (rca << 16);
break;
default:
break;
}
/*
* No partition switching in userland; it's almost impossible
* to recover from that, especially if things go wrong.
*/
if (cmd.opcode == MMC_SWITCH_FUNC && dp != NULL &&
(((uint8_t *)dp)[EXT_CSD_PART_CONFIG] &
EXT_CSD_PART_CONFIG_ACC_MASK) != part->type) {
err = EINVAL;
goto out;
}
}
dev = sc->dev;
mmcbus = sc->mmcbus;
MMCBUS_ACQUIRE_BUS(mmcbus, dev);
err = mmcsd_switch_part(mmcbus, dev, rca, part->type);
if (err != MMC_ERR_NONE)
goto release;
if (part->type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
err = mmcsd_set_blockcount(sc, mic->blocks,
mic->write_flag & (1 << 31));
if (err != MMC_ERR_NONE)
goto switch_back;
}
if (mic->write_flag != 0)
sc->flags |= MMCSD_DIRTY;
if (mic->is_acmd != 0)
(void)mmc_wait_for_app_cmd(mmcbus, dev, rca, &cmd, 0);
else
(void)mmc_wait_for_cmd(mmcbus, dev, &cmd, 0);
if (part->type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
/*
* If the request went to the RPMB partition, try to ensure
* that the command actually has completed.
*/
retries = MMCSD_CMD_RETRIES;
do {
err = mmc_send_status(mmcbus, dev, rca, &status);
if (err != MMC_ERR_NONE)
break;
if (R1_STATUS(status) == 0 &&
R1_CURRENT_STATE(status) != R1_STATE_PRG)
break;
DELAY(1000);
} while (retries-- > 0);
}
/*
* If EXT_CSD was changed, our copy is outdated now. Specifically,
* the upper bits of EXT_CSD_PART_CONFIG used in mmcsd_switch_part(),
* so retrieve EXT_CSD again.
*/
if (cmd.opcode == MMC_SWITCH_FUNC) {
err = mmc_send_ext_csd(mmcbus, dev, sc->ext_csd);
if (err != MMC_ERR_NONE)
goto release;
}
switch_back:
if (part->type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
/*
* If the request went to the RPMB partition, always switch
* back to the default partition (see mmcsd_switch_part()).
*/
err = mmcsd_switch_part(mmcbus, dev, rca,
EXT_CSD_PART_CONFIG_ACC_DEFAULT);
if (err != MMC_ERR_NONE)
goto release;
}
MMCBUS_RELEASE_BUS(mmcbus, dev);
if (cmd.error != MMC_ERR_NONE) {
switch (cmd.error) {
case MMC_ERR_TIMEOUT:
err = ETIMEDOUT;
break;
case MMC_ERR_BADCRC:
err = EILSEQ;
break;
case MMC_ERR_INVALID:
err = EINVAL;
break;
case MMC_ERR_NO_MEMORY:
err = ENOMEM;
break;
default:
err = EIO;
break;
}
goto out;
}
memcpy(mic->response, cmd.resp, 4 * sizeof(uint32_t));
if (mic->write_flag == 0 && len != 0) {
err = copyout(dp, (void *)(uintptr_t)mic->data_ptr, len);
if (err != 0)
goto out;
}
goto out;
release:
MMCBUS_RELEASE_BUS(mmcbus, dev);
err = EIO;
out:
MMCSD_IOCTL_LOCK(part);
part->ioctl = 0;
MMCSD_IOCTL_UNLOCK(part);
wakeup(part);
if (dp != NULL)
free(dp, M_TEMP);
return (err);
}
static int
mmcsd_getattr(struct bio *bp)
{
struct mmcsd_part *part;
device_t dev;
if (strcmp(bp->bio_attribute, "MMC::device") == 0) {
if (bp->bio_length != sizeof(dev))
return (EFAULT);
part = bp->bio_disk->d_drv1;
dev = part->sc->dev;
bcopy(&dev, bp->bio_data, sizeof(dev));
bp->bio_completed = bp->bio_length;
return (0);
}
return (-1);
}
static int
mmcsd_set_blockcount(struct mmcsd_softc *sc, u_int count, bool reliable)
{
struct mmc_command cmd;
struct mmc_request req;
memset(&req, 0, sizeof(req));
memset(&cmd, 0, sizeof(cmd));
cmd.mrq = &req;
req.cmd = &cmd;
cmd.opcode = MMC_SET_BLOCK_COUNT;
cmd.arg = count & 0x0000FFFF;
if (reliable)
cmd.arg |= 1 << 31;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
MMCBUS_WAIT_FOR_REQUEST(sc->mmcbus, sc->dev, &req);
return (cmd.error);
}
static int
mmcsd_switch_part(device_t bus, device_t dev, uint16_t rca, u_int part)
{
struct mmcsd_softc *sc;
int err;
uint8_t value;
sc = device_get_softc(dev);
if (sc->mode == mode_sd)
return (MMC_ERR_NONE);
/*
* According to section "6.2.2 Command restrictions" of the eMMC
* specification v5.1, CMD19/CMD21 aren't allowed to be used with
* RPMB partitions. So we pause re-tuning along with triggering
* it up-front to decrease the likelihood of re-tuning becoming
* necessary while accessing an RPMB partition. Consequently, an
* RPMB partition should immediately be switched away from again
* after an access in order to allow for re-tuning to take place
* anew.
*/
if (part == EXT_CSD_PART_CONFIG_ACC_RPMB)
MMCBUS_RETUNE_PAUSE(sc->mmcbus, sc->dev, true);
if (sc->part_curr == part)
return (MMC_ERR_NONE);
value = (sc->ext_csd[EXT_CSD_PART_CONFIG] &
~EXT_CSD_PART_CONFIG_ACC_MASK) | part;
/* Jump! */
err = mmc_switch(bus, dev, rca, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_PART_CONFIG, value, sc->part_time, true);
if (err != MMC_ERR_NONE) {
if (part == EXT_CSD_PART_CONFIG_ACC_RPMB)
MMCBUS_RETUNE_UNPAUSE(sc->mmcbus, sc->dev);
return (err);
}
sc->ext_csd[EXT_CSD_PART_CONFIG] = value;
if (sc->part_curr == EXT_CSD_PART_CONFIG_ACC_RPMB)
MMCBUS_RETUNE_UNPAUSE(sc->mmcbus, sc->dev);
sc->part_curr = part;
return (MMC_ERR_NONE);
}
static const char *
mmcsd_errmsg(int e)
{
if (e < 0 || e > MMC_ERR_MAX)
return "Bad error code";
return (errmsg[e]);
}
static daddr_t
mmcsd_rw(struct mmcsd_part *part, struct bio *bp)
{
daddr_t block, end;
struct mmc_command cmd;
struct mmc_command stop;
struct mmc_request req;
struct mmc_data data;
struct mmcsd_softc *sc;
device_t dev, mmcbus;
u_int numblocks, sz;
char *vaddr;
sc = part->sc;
dev = sc->dev;
mmcbus = sc->mmcbus;
block = bp->bio_pblkno;
sz = part->disk->d_sectorsize;
end = bp->bio_pblkno + (bp->bio_bcount / sz);
while (block < end) {
vaddr = bp->bio_data + (block - bp->bio_pblkno) * sz;
numblocks = min(end - block, sc->max_data);
memset(&req, 0, sizeof(req));
memset(&cmd, 0, sizeof(cmd));
memset(&stop, 0, sizeof(stop));
memset(&data, 0, sizeof(data));
cmd.mrq = &req;
req.cmd = &cmd;
cmd.data = &data;
if (bp->bio_cmd == BIO_READ) {
if (numblocks > 1)
cmd.opcode = MMC_READ_MULTIPLE_BLOCK;
else
cmd.opcode = MMC_READ_SINGLE_BLOCK;
} else {
sc->flags |= MMCSD_DIRTY;
if (numblocks > 1)
cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
else
cmd.opcode = MMC_WRITE_BLOCK;
}
cmd.arg = block;
if (sc->high_cap == 0)
cmd.arg <<= 9;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
data.data = vaddr;
data.mrq = &req;
if (bp->bio_cmd == BIO_READ)
data.flags = MMC_DATA_READ;
else
data.flags = MMC_DATA_WRITE;
data.len = numblocks * sz;
if (numblocks > 1) {
data.flags |= MMC_DATA_MULTI;
stop.opcode = MMC_STOP_TRANSMISSION;
stop.arg = 0;
stop.flags = MMC_RSP_R1B | MMC_CMD_AC;
stop.mrq = &req;
req.stop = &stop;
}
MMCBUS_WAIT_FOR_REQUEST(mmcbus, dev, &req);
if (req.cmd->error != MMC_ERR_NONE) {
if (ppsratecheck(&sc->log_time, &sc->log_count,
LOG_PPS))
device_printf(dev, "Error indicated: %d %s\n",
req.cmd->error,
mmcsd_errmsg(req.cmd->error));
break;
}
block += numblocks;
}
return (block);
}
static daddr_t
mmcsd_delete(struct mmcsd_part *part, struct bio *bp)
{
daddr_t block, end, start, stop;
struct mmc_command cmd;
struct mmc_request req;
struct mmcsd_softc *sc;
device_t dev, mmcbus;
u_int erase_sector, sz;
int err;
bool use_trim;
sc = part->sc;
dev = sc->dev;
mmcbus = sc->mmcbus;
block = bp->bio_pblkno;
sz = part->disk->d_sectorsize;
end = bp->bio_pblkno + (bp->bio_bcount / sz);
use_trim = sc->flags & MMCSD_USE_TRIM;
if (use_trim == true) {
start = block;
stop = end;
} else {
/* Coalesce with the remainder of the previous request. */
if (block > part->eblock && block <= part->eend)
block = part->eblock;
if (end >= part->eblock && end < part->eend)
end = part->eend;
/* Safely round to the erase sector boundaries. */
erase_sector = sc->erase_sector;
start = block + erase_sector - 1; /* Round up. */
start -= start % erase_sector;
stop = end; /* Round down. */
stop -= end % erase_sector;
/*
* We can't erase an area smaller than an erase sector, so
* store it for later.
*/
if (start >= stop) {
part->eblock = block;
part->eend = end;
return (end);
}
}
if ((sc->flags & MMCSD_INAND_CMD38) != 0) {
err = mmc_switch(mmcbus, dev, sc->rca, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_INAND_CMD38, use_trim == true ?
EXT_CSD_INAND_CMD38_TRIM : EXT_CSD_INAND_CMD38_ERASE,
sc->cmd6_time, true);
if (err != MMC_ERR_NONE) {
device_printf(dev,
"Setting iNAND erase command failed %s\n",
mmcsd_errmsg(err));
return (block);
}
}
/*
* Pause re-tuning so it won't interfere with the order of erase
* commands. Note that these latter don't use the data lines, so
* re-tuning shouldn't actually become necessary during erase.
*/
MMCBUS_RETUNE_PAUSE(mmcbus, dev, false);
/* Set erase start position. */
memset(&req, 0, sizeof(req));
memset(&cmd, 0, sizeof(cmd));
cmd.mrq = &req;
req.cmd = &cmd;
if (sc->mode == mode_sd)
cmd.opcode = SD_ERASE_WR_BLK_START;
else
cmd.opcode = MMC_ERASE_GROUP_START;
cmd.arg = start;
if (sc->high_cap == 0)
cmd.arg <<= 9;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
MMCBUS_WAIT_FOR_REQUEST(mmcbus, dev, &req);
if (req.cmd->error != MMC_ERR_NONE) {
device_printf(dev, "Setting erase start position failed %s\n",
mmcsd_errmsg(req.cmd->error));
block = bp->bio_pblkno;
goto unpause;
}
/* Set erase stop position. */
memset(&req, 0, sizeof(req));
memset(&cmd, 0, sizeof(cmd));
req.cmd = &cmd;
if (sc->mode == mode_sd)
cmd.opcode = SD_ERASE_WR_BLK_END;
else
cmd.opcode = MMC_ERASE_GROUP_END;
cmd.arg = stop;
if (sc->high_cap == 0)
cmd.arg <<= 9;
cmd.arg--;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
MMCBUS_WAIT_FOR_REQUEST(mmcbus, dev, &req);
if (req.cmd->error != MMC_ERR_NONE) {
device_printf(dev, "Setting erase stop position failed %s\n",
mmcsd_errmsg(req.cmd->error));
block = bp->bio_pblkno;
goto unpause;
}
/* Erase range. */
memset(&req, 0, sizeof(req));
memset(&cmd, 0, sizeof(cmd));
req.cmd = &cmd;
cmd.opcode = MMC_ERASE;
cmd.arg = use_trim == true ? MMC_ERASE_TRIM : MMC_ERASE_ERASE;
cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
MMCBUS_WAIT_FOR_REQUEST(mmcbus, dev, &req);
if (req.cmd->error != MMC_ERR_NONE) {
device_printf(dev, "Issuing erase command failed %s\n",
mmcsd_errmsg(req.cmd->error));
block = bp->bio_pblkno;
goto unpause;
}
if (use_trim == false) {
/* Store one of the remaining parts for the next call. */
if (bp->bio_pblkno >= part->eblock || block == start) {
part->eblock = stop; /* Predict next forward. */
part->eend = end;
} else {
part->eblock = block; /* Predict next backward. */
part->eend = start;
}
}
block = end;
unpause:
MMCBUS_RETUNE_UNPAUSE(mmcbus, dev);
return (block);
}
static int
mmcsd_dump(void *arg, void *virtual, vm_offset_t physical, off_t offset,
size_t length)
{
struct bio bp;
daddr_t block, end;
struct disk *disk;
struct mmcsd_softc *sc;
struct mmcsd_part *part;
device_t dev, mmcbus;
int err;
disk = arg;
part = disk->d_drv1;
sc = part->sc;
/* length zero is special and really means flush buffers to media */
if (length == 0) {
err = mmcsd_flush_cache(sc);
if (err != MMC_ERR_NONE)
return (EIO);
return (0);
}
dev = sc->dev;
mmcbus = sc->mmcbus;
g_reset_bio(&bp);
bp.bio_disk = disk;
bp.bio_pblkno = offset / disk->d_sectorsize;
bp.bio_bcount = length;
bp.bio_data = virtual;
bp.bio_cmd = BIO_WRITE;
end = bp.bio_pblkno + bp.bio_bcount / disk->d_sectorsize;
MMCBUS_ACQUIRE_BUS(mmcbus, dev);
err = mmcsd_switch_part(mmcbus, dev, sc->rca, part->type);
if (err != MMC_ERR_NONE) {
if (ppsratecheck(&sc->log_time, &sc->log_count, LOG_PPS))
device_printf(dev, "Partition switch error\n");
MMCBUS_RELEASE_BUS(mmcbus, dev);
return (EIO);
}
block = mmcsd_rw(part, &bp);
MMCBUS_RELEASE_BUS(mmcbus, dev);
return ((end < block) ? EIO : 0);
}
static void
mmcsd_task(void *arg)
{
daddr_t block, end;
struct mmcsd_part *part;
struct mmcsd_softc *sc;
struct bio *bp;
device_t dev, mmcbus;
int err, sz;
part = arg;
sc = part->sc;
dev = sc->dev;
mmcbus = sc->mmcbus;
while (1) {
MMCSD_DISK_LOCK(part);
do {
if (part->running == 0)
goto out;
bp = bioq_takefirst(&part->bio_queue);
if (bp == NULL)
msleep(part, &part->disk_mtx, PRIBIO,
"mmcsd disk jobqueue", 0);
} while (bp == NULL);
MMCSD_DISK_UNLOCK(part);
if (__predict_false(bp->bio_cmd == BIO_FLUSH)) {
if (mmcsd_flush_cache(sc) != MMC_ERR_NONE) {
bp->bio_error = EIO;
bp->bio_flags |= BIO_ERROR;
}
biodone(bp);
continue;
}
if (bp->bio_cmd != BIO_READ && part->ro) {
bp->bio_error = EROFS;
bp->bio_resid = bp->bio_bcount;
bp->bio_flags |= BIO_ERROR;
biodone(bp);
continue;
}
MMCBUS_ACQUIRE_BUS(mmcbus, dev);
sz = part->disk->d_sectorsize;
block = bp->bio_pblkno;
end = bp->bio_pblkno + (bp->bio_bcount / sz);
err = mmcsd_switch_part(mmcbus, dev, sc->rca, part->type);
if (err != MMC_ERR_NONE) {
if (ppsratecheck(&sc->log_time, &sc->log_count,
LOG_PPS))
device_printf(dev, "Partition switch error\n");
goto release;
}
if (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE) {
/* Access to the remaining erase block obsoletes it. */
if (block < part->eend && end > part->eblock)
part->eblock = part->eend = 0;
block = mmcsd_rw(part, bp);
} else if (bp->bio_cmd == BIO_DELETE) {
block = mmcsd_delete(part, bp);
}
release:
MMCBUS_RELEASE_BUS(mmcbus, dev);
if (block < end) {
bp->bio_error = EIO;
bp->bio_resid = (end - block) * sz;
bp->bio_flags |= BIO_ERROR;
} else {
bp->bio_resid = 0;
}
biodone(bp);
}
out:
/* tell parent we're done */
part->running = -1;
MMCSD_DISK_UNLOCK(part);
wakeup(part);
kproc_exit(0);
}
static int
mmcsd_bus_bit_width(device_t dev)
{
if (mmc_get_bus_width(dev) == bus_width_1)
return (1);
if (mmc_get_bus_width(dev) == bus_width_4)
return (4);
return (8);
}
static int
mmcsd_flush_cache(struct mmcsd_softc *sc)
{
device_t dev, mmcbus;
int err;
if ((sc->flags & MMCSD_FLUSH_CACHE) == 0)
return (MMC_ERR_NONE);
dev = sc->dev;
mmcbus = sc->mmcbus;
MMCBUS_ACQUIRE_BUS(mmcbus, dev);
if ((sc->flags & MMCSD_DIRTY) == 0) {
MMCBUS_RELEASE_BUS(mmcbus, dev);
return (MMC_ERR_NONE);
}
err = mmc_switch(mmcbus, dev, sc->rca, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_FLUSH_CACHE, EXT_CSD_FLUSH_CACHE_FLUSH, 60 * 1000, true);
if (err == MMC_ERR_NONE)
sc->flags &= ~MMCSD_DIRTY;
MMCBUS_RELEASE_BUS(mmcbus, dev);
return (err);
}
static device_method_t mmcsd_methods[] = {
DEVMETHOD(device_probe, mmcsd_probe),
DEVMETHOD(device_attach, mmcsd_attach),
DEVMETHOD(device_detach, mmcsd_detach),
DEVMETHOD(device_shutdown, mmcsd_shutdown),
DEVMETHOD(device_suspend, mmcsd_suspend),
DEVMETHOD(device_resume, mmcsd_resume),
DEVMETHOD_END
};
static driver_t mmcsd_driver = {
"mmcsd",
mmcsd_methods,
sizeof(struct mmcsd_softc),
};
static devclass_t mmcsd_devclass;
static int
mmcsd_handler(module_t mod __unused, int what, void *arg __unused)
{
switch (what) {
case MOD_LOAD:
flash_register_slicer(mmcsd_slicer, FLASH_SLICES_TYPE_MMC,
TRUE);
return (0);
case MOD_UNLOAD:
flash_register_slicer(NULL, FLASH_SLICES_TYPE_MMC, TRUE);
return (0);
}
return (0);
}
DRIVER_MODULE(mmcsd, mmc, mmcsd_driver, mmcsd_devclass, mmcsd_handler, NULL);
MODULE_DEPEND(mmcsd, g_flashmap, 0, 0, 0);
MMC_DEPEND(mmcsd);