freebsd-skq/sys/dev/iwn/if_iwn.c
2011-05-08 11:03:16 +00:00

6737 lines
189 KiB
C

/*-
* Copyright (c) 2007-2009
* Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2008
* Benjamin Close <benjsc@FreeBSD.org>
* Copyright (c) 2008 Sam Leffler, Errno Consulting
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
* adapters.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/endian.h>
#include <sys/firmware.h>
#include <sys/limits.h>
#include <sys/module.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/clock.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_ratectl.h>
#include <dev/iwn/if_iwnreg.h>
#include <dev/iwn/if_iwnvar.h>
struct iwn_ident {
uint16_t vendor;
uint16_t device;
const char *name;
};
static const struct iwn_ident iwn_ident_table[] = {
{ 0x8086, 0x0082, "Intel(R) Centrino(R) Advanced-N 6205" },
{ 0x8086, 0x0083, "Intel(R) Centrino(R) Wireless-N 1000" },
{ 0x8086, 0x0084, "Intel(R) Centrino(R) Wireless-N 1000" },
{ 0x8086, 0x0085, "Intel(R) Centrino(R) Advanced-N 6205" },
{ 0x8086, 0x0087, "Intel(R) Centrino(R) Advanced-N + WiMAX 6250" },
{ 0x8086, 0x0089, "Intel(R) Centrino(R) Advanced-N + WiMAX 6250" },
{ 0x8086, 0x008a, "Intel(R) Centrino(R) Wireless-N 1030" },
{ 0x8086, 0x008b, "Intel(R) Centrino(R) Wireless-N 1030" },
{ 0x8086, 0x0090, "Intel(R) Centrino(R) Advanced-N 6230" },
{ 0x8086, 0x0091, "Intel(R) Centrino(R) Advanced-N 6230" },
{ 0x8086, 0x4229, "Intel(R) Wireless WiFi Link 4965" },
{ 0x8086, 0x422b, "Intel(R) Centrino(R) Ultimate-N 6300" },
{ 0x8086, 0x422c, "Intel(R) Centrino(R) Advanced-N 6200" },
{ 0x8086, 0x422d, "Intel(R) Wireless WiFi Link 4965" },
{ 0x8086, 0x4230, "Intel(R) Wireless WiFi Link 4965" },
{ 0x8086, 0x4232, "Intel(R) WiFi Link 5100" },
{ 0x8086, 0x4233, "Intel(R) Wireless WiFi Link 4965" },
{ 0x8086, 0x4235, "Intel(R) Ultimate N WiFi Link 5300" },
{ 0x8086, 0x4236, "Intel(R) Ultimate N WiFi Link 5300" },
{ 0x8086, 0x4237, "Intel(R) WiFi Link 5100" },
{ 0x8086, 0x4238, "Intel(R) Centrino(R) Ultimate-N 6300" },
{ 0x8086, 0x4239, "Intel(R) Centrino(R) Advanced-N 6200" },
{ 0x8086, 0x423a, "Intel(R) WiMAX/WiFi Link 5350" },
{ 0x8086, 0x423b, "Intel(R) WiMAX/WiFi Link 5350" },
{ 0x8086, 0x423c, "Intel(R) WiMAX/WiFi Link 5150" },
{ 0x8086, 0x423d, "Intel(R) WiMAX/WiFi Link 5150" },
{ 0, 0, NULL }
};
static int iwn_probe(device_t);
static int iwn_attach(device_t);
static int iwn4965_attach(struct iwn_softc *, uint16_t);
static int iwn5000_attach(struct iwn_softc *, uint16_t);
static void iwn_radiotap_attach(struct iwn_softc *);
static void iwn_sysctlattach(struct iwn_softc *);
static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
const char name[IFNAMSIZ], int unit, int opmode,
int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN]);
static void iwn_vap_delete(struct ieee80211vap *);
static int iwn_detach(device_t);
static int iwn_shutdown(device_t);
static int iwn_suspend(device_t);
static int iwn_resume(device_t);
static int iwn_nic_lock(struct iwn_softc *);
static int iwn_eeprom_lock(struct iwn_softc *);
static int iwn_init_otprom(struct iwn_softc *);
static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
static void iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
void **, bus_size_t, bus_size_t);
static void iwn_dma_contig_free(struct iwn_dma_info *);
static int iwn_alloc_sched(struct iwn_softc *);
static void iwn_free_sched(struct iwn_softc *);
static int iwn_alloc_kw(struct iwn_softc *);
static void iwn_free_kw(struct iwn_softc *);
static int iwn_alloc_ict(struct iwn_softc *);
static void iwn_free_ict(struct iwn_softc *);
static int iwn_alloc_fwmem(struct iwn_softc *);
static void iwn_free_fwmem(struct iwn_softc *);
static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
int);
static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
static void iwn5000_ict_reset(struct iwn_softc *);
static int iwn_read_eeprom(struct iwn_softc *,
uint8_t macaddr[IEEE80211_ADDR_LEN]);
static void iwn4965_read_eeprom(struct iwn_softc *);
static void iwn4965_print_power_group(struct iwn_softc *, int);
static void iwn5000_read_eeprom(struct iwn_softc *);
static uint32_t iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
static void iwn_read_eeprom_band(struct iwn_softc *, int);
static void iwn_read_eeprom_ht40(struct iwn_softc *, int);
static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
struct ieee80211_channel *);
static int iwn_setregdomain(struct ieee80211com *,
struct ieee80211_regdomain *, int,
struct ieee80211_channel[]);
static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
const uint8_t mac[IEEE80211_ADDR_LEN]);
static void iwn_newassoc(struct ieee80211_node *, int);
static int iwn_media_change(struct ifnet *);
static int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
static void iwn_calib_timeout(void *);
static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
#if 0 /* HT */
static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
#endif
static void iwn5000_rx_calib_results(struct iwn_softc *,
struct iwn_rx_desc *, struct iwn_rx_data *);
static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
uint8_t);
static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
static void iwn_notif_intr(struct iwn_softc *);
static void iwn_wakeup_intr(struct iwn_softc *);
static void iwn_rftoggle_intr(struct iwn_softc *);
static void iwn_fatal_intr(struct iwn_softc *);
static void iwn_intr(void *);
static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
uint16_t);
static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
uint16_t);
#ifdef notyet
static void iwn5000_reset_sched(struct iwn_softc *, int, int);
#endif
static uint8_t iwn_plcp_signal(int);
static int iwn_tx_data(struct iwn_softc *, struct mbuf *,
struct ieee80211_node *);
static int iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
struct ieee80211_node *,
const struct ieee80211_bpf_params *params);
static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static void iwn_start(struct ifnet *);
static void iwn_start_locked(struct ifnet *);
static void iwn_watchdog(void *);
static int iwn_ioctl(struct ifnet *, u_long, caddr_t);
static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
int);
static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
int);
static int iwn_set_link_quality(struct iwn_softc *,
struct ieee80211_node *);
static int iwn_add_broadcast_node(struct iwn_softc *, int);
static int iwn_updateedca(struct ieee80211com *);
static void iwn_update_mcast(struct ifnet *);
static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
static int iwn_set_critical_temp(struct iwn_softc *);
static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
static void iwn4965_power_calibration(struct iwn_softc *, int);
static int iwn4965_set_txpower(struct iwn_softc *,
struct ieee80211_channel *, int);
static int iwn5000_set_txpower(struct iwn_softc *,
struct ieee80211_channel *, int);
static int iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
static int iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
static int iwn_get_noise(const struct iwn_rx_general_stats *);
static int iwn4965_get_temperature(struct iwn_softc *);
static int iwn5000_get_temperature(struct iwn_softc *);
static int iwn_init_sensitivity(struct iwn_softc *);
static void iwn_collect_noise(struct iwn_softc *,
const struct iwn_rx_general_stats *);
static int iwn4965_init_gains(struct iwn_softc *);
static int iwn5000_init_gains(struct iwn_softc *);
static int iwn4965_set_gains(struct iwn_softc *);
static int iwn5000_set_gains(struct iwn_softc *);
static void iwn_tune_sensitivity(struct iwn_softc *,
const struct iwn_rx_stats *);
static int iwn_send_sensitivity(struct iwn_softc *);
static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
static int iwn_send_btcoex(struct iwn_softc *);
static int iwn_send_advanced_btcoex(struct iwn_softc *);
static int iwn_config(struct iwn_softc *);
static uint8_t *ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
static int iwn_scan(struct iwn_softc *);
static int iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
static int iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
#if 0 /* HT */
static int iwn_ampdu_rx_start(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static void iwn_ampdu_rx_stop(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static int iwn_ampdu_tx_start(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static void iwn_ampdu_tx_stop(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static void iwn4965_ampdu_tx_start(struct iwn_softc *,
struct ieee80211_node *, uint8_t, uint16_t);
static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
uint8_t, uint16_t);
static void iwn5000_ampdu_tx_start(struct iwn_softc *,
struct ieee80211_node *, uint8_t, uint16_t);
static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
uint8_t, uint16_t);
#endif
static int iwn5000_query_calibration(struct iwn_softc *);
static int iwn5000_send_calibration(struct iwn_softc *);
static int iwn5000_send_wimax_coex(struct iwn_softc *);
static int iwn5000_crystal_calib(struct iwn_softc *);
static int iwn5000_temp_offset_calib(struct iwn_softc *);
static int iwn4965_post_alive(struct iwn_softc *);
static int iwn5000_post_alive(struct iwn_softc *);
static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
int);
static int iwn4965_load_firmware(struct iwn_softc *);
static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
const uint8_t *, int);
static int iwn5000_load_firmware(struct iwn_softc *);
static int iwn_read_firmware_leg(struct iwn_softc *,
struct iwn_fw_info *);
static int iwn_read_firmware_tlv(struct iwn_softc *,
struct iwn_fw_info *, uint16_t);
static int iwn_read_firmware(struct iwn_softc *);
static int iwn_clock_wait(struct iwn_softc *);
static int iwn_apm_init(struct iwn_softc *);
static void iwn_apm_stop_master(struct iwn_softc *);
static void iwn_apm_stop(struct iwn_softc *);
static int iwn4965_nic_config(struct iwn_softc *);
static int iwn5000_nic_config(struct iwn_softc *);
static int iwn_hw_prepare(struct iwn_softc *);
static int iwn_hw_init(struct iwn_softc *);
static void iwn_hw_stop(struct iwn_softc *);
static void iwn_radio_on(void *, int);
static void iwn_radio_off(void *, int);
static void iwn_init_locked(struct iwn_softc *);
static void iwn_init(void *);
static void iwn_stop_locked(struct iwn_softc *);
static void iwn_stop(struct iwn_softc *);
static void iwn_scan_start(struct ieee80211com *);
static void iwn_scan_end(struct ieee80211com *);
static void iwn_set_channel(struct ieee80211com *);
static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
static void iwn_scan_mindwell(struct ieee80211_scan_state *);
static void iwn_hw_reset(void *, int);
#define IWN_DEBUG
#ifdef IWN_DEBUG
enum {
IWN_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
IWN_DEBUG_RECV = 0x00000002, /* basic recv operation */
IWN_DEBUG_STATE = 0x00000004, /* 802.11 state transitions */
IWN_DEBUG_TXPOW = 0x00000008, /* tx power processing */
IWN_DEBUG_RESET = 0x00000010, /* reset processing */
IWN_DEBUG_OPS = 0x00000020, /* iwn_ops processing */
IWN_DEBUG_BEACON = 0x00000040, /* beacon handling */
IWN_DEBUG_WATCHDOG = 0x00000080, /* watchdog timeout */
IWN_DEBUG_INTR = 0x00000100, /* ISR */
IWN_DEBUG_CALIBRATE = 0x00000200, /* periodic calibration */
IWN_DEBUG_NODE = 0x00000400, /* node management */
IWN_DEBUG_LED = 0x00000800, /* led management */
IWN_DEBUG_CMD = 0x00001000, /* cmd submission */
IWN_DEBUG_FATAL = 0x80000000, /* fatal errors */
IWN_DEBUG_ANY = 0xffffffff
};
#define DPRINTF(sc, m, fmt, ...) do { \
if (sc->sc_debug & (m)) \
printf(fmt, __VA_ARGS__); \
} while (0)
static const char *
iwn_intr_str(uint8_t cmd)
{
switch (cmd) {
/* Notifications */
case IWN_UC_READY: return "UC_READY";
case IWN_ADD_NODE_DONE: return "ADD_NODE_DONE";
case IWN_TX_DONE: return "TX_DONE";
case IWN_START_SCAN: return "START_SCAN";
case IWN_STOP_SCAN: return "STOP_SCAN";
case IWN_RX_STATISTICS: return "RX_STATS";
case IWN_BEACON_STATISTICS: return "BEACON_STATS";
case IWN_STATE_CHANGED: return "STATE_CHANGED";
case IWN_BEACON_MISSED: return "BEACON_MISSED";
case IWN_RX_PHY: return "RX_PHY";
case IWN_MPDU_RX_DONE: return "MPDU_RX_DONE";
case IWN_RX_DONE: return "RX_DONE";
/* Command Notifications */
case IWN_CMD_RXON: return "IWN_CMD_RXON";
case IWN_CMD_RXON_ASSOC: return "IWN_CMD_RXON_ASSOC";
case IWN_CMD_EDCA_PARAMS: return "IWN_CMD_EDCA_PARAMS";
case IWN_CMD_TIMING: return "IWN_CMD_TIMING";
case IWN_CMD_LINK_QUALITY: return "IWN_CMD_LINK_QUALITY";
case IWN_CMD_SET_LED: return "IWN_CMD_SET_LED";
case IWN5000_CMD_WIMAX_COEX: return "IWN5000_CMD_WIMAX_COEX";
case IWN5000_CMD_CALIB_CONFIG: return "IWN5000_CMD_CALIB_CONFIG";
case IWN5000_CMD_CALIB_RESULT: return "IWN5000_CMD_CALIB_RESULT";
case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
case IWN_CMD_SET_POWER_MODE: return "IWN_CMD_SET_POWER_MODE";
case IWN_CMD_SCAN: return "IWN_CMD_SCAN";
case IWN_CMD_SCAN_RESULTS: return "IWN_CMD_SCAN_RESULTS";
case IWN_CMD_TXPOWER: return "IWN_CMD_TXPOWER";
case IWN_CMD_TXPOWER_DBM: return "IWN_CMD_TXPOWER_DBM";
case IWN5000_CMD_TX_ANT_CONFIG: return "IWN5000_CMD_TX_ANT_CONFIG";
case IWN_CMD_BT_COEX: return "IWN_CMD_BT_COEX";
case IWN_CMD_SET_CRITICAL_TEMP: return "IWN_CMD_SET_CRITICAL_TEMP";
case IWN_CMD_SET_SENSITIVITY: return "IWN_CMD_SET_SENSITIVITY";
case IWN_CMD_PHY_CALIB: return "IWN_CMD_PHY_CALIB";
}
return "UNKNOWN INTR NOTIF/CMD";
}
#else
#define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
#endif
static device_method_t iwn_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, iwn_probe),
DEVMETHOD(device_attach, iwn_attach),
DEVMETHOD(device_detach, iwn_detach),
DEVMETHOD(device_shutdown, iwn_shutdown),
DEVMETHOD(device_suspend, iwn_suspend),
DEVMETHOD(device_resume, iwn_resume),
{ 0, 0 }
};
static driver_t iwn_driver = {
"iwn",
iwn_methods,
sizeof(struct iwn_softc)
};
static devclass_t iwn_devclass;
DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
MODULE_DEPEND(iwn, firmware, 1, 1, 1);
MODULE_DEPEND(iwn, pci, 1, 1, 1);
MODULE_DEPEND(iwn, wlan, 1, 1, 1);
static int
iwn_probe(device_t dev)
{
const struct iwn_ident *ident;
for (ident = iwn_ident_table; ident->name != NULL; ident++) {
if (pci_get_vendor(dev) == ident->vendor &&
pci_get_device(dev) == ident->device) {
device_set_desc(dev, ident->name);
return 0;
}
}
return ENXIO;
}
static int
iwn_attach(device_t dev)
{
struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
struct ieee80211com *ic;
struct ifnet *ifp;
uint32_t reg;
int i, error, result;
uint8_t macaddr[IEEE80211_ADDR_LEN];
sc->sc_dev = dev;
/*
* Get the offset of the PCI Express Capability Structure in PCI
* Configuration Space.
*/
error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
if (error != 0) {
device_printf(dev, "PCIe capability structure not found!\n");
return error;
}
/* Clear device-specific "PCI retry timeout" register (41h). */
pci_write_config(dev, 0x41, 0, 1);
/* Hardware bug workaround. */
reg = pci_read_config(dev, PCIR_COMMAND, 1);
if (reg & PCIM_CMD_INTxDIS) {
DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
__func__);
reg &= ~PCIM_CMD_INTxDIS;
pci_write_config(dev, PCIR_COMMAND, reg, 1);
}
/* Enable bus-mastering. */
pci_enable_busmaster(dev);
sc->mem_rid = PCIR_BAR(0);
sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
RF_ACTIVE);
if (sc->mem == NULL) {
device_printf(dev, "can't map mem space\n");
error = ENOMEM;
return error;
}
sc->sc_st = rman_get_bustag(sc->mem);
sc->sc_sh = rman_get_bushandle(sc->mem);
sc->irq_rid = 0;
if ((result = pci_msi_count(dev)) == 1 &&
pci_alloc_msi(dev, &result) == 0)
sc->irq_rid = 1;
/* Install interrupt handler. */
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
RF_ACTIVE | RF_SHAREABLE);
if (sc->irq == NULL) {
device_printf(dev, "can't map interrupt\n");
error = ENOMEM;
goto fail;
}
IWN_LOCK_INIT(sc);
/* Read hardware revision and attach. */
sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
if (sc->hw_type == IWN_HW_REV_TYPE_4965)
error = iwn4965_attach(sc, pci_get_device(dev));
else
error = iwn5000_attach(sc, pci_get_device(dev));
if (error != 0) {
device_printf(dev, "could not attach device, error %d\n",
error);
goto fail;
}
if ((error = iwn_hw_prepare(sc)) != 0) {
device_printf(dev, "hardware not ready, error %d\n", error);
goto fail;
}
/* Allocate DMA memory for firmware transfers. */
if ((error = iwn_alloc_fwmem(sc)) != 0) {
device_printf(dev,
"could not allocate memory for firmware, error %d\n",
error);
goto fail;
}
/* Allocate "Keep Warm" page. */
if ((error = iwn_alloc_kw(sc)) != 0) {
device_printf(dev,
"could not allocate keep warm page, error %d\n", error);
goto fail;
}
/* Allocate ICT table for 5000 Series. */
if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
(error = iwn_alloc_ict(sc)) != 0) {
device_printf(dev, "could not allocate ICT table, error %d\n",
error);
goto fail;
}
/* Allocate TX scheduler "rings". */
if ((error = iwn_alloc_sched(sc)) != 0) {
device_printf(dev,
"could not allocate TX scheduler rings, error %d\n", error);
goto fail;
}
/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
for (i = 0; i < sc->ntxqs; i++) {
if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
device_printf(dev,
"could not allocate TX ring %d, error %d\n", i,
error);
goto fail;
}
}
/* Allocate RX ring. */
if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
device_printf(dev, "could not allocate RX ring, error %d\n",
error);
goto fail;
}
/* Clear pending interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
/* Count the number of available chains. */
sc->ntxchains =
((sc->txchainmask >> 2) & 1) +
((sc->txchainmask >> 1) & 1) +
((sc->txchainmask >> 0) & 1);
sc->nrxchains =
((sc->rxchainmask >> 2) & 1) +
((sc->rxchainmask >> 1) & 1) +
((sc->rxchainmask >> 0) & 1);
if (bootverbose) {
device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
macaddr, ":");
}
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
if (ifp == NULL) {
device_printf(dev, "can not allocate ifnet structure\n");
goto fail;
}
ic = ifp->if_l2com;
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
/* Set device capabilities. */
ic->ic_caps =
IEEE80211_C_STA /* station mode supported */
| IEEE80211_C_MONITOR /* monitor mode supported */
| IEEE80211_C_TXPMGT /* tx power management */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_WPA
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
#if 0
| IEEE80211_C_IBSS /* ibss/adhoc mode */
#endif
| IEEE80211_C_WME /* WME */
;
if (sc->hw_type != IWN_HW_REV_TYPE_4965)
ic->ic_caps |= IEEE80211_C_BGSCAN; /* background scanning */
#if 0 /* HT */
/* XXX disable until HT channel setup works */
ic->ic_htcaps =
IEEE80211_HTCAP_SMPS_ENA /* SM PS mode enabled */
| IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width */
| IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */
| IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */
| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
| IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */
/* s/w capabilities */
| IEEE80211_HTC_HT /* HT operation */
| IEEE80211_HTC_AMPDU /* tx A-MPDU */
| IEEE80211_HTC_AMSDU /* tx A-MSDU */
;
/* Set HT capabilities. */
ic->ic_htcaps =
#if IWN_RBUF_SIZE == 8192
IEEE80211_HTCAP_AMSDU7935 |
#endif
IEEE80211_HTCAP_CBW20_40 |
IEEE80211_HTCAP_SGI20 |
IEEE80211_HTCAP_SGI40;
if (sc->hw_type != IWN_HW_REV_TYPE_4965)
ic->ic_htcaps |= IEEE80211_HTCAP_GF;
if (sc->hw_type == IWN_HW_REV_TYPE_6050)
ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
else
ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
#endif
/* Read MAC address, channels, etc from EEPROM. */
if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
device_printf(dev, "could not read EEPROM, error %d\n",
error);
goto fail;
}
#if 0 /* HT */
/* Set supported HT rates. */
ic->ic_sup_mcs[0] = 0xff;
if (sc->nrxchains > 1)
ic->ic_sup_mcs[1] = 0xff;
if (sc->nrxchains > 2)
ic->ic_sup_mcs[2] = 0xff;
#endif
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = iwn_init;
ifp->if_ioctl = iwn_ioctl;
ifp->if_start = iwn_start;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
ieee80211_ifattach(ic, macaddr);
ic->ic_vap_create = iwn_vap_create;
ic->ic_vap_delete = iwn_vap_delete;
ic->ic_raw_xmit = iwn_raw_xmit;
ic->ic_node_alloc = iwn_node_alloc;
#if 0 /* HT */
ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
#endif
ic->ic_newassoc = iwn_newassoc;
ic->ic_wme.wme_update = iwn_updateedca;
ic->ic_update_mcast = iwn_update_mcast;
ic->ic_scan_start = iwn_scan_start;
ic->ic_scan_end = iwn_scan_end;
ic->ic_set_channel = iwn_set_channel;
ic->ic_scan_curchan = iwn_scan_curchan;
ic->ic_scan_mindwell = iwn_scan_mindwell;
ic->ic_setregdomain = iwn_setregdomain;
iwn_radiotap_attach(sc);
callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc);
TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
iwn_sysctlattach(sc);
/*
* Hook our interrupt after all initialization is complete.
*/
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, iwn_intr, sc, &sc->sc_ih);
if (error != 0) {
device_printf(dev, "can't establish interrupt, error %d\n",
error);
goto fail;
}
if (bootverbose)
ieee80211_announce(ic);
return 0;
fail:
iwn_detach(dev);
return error;
}
static int
iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
{
struct iwn_ops *ops = &sc->ops;
ops->load_firmware = iwn4965_load_firmware;
ops->read_eeprom = iwn4965_read_eeprom;
ops->post_alive = iwn4965_post_alive;
ops->nic_config = iwn4965_nic_config;
ops->update_sched = iwn4965_update_sched;
ops->get_temperature = iwn4965_get_temperature;
ops->get_rssi = iwn4965_get_rssi;
ops->set_txpower = iwn4965_set_txpower;
ops->init_gains = iwn4965_init_gains;
ops->set_gains = iwn4965_set_gains;
ops->add_node = iwn4965_add_node;
ops->tx_done = iwn4965_tx_done;
#if 0 /* HT */
ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
#endif
sc->ntxqs = IWN4965_NTXQUEUES;
sc->ndmachnls = IWN4965_NDMACHNLS;
sc->broadcast_id = IWN4965_ID_BROADCAST;
sc->rxonsz = IWN4965_RXONSZ;
sc->schedsz = IWN4965_SCHEDSZ;
sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
sc->fwsz = IWN4965_FWSZ;
sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
sc->limits = &iwn4965_sensitivity_limits;
sc->fwname = "iwn4965fw";
/* Override chains masks, ROM is known to be broken. */
sc->txchainmask = IWN_ANT_AB;
sc->rxchainmask = IWN_ANT_ABC;
return 0;
}
static int
iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
{
struct iwn_ops *ops = &sc->ops;
ops->load_firmware = iwn5000_load_firmware;
ops->read_eeprom = iwn5000_read_eeprom;
ops->post_alive = iwn5000_post_alive;
ops->nic_config = iwn5000_nic_config;
ops->update_sched = iwn5000_update_sched;
ops->get_temperature = iwn5000_get_temperature;
ops->get_rssi = iwn5000_get_rssi;
ops->set_txpower = iwn5000_set_txpower;
ops->init_gains = iwn5000_init_gains;
ops->set_gains = iwn5000_set_gains;
ops->add_node = iwn5000_add_node;
ops->tx_done = iwn5000_tx_done;
#if 0 /* HT */
ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
#endif
sc->ntxqs = IWN5000_NTXQUEUES;
sc->ndmachnls = IWN5000_NDMACHNLS;
sc->broadcast_id = IWN5000_ID_BROADCAST;
sc->rxonsz = IWN5000_RXONSZ;
sc->schedsz = IWN5000_SCHEDSZ;
sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
sc->fwsz = IWN5000_FWSZ;
sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
switch (sc->hw_type) {
case IWN_HW_REV_TYPE_5100:
sc->limits = &iwn5000_sensitivity_limits;
sc->fwname = "iwn5000fw";
/* Override chains masks, ROM is known to be broken. */
sc->txchainmask = IWN_ANT_B;
sc->rxchainmask = IWN_ANT_AB;
break;
case IWN_HW_REV_TYPE_5150:
sc->limits = &iwn5150_sensitivity_limits;
sc->fwname = "iwn5150fw";
break;
case IWN_HW_REV_TYPE_5300:
case IWN_HW_REV_TYPE_5350:
sc->limits = &iwn5000_sensitivity_limits;
sc->fwname = "iwn5000fw";
break;
case IWN_HW_REV_TYPE_1000:
sc->limits = &iwn1000_sensitivity_limits;
sc->fwname = "iwn1000fw";
break;
case IWN_HW_REV_TYPE_6000:
sc->limits = &iwn6000_sensitivity_limits;
sc->fwname = "iwn6000fw";
if (pid == 0x422c || pid == 0x4239) {
sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
/* Override chains masks, ROM is known to be broken. */
sc->txchainmask = IWN_ANT_BC;
sc->rxchainmask = IWN_ANT_BC;
}
break;
case IWN_HW_REV_TYPE_6050:
sc->limits = &iwn6000_sensitivity_limits;
sc->fwname = "iwn6050fw";
/* Override chains masks, ROM is known to be broken. */
sc->txchainmask = IWN_ANT_AB;
sc->rxchainmask = IWN_ANT_AB;
break;
case IWN_HW_REV_TYPE_6005:
sc->limits = &iwn6000_sensitivity_limits;
if (pid != 0x0082 && pid != 0x0085) {
sc->fwname = "iwn6000g2bfw";
sc->sc_flags |= IWN_FLAG_ADV_BTCOEX;
} else
sc->fwname = "iwn6000g2afw";
break;
default:
device_printf(sc->sc_dev, "adapter type %d not supported\n",
sc->hw_type);
return ENOTSUP;
}
return 0;
}
/*
* Attach the interface to 802.11 radiotap.
*/
static void
iwn_radiotap_attach(struct iwn_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
ieee80211_radiotap_attach(ic,
&sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
IWN_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
IWN_RX_RADIOTAP_PRESENT);
}
static void
iwn_sysctlattach(struct iwn_softc *sc)
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
#ifdef IWN_DEBUG
sc->sc_debug = 0;
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
#endif
}
static struct ieee80211vap *
iwn_vap_create(struct ieee80211com *ic,
const char name[IFNAMSIZ], int unit, int opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct iwn_vap *ivp;
struct ieee80211vap *vap;
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return NULL;
ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
M_80211_VAP, M_NOWAIT | M_ZERO);
if (ivp == NULL)
return NULL;
vap = &ivp->iv_vap;
ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
vap->iv_bmissthreshold = 10; /* override default */
/* Override with driver methods. */
ivp->iv_newstate = vap->iv_newstate;
vap->iv_newstate = iwn_newstate;
ieee80211_ratectl_init(vap);
/* Complete setup. */
ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
ic->ic_opmode = opmode;
return vap;
}
static void
iwn_vap_delete(struct ieee80211vap *vap)
{
struct iwn_vap *ivp = IWN_VAP(vap);
ieee80211_ratectl_deinit(vap);
ieee80211_vap_detach(vap);
free(ivp, M_80211_VAP);
}
static int
iwn_detach(device_t dev)
{
struct iwn_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic;
int qid;
if (ifp != NULL) {
ic = ifp->if_l2com;
ieee80211_draintask(ic, &sc->sc_reinit_task);
ieee80211_draintask(ic, &sc->sc_radioon_task);
ieee80211_draintask(ic, &sc->sc_radiooff_task);
iwn_stop(sc);
callout_drain(&sc->watchdog_to);
callout_drain(&sc->calib_to);
ieee80211_ifdetach(ic);
}
/* Uninstall interrupt handler. */
if (sc->irq != NULL) {
bus_teardown_intr(dev, sc->irq, sc->sc_ih);
bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
if (sc->irq_rid == 1)
pci_release_msi(dev);
}
/* Free DMA resources. */
iwn_free_rx_ring(sc, &sc->rxq);
for (qid = 0; qid < sc->ntxqs; qid++)
iwn_free_tx_ring(sc, &sc->txq[qid]);
iwn_free_sched(sc);
iwn_free_kw(sc);
if (sc->ict != NULL)
iwn_free_ict(sc);
iwn_free_fwmem(sc);
if (sc->mem != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
if (ifp != NULL)
if_free(ifp);
IWN_LOCK_DESTROY(sc);
return 0;
}
static int
iwn_shutdown(device_t dev)
{
struct iwn_softc *sc = device_get_softc(dev);
iwn_stop(sc);
return 0;
}
static int
iwn_suspend(device_t dev)
{
struct iwn_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
iwn_stop(sc);
if (vap != NULL)
ieee80211_stop(vap);
return 0;
}
static int
iwn_resume(device_t dev)
{
struct iwn_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
/* Clear device-specific "PCI retry timeout" register (41h). */
pci_write_config(dev, 0x41, 0, 1);
if (ifp->if_flags & IFF_UP) {
iwn_init(sc);
if (vap != NULL)
ieee80211_init(vap);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
iwn_start(ifp);
}
return 0;
}
static int
iwn_nic_lock(struct iwn_softc *sc)
{
int ntries;
/* Request exclusive access to NIC. */
IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
/* Spin until we actually get the lock. */
for (ntries = 0; ntries < 1000; ntries++) {
if ((IWN_READ(sc, IWN_GP_CNTRL) &
(IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
IWN_GP_CNTRL_MAC_ACCESS_ENA)
return 0;
DELAY(10);
}
return ETIMEDOUT;
}
static __inline void
iwn_nic_unlock(struct iwn_softc *sc)
{
IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
}
static __inline uint32_t
iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
{
IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
IWN_BARRIER_READ_WRITE(sc);
return IWN_READ(sc, IWN_PRPH_RDATA);
}
static __inline void
iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
{
IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
IWN_BARRIER_WRITE(sc);
IWN_WRITE(sc, IWN_PRPH_WDATA, data);
}
static __inline void
iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
{
iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
}
static __inline void
iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
{
iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
}
static __inline void
iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
const uint32_t *data, int count)
{
for (; count > 0; count--, data++, addr += 4)
iwn_prph_write(sc, addr, *data);
}
static __inline uint32_t
iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
{
IWN_WRITE(sc, IWN_MEM_RADDR, addr);
IWN_BARRIER_READ_WRITE(sc);
return IWN_READ(sc, IWN_MEM_RDATA);
}
static __inline void
iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
{
IWN_WRITE(sc, IWN_MEM_WADDR, addr);
IWN_BARRIER_WRITE(sc);
IWN_WRITE(sc, IWN_MEM_WDATA, data);
}
static __inline void
iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
{
uint32_t tmp;
tmp = iwn_mem_read(sc, addr & ~3);
if (addr & 3)
tmp = (tmp & 0x0000ffff) | data << 16;
else
tmp = (tmp & 0xffff0000) | data;
iwn_mem_write(sc, addr & ~3, tmp);
}
static __inline void
iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
int count)
{
for (; count > 0; count--, addr += 4)
*data++ = iwn_mem_read(sc, addr);
}
static __inline void
iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
int count)
{
for (; count > 0; count--, addr += 4)
iwn_mem_write(sc, addr, val);
}
static int
iwn_eeprom_lock(struct iwn_softc *sc)
{
int i, ntries;
for (i = 0; i < 100; i++) {
/* Request exclusive access to EEPROM. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_HW_IF_CONFIG_EEPROM_LOCKED);
/* Spin until we actually get the lock. */
for (ntries = 0; ntries < 100; ntries++) {
if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_EEPROM_LOCKED)
return 0;
DELAY(10);
}
}
return ETIMEDOUT;
}
static __inline void
iwn_eeprom_unlock(struct iwn_softc *sc)
{
IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
}
/*
* Initialize access by host to One Time Programmable ROM.
* NB: This kind of ROM can be found on 1000 or 6000 Series only.
*/
static int
iwn_init_otprom(struct iwn_softc *sc)
{
uint16_t prev, base, next;
int count, error;
/* Wait for clock stabilization before accessing prph. */
if ((error = iwn_clock_wait(sc)) != 0)
return error;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
DELAY(5);
iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
iwn_nic_unlock(sc);
/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
IWN_RESET_LINK_PWR_MGMT_DIS);
}
IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
/* Clear ECC status. */
IWN_SETBITS(sc, IWN_OTP_GP,
IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
/*
* Find the block before last block (contains the EEPROM image)
* for HW without OTP shadow RAM.
*/
if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
/* Switch to absolute addressing mode. */
IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
base = prev = 0;
for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
error = iwn_read_prom_data(sc, base, &next, 2);
if (error != 0)
return error;
if (next == 0) /* End of linked-list. */
break;
prev = base;
base = le16toh(next);
}
if (count == 0 || count == IWN1000_OTP_NBLOCKS)
return EIO;
/* Skip "next" word. */
sc->prom_base = prev + 1;
}
return 0;
}
static int
iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
{
uint8_t *out = data;
uint32_t val, tmp;
int ntries;
addr += sc->prom_base;
for (; count > 0; count -= 2, addr++) {
IWN_WRITE(sc, IWN_EEPROM, addr << 2);
for (ntries = 0; ntries < 10; ntries++) {
val = IWN_READ(sc, IWN_EEPROM);
if (val & IWN_EEPROM_READ_VALID)
break;
DELAY(5);
}
if (ntries == 10) {
device_printf(sc->sc_dev,
"timeout reading ROM at 0x%x\n", addr);
return ETIMEDOUT;
}
if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
/* OTPROM, check for ECC errors. */
tmp = IWN_READ(sc, IWN_OTP_GP);
if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
device_printf(sc->sc_dev,
"OTPROM ECC error at 0x%x\n", addr);
return EIO;
}
if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
/* Correctable ECC error, clear bit. */
IWN_SETBITS(sc, IWN_OTP_GP,
IWN_OTP_GP_ECC_CORR_STTS);
}
}
*out++ = val >> 16;
if (count > 1)
*out++ = val >> 24;
}
return 0;
}
static void
iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (error != 0)
return;
KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static int
iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
void **kvap, bus_size_t size, bus_size_t alignment)
{
int error;
dma->tag = NULL;
dma->size = size;
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
if (error != 0)
goto fail;
error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
if (error != 0)
goto fail;
error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
if (error != 0)
goto fail;
bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
if (kvap != NULL)
*kvap = dma->vaddr;
return 0;
fail: iwn_dma_contig_free(dma);
return error;
}
static void
iwn_dma_contig_free(struct iwn_dma_info *dma)
{
if (dma->map != NULL) {
if (dma->vaddr != NULL) {
bus_dmamap_sync(dma->tag, dma->map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->tag, dma->map);
bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
dma->vaddr = NULL;
}
bus_dmamap_destroy(dma->tag, dma->map);
dma->map = NULL;
}
if (dma->tag != NULL) {
bus_dma_tag_destroy(dma->tag);
dma->tag = NULL;
}
}
static int
iwn_alloc_sched(struct iwn_softc *sc)
{
/* TX scheduler rings must be aligned on a 1KB boundary. */
return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
sc->schedsz, 1024);
}
static void
iwn_free_sched(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->sched_dma);
}
static int
iwn_alloc_kw(struct iwn_softc *sc)
{
/* "Keep Warm" page must be aligned on a 4KB boundary. */
return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
}
static void
iwn_free_kw(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->kw_dma);
}
static int
iwn_alloc_ict(struct iwn_softc *sc)
{
/* ICT table must be aligned on a 4KB boundary. */
return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
IWN_ICT_SIZE, 4096);
}
static void
iwn_free_ict(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->ict_dma);
}
static int
iwn_alloc_fwmem(struct iwn_softc *sc)
{
/* Must be aligned on a 16-byte boundary. */
return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
}
static void
iwn_free_fwmem(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->fw_dma);
}
static int
iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
bus_size_t size;
int i, error;
ring->cur = 0;
/* Allocate RX descriptors (256-byte aligned). */
size = IWN_RX_RING_COUNT * sizeof (uint32_t);
error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
size, 256);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not allocate RX ring DMA memory, error %d\n",
__func__, error);
goto fail;
}
/* Allocate RX status area (16-byte aligned). */
error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
sizeof (struct iwn_rx_status), 16);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not allocate RX status DMA memory, error %d\n",
__func__, error);
goto fail;
}
/* Create RX buffer DMA tag. */
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
&ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not create RX buf DMA tag, error %d\n",
__func__, error);
goto fail;
}
/*
* Allocate and map RX buffers.
*/
for (i = 0; i < IWN_RX_RING_COUNT; i++) {
struct iwn_rx_data *data = &ring->data[i];
bus_addr_t paddr;
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not create RX buf DMA map, error %d\n",
__func__, error);
goto fail;
}
data->m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
IWN_RBUF_SIZE);
if (data->m == NULL) {
device_printf(sc->sc_dev,
"%s: could not allocate RX mbuf\n", __func__);
error = ENOBUFS;
goto fail;
}
error = bus_dmamap_load(ring->data_dmat, data->map,
mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
&paddr, BUS_DMA_NOWAIT);
if (error != 0 && error != EFBIG) {
device_printf(sc->sc_dev,
"%s: can't not map mbuf, error %d\n", __func__,
error);
goto fail;
}
/* Set physical address of RX buffer (256-byte aligned). */
ring->desc[i] = htole32(paddr >> 8);
}
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
BUS_DMASYNC_PREWRITE);
return 0;
fail: iwn_free_rx_ring(sc, ring);
return error;
}
static void
iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
int ntries;
if (iwn_nic_lock(sc) == 0) {
IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
for (ntries = 0; ntries < 1000; ntries++) {
if (IWN_READ(sc, IWN_FH_RX_STATUS) &
IWN_FH_RX_STATUS_IDLE)
break;
DELAY(10);
}
iwn_nic_unlock(sc);
}
ring->cur = 0;
sc->last_rx_valid = 0;
}
static void
iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
int i;
iwn_dma_contig_free(&ring->desc_dma);
iwn_dma_contig_free(&ring->stat_dma);
for (i = 0; i < IWN_RX_RING_COUNT; i++) {
struct iwn_rx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
if (ring->data_dmat != NULL) {
bus_dma_tag_destroy(ring->data_dmat);
ring->data_dmat = NULL;
}
}
static int
iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
{
bus_addr_t paddr;
bus_size_t size;
int i, error;
ring->qid = qid;
ring->queued = 0;
ring->cur = 0;
/* Allocate TX descriptors (256-byte aligned). */
size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
size, 256);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not allocate TX ring DMA memory, error %d\n",
__func__, error);
goto fail;
}
size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
size, 4);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not allocate TX cmd DMA memory, error %d\n",
__func__, error);
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
&ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not create TX buf DMA tag, error %d\n",
__func__, error);
goto fail;
}
paddr = ring->cmd_dma.paddr;
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
struct iwn_tx_data *data = &ring->data[i];
data->cmd_paddr = paddr;
data->scratch_paddr = paddr + 12;
paddr += sizeof (struct iwn_tx_cmd);
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not create TX buf DMA map, error %d\n",
__func__, error);
goto fail;
}
}
return 0;
fail: iwn_free_tx_ring(sc, ring);
return error;
}
static void
iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
{
int i;
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
struct iwn_tx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
}
/* Clear TX descriptors. */
memset(ring->desc, 0, ring->desc_dma.size);
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
BUS_DMASYNC_PREWRITE);
sc->qfullmsk &= ~(1 << ring->qid);
ring->queued = 0;
ring->cur = 0;
}
static void
iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
{
int i;
iwn_dma_contig_free(&ring->desc_dma);
iwn_dma_contig_free(&ring->cmd_dma);
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
struct iwn_tx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
if (ring->data_dmat != NULL) {
bus_dma_tag_destroy(ring->data_dmat);
ring->data_dmat = NULL;
}
}
static void
iwn5000_ict_reset(struct iwn_softc *sc)
{
/* Disable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, 0);
/* Reset ICT table. */
memset(sc->ict, 0, IWN_ICT_SIZE);
sc->ict_cur = 0;
/* Set physical address of ICT table (4KB aligned). */
DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
/* Enable periodic RX interrupt. */
sc->int_mask |= IWN_INT_RX_PERIODIC;
/* Switch to ICT interrupt mode in driver. */
sc->sc_flags |= IWN_FLAG_USE_ICT;
/* Re-enable interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
}
static int
iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
{
struct iwn_ops *ops = &sc->ops;
uint16_t val;
int error;
/* Check whether adapter has an EEPROM or an OTPROM. */
if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
(IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
(sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
/* Adapter has to be powered on for EEPROM access to work. */
if ((error = iwn_apm_init(sc)) != 0) {
device_printf(sc->sc_dev,
"%s: could not power ON adapter, error %d\n", __func__,
error);
return error;
}
if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
return EIO;
}
if ((error = iwn_eeprom_lock(sc)) != 0) {
device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
__func__, error);
return error;
}
if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
if ((error = iwn_init_otprom(sc)) != 0) {
device_printf(sc->sc_dev,
"%s: could not initialize OTPROM, error %d\n",
__func__, error);
return error;
}
}
iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
/* Check if HT support is bonded out. */
if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
sc->sc_flags |= IWN_FLAG_HAS_11N;
iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
sc->rfcfg = le16toh(val);
DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
/* Read Tx/Rx chains from ROM unless it's known to be broken. */
if (sc->txchainmask == 0)
sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
if (sc->rxchainmask == 0)
sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
/* Read MAC address. */
iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
/* Read adapter-specific information from EEPROM. */
ops->read_eeprom(sc);
iwn_apm_stop(sc); /* Power OFF adapter. */
iwn_eeprom_unlock(sc);
return 0;
}
static void
iwn4965_read_eeprom(struct iwn_softc *sc)
{
uint32_t addr;
uint16_t val;
int i;
/* Read regulatory domain (4 ASCII characters). */
iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
/* Read the list of authorized channels (20MHz ones only). */
for (i = 0; i < 7; i++) {
addr = iwn4965_regulatory_bands[i];
iwn_read_eeprom_channels(sc, i, addr);
}
/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
sc->maxpwr2GHz = val & 0xff;
sc->maxpwr5GHz = val >> 8;
/* Check that EEPROM values are within valid range. */
if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
sc->maxpwr5GHz = 38;
if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
sc->maxpwr2GHz = 38;
DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
sc->maxpwr2GHz, sc->maxpwr5GHz);
/* Read samples for each TX power group. */
iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
sizeof sc->bands);
/* Read voltage at which samples were taken. */
iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
sc->eeprom_voltage = (int16_t)le16toh(val);
DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
sc->eeprom_voltage);
#ifdef IWN_DEBUG
/* Print samples. */
if (sc->sc_debug & IWN_DEBUG_ANY) {
for (i = 0; i < IWN_NBANDS; i++)
iwn4965_print_power_group(sc, i);
}
#endif
}
#ifdef IWN_DEBUG
static void
iwn4965_print_power_group(struct iwn_softc *sc, int i)
{
struct iwn4965_eeprom_band *band = &sc->bands[i];
struct iwn4965_eeprom_chan_samples *chans = band->chans;
int j, c;
printf("===band %d===\n", i);
printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
printf("chan1 num=%d\n", chans[0].num);
for (c = 0; c < 2; c++) {
for (j = 0; j < IWN_NSAMPLES; j++) {
printf("chain %d, sample %d: temp=%d gain=%d "
"power=%d pa_det=%d\n", c, j,
chans[0].samples[c][j].temp,
chans[0].samples[c][j].gain,
chans[0].samples[c][j].power,
chans[0].samples[c][j].pa_det);
}
}
printf("chan2 num=%d\n", chans[1].num);
for (c = 0; c < 2; c++) {
for (j = 0; j < IWN_NSAMPLES; j++) {
printf("chain %d, sample %d: temp=%d gain=%d "
"power=%d pa_det=%d\n", c, j,
chans[1].samples[c][j].temp,
chans[1].samples[c][j].gain,
chans[1].samples[c][j].power,
chans[1].samples[c][j].pa_det);
}
}
}
#endif
static void
iwn5000_read_eeprom(struct iwn_softc *sc)
{
struct iwn5000_eeprom_calib_hdr hdr;
int32_t volt;
uint32_t base, addr;
uint16_t val;
int i;
/* Read regulatory domain (4 ASCII characters). */
iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
base = le16toh(val);
iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
sc->eeprom_domain, 4);
/* Read the list of authorized channels (20MHz ones only). */
for (i = 0; i < 7; i++) {
if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
addr = base + iwn6000_regulatory_bands[i];
else
addr = base + iwn5000_regulatory_bands[i];
iwn_read_eeprom_channels(sc, i, addr);
}
/* Read enhanced TX power information for 6000 Series. */
if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
iwn_read_eeprom_enhinfo(sc);
iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
base = le16toh(val);
iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: calib version=%u pa type=%u voltage=%u\n", __func__,
hdr.version, hdr.pa_type, le16toh(hdr.volt));
sc->calib_ver = hdr.version;
if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
/* Compute temperature offset. */
iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
sc->eeprom_temp = le16toh(val);
iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
volt = le16toh(val);
sc->temp_off = sc->eeprom_temp - (volt / -5);
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
sc->eeprom_temp, volt, sc->temp_off);
} else {
/* Read crystal calibration. */
iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
&sc->eeprom_crystal, sizeof (uint32_t));
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
le32toh(sc->eeprom_crystal));
}
}
/*
* Translate EEPROM flags to net80211.
*/
static uint32_t
iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
{
uint32_t nflags;
nflags = 0;
if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
nflags |= IEEE80211_CHAN_PASSIVE;
if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
nflags |= IEEE80211_CHAN_NOADHOC;
if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
nflags |= IEEE80211_CHAN_DFS;
/* XXX apparently IBSS may still be marked */
nflags |= IEEE80211_CHAN_NOADHOC;
}
return nflags;
}
static void
iwn_read_eeprom_band(struct iwn_softc *sc, int n)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
const struct iwn_chan_band *band = &iwn_bands[n];
struct ieee80211_channel *c;
uint8_t chan;
int i, nflags;
for (i = 0; i < band->nchan; i++) {
if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
DPRINTF(sc, IWN_DEBUG_RESET,
"skip chan %d flags 0x%x maxpwr %d\n",
band->chan[i], channels[i].flags,
channels[i].maxpwr);
continue;
}
chan = band->chan[i];
nflags = iwn_eeprom_channel_flags(&channels[i]);
c = &ic->ic_channels[ic->ic_nchans++];
c->ic_ieee = chan;
c->ic_maxregpower = channels[i].maxpwr;
c->ic_maxpower = 2*c->ic_maxregpower;
if (n == 0) { /* 2GHz band */
c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
/* G =>'s B is supported */
c->ic_flags = IEEE80211_CHAN_B | nflags;
c = &ic->ic_channels[ic->ic_nchans++];
c[0] = c[-1];
c->ic_flags = IEEE80211_CHAN_G | nflags;
} else { /* 5GHz band */
c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
c->ic_flags = IEEE80211_CHAN_A | nflags;
}
/* Save maximum allowed TX power for this channel. */
sc->maxpwr[chan] = channels[i].maxpwr;
DPRINTF(sc, IWN_DEBUG_RESET,
"add chan %d flags 0x%x maxpwr %d\n", chan,
channels[i].flags, channels[i].maxpwr);
if (sc->sc_flags & IWN_FLAG_HAS_11N) {
/* add HT20, HT40 added separately */
c = &ic->ic_channels[ic->ic_nchans++];
c[0] = c[-1];
c->ic_flags |= IEEE80211_CHAN_HT20;
}
}
}
static void
iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
const struct iwn_chan_band *band = &iwn_bands[n];
struct ieee80211_channel *c, *cent, *extc;
uint8_t chan;
int i, nflags;
if (!(sc->sc_flags & IWN_FLAG_HAS_11N))
return;
for (i = 0; i < band->nchan; i++) {
if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
DPRINTF(sc, IWN_DEBUG_RESET,
"skip chan %d flags 0x%x maxpwr %d\n",
band->chan[i], channels[i].flags,
channels[i].maxpwr);
continue;
}
chan = band->chan[i];
nflags = iwn_eeprom_channel_flags(&channels[i]);
/*
* Each entry defines an HT40 channel pair; find the
* center channel, then the extension channel above.
*/
cent = ieee80211_find_channel_byieee(ic, chan,
(n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
if (cent == NULL) { /* XXX shouldn't happen */
device_printf(sc->sc_dev,
"%s: no entry for channel %d\n", __func__, chan);
continue;
}
extc = ieee80211_find_channel(ic, cent->ic_freq+20,
(n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
if (extc == NULL) {
DPRINTF(sc, IWN_DEBUG_RESET,
"%s: skip chan %d, extension channel not found\n",
__func__, chan);
continue;
}
DPRINTF(sc, IWN_DEBUG_RESET,
"add ht40 chan %d flags 0x%x maxpwr %d\n",
chan, channels[i].flags, channels[i].maxpwr);
c = &ic->ic_channels[ic->ic_nchans++];
c[0] = cent[0];
c->ic_extieee = extc->ic_ieee;
c->ic_flags &= ~IEEE80211_CHAN_HT;
c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
c = &ic->ic_channels[ic->ic_nchans++];
c[0] = extc[0];
c->ic_extieee = cent->ic_ieee;
c->ic_flags &= ~IEEE80211_CHAN_HT;
c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
}
}
static void
iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
if (n < 5)
iwn_read_eeprom_band(sc, n);
else
iwn_read_eeprom_ht40(sc, n);
ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
}
static struct iwn_eeprom_chan *
iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
{
int band, chan, i, j;
if (IEEE80211_IS_CHAN_HT40(c)) {
band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
if (IEEE80211_IS_CHAN_HT40D(c))
chan = c->ic_extieee;
else
chan = c->ic_ieee;
for (i = 0; i < iwn_bands[band].nchan; i++) {
if (iwn_bands[band].chan[i] == chan)
return &sc->eeprom_channels[band][i];
}
} else {
for (j = 0; j < 5; j++) {
for (i = 0; i < iwn_bands[j].nchan; i++) {
if (iwn_bands[j].chan[i] == c->ic_ieee)
return &sc->eeprom_channels[j][i];
}
}
}
return NULL;
}
/*
* Enforce flags read from EEPROM.
*/
static int
iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
int nchan, struct ieee80211_channel chans[])
{
struct iwn_softc *sc = ic->ic_ifp->if_softc;
int i;
for (i = 0; i < nchan; i++) {
struct ieee80211_channel *c = &chans[i];
struct iwn_eeprom_chan *channel;
channel = iwn_find_eeprom_channel(sc, c);
if (channel == NULL) {
if_printf(ic->ic_ifp,
"%s: invalid channel %u freq %u/0x%x\n",
__func__, c->ic_ieee, c->ic_freq, c->ic_flags);
return EINVAL;
}
c->ic_flags |= iwn_eeprom_channel_flags(channel);
}
return 0;
}
#define nitems(_a) (sizeof((_a)) / sizeof((_a)[0]))
static void
iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
{
struct iwn_eeprom_enhinfo enhinfo[35];
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_channel *c;
uint16_t val, base;
int8_t maxpwr;
uint8_t flags;
int i, j;
iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
base = le16toh(val);
iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
enhinfo, sizeof enhinfo);
for (i = 0; i < nitems(enhinfo); i++) {
flags = enhinfo[i].flags;
if (!(flags & IWN_ENHINFO_VALID))
continue; /* Skip invalid entries. */
maxpwr = 0;
if (sc->txchainmask & IWN_ANT_A)
maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
if (sc->txchainmask & IWN_ANT_B)
maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
if (sc->txchainmask & IWN_ANT_C)
maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
if (sc->ntxchains == 2)
maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
else if (sc->ntxchains == 3)
maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
for (j = 0; j < ic->ic_nchans; j++) {
c = &ic->ic_channels[j];
if ((flags & IWN_ENHINFO_5GHZ)) {
if (!IEEE80211_IS_CHAN_A(c))
continue;
} else if ((flags & IWN_ENHINFO_OFDM)) {
if (!IEEE80211_IS_CHAN_G(c))
continue;
} else if (!IEEE80211_IS_CHAN_B(c))
continue;
if ((flags & IWN_ENHINFO_HT40)) {
if (!IEEE80211_IS_CHAN_HT40(c))
continue;
} else {
if (IEEE80211_IS_CHAN_HT40(c))
continue;
}
if (enhinfo[i].chan != 0 &&
enhinfo[i].chan != c->ic_ieee)
continue;
DPRINTF(sc, IWN_DEBUG_RESET,
"channel %d(%x), maxpwr %d\n", c->ic_ieee,
c->ic_flags, maxpwr / 2);
c->ic_maxregpower = maxpwr / 2;
c->ic_maxpower = maxpwr;
}
}
}
static struct ieee80211_node *
iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
{
return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
}
static void
iwn_newassoc(struct ieee80211_node *ni, int isnew)
{
struct iwn_node *wn = (void *)ni;
int ridx, i;
for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
ridx = iwn_plcp_signal(ni->ni_rates.rs_rates[i]);
wn->ridx[i] = ridx;
}
}
static int
iwn_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
/* NB: only the fixed rate can change and that doesn't need a reset */
return (error == ENETRESET ? 0 : error);
}
static int
iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct iwn_vap *ivp = IWN_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct iwn_softc *sc = ic->ic_ifp->if_softc;
int error = 0;
DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
IEEE80211_UNLOCK(ic);
IWN_LOCK(sc);
callout_stop(&sc->calib_to);
switch (nstate) {
case IEEE80211_S_ASSOC:
if (vap->iv_state != IEEE80211_S_RUN)
break;
/* FALLTHROUGH */
case IEEE80211_S_AUTH:
if (vap->iv_state == IEEE80211_S_AUTH)
break;
/*
* !AUTH -> AUTH transition requires state reset to handle
* reassociations correctly.
*/
sc->rxon.associd = 0;
sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
sc->calib.state = IWN_CALIB_STATE_INIT;
if ((error = iwn_auth(sc, vap)) != 0) {
device_printf(sc->sc_dev,
"%s: could not move to auth state\n", __func__);
}
break;
case IEEE80211_S_RUN:
/*
* RUN -> RUN transition; Just restart the timers.
*/
if (vap->iv_state == IEEE80211_S_RUN) {
sc->calib_cnt = 0;
break;
}
/*
* !RUN -> RUN requires setting the association id
* which is done with a firmware cmd. We also defer
* starting the timers until that work is done.
*/
if ((error = iwn_run(sc, vap)) != 0) {
device_printf(sc->sc_dev,
"%s: could not move to run state\n", __func__);
}
break;
case IEEE80211_S_INIT:
sc->calib.state = IWN_CALIB_STATE_INIT;
break;
default:
break;
}
IWN_UNLOCK(sc);
IEEE80211_LOCK(ic);
if (error != 0)
return error;
return ivp->iv_newstate(vap, nstate, arg);
}
static void
iwn_calib_timeout(void *arg)
{
struct iwn_softc *sc = arg;
IWN_LOCK_ASSERT(sc);
/* Force automatic TX power calibration every 60 secs. */
if (++sc->calib_cnt >= 120) {
uint32_t flags = 0;
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
"sending request for statistics");
(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
sizeof flags, 1);
sc->calib_cnt = 0;
}
callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
sc);
}
/*
* Process an RX_PHY firmware notification. This is usually immediately
* followed by an MPDU_RX_DONE notification.
*/
static void
iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
/* Save RX statistics, they will be used on MPDU_RX_DONE. */
memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
sc->last_rx_valid = 1;
}
/*
* Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
* Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
*/
static void
iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_ops *ops = &sc->ops;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct iwn_rx_ring *ring = &sc->rxq;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *m, *m1;
struct iwn_rx_stat *stat;
caddr_t head;
bus_addr_t paddr;
uint32_t flags;
int error, len, rssi, nf;
if (desc->type == IWN_MPDU_RX_DONE) {
/* Check for prior RX_PHY notification. */
if (!sc->last_rx_valid) {
DPRINTF(sc, IWN_DEBUG_ANY,
"%s: missing RX_PHY\n", __func__);
return;
}
stat = &sc->last_rx_stat;
} else
stat = (struct iwn_rx_stat *)(desc + 1);
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
device_printf(sc->sc_dev,
"%s: invalid RX statistic header, len %d\n", __func__,
stat->cfg_phy_len);
return;
}
if (desc->type == IWN_MPDU_RX_DONE) {
struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
head = (caddr_t)(mpdu + 1);
len = le16toh(mpdu->len);
} else {
head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
len = le16toh(stat->len);
}
flags = le32toh(*(uint32_t *)(head + len));
/* Discard frames with a bad FCS early. */
if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
__func__, flags);
ifp->if_ierrors++;
return;
}
/* Discard frames that are too short. */
if (len < sizeof (*wh)) {
DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
__func__, len);
ifp->if_ierrors++;
return;
}
m1 = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
if (m1 == NULL) {
DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
__func__);
ifp->if_ierrors++;
return;
}
bus_dmamap_unload(ring->data_dmat, data->map);
error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
if (error != 0 && error != EFBIG) {
device_printf(sc->sc_dev,
"%s: bus_dmamap_load failed, error %d\n", __func__, error);
m_freem(m1);
/* Try to reload the old mbuf. */
error = bus_dmamap_load(ring->data_dmat, data->map,
mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
&paddr, BUS_DMA_NOWAIT);
if (error != 0 && error != EFBIG) {
panic("%s: could not load old RX mbuf", __func__);
}
/* Physical address may have changed. */
ring->desc[ring->cur] = htole32(paddr >> 8);
bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
BUS_DMASYNC_PREWRITE);
ifp->if_ierrors++;
return;
}
m = data->m;
data->m = m1;
/* Update RX descriptor. */
ring->desc[ring->cur] = htole32(paddr >> 8);
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
BUS_DMASYNC_PREWRITE);
/* Finalize mbuf. */
m->m_pkthdr.rcvif = ifp;
m->m_data = head;
m->m_pkthdr.len = m->m_len = len;
/* Grab a reference to the source node. */
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
(ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
rssi = ops->get_rssi(sc, stat);
if (ieee80211_radiotap_active(ic)) {
struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
tap->wr_dbm_antsignal = (int8_t)rssi;
tap->wr_dbm_antnoise = (int8_t)nf;
tap->wr_tsft = stat->tstamp;
switch (stat->rate) {
/* CCK rates. */
case 10: tap->wr_rate = 2; break;
case 20: tap->wr_rate = 4; break;
case 55: tap->wr_rate = 11; break;
case 110: tap->wr_rate = 22; break;
/* OFDM rates. */
case 0xd: tap->wr_rate = 12; break;
case 0xf: tap->wr_rate = 18; break;
case 0x5: tap->wr_rate = 24; break;
case 0x7: tap->wr_rate = 36; break;
case 0x9: tap->wr_rate = 48; break;
case 0xb: tap->wr_rate = 72; break;
case 0x1: tap->wr_rate = 96; break;
case 0x3: tap->wr_rate = 108; break;
/* Unknown rate: should not happen. */
default: tap->wr_rate = 0;
}
}
IWN_UNLOCK(sc);
/* Send the frame to the 802.11 layer. */
if (ni != NULL) {
(void)ieee80211_input(ni, m, rssi - nf, nf);
/* Node is no longer needed. */
ieee80211_free_node(ni);
} else
(void)ieee80211_input_all(ic, m, rssi - nf, nf);
IWN_LOCK(sc);
}
#if 0 /* HT */
/* Process an incoming Compressed BlockAck. */
static void
iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
struct iwn_tx_ring *txq;
bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
txq = &sc->txq[letoh16(ba->qid)];
/* XXX TBD */
}
#endif
/*
* Process a CALIBRATION_RESULT notification sent by the initialization
* firmware on response to a CMD_CALIB_CONFIG command (5000 only).
*/
static void
iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
int len, idx = -1;
/* Runtime firmware should not send such a notification. */
if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
return;
len = (le32toh(desc->len) & 0x3fff) - 4;
bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
switch (calib->code) {
case IWN5000_PHY_CALIB_DC:
if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA) == 0 &&
(sc->hw_type == IWN_HW_REV_TYPE_5150 ||
sc->hw_type >= IWN_HW_REV_TYPE_6000))
idx = 0;
break;
case IWN5000_PHY_CALIB_LO:
idx = 1;
break;
case IWN5000_PHY_CALIB_TX_IQ:
idx = 2;
break;
case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
sc->hw_type != IWN_HW_REV_TYPE_5150)
idx = 3;
break;
case IWN5000_PHY_CALIB_BASE_BAND:
idx = 4;
break;
}
if (idx == -1) /* Ignore other results. */
return;
/* Save calibration result. */
if (sc->calibcmd[idx].buf != NULL)
free(sc->calibcmd[idx].buf, M_DEVBUF);
sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
if (sc->calibcmd[idx].buf == NULL) {
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"not enough memory for calibration result %d\n",
calib->code);
return;
}
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"saving calibration result code=%d len=%d\n", calib->code, len);
sc->calibcmd[idx].len = len;
memcpy(sc->calibcmd[idx].buf, calib, len);
}
/*
* Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
* The latter is sent by the firmware after each received beacon.
*/
static void
iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_ops *ops = &sc->ops;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct iwn_calib_state *calib = &sc->calib;
struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
int temp;
/* Ignore statistics received during a scan. */
if (vap->iv_state != IEEE80211_S_RUN ||
(ic->ic_flags & IEEE80211_F_SCAN))
return;
bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received statistics, cmd %d\n",
__func__, desc->type);
sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
/* Test if temperature has changed. */
if (stats->general.temp != sc->rawtemp) {
/* Convert "raw" temperature to degC. */
sc->rawtemp = stats->general.temp;
temp = ops->get_temperature(sc);
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
__func__, temp);
/* Update TX power if need be (4965AGN only). */
if (sc->hw_type == IWN_HW_REV_TYPE_4965)
iwn4965_power_calibration(sc, temp);
}
if (desc->type != IWN_BEACON_STATISTICS)
return; /* Reply to a statistics request. */
sc->noise = iwn_get_noise(&stats->rx.general);
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
/* Test that RSSI and noise are present in stats report. */
if (le32toh(stats->rx.general.flags) != 1) {
DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
"received statistics without RSSI");
return;
}
if (calib->state == IWN_CALIB_STATE_ASSOC)
iwn_collect_noise(sc, &stats->rx.general);
else if (calib->state == IWN_CALIB_STATE_RUN)
iwn_tune_sensitivity(sc, &stats->rx);
}
/*
* Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
* and 5000 adapters have different incompatible TX status formats.
*/
static void
iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
"qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
__func__, desc->qid, desc->idx, stat->ackfailcnt,
stat->btkillcnt, stat->rate, le16toh(stat->duration),
le32toh(stat->status));
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
}
static void
iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
"qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
__func__, desc->qid, desc->idx, stat->ackfailcnt,
stat->btkillcnt, stat->rate, le16toh(stat->duration),
le32toh(stat->status));
#ifdef notyet
/* Reset TX scheduler slot. */
iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
#endif
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
}
/*
* Adapter-independent backend for TX_DONE firmware notifications.
*/
static void
iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
uint8_t status)
{
struct ifnet *ifp = sc->sc_ifp;
struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
struct iwn_tx_data *data = &ring->data[desc->idx];
struct mbuf *m;
struct ieee80211_node *ni;
struct ieee80211vap *vap;
KASSERT(data->ni != NULL, ("no node"));
/* Unmap and free mbuf. */
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m = data->m, data->m = NULL;
ni = data->ni, data->ni = NULL;
vap = ni->ni_vap;
if (m->m_flags & M_TXCB) {
/*
* Channels marked for "radar" require traffic to be received
* to unlock before we can transmit. Until traffic is seen
* any attempt to transmit is returned immediately with status
* set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily
* happen on first authenticate after scanning. To workaround
* this we ignore a failure of this sort in AUTH state so the
* 802.11 layer will fall back to using a timeout to wait for
* the AUTH reply. This allows the firmware time to see
* traffic so a subsequent retry of AUTH succeeds. It's
* unclear why the firmware does not maintain state for
* channels recently visited as this would allow immediate
* use of the channel after a scan (where we see traffic).
*/
if (status == IWN_TX_FAIL_TX_LOCKED &&
ni->ni_vap->iv_state == IEEE80211_S_AUTH)
ieee80211_process_callback(ni, m, 0);
else
ieee80211_process_callback(ni, m,
(status & IWN_TX_FAIL) != 0);
}
/*
* Update rate control statistics for the node.
*/
if (status & IWN_TX_FAIL) {
ifp->if_oerrors++;
ieee80211_ratectl_tx_complete(vap, ni,
IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
} else {
ifp->if_opackets++;
ieee80211_ratectl_tx_complete(vap, ni,
IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
}
m_freem(m);
ieee80211_free_node(ni);
sc->sc_tx_timer = 0;
if (--ring->queued < IWN_TX_RING_LOMARK) {
sc->qfullmsk &= ~(1 << ring->qid);
if (sc->qfullmsk == 0 &&
(ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
iwn_start_locked(ifp);
}
}
}
/*
* Process a "command done" firmware notification. This is where we wakeup
* processes waiting for a synchronous command completion.
*/
static void
iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
{
struct iwn_tx_ring *ring = &sc->txq[4];
struct iwn_tx_data *data;
if ((desc->qid & 0xf) != 4)
return; /* Not a command ack. */
data = &ring->data[desc->idx];
/* If the command was mapped in an mbuf, free it. */
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
wakeup(&ring->desc[desc->idx]);
}
/*
* Process an INT_FH_RX or INT_SW_RX interrupt.
*/
static void
iwn_notif_intr(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint16_t hw;
bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
BUS_DMASYNC_POSTREAD);
hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
while (sc->rxq.cur != hw) {
struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
struct iwn_rx_desc *desc;
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
desc = mtod(data->m, struct iwn_rx_desc *);
DPRINTF(sc, IWN_DEBUG_RECV,
"%s: qid %x idx %d flags %x type %d(%s) len %d\n",
__func__, desc->qid & 0xf, desc->idx, desc->flags,
desc->type, iwn_intr_str(desc->type),
le16toh(desc->len));
if (!(desc->qid & 0x80)) /* Reply to a command. */
iwn_cmd_done(sc, desc);
switch (desc->type) {
case IWN_RX_PHY:
iwn_rx_phy(sc, desc, data);
break;
case IWN_RX_DONE: /* 4965AGN only. */
case IWN_MPDU_RX_DONE:
/* An 802.11 frame has been received. */
iwn_rx_done(sc, desc, data);
break;
#if 0 /* HT */
case IWN_RX_COMPRESSED_BA:
/* A Compressed BlockAck has been received. */
iwn_rx_compressed_ba(sc, desc, data);
break;
#endif
case IWN_TX_DONE:
/* An 802.11 frame has been transmitted. */
ops->tx_done(sc, desc, data);
break;
case IWN_RX_STATISTICS:
case IWN_BEACON_STATISTICS:
iwn_rx_statistics(sc, desc, data);
break;
case IWN_BEACON_MISSED:
{
struct iwn_beacon_missed *miss =
(struct iwn_beacon_missed *)(desc + 1);
int misses;
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
misses = le32toh(miss->consecutive);
DPRINTF(sc, IWN_DEBUG_STATE,
"%s: beacons missed %d/%d\n", __func__,
misses, le32toh(miss->total));
/*
* If more than 5 consecutive beacons are missed,
* reinitialize the sensitivity state machine.
*/
if (vap->iv_state == IEEE80211_S_RUN &&
(ic->ic_flags & IEEE80211_F_SCAN) != 0) {
if (misses > 5)
(void)iwn_init_sensitivity(sc);
if (misses >= vap->iv_bmissthreshold) {
IWN_UNLOCK(sc);
ieee80211_beacon_miss(ic);
IWN_LOCK(sc);
}
}
break;
}
case IWN_UC_READY:
{
struct iwn_ucode_info *uc =
(struct iwn_ucode_info *)(desc + 1);
/* The microcontroller is ready. */
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
DPRINTF(sc, IWN_DEBUG_RESET,
"microcode alive notification version=%d.%d "
"subtype=%x alive=%x\n", uc->major, uc->minor,
uc->subtype, le32toh(uc->valid));
if (le32toh(uc->valid) != 1) {
device_printf(sc->sc_dev,
"microcontroller initialization failed");
break;
}
if (uc->subtype == IWN_UCODE_INIT) {
/* Save microcontroller report. */
memcpy(&sc->ucode_info, uc, sizeof (*uc));
}
/* Save the address of the error log in SRAM. */
sc->errptr = le32toh(uc->errptr);
break;
}
case IWN_STATE_CHANGED:
{
uint32_t *status = (uint32_t *)(desc + 1);
/*
* State change allows hardware switch change to be
* noted. However, we handle this in iwn_intr as we
* get both the enable/disble intr.
*/
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
le32toh(*status));
break;
}
case IWN_START_SCAN:
{
struct iwn_start_scan *scan =
(struct iwn_start_scan *)(desc + 1);
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
DPRINTF(sc, IWN_DEBUG_ANY,
"%s: scanning channel %d status %x\n",
__func__, scan->chan, le32toh(scan->status));
break;
}
case IWN_STOP_SCAN:
{
struct iwn_stop_scan *scan =
(struct iwn_stop_scan *)(desc + 1);
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
DPRINTF(sc, IWN_DEBUG_STATE,
"scan finished nchan=%d status=%d chan=%d\n",
scan->nchan, scan->status, scan->chan);
IWN_UNLOCK(sc);
ieee80211_scan_next(vap);
IWN_LOCK(sc);
break;
}
case IWN5000_CALIBRATION_RESULT:
iwn5000_rx_calib_results(sc, desc, data);
break;
case IWN5000_CALIBRATION_DONE:
sc->sc_flags |= IWN_FLAG_CALIB_DONE;
wakeup(sc);
break;
}
sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
}
/* Tell the firmware what we have processed. */
hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
}
/*
* Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
* from power-down sleep mode.
*/
static void
iwn_wakeup_intr(struct iwn_softc *sc)
{
int qid;
DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
__func__);
/* Wakeup RX and TX rings. */
IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
for (qid = 0; qid < sc->ntxqs; qid++) {
struct iwn_tx_ring *ring = &sc->txq[qid];
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
}
}
static void
iwn_rftoggle_intr(struct iwn_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
IWN_LOCK_ASSERT(sc);
device_printf(sc->sc_dev, "RF switch: radio %s\n",
(tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
if (tmp & IWN_GP_CNTRL_RFKILL)
ieee80211_runtask(ic, &sc->sc_radioon_task);
else
ieee80211_runtask(ic, &sc->sc_radiooff_task);
}
/*
* Dump the error log of the firmware when a firmware panic occurs. Although
* we can't debug the firmware because it is neither open source nor free, it
* can help us to identify certain classes of problems.
*/
static void
iwn_fatal_intr(struct iwn_softc *sc)
{
struct iwn_fw_dump dump;
int i;
IWN_LOCK_ASSERT(sc);
/* Force a complete recalibration on next init. */
sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
/* Check that the error log address is valid. */
if (sc->errptr < IWN_FW_DATA_BASE ||
sc->errptr + sizeof (dump) >
IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
printf("%s: bad firmware error log address 0x%08x\n", __func__,
sc->errptr);
return;
}
if (iwn_nic_lock(sc) != 0) {
printf("%s: could not read firmware error log\n", __func__);
return;
}
/* Read firmware error log from SRAM. */
iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
sizeof (dump) / sizeof (uint32_t));
iwn_nic_unlock(sc);
if (dump.valid == 0) {
printf("%s: firmware error log is empty\n", __func__);
return;
}
printf("firmware error log:\n");
printf(" error type = \"%s\" (0x%08X)\n",
(dump.id < nitems(iwn_fw_errmsg)) ?
iwn_fw_errmsg[dump.id] : "UNKNOWN",
dump.id);
printf(" program counter = 0x%08X\n", dump.pc);
printf(" source line = 0x%08X\n", dump.src_line);
printf(" error data = 0x%08X%08X\n",
dump.error_data[0], dump.error_data[1]);
printf(" branch link = 0x%08X%08X\n",
dump.branch_link[0], dump.branch_link[1]);
printf(" interrupt link = 0x%08X%08X\n",
dump.interrupt_link[0], dump.interrupt_link[1]);
printf(" time = %u\n", dump.time[0]);
/* Dump driver status (TX and RX rings) while we're here. */
printf("driver status:\n");
for (i = 0; i < sc->ntxqs; i++) {
struct iwn_tx_ring *ring = &sc->txq[i];
printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
i, ring->qid, ring->cur, ring->queued);
}
printf(" rx ring: cur=%d\n", sc->rxq.cur);
}
static void
iwn_intr(void *arg)
{
struct iwn_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
uint32_t r1, r2, tmp;
IWN_LOCK(sc);
/* Disable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, 0);
/* Read interrupts from ICT (fast) or from registers (slow). */
if (sc->sc_flags & IWN_FLAG_USE_ICT) {
tmp = 0;
while (sc->ict[sc->ict_cur] != 0) {
tmp |= sc->ict[sc->ict_cur];
sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
}
tmp = le32toh(tmp);
if (tmp == 0xffffffff) /* Shouldn't happen. */
tmp = 0;
else if (tmp & 0xc0000) /* Workaround a HW bug. */
tmp |= 0x8000;
r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
r2 = 0; /* Unused. */
} else {
r1 = IWN_READ(sc, IWN_INT);
if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
return; /* Hardware gone! */
r2 = IWN_READ(sc, IWN_FH_INT);
}
DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
if (r1 == 0 && r2 == 0)
goto done; /* Interrupt not for us. */
/* Acknowledge interrupts. */
IWN_WRITE(sc, IWN_INT, r1);
if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
IWN_WRITE(sc, IWN_FH_INT, r2);
if (r1 & IWN_INT_RF_TOGGLED) {
iwn_rftoggle_intr(sc);
goto done;
}
if (r1 & IWN_INT_CT_REACHED) {
device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
__func__);
}
if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
device_printf(sc->sc_dev, "%s: fatal firmware error\n",
__func__);
/* Dump firmware error log and stop. */
iwn_fatal_intr(sc);
ifp->if_flags &= ~IFF_UP;
iwn_stop_locked(sc);
goto done;
}
if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
(r2 & IWN_FH_INT_RX)) {
if (sc->sc_flags & IWN_FLAG_USE_ICT) {
if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
IWN_WRITE_1(sc, IWN_INT_PERIODIC,
IWN_INT_PERIODIC_DIS);
iwn_notif_intr(sc);
if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
IWN_WRITE_1(sc, IWN_INT_PERIODIC,
IWN_INT_PERIODIC_ENA);
}
} else
iwn_notif_intr(sc);
}
if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
if (sc->sc_flags & IWN_FLAG_USE_ICT)
IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
wakeup(sc); /* FH DMA transfer completed. */
}
if (r1 & IWN_INT_ALIVE)
wakeup(sc); /* Firmware is alive. */
if (r1 & IWN_INT_WAKEUP)
iwn_wakeup_intr(sc);
done:
/* Re-enable interrupts. */
if (ifp->if_flags & IFF_UP)
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
IWN_UNLOCK(sc);
}
/*
* Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
* 5000 adapters use a slightly different format).
*/
static void
iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
uint16_t len)
{
uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
*w = htole16(len + 8);
bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
BUS_DMASYNC_PREWRITE);
if (idx < IWN_SCHED_WINSZ) {
*(w + IWN_TX_RING_COUNT) = *w;
bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
BUS_DMASYNC_PREWRITE);
}
}
static void
iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
uint16_t len)
{
uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
*w = htole16(id << 12 | (len + 8));
bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
BUS_DMASYNC_PREWRITE);
if (idx < IWN_SCHED_WINSZ) {
*(w + IWN_TX_RING_COUNT) = *w;
bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
BUS_DMASYNC_PREWRITE);
}
}
#ifdef notyet
static void
iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
{
uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
*w = (*w & htole16(0xf000)) | htole16(1);
bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
BUS_DMASYNC_PREWRITE);
if (idx < IWN_SCHED_WINSZ) {
*(w + IWN_TX_RING_COUNT) = *w;
bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
BUS_DMASYNC_PREWRITE);
}
}
#endif
static uint8_t
iwn_plcp_signal(int rate) {
int i;
for (i = 0; i < IWN_RIDX_MAX + 1; i++) {
if ((rate & IEEE80211_RATE_VAL) == iwn_rates[i].rate)
return i;
}
return 0;
}
static int
iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
const struct ieee80211_txparam *tp;
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct iwn_node *wn = (void *)ni;
struct iwn_tx_ring *ring;
struct iwn_tx_desc *desc;
struct iwn_tx_data *data;
struct iwn_tx_cmd *cmd;
struct iwn_cmd_data *tx;
const struct iwn_rate *rinfo;
struct ieee80211_frame *wh;
struct ieee80211_key *k = NULL;
struct mbuf *m1;
uint32_t flags;
uint16_t qos;
u_int hdrlen;
bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
uint8_t tid, ridx, txant, type;
int ac, i, totlen, error, pad, nsegs = 0, rate;
IWN_LOCK_ASSERT(sc);
wh = mtod(m, struct ieee80211_frame *);
hdrlen = ieee80211_anyhdrsize(wh);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
/* Select EDCA Access Category and TX ring for this frame. */
if (IEEE80211_QOS_HAS_SEQ(wh)) {
qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
tid = qos & IEEE80211_QOS_TID;
} else {
qos = 0;
tid = 0;
}
ac = M_WME_GETAC(m);
ring = &sc->txq[ac];
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
/* Choose a TX rate index. */
tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
if (type == IEEE80211_FC0_TYPE_MGT)
rate = tp->mgmtrate;
else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
rate = tp->mcastrate;
else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
rate = tp->ucastrate;
else {
/* XXX pass pktlen */
(void) ieee80211_ratectl_rate(ni, NULL, 0);
rate = ni->ni_txrate;
}
ridx = iwn_plcp_signal(rate);
rinfo = &iwn_rates[ridx];
/* Encrypt the frame if need be. */
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
/* Retrieve key for TX. */
k = ieee80211_crypto_encap(ni, m);
if (k == NULL) {
m_freem(m);
return ENOBUFS;
}
/* 802.11 header may have moved. */
wh = mtod(m, struct ieee80211_frame *);
}
totlen = m->m_pkthdr.len;
if (ieee80211_radiotap_active_vap(vap)) {
struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rinfo->rate;
if (k != NULL)
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
ieee80211_radiotap_tx(vap, m);
}
/* Prepare TX firmware command. */
cmd = &ring->cmd[ring->cur];
cmd->code = IWN_CMD_TX_DATA;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
tx = (struct iwn_cmd_data *)cmd->data;
/* NB: No need to clear tx, all fields are reinitialized here. */
tx->scratch = 0; /* clear "scratch" area */
flags = 0;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* Unicast frame, check if an ACK is expected. */
if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
IEEE80211_QOS_ACKPOLICY_NOACK)
flags |= IWN_TX_NEED_ACK;
}
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* NB: Group frames are sent using CCK in 802.11b/g. */
if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
flags |= IWN_TX_NEED_RTS;
} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
ridx >= IWN_RIDX_OFDM6) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
flags |= IWN_TX_NEED_CTS;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
flags |= IWN_TX_NEED_RTS;
}
if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
/* 5000 autoselects RTS/CTS or CTS-to-self. */
flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
flags |= IWN_TX_NEED_PROTECTION;
} else
flags |= IWN_TX_FULL_TXOP;
}
}
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
type != IEEE80211_FC0_TYPE_DATA)
tx->id = sc->broadcast_id;
else
tx->id = wn->id;
if (type == IEEE80211_FC0_TYPE_MGT) {
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
/* Tell HW to set timestamp in probe responses. */
if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= IWN_TX_INSERT_TSTAMP;
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
tx->timeout = htole16(3);
else
tx->timeout = htole16(2);
} else
tx->timeout = htole16(0);
if (hdrlen & 3) {
/* First segment length must be a multiple of 4. */
flags |= IWN_TX_NEED_PADDING;
pad = 4 - (hdrlen & 3);
} else
pad = 0;
tx->len = htole16(totlen);
tx->tid = tid;
tx->rts_ntries = 60;
tx->data_ntries = 15;
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
tx->plcp = rinfo->plcp;
tx->rflags = rinfo->flags;
if (tx->id == sc->broadcast_id) {
/* Group or management frame. */
tx->linkq = 0;
/* XXX Alternate between antenna A and B? */
txant = IWN_LSB(sc->txchainmask);
tx->rflags |= IWN_RFLAG_ANT(txant);
} else {
tx->linkq = ni->ni_rates.rs_nrates - ridx - 1;
flags |= IWN_TX_LINKQ; /* enable MRR */
}
/* Set physical address of "scratch area". */
tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
/* Copy 802.11 header in TX command. */
memcpy((uint8_t *)(tx + 1), wh, hdrlen);
/* Trim 802.11 header. */
m_adj(m, hdrlen);
tx->security = 0;
tx->flags = htole32(flags);
error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
&nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
if (error != EFBIG) {
device_printf(sc->sc_dev,
"%s: can't map mbuf (error %d)\n", __func__, error);
m_freem(m);
return error;
}
/* Too many DMA segments, linearize mbuf. */
m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
if (m1 == NULL) {
device_printf(sc->sc_dev,
"%s: could not defrag mbuf\n", __func__);
m_freem(m);
return ENOBUFS;
}
m = m1;
error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: can't map mbuf (error %d)\n", __func__, error);
m_freem(m);
return error;
}
}
data->m = m;
data->ni = ni;
DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
__func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
/* Fill TX descriptor. */
desc->nsegs = 1;
if (m->m_len != 0)
desc->nsegs += nsegs;
/* First DMA segment is used by the TX command. */
desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
(4 + sizeof (*tx) + hdrlen + pad) << 4);
/* Other DMA segments are for data payload. */
seg = &segs[0];
for (i = 1; i <= nsegs; i++) {
desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
seg->ds_len << 4);
seg++;
}
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
BUS_DMASYNC_PREWRITE);
#ifdef notyet
/* Update TX scheduler. */
ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
#endif
/* Kick TX ring. */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
/* Mark TX ring as full if we reach a certain threshold. */
if (++ring->queued > IWN_TX_RING_HIMARK)
sc->qfullmsk |= 1 << ring->qid;
return 0;
}
static int
iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
{
const struct iwn_rate *rinfo;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ifp->if_l2com;
struct iwn_tx_cmd *cmd;
struct iwn_cmd_data *tx;
struct ieee80211_frame *wh;
struct iwn_tx_ring *ring;
struct iwn_tx_desc *desc;
struct iwn_tx_data *data;
struct mbuf *m1;
bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
uint32_t flags;
u_int hdrlen;
int ac, totlen, error, pad, nsegs = 0, i, rate;
uint8_t ridx, type, txant;
IWN_LOCK_ASSERT(sc);
wh = mtod(m, struct ieee80211_frame *);
hdrlen = ieee80211_anyhdrsize(wh);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
ac = params->ibp_pri & 3;
ring = &sc->txq[ac];
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
/* Choose a TX rate index. */
rate = params->ibp_rate0;
if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
/* XXX fall back to mcast/mgmt rate? */
m_freem(m);
return EINVAL;
}
ridx = iwn_plcp_signal(rate);
rinfo = &iwn_rates[ridx];
totlen = m->m_pkthdr.len;
/* Prepare TX firmware command. */
cmd = &ring->cmd[ring->cur];
cmd->code = IWN_CMD_TX_DATA;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
tx = (struct iwn_cmd_data *)cmd->data;
/* NB: No need to clear tx, all fields are reinitialized here. */
tx->scratch = 0; /* clear "scratch" area */
flags = 0;
if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
flags |= IWN_TX_NEED_ACK;
if (params->ibp_flags & IEEE80211_BPF_RTS) {
if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
/* 5000 autoselects RTS/CTS or CTS-to-self. */
flags &= ~IWN_TX_NEED_RTS;
flags |= IWN_TX_NEED_PROTECTION;
} else
flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
}
if (params->ibp_flags & IEEE80211_BPF_CTS) {
if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
/* 5000 autoselects RTS/CTS or CTS-to-self. */
flags &= ~IWN_TX_NEED_CTS;
flags |= IWN_TX_NEED_PROTECTION;
} else
flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
}
if (type == IEEE80211_FC0_TYPE_MGT) {
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
/* Tell HW to set timestamp in probe responses. */
if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= IWN_TX_INSERT_TSTAMP;
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
tx->timeout = htole16(3);
else
tx->timeout = htole16(2);
} else
tx->timeout = htole16(0);
if (hdrlen & 3) {
/* First segment length must be a multiple of 4. */
flags |= IWN_TX_NEED_PADDING;
pad = 4 - (hdrlen & 3);
} else
pad = 0;
if (ieee80211_radiotap_active_vap(vap)) {
struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
ieee80211_radiotap_tx(vap, m);
}
tx->len = htole16(totlen);
tx->tid = 0;
tx->id = sc->broadcast_id;
tx->rts_ntries = params->ibp_try1;
tx->data_ntries = params->ibp_try0;
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
tx->plcp = rinfo->plcp;
tx->rflags = rinfo->flags;
/* Group or management frame. */
tx->linkq = 0;
txant = IWN_LSB(sc->txchainmask);
tx->rflags |= IWN_RFLAG_ANT(txant);
/* Set physical address of "scratch area". */
tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
/* Copy 802.11 header in TX command. */
memcpy((uint8_t *)(tx + 1), wh, hdrlen);
/* Trim 802.11 header. */
m_adj(m, hdrlen);
tx->security = 0;
tx->flags = htole32(flags);
error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
&nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
if (error != EFBIG) {
device_printf(sc->sc_dev,
"%s: can't map mbuf (error %d)\n", __func__, error);
m_freem(m);
return error;
}
/* Too many DMA segments, linearize mbuf. */
m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
if (m1 == NULL) {
device_printf(sc->sc_dev,
"%s: could not defrag mbuf\n", __func__);
m_freem(m);
return ENOBUFS;
}
m = m1;
error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: can't map mbuf (error %d)\n", __func__, error);
m_freem(m);
return error;
}
}
data->m = m;
data->ni = ni;
DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
__func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
/* Fill TX descriptor. */
desc->nsegs = 1;
if (m->m_len != 0)
desc->nsegs += nsegs;
/* First DMA segment is used by the TX command. */
desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
(4 + sizeof (*tx) + hdrlen + pad) << 4);
/* Other DMA segments are for data payload. */
seg = &segs[0];
for (i = 1; i <= nsegs; i++) {
desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
seg->ds_len << 4);
seg++;
}
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
BUS_DMASYNC_PREWRITE);
#ifdef notyet
/* Update TX scheduler. */
ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
#endif
/* Kick TX ring. */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
/* Mark TX ring as full if we reach a certain threshold. */
if (++ring->queued > IWN_TX_RING_HIMARK)
sc->qfullmsk |= 1 << ring->qid;
return 0;
}
static int
iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct iwn_softc *sc = ifp->if_softc;
int error = 0;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
ieee80211_free_node(ni);
m_freem(m);
return ENETDOWN;
}
IWN_LOCK(sc);
if (params == NULL) {
/*
* Legacy path; interpret frame contents to decide
* precisely how to send the frame.
*/
error = iwn_tx_data(sc, m, ni);
} else {
/*
* Caller supplied explicit parameters to use in
* sending the frame.
*/
error = iwn_tx_data_raw(sc, m, ni, params);
}
if (error != 0) {
/* NB: m is reclaimed on tx failure */
ieee80211_free_node(ni);
ifp->if_oerrors++;
}
sc->sc_tx_timer = 5;
IWN_UNLOCK(sc);
return error;
}
static void
iwn_start(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
IWN_LOCK(sc);
iwn_start_locked(ifp);
IWN_UNLOCK(sc);
}
static void
iwn_start_locked(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
struct mbuf *m;
IWN_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
(ifp->if_drv_flags & IFF_DRV_OACTIVE))
return;
for (;;) {
if (sc->qfullmsk != 0) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
if (iwn_tx_data(sc, m, ni) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
sc->sc_tx_timer = 5;
}
}
static void
iwn_watchdog(void *arg)
{
struct iwn_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
IWN_LOCK_ASSERT(sc);
KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
if_printf(ifp, "device timeout\n");
ieee80211_runtask(ic, &sc->sc_reinit_task);
return;
}
}
callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
}
static int
iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct ifreq *ifr = (struct ifreq *) data;
int error = 0, startall = 0, stop = 0;
switch (cmd) {
case SIOCGIFADDR:
error = ether_ioctl(ifp, cmd, data);
break;
case SIOCSIFFLAGS:
IWN_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
iwn_init_locked(sc);
if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
startall = 1;
else
stop = 1;
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
iwn_stop_locked(sc);
}
IWN_UNLOCK(sc);
if (startall)
ieee80211_start_all(ic);
else if (vap != NULL && stop)
ieee80211_stop(vap);
break;
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
default:
error = EINVAL;
break;
}
return error;
}
/*
* Send a command to the firmware.
*/
static int
iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
{
struct iwn_tx_ring *ring = &sc->txq[4];
struct iwn_tx_desc *desc;
struct iwn_tx_data *data;
struct iwn_tx_cmd *cmd;
struct mbuf *m;
bus_addr_t paddr;
int totlen, error;
IWN_LOCK_ASSERT(sc);
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
totlen = 4 + size;
if (size > sizeof cmd->data) {
/* Command is too large to fit in a descriptor. */
if (totlen > MCLBYTES)
return EINVAL;
m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
if (m == NULL)
return ENOMEM;
cmd = mtod(m, struct iwn_tx_cmd *);
error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(m);
return error;
}
data->m = m;
} else {
cmd = &ring->cmd[ring->cur];
paddr = data->cmd_paddr;
}
cmd->code = code;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
memcpy(cmd->data, buf, size);
desc->nsegs = 1;
desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
__func__, iwn_intr_str(cmd->code), cmd->code,
cmd->flags, cmd->qid, cmd->idx);
if (size > sizeof cmd->data) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_PREWRITE);
} else {
bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
BUS_DMASYNC_PREWRITE);
}
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
BUS_DMASYNC_PREWRITE);
#ifdef notyet
/* Update TX scheduler. */
ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
#endif
/* Kick command ring. */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
}
static int
iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
{
struct iwn4965_node_info hnode;
caddr_t src, dst;
/*
* We use the node structure for 5000 Series internally (it is
* a superset of the one for 4965AGN). We thus copy the common
* fields before sending the command.
*/
src = (caddr_t)node;
dst = (caddr_t)&hnode;
memcpy(dst, src, 48);
/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
memcpy(dst + 48, src + 72, 20);
return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
}
static int
iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
{
/* Direct mapping. */
return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
}
static int
iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
{
struct iwn_node *wn = (void *)ni;
struct ieee80211_rateset *rs = &ni->ni_rates;
struct iwn_cmd_link_quality linkq;
const struct iwn_rate *rinfo;
uint8_t txant;
int i, txrate;
/* Use the first valid TX antenna. */
txant = IWN_LSB(sc->txchainmask);
memset(&linkq, 0, sizeof linkq);
linkq.id = wn->id;
linkq.antmsk_1stream = txant;
linkq.antmsk_2stream = IWN_ANT_AB;
linkq.ampdu_max = 31;
linkq.ampdu_threshold = 3;
linkq.ampdu_limit = htole16(4000); /* 4ms */
/* Start at highest available bit-rate. */
txrate = rs->rs_nrates - 1;
for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
rinfo = &iwn_rates[wn->ridx[txrate]];
linkq.retry[i].plcp = rinfo->plcp;
linkq.retry[i].rflags = rinfo->flags;
linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
/* Next retry at immediate lower bit-rate. */
if (txrate > 0)
txrate--;
}
return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
}
/*
* Broadcast node is used to send group-addressed and management frames.
*/
static int
iwn_add_broadcast_node(struct iwn_softc *sc, int async)
{
struct iwn_ops *ops = &sc->ops;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct iwn_node_info node;
struct iwn_cmd_link_quality linkq;
const struct iwn_rate *rinfo;
uint8_t txant;
int i, error;
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
node.id = sc->broadcast_id;
DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
if ((error = ops->add_node(sc, &node, async)) != 0)
return error;
/* Use the first valid TX antenna. */
txant = IWN_LSB(sc->txchainmask);
memset(&linkq, 0, sizeof linkq);
linkq.id = sc->broadcast_id;
linkq.antmsk_1stream = txant;
linkq.antmsk_2stream = IWN_ANT_AB;
linkq.ampdu_max = 64;
linkq.ampdu_threshold = 3;
linkq.ampdu_limit = htole16(4000); /* 4ms */
/* Use lowest mandatory bit-rate. */
if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
rinfo = &iwn_rates[IWN_RIDX_OFDM6];
else
rinfo = &iwn_rates[IWN_RIDX_CCK1];
linkq.retry[0].plcp = rinfo->plcp;
linkq.retry[0].rflags = rinfo->flags;
linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
/* Use same bit-rate for all TX retries. */
for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
linkq.retry[i].plcp = linkq.retry[0].plcp;
linkq.retry[i].rflags = linkq.retry[0].rflags;
}
return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
}
static int
iwn_updateedca(struct ieee80211com *ic)
{
#define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
struct iwn_softc *sc = ic->ic_ifp->if_softc;
struct iwn_edca_params cmd;
int aci;
memset(&cmd, 0, sizeof cmd);
cmd.flags = htole32(IWN_EDCA_UPDATE);
for (aci = 0; aci < WME_NUM_AC; aci++) {
const struct wmeParams *ac =
&ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
cmd.ac[aci].aifsn = ac->wmep_aifsn;
cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
cmd.ac[aci].txoplimit =
htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
}
IEEE80211_UNLOCK(ic);
IWN_LOCK(sc);
(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
IWN_UNLOCK(sc);
IEEE80211_LOCK(ic);
return 0;
#undef IWN_EXP2
}
static void
iwn_update_mcast(struct ifnet *ifp)
{
/* Ignore */
}
static void
iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
{
struct iwn_cmd_led led;
/* Clear microcode LED ownership. */
IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
led.which = which;
led.unit = htole32(10000); /* on/off in unit of 100ms */
led.off = off;
led.on = on;
(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
}
/*
* Set the critical temperature at which the firmware will stop the radio
* and notify us.
*/
static int
iwn_set_critical_temp(struct iwn_softc *sc)
{
struct iwn_critical_temp crit;
int32_t temp;
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
if (sc->hw_type == IWN_HW_REV_TYPE_5150)
temp = (IWN_CTOK(110) - sc->temp_off) * -5;
else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
temp = IWN_CTOK(110);
else
temp = 110;
memset(&crit, 0, sizeof crit);
crit.tempR = htole32(temp);
DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
}
static int
iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
{
struct iwn_cmd_timing cmd;
uint64_t val, mod;
memset(&cmd, 0, sizeof cmd);
memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
cmd.bintval = htole16(ni->ni_intval);
cmd.lintval = htole16(10);
/* Compute remaining time until next beacon. */
val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
mod = le64toh(cmd.tstamp) % val;
cmd.binitval = htole32((uint32_t)(val - mod));
DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
}
static void
iwn4965_power_calibration(struct iwn_softc *sc, int temp)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
/* Adjust TX power if need be (delta >= 3 degC). */
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
__func__, sc->temp, temp);
if (abs(temp - sc->temp) >= 3) {
/* Record temperature of last calibration. */
sc->temp = temp;
(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
}
}
/*
* Set TX power for current channel (each rate has its own power settings).
* This function takes into account the regulatory information from EEPROM,
* the current temperature and the current voltage.
*/
static int
iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
int async)
{
/* Fixed-point arithmetic division using a n-bit fractional part. */
#define fdivround(a, b, n) \
((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
/* Linear interpolation. */
#define interpolate(x, x1, y1, x2, y2, n) \
((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
struct iwn_ucode_info *uc = &sc->ucode_info;
struct iwn4965_cmd_txpower cmd;
struct iwn4965_eeprom_chan_samples *chans;
const uint8_t *rf_gain, *dsp_gain;
int32_t vdiff, tdiff;
int i, c, grp, maxpwr;
uint8_t chan;
/* Retrieve current channel from last RXON. */
chan = sc->rxon.chan;
DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
chan);
memset(&cmd, 0, sizeof cmd);
cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
cmd.chan = chan;
if (IEEE80211_IS_CHAN_5GHZ(ch)) {
maxpwr = sc->maxpwr5GHz;
rf_gain = iwn4965_rf_gain_5ghz;
dsp_gain = iwn4965_dsp_gain_5ghz;
} else {
maxpwr = sc->maxpwr2GHz;
rf_gain = iwn4965_rf_gain_2ghz;
dsp_gain = iwn4965_dsp_gain_2ghz;
}
/* Compute voltage compensation. */
vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
if (vdiff > 0)
vdiff *= 2;
if (abs(vdiff) > 2)
vdiff = 0;
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
"%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
__func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
/* Get channel attenuation group. */
if (chan <= 20) /* 1-20 */
grp = 4;
else if (chan <= 43) /* 34-43 */
grp = 0;
else if (chan <= 70) /* 44-70 */
grp = 1;
else if (chan <= 124) /* 71-124 */
grp = 2;
else /* 125-200 */
grp = 3;
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
"%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
/* Get channel sub-band. */
for (i = 0; i < IWN_NBANDS; i++)
if (sc->bands[i].lo != 0 &&
sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
break;
if (i == IWN_NBANDS) /* Can't happen in real-life. */
return EINVAL;
chans = sc->bands[i].chans;
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
"%s: chan %d sub-band=%d\n", __func__, chan, i);
for (c = 0; c < 2; c++) {
uint8_t power, gain, temp;
int maxchpwr, pwr, ridx, idx;
power = interpolate(chan,
chans[0].num, chans[0].samples[c][1].power,
chans[1].num, chans[1].samples[c][1].power, 1);
gain = interpolate(chan,
chans[0].num, chans[0].samples[c][1].gain,
chans[1].num, chans[1].samples[c][1].gain, 1);
temp = interpolate(chan,
chans[0].num, chans[0].samples[c][1].temp,
chans[1].num, chans[1].samples[c][1].temp, 1);
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
"%s: Tx chain %d: power=%d gain=%d temp=%d\n",
__func__, c, power, gain, temp);
/* Compute temperature compensation. */
tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
"%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
__func__, tdiff, sc->temp, temp);
for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
/* Convert dBm to half-dBm. */
maxchpwr = sc->maxpwr[chan] * 2;
if ((ridx / 8) & 1)
maxchpwr -= 6; /* MIMO 2T: -3dB */
pwr = maxpwr;
/* Adjust TX power based on rate. */
if ((ridx % 8) == 5)
pwr -= 15; /* OFDM48: -7.5dB */
else if ((ridx % 8) == 6)
pwr -= 17; /* OFDM54: -8.5dB */
else if ((ridx % 8) == 7)
pwr -= 20; /* OFDM60: -10dB */
else
pwr -= 10; /* Others: -5dB */
/* Do not exceed channel max TX power. */
if (pwr > maxchpwr)
pwr = maxchpwr;
idx = gain - (pwr - power) - tdiff - vdiff;
if ((ridx / 8) & 1) /* MIMO */
idx += (int32_t)le32toh(uc->atten[grp][c]);
if (cmd.band == 0)
idx += 9; /* 5GHz */
if (ridx == IWN_RIDX_MAX)
idx += 5; /* CCK */
/* Make sure idx stays in a valid range. */
if (idx < 0)
idx = 0;
else if (idx > IWN4965_MAX_PWR_INDEX)
idx = IWN4965_MAX_PWR_INDEX;
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
"%s: Tx chain %d, rate idx %d: power=%d\n",
__func__, c, ridx, idx);
cmd.power[ridx].rf_gain[c] = rf_gain[idx];
cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
}
}
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
"%s: set tx power for chan %d\n", __func__, chan);
return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
#undef interpolate
#undef fdivround
}
static int
iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
int async)
{
struct iwn5000_cmd_txpower cmd;
/*
* TX power calibration is handled automatically by the firmware
* for 5000 Series.
*/
memset(&cmd, 0, sizeof cmd);
cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
cmd.srv_limit = IWN5000_TXPOWER_AUTO;
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
}
/*
* Retrieve the maximum RSSI (in dBm) among receivers.
*/
static int
iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
{
struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
uint8_t mask, agc;
int rssi;
mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
agc = (le16toh(phy->agc) >> 7) & 0x7f;
rssi = 0;
if (mask & IWN_ANT_A)
rssi = MAX(rssi, phy->rssi[0]);
if (mask & IWN_ANT_B)
rssi = MAX(rssi, phy->rssi[2]);
if (mask & IWN_ANT_C)
rssi = MAX(rssi, phy->rssi[4]);
DPRINTF(sc, IWN_DEBUG_RECV,
"%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
rssi - agc - IWN_RSSI_TO_DBM);
return rssi - agc - IWN_RSSI_TO_DBM;
}
static int
iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
{
struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
uint8_t agc;
int rssi;
agc = (le32toh(phy->agc) >> 9) & 0x7f;
rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
le16toh(phy->rssi[1]) & 0xff);
rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
DPRINTF(sc, IWN_DEBUG_RECV,
"%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
phy->rssi[0], phy->rssi[1], phy->rssi[2],
rssi - agc - IWN_RSSI_TO_DBM);
return rssi - agc - IWN_RSSI_TO_DBM;
}
/*
* Retrieve the average noise (in dBm) among receivers.
*/
static int
iwn_get_noise(const struct iwn_rx_general_stats *stats)
{
int i, total, nbant, noise;
total = nbant = 0;
for (i = 0; i < 3; i++) {
if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
continue;
total += noise;
nbant++;
}
/* There should be at least one antenna but check anyway. */
return (nbant == 0) ? -127 : (total / nbant) - 107;
}
/*
* Compute temperature (in degC) from last received statistics.
*/
static int
iwn4965_get_temperature(struct iwn_softc *sc)
{
struct iwn_ucode_info *uc = &sc->ucode_info;
int32_t r1, r2, r3, r4, temp;
r1 = le32toh(uc->temp[0].chan20MHz);
r2 = le32toh(uc->temp[1].chan20MHz);
r3 = le32toh(uc->temp[2].chan20MHz);
r4 = le32toh(sc->rawtemp);
if (r1 == r3) /* Prevents division by 0 (should not happen). */
return 0;
/* Sign-extend 23-bit R4 value to 32-bit. */
r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
/* Compute temperature in Kelvin. */
temp = (259 * (r4 - r2)) / (r3 - r1);
temp = (temp * 97) / 100 + 8;
DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
IWN_KTOC(temp));
return IWN_KTOC(temp);
}
static int
iwn5000_get_temperature(struct iwn_softc *sc)
{
int32_t temp;
/*
* Temperature is not used by the driver for 5000 Series because
* TX power calibration is handled by firmware.
*/
temp = le32toh(sc->rawtemp);
if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
temp = (temp / -5) + sc->temp_off;
temp = IWN_KTOC(temp);
}
return temp;
}
/*
* Initialize sensitivity calibration state machine.
*/
static int
iwn_init_sensitivity(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
struct iwn_calib_state *calib = &sc->calib;
uint32_t flags;
int error;
/* Reset calibration state machine. */
memset(calib, 0, sizeof (*calib));
calib->state = IWN_CALIB_STATE_INIT;
calib->cck_state = IWN_CCK_STATE_HIFA;
/* Set initial correlation values. */
calib->ofdm_x1 = sc->limits->min_ofdm_x1;
calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
calib->ofdm_x4 = sc->limits->min_ofdm_x4;
calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
calib->cck_x4 = 125;
calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
calib->energy_cck = sc->limits->energy_cck;
/* Write initial sensitivity. */
if ((error = iwn_send_sensitivity(sc)) != 0)
return error;
/* Write initial gains. */
if ((error = ops->init_gains(sc)) != 0)
return error;
/* Request statistics at each beacon interval. */
flags = 0;
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
__func__);
return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
}
/*
* Collect noise and RSSI statistics for the first 20 beacons received
* after association and use them to determine connected antennas and
* to set differential gains.
*/
static void
iwn_collect_noise(struct iwn_softc *sc,
const struct iwn_rx_general_stats *stats)
{
struct iwn_ops *ops = &sc->ops;
struct iwn_calib_state *calib = &sc->calib;
uint32_t val;
int i;
/* Accumulate RSSI and noise for all 3 antennas. */
for (i = 0; i < 3; i++) {
calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
}
/* NB: We update differential gains only once after 20 beacons. */
if (++calib->nbeacons < 20)
return;
/* Determine highest average RSSI. */
val = MAX(calib->rssi[0], calib->rssi[1]);
val = MAX(calib->rssi[2], val);
/* Determine which antennas are connected. */
sc->chainmask = sc->rxchainmask;
for (i = 0; i < 3; i++)
if (val - calib->rssi[i] > 15 * 20)
sc->chainmask &= ~(1 << i);
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
__func__, sc->rxchainmask, sc->chainmask);
/* If none of the TX antennas are connected, keep at least one. */
if ((sc->chainmask & sc->txchainmask) == 0)
sc->chainmask |= IWN_LSB(sc->txchainmask);
(void)ops->set_gains(sc);
calib->state = IWN_CALIB_STATE_RUN;
#ifdef notyet
/* XXX Disable RX chains with no antennas connected. */
sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
#endif
#if 0
/* XXX: not yet */
/* Enable power-saving mode if requested by user. */
if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
(void)iwn_set_pslevel(sc, 0, 3, 1);
#endif
}
static int
iwn4965_init_gains(struct iwn_softc *sc)
{
struct iwn_phy_calib_gain cmd;
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
/* Differential gains initially set to 0 for all 3 antennas. */
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: setting initial differential gains\n", __func__);
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
static int
iwn5000_init_gains(struct iwn_softc *sc)
{
struct iwn_phy_calib cmd;
memset(&cmd, 0, sizeof cmd);
cmd.code = sc->reset_noise_gain;
cmd.ngroups = 1;
cmd.isvalid = 1;
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: setting initial differential gains\n", __func__);
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
static int
iwn4965_set_gains(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_phy_calib_gain cmd;
int i, delta, noise;
/* Get minimal noise among connected antennas. */
noise = INT_MAX; /* NB: There's at least one antenna. */
for (i = 0; i < 3; i++)
if (sc->chainmask & (1 << i))
noise = MIN(calib->noise[i], noise);
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
/* Set differential gains for connected antennas. */
for (i = 0; i < 3; i++) {
if (sc->chainmask & (1 << i)) {
/* Compute attenuation (in unit of 1.5dB). */
delta = (noise - (int32_t)calib->noise[i]) / 30;
/* NB: delta <= 0 */
/* Limit to [-4.5dB,0]. */
cmd.gain[i] = MIN(abs(delta), 3);
if (delta < 0)
cmd.gain[i] |= 1 << 2; /* sign bit */
}
}
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
static int
iwn5000_set_gains(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_phy_calib_gain cmd;
int i, ant, div, delta;
/* We collected 20 beacons and !=6050 need a 1.5 factor. */
div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
memset(&cmd, 0, sizeof cmd);
cmd.code = sc->noise_gain;
cmd.ngroups = 1;
cmd.isvalid = 1;
/* Get first available RX antenna as referential. */
ant = IWN_LSB(sc->rxchainmask);
/* Set differential gains for other antennas. */
for (i = ant + 1; i < 3; i++) {
if (sc->chainmask & (1 << i)) {
/* The delta is relative to antenna "ant". */
delta = ((int32_t)calib->noise[ant] -
(int32_t)calib->noise[i]) / div;
/* Limit to [-4.5dB,+4.5dB]. */
cmd.gain[i - 1] = MIN(abs(delta), 3);
if (delta < 0)
cmd.gain[i - 1] |= 1 << 2; /* sign bit */
}
}
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"setting differential gains Ant B/C: %x/%x (%x)\n",
cmd.gain[0], cmd.gain[1], sc->chainmask);
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
/*
* Tune RF RX sensitivity based on the number of false alarms detected
* during the last beacon period.
*/
static void
iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
{
#define inc(val, inc, max) \
if ((val) < (max)) { \
if ((val) < (max) - (inc)) \
(val) += (inc); \
else \
(val) = (max); \
needs_update = 1; \
}
#define dec(val, dec, min) \
if ((val) > (min)) { \
if ((val) > (min) + (dec)) \
(val) -= (dec); \
else \
(val) = (min); \
needs_update = 1; \
}
const struct iwn_sensitivity_limits *limits = sc->limits;
struct iwn_calib_state *calib = &sc->calib;
uint32_t val, rxena, fa;
uint32_t energy[3], energy_min;
uint8_t noise[3], noise_ref;
int i, needs_update = 0;
/* Check that we've been enabled long enough. */
if ((rxena = le32toh(stats->general.load)) == 0)
return;
/* Compute number of false alarms since last call for OFDM. */
fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
fa *= 200 * IEEE80211_DUR_TU; /* 200TU */
/* Save counters values for next call. */
calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
calib->fa_ofdm = le32toh(stats->ofdm.fa);
if (fa > 50 * rxena) {
/* High false alarm count, decrease sensitivity. */
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: OFDM high false alarm count: %u\n", __func__, fa);
inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
} else if (fa < 5 * rxena) {
/* Low false alarm count, increase sensitivity. */
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: OFDM low false alarm count: %u\n", __func__, fa);
dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
}
/* Compute maximum noise among 3 receivers. */
for (i = 0; i < 3; i++)
noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
val = MAX(noise[0], noise[1]);
val = MAX(noise[2], val);
/* Insert it into our samples table. */
calib->noise_samples[calib->cur_noise_sample] = val;
calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
/* Compute maximum noise among last 20 samples. */
noise_ref = calib->noise_samples[0];
for (i = 1; i < 20; i++)
noise_ref = MAX(noise_ref, calib->noise_samples[i]);
/* Compute maximum energy among 3 receivers. */
for (i = 0; i < 3; i++)
energy[i] = le32toh(stats->general.energy[i]);
val = MIN(energy[0], energy[1]);
val = MIN(energy[2], val);
/* Insert it into our samples table. */
calib->energy_samples[calib->cur_energy_sample] = val;
calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
/* Compute minimum energy among last 10 samples. */
energy_min = calib->energy_samples[0];
for (i = 1; i < 10; i++)
energy_min = MAX(energy_min, calib->energy_samples[i]);
energy_min += 6;
/* Compute number of false alarms since last call for CCK. */
fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
fa += le32toh(stats->cck.fa) - calib->fa_cck;
fa *= 200 * IEEE80211_DUR_TU; /* 200TU */
/* Save counters values for next call. */
calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
calib->fa_cck = le32toh(stats->cck.fa);
if (fa > 50 * rxena) {
/* High false alarm count, decrease sensitivity. */
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: CCK high false alarm count: %u\n", __func__, fa);
calib->cck_state = IWN_CCK_STATE_HIFA;
calib->low_fa = 0;
if (calib->cck_x4 > 160) {
calib->noise_ref = noise_ref;
if (calib->energy_cck > 2)
dec(calib->energy_cck, 2, energy_min);
}
if (calib->cck_x4 < 160) {
calib->cck_x4 = 161;
needs_update = 1;
} else
inc(calib->cck_x4, 3, limits->max_cck_x4);
inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
} else if (fa < 5 * rxena) {
/* Low false alarm count, increase sensitivity. */
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: CCK low false alarm count: %u\n", __func__, fa);
calib->cck_state = IWN_CCK_STATE_LOFA;
calib->low_fa++;
if (calib->cck_state != IWN_CCK_STATE_INIT &&
(((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
calib->low_fa > 100)) {
inc(calib->energy_cck, 2, limits->min_energy_cck);
dec(calib->cck_x4, 3, limits->min_cck_x4);
dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
}
} else {
/* Not worth to increase or decrease sensitivity. */
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: CCK normal false alarm count: %u\n", __func__, fa);
calib->low_fa = 0;
calib->noise_ref = noise_ref;
if (calib->cck_state == IWN_CCK_STATE_HIFA) {
/* Previous interval had many false alarms. */
dec(calib->energy_cck, 8, energy_min);
}
calib->cck_state = IWN_CCK_STATE_INIT;
}
if (needs_update)
(void)iwn_send_sensitivity(sc);
#undef dec
#undef inc
}
static int
iwn_send_sensitivity(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_enhanced_sensitivity_cmd cmd;
int len;
memset(&cmd, 0, sizeof cmd);
len = sizeof (struct iwn_sensitivity_cmd);
cmd.which = IWN_SENSITIVITY_WORKTBL;
/* OFDM modulation. */
cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
cmd.energy_ofdm_th = htole16(62);
/* CCK modulation. */
cmd.corr_cck_x4 = htole16(calib->cck_x4);
cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
cmd.energy_cck = htole16(calib->energy_cck);
/* Barker modulation: use default values. */
cmd.corr_barker = htole16(190);
cmd.corr_barker_mrc = htole16(390);
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
calib->ofdm_mrc_x4, calib->cck_x4,
calib->cck_mrc_x4, calib->energy_cck);
if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
goto send;
/* Enhanced sensitivity settings. */
len = sizeof (struct iwn_enhanced_sensitivity_cmd);
cmd.ofdm_det_slope_mrc = htole16(668);
cmd.ofdm_det_icept_mrc = htole16(4);
cmd.ofdm_det_slope = htole16(486);
cmd.ofdm_det_icept = htole16(37);
cmd.cck_det_slope_mrc = htole16(853);
cmd.cck_det_icept_mrc = htole16(4);
cmd.cck_det_slope = htole16(476);
cmd.cck_det_icept = htole16(99);
send:
return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
}
/*
* Set STA mode power saving level (between 0 and 5).
* Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
*/
static int
iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
{
struct iwn_pmgt_cmd cmd;
const struct iwn_pmgt *pmgt;
uint32_t max, skip_dtim;
uint32_t reg;
int i;
/* Select which PS parameters to use. */
if (dtim <= 2)
pmgt = &iwn_pmgt[0][level];
else if (dtim <= 10)
pmgt = &iwn_pmgt[1][level];
else
pmgt = &iwn_pmgt[2][level];
memset(&cmd, 0, sizeof cmd);
if (level != 0) /* not CAM */
cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
if (level == 5)
cmd.flags |= htole16(IWN_PS_FAST_PD);
/* Retrieve PCIe Active State Power Management (ASPM). */
reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
if (!(reg & 0x1)) /* L0s Entry disabled. */
cmd.flags |= htole16(IWN_PS_PCI_PMGT);
cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
if (dtim == 0) {
dtim = 1;
skip_dtim = 0;
} else
skip_dtim = pmgt->skip_dtim;
if (skip_dtim != 0) {
cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
max = pmgt->intval[4];
if (max == (uint32_t)-1)
max = dtim * (skip_dtim + 1);
else if (max > dtim)
max = (max / dtim) * dtim;
} else
max = dtim;
for (i = 0; i < 5; i++)
cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
level);
return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
}
static int
iwn_send_btcoex(struct iwn_softc *sc)
{
struct iwn_bluetooth cmd;
memset(&cmd, 0, sizeof cmd);
cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
cmd.max_kill = IWN_BT_MAX_KILL_DEF;
DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
__func__);
return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
}
static int
iwn_send_advanced_btcoex(struct iwn_softc *sc)
{
static const uint32_t btcoex_3wire[12] = {
0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
};
struct iwn6000_btcoex_config btconfig;
struct iwn_btcoex_priotable btprio;
struct iwn_btcoex_prot btprot;
int error, i;
memset(&btconfig, 0, sizeof btconfig);
btconfig.flags = 145;
btconfig.max_kill = 5;
btconfig.bt3_t7_timer = 1;
btconfig.kill_ack = htole32(0xffff0000);
btconfig.kill_cts = htole32(0xffff0000);
btconfig.sample_time = 2;
btconfig.bt3_t2_timer = 0xc;
for (i = 0; i < 12; i++)
btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
btconfig.valid = htole16(0xff);
btconfig.prio_boost = 0xf0;
DPRINTF(sc, IWN_DEBUG_RESET,
"%s: configuring advanced bluetooth coexistence\n", __func__);
error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, sizeof(btconfig), 1);
if (error != 0)
return error;
memset(&btprio, 0, sizeof btprio);
btprio.calib_init1 = 0x6;
btprio.calib_init2 = 0x7;
btprio.calib_periodic_low1 = 0x2;
btprio.calib_periodic_low2 = 0x3;
btprio.calib_periodic_high1 = 0x4;
btprio.calib_periodic_high2 = 0x5;
btprio.dtim = 0x6;
btprio.scan52 = 0x8;
btprio.scan24 = 0xa;
error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
1);
if (error != 0)
return error;
/* Force BT state machine change. */
memset(&btprot, 0, sizeof btprio);
btprot.open = 1;
btprot.type = 1;
error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
if (error != 0)
return error;
btprot.open = 0;
return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
}
static int
iwn_config(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t txmask;
uint16_t rxchain;
int error;
if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
/* Set radio temperature sensor offset. */
error = iwn5000_temp_offset_calib(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not set temperature offset\n", __func__);
return error;
}
}
/* Configure valid TX chains for >=5000 Series. */
if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
txmask = htole32(sc->txchainmask);
DPRINTF(sc, IWN_DEBUG_RESET,
"%s: configuring valid TX chains 0x%x\n", __func__, txmask);
error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
sizeof txmask, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not configure valid TX chains, "
"error %d\n", __func__, error);
return error;
}
}
/* Configure bluetooth coexistence. */
if (sc->sc_flags & IWN_FLAG_ADV_BTCOEX)
error = iwn_send_advanced_btcoex(sc);
else
error = iwn_send_btcoex(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not configure bluetooth coexistence, error %d\n",
__func__, error);
return error;
}
/* Set mode, channel, RX filter and enable RX. */
memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
sc->rxon.mode = IWN_MODE_STA;
sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
break;
case IEEE80211_M_MONITOR:
sc->rxon.mode = IWN_MODE_MONITOR;
sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
IWN_FILTER_CTL | IWN_FILTER_PROMISC);
break;
default:
/* Should not get there. */
break;
}
sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
sc->rxon.ht_single_mask = 0xff;
sc->rxon.ht_dual_mask = 0xff;
sc->rxon.ht_triple_mask = 0xff;
rxchain =
IWN_RXCHAIN_VALID(sc->rxchainmask) |
IWN_RXCHAIN_MIMO_COUNT(2) |
IWN_RXCHAIN_IDLE_COUNT(2);
sc->rxon.rxchain = htole16(rxchain);
DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
if (error != 0) {
device_printf(sc->sc_dev, "%s: RXON command failed\n",
__func__);
return error;
}
if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
__func__);
return error;
}
/* Configuration has changed, set TX power accordingly. */
if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
device_printf(sc->sc_dev, "%s: could not set TX power\n",
__func__);
return error;
}
if ((error = iwn_set_critical_temp(sc)) != 0) {
device_printf(sc->sc_dev,
"%s: could not set critical temperature\n", __func__);
return error;
}
/* Set power saving level to CAM during initialization. */
if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
device_printf(sc->sc_dev,
"%s: could not set power saving level\n", __func__);
return error;
}
return 0;
}
/*
* Add an ssid element to a frame.
*/
static uint8_t *
ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
{
*frm++ = IEEE80211_ELEMID_SSID;
*frm++ = len;
memcpy(frm, ssid, len);
return frm + len;
}
static int
iwn_scan(struct iwn_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_scan_state *ss = ic->ic_scan; /*XXX*/
struct ieee80211_node *ni = ss->ss_vap->iv_bss;
struct iwn_scan_hdr *hdr;
struct iwn_cmd_data *tx;
struct iwn_scan_essid *essid;
struct iwn_scan_chan *chan;
struct ieee80211_frame *wh;
struct ieee80211_rateset *rs;
struct ieee80211_channel *c;
uint8_t *buf, *frm;
uint16_t rxchain;
uint8_t txant;
int buflen, error;
buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
if (buf == NULL) {
device_printf(sc->sc_dev,
"%s: could not allocate buffer for scan command\n",
__func__);
return ENOMEM;
}
hdr = (struct iwn_scan_hdr *)buf;
/*
* Move to the next channel if no frames are received within 10ms
* after sending the probe request.
*/
hdr->quiet_time = htole16(10); /* timeout in milliseconds */
hdr->quiet_threshold = htole16(1); /* min # of packets */
/* Select antennas for scanning. */
rxchain =
IWN_RXCHAIN_VALID(sc->rxchainmask) |
IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
IWN_RXCHAIN_DRIVER_FORCE;
if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
sc->hw_type == IWN_HW_REV_TYPE_4965) {
/* Ant A must be avoided in 5GHz because of an HW bug. */
rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
} else /* Use all available RX antennas. */
rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
hdr->rxchain = htole16(rxchain);
hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
tx = (struct iwn_cmd_data *)(hdr + 1);
tx->flags = htole32(IWN_TX_AUTO_SEQ);
tx->id = sc->broadcast_id;
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
/* Send probe requests at 6Mbps. */
tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
} else {
hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
/* Send probe requests at 1Mbps. */
tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
tx->rflags = IWN_RFLAG_CCK;
rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
}
/* Use the first valid TX antenna. */
txant = IWN_LSB(sc->txchainmask);
tx->rflags |= IWN_RFLAG_ANT(txant);
essid = (struct iwn_scan_essid *)(tx + 1);
if (ss->ss_ssid[0].len != 0) {
essid[0].id = IEEE80211_ELEMID_SSID;
essid[0].len = ss->ss_ssid[0].len;
memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
}
/*
* Build a probe request frame. Most of the following code is a
* copy & paste of what is done in net80211.
*/
wh = (struct ieee80211_frame *)(essid + 20);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
*(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
*(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
frm = (uint8_t *)(wh + 1);
frm = ieee80211_add_ssid(frm, NULL, 0);
frm = ieee80211_add_rates(frm, rs);
if (rs->rs_nrates > IEEE80211_RATE_SIZE)
frm = ieee80211_add_xrates(frm, rs);
if (ic->ic_htcaps & IEEE80211_HTC_HT)
frm = ieee80211_add_htcap(frm, ni);
/* Set length of probe request. */
tx->len = htole16(frm - (uint8_t *)wh);
c = ic->ic_curchan;
chan = (struct iwn_scan_chan *)frm;
chan->chan = htole16(ieee80211_chan2ieee(ic, c));
chan->flags = 0;
if (ss->ss_nssid > 0)
chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
chan->dsp_gain = 0x6e;
if (IEEE80211_IS_CHAN_5GHZ(c) &&
!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
chan->rf_gain = 0x3b;
chan->active = htole16(24);
chan->passive = htole16(110);
chan->flags |= htole32(IWN_CHAN_ACTIVE);
} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
chan->rf_gain = 0x3b;
chan->active = htole16(24);
if (sc->rxon.associd)
chan->passive = htole16(78);
else
chan->passive = htole16(110);
hdr->crc_threshold = 0xffff;
} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
chan->rf_gain = 0x28;
chan->active = htole16(36);
chan->passive = htole16(120);
chan->flags |= htole32(IWN_CHAN_ACTIVE);
} else {
chan->rf_gain = 0x28;
chan->active = htole16(36);
if (sc->rxon.associd)
chan->passive = htole16(88);
else
chan->passive = htole16(120);
hdr->crc_threshold = 0xffff;
}
DPRINTF(sc, IWN_DEBUG_STATE,
"%s: chan %u flags 0x%x rf_gain 0x%x "
"dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
chan->active, chan->passive);
hdr->nchan++;
chan++;
buflen = (uint8_t *)chan - buf;
hdr->len = htole16(buflen);
DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
hdr->nchan);
error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
free(buf, M_DEVBUF);
return error;
}
static int
iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
{
struct iwn_ops *ops = &sc->ops;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_node *ni = vap->iv_bss;
int error;
/* Update adapter configuration. */
IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
sc->rxon.cck_mask = 0;
sc->rxon.ofdm_mask = 0x15;
} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
sc->rxon.cck_mask = 0x03;
sc->rxon.ofdm_mask = 0;
} else {
/* Assume 802.11b/g. */
sc->rxon.cck_mask = 0x0f;
sc->rxon.ofdm_mask = 0x15;
}
DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
sc->rxon.ofdm_mask);
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
if (error != 0) {
device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
__func__, error);
return error;
}
/* Configuration has changed, set TX power accordingly. */
if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
device_printf(sc->sc_dev,
"%s: could not set TX power, error %d\n", __func__, error);
return error;
}
/*
* Reconfiguring RXON clears the firmware nodes table so we must
* add the broadcast node again.
*/
if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
device_printf(sc->sc_dev,
"%s: could not add broadcast node, error %d\n", __func__,
error);
return error;
}
return 0;
}
static int
iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
{
#define MS(v,x) (((v) & x) >> x##_S)
struct iwn_ops *ops = &sc->ops;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_node *ni = vap->iv_bss;
struct iwn_node_info node;
int error;
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* Link LED blinks while monitoring. */
iwn_set_led(sc, IWN_LED_LINK, 5, 5);
return 0;
}
if ((error = iwn_set_timing(sc, ni)) != 0) {
device_printf(sc->sc_dev,
"%s: could not set timing, error %d\n", __func__, error);
return error;
}
/* Update adapter configuration. */
IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
sc->rxon.cck_mask = 0;
sc->rxon.ofdm_mask = 0x15;
} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
sc->rxon.cck_mask = 0x03;
sc->rxon.ofdm_mask = 0;
} else {
/* Assume 802.11b/g. */
sc->rxon.cck_mask = 0x0f;
sc->rxon.ofdm_mask = 0x15;
}
#if 0 /* HT */
if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
sc->rxon.flags &= ~htole32(IWN_RXON_HT);
if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
sc->rxon.flags |= htole32(IWN_RXON_HT40U);
else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
sc->rxon.flags |= htole32(IWN_RXON_HT40D);
else
sc->rxon.flags |= htole32(IWN_RXON_HT20);
sc->rxon.rxchain = htole16(
IWN_RXCHAIN_VALID(3)
| IWN_RXCHAIN_MIMO_COUNT(3)
| IWN_RXCHAIN_IDLE_COUNT(1)
| IWN_RXCHAIN_MIMO_FORCE);
maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
} else
maxrxampdu = ampdudensity = 0;
#endif
sc->rxon.filter |= htole32(IWN_FILTER_BSS);
DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
sc->rxon.chan, sc->rxon.flags);
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not update configuration, error %d\n", __func__,
error);
return error;
}
/* Configuration has changed, set TX power accordingly. */
if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
device_printf(sc->sc_dev,
"%s: could not set TX power, error %d\n", __func__, error);
return error;
}
/* Fake a join to initialize the TX rate. */
((struct iwn_node *)ni)->id = IWN_ID_BSS;
iwn_newassoc(ni, 1);
/* Add BSS node. */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
node.id = IWN_ID_BSS;
#ifdef notyet
node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
IWN_AMDPU_DENSITY(5)); /* 2us */
#endif
DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
error = ops->add_node(sc, &node, 1);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not add BSS node, error %d\n", __func__, error);
return error;
}
DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
__func__, node.id);
if ((error = iwn_set_link_quality(sc, ni)) != 0) {
device_printf(sc->sc_dev,
"%s: could not setup link quality for node %d, error %d\n",
__func__, node.id, error);
return error;
}
if ((error = iwn_init_sensitivity(sc)) != 0) {
device_printf(sc->sc_dev,
"%s: could not set sensitivity, error %d\n", __func__,
error);
return error;
}
/* Start periodic calibration timer. */
sc->calib.state = IWN_CALIB_STATE_ASSOC;
sc->calib_cnt = 0;
callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
sc);
/* Link LED always on while associated. */
iwn_set_led(sc, IWN_LED_LINK, 0, 1);
return 0;
#undef MS
}
#if 0 /* HT */
/*
* This function is called by upper layer when an ADDBA request is received
* from another STA and before the ADDBA response is sent.
*/
static int
iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
memset(&node, 0, sizeof node);
node.id = wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_ADDBA;
node.addba_tid = tid;
node.addba_ssn = htole16(ba->ba_winstart);
DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
wn->id, tid, ba->ba_winstart);
return ops->add_node(sc, &node, 1);
}
/*
* This function is called by upper layer on teardown of an HT-immediate
* Block Ack agreement (eg. uppon receipt of a DELBA frame).
*/
static void
iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
memset(&node, 0, sizeof node);
node.id = wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_DELBA;
node.delba_tid = tid;
DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
(void)ops->add_node(sc, &node, 1);
}
/*
* This function is called by upper layer when an ADDBA response is received
* from another STA.
*/
static int
iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
int error;
/* Enable TX for the specified RA/TID. */
wn->disable_tid &= ~(1 << tid);
memset(&node, 0, sizeof node);
node.id = wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_DISABLE_TID;
node.disable_tid = htole16(wn->disable_tid);
error = ops->add_node(sc, &node, 1);
if (error != 0)
return error;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
iwn_nic_unlock(sc);
return 0;
}
static void
iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
if (iwn_nic_lock(sc) != 0)
return;
ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
iwn_nic_unlock(sc);
}
static void
iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
uint8_t tid, uint16_t ssn)
{
struct iwn_node *wn = (void *)ni;
int qid = 7 + tid;
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_CHGACT);
/* Assign RA/TID translation to the queue. */
iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
wn->id << 4 | tid);
/* Enable chain-building mode for the queue. */
iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
/* Set starting sequence number from the ADDBA request. */
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
/* Set scheduler window size. */
iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
IWN_SCHED_WINSZ);
/* Set scheduler frame limit. */
iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16);
/* Enable interrupts for the queue. */
iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as active. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
iwn_tid2fifo[tid] << 1);
}
static void
iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
{
int qid = 7 + tid;
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_CHGACT);
/* Set starting sequence number from the ADDBA request. */
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
/* Disable interrupts for the queue. */
iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as inactive. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
}
static void
iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
uint8_t tid, uint16_t ssn)
{
struct iwn_node *wn = (void *)ni;
int qid = 10 + tid;
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_CHGACT);
/* Assign RA/TID translation to the queue. */
iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
wn->id << 4 | tid);
/* Enable chain-building mode for the queue. */
iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
/* Enable aggregation for the queue. */
iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
/* Set starting sequence number from the ADDBA request. */
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
/* Set scheduler window size and frame limit. */
iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
/* Enable interrupts for the queue. */
iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as active. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
}
static void
iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
{
int qid = 10 + tid;
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_CHGACT);
/* Disable aggregation for the queue. */
iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
/* Set starting sequence number from the ADDBA request. */
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
/* Disable interrupts for the queue. */
iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as inactive. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
}
#endif
/*
* Query calibration tables from the initialization firmware. We do this
* only once at first boot. Called from a process context.
*/
static int
iwn5000_query_calibration(struct iwn_softc *sc)
{
struct iwn5000_calib_config cmd;
int error;
memset(&cmd, 0, sizeof cmd);
cmd.ucode.once.enable = 0xffffffff;
cmd.ucode.once.start = 0xffffffff;
cmd.ucode.once.send = 0xffffffff;
cmd.ucode.flags = 0xffffffff;
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
__func__);
error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
if (error != 0)
return error;
/* Wait at most two seconds for calibration to complete. */
if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
return error;
}
/*
* Send calibration results to the runtime firmware. These results were
* obtained on first boot from the initialization firmware.
*/
static int
iwn5000_send_calibration(struct iwn_softc *sc)
{
int idx, error;
for (idx = 0; idx < 5; idx++) {
if (sc->calibcmd[idx].buf == NULL)
continue; /* No results available. */
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
"send calibration result idx=%d len=%d\n", idx,
sc->calibcmd[idx].len);
error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
sc->calibcmd[idx].len, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not send calibration result, error %d\n",
__func__, error);
return error;
}
}
return 0;
}
static int
iwn5000_send_wimax_coex(struct iwn_softc *sc)
{
struct iwn5000_wimax_coex wimax;
#ifdef notyet
if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
/* Enable WiMAX coexistence for combo adapters. */
wimax.flags =
IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
IWN_WIMAX_COEX_STA_TABLE_VALID |
IWN_WIMAX_COEX_ENABLE;
memcpy(wimax.events, iwn6050_wimax_events,
sizeof iwn6050_wimax_events);
} else
#endif
{
/* Disable WiMAX coexistence. */
wimax.flags = 0;
memset(wimax.events, 0, sizeof wimax.events);
}
DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
__func__);
return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
}
static int
iwn5000_crystal_calib(struct iwn_softc *sc)
{
struct iwn5000_phy_calib_crystal cmd;
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
cmd.ngroups = 1;
cmd.isvalid = 1;
cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
cmd.cap_pin[0], cmd.cap_pin[1]);
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
}
static int
iwn5000_temp_offset_calib(struct iwn_softc *sc)
{
struct iwn5000_phy_calib_temp_offset cmd;
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
cmd.ngroups = 1;
cmd.isvalid = 1;
if (sc->eeprom_temp != 0)
cmd.offset = htole16(sc->eeprom_temp);
else
cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
le16toh(cmd.offset));
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
}
/*
* This function is called after the runtime firmware notifies us of its
* readiness (called in a process context).
*/
static int
iwn4965_post_alive(struct iwn_softc *sc)
{
int error, qid;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Clear TX scheduler state in SRAM. */
sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
/* Set physical address of TX scheduler rings (1KB aligned). */
iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
/* Disable chain mode for all our 16 queues. */
iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
/* Set scheduler window size. */
iwn_mem_write(sc, sc->sched_base +
IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
/* Set scheduler frame limit. */
iwn_mem_write(sc, sc->sched_base +
IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16);
}
/* Enable interrupts for all our 16 queues. */
iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
/* Identify TX FIFO rings (0-7). */
iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
for (qid = 0; qid < 7; qid++) {
static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
}
iwn_nic_unlock(sc);
return 0;
}
/*
* This function is called after the initialization or runtime firmware
* notifies us of its readiness (called in a process context).
*/
static int
iwn5000_post_alive(struct iwn_softc *sc)
{
int error, qid;
/* Switch to using ICT interrupt mode. */
iwn5000_ict_reset(sc);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Clear TX scheduler state in SRAM. */
sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
/* Set physical address of TX scheduler rings (1KB aligned). */
iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
/* Enable chain mode for all queues, except command queue. */
iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
iwn_mem_write(sc, sc->sched_base +
IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
/* Set scheduler window size and frame limit. */
iwn_mem_write(sc, sc->sched_base +
IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
}
/* Enable interrupts for all our 20 queues. */
iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
/* Identify TX FIFO rings (0-7). */
iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
for (qid = 0; qid < 7; qid++) {
static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
}
iwn_nic_unlock(sc);
/* Configure WiMAX coexistence for combo adapters. */
error = iwn5000_send_wimax_coex(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not configure WiMAX coexistence, error %d\n",
__func__, error);
return error;
}
if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
/* Perform crystal calibration. */
error = iwn5000_crystal_calib(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: crystal calibration failed, error %d\n",
__func__, error);
return error;
}
}
if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
/* Query calibration from the initialization firmware. */
if ((error = iwn5000_query_calibration(sc)) != 0) {
device_printf(sc->sc_dev,
"%s: could not query calibration, error %d\n",
__func__, error);
return error;
}
/*
* We have the calibration results now, reboot with the
* runtime firmware (call ourselves recursively!)
*/
iwn_hw_stop(sc);
error = iwn_hw_init(sc);
} else {
/* Send calibration results to runtime firmware. */
error = iwn5000_send_calibration(sc);
}
return error;
}
/*
* The firmware boot code is small and is intended to be copied directly into
* the NIC internal memory (no DMA transfer).
*/
static int
iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
{
int error, ntries;
size /= sizeof (uint32_t);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Copy microcode image into NIC memory. */
iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
(const uint32_t *)ucode, size);
iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
/* Start boot load now. */
iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
/* Wait for transfer to complete. */
for (ntries = 0; ntries < 1000; ntries++) {
if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
IWN_BSM_WR_CTRL_START))
break;
DELAY(10);
}
if (ntries == 1000) {
device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
__func__);
iwn_nic_unlock(sc);
return ETIMEDOUT;
}
/* Enable boot after power up. */
iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
iwn_nic_unlock(sc);
return 0;
}
static int
iwn4965_load_firmware(struct iwn_softc *sc)
{
struct iwn_fw_info *fw = &sc->fw;
struct iwn_dma_info *dma = &sc->fw_dma;
int error;
/* Copy initialization sections into pre-allocated DMA-safe memory. */
memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
fw->init.text, fw->init.textsz);
bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
/* Tell adapter where to find initialization sections. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
(dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
iwn_nic_unlock(sc);
/* Load firmware boot code. */
error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
if (error != 0) {
device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
__func__);
return error;
}
/* Now press "execute". */
IWN_WRITE(sc, IWN_RESET, 0);
/* Wait at most one second for first alive notification. */
if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
device_printf(sc->sc_dev,
"%s: timeout waiting for adapter to initialize, error %d\n",
__func__, error);
return error;
}
/* Retrieve current temperature for initial TX power calibration. */
sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
sc->temp = iwn4965_get_temperature(sc);
/* Copy runtime sections into pre-allocated DMA-safe memory. */
memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
fw->main.text, fw->main.textsz);
bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
/* Tell adapter where to find runtime sections. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
(dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
IWN_FW_UPDATED | fw->main.textsz);
iwn_nic_unlock(sc);
return 0;
}
static int
iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
const uint8_t *section, int size)
{
struct iwn_dma_info *dma = &sc->fw_dma;
int error;
/* Copy firmware section into pre-allocated DMA-safe memory. */
memcpy(dma->vaddr, section, size);
bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
IWN_FH_TX_CONFIG_DMA_PAUSE);
IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
IWN_LOADDR(dma->paddr));
IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
IWN_HIADDR(dma->paddr) << 28 | size);
IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
IWN_FH_TXBUF_STATUS_TBNUM(1) |
IWN_FH_TXBUF_STATUS_TBIDX(1) |
IWN_FH_TXBUF_STATUS_TFBD_VALID);
/* Kick Flow Handler to start DMA transfer. */
IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
iwn_nic_unlock(sc);
/* Wait at most five seconds for FH DMA transfer to complete. */
return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
}
static int
iwn5000_load_firmware(struct iwn_softc *sc)
{
struct iwn_fw_part *fw;
int error;
/* Load the initialization firmware on first boot only. */
fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
&sc->fw.main : &sc->fw.init;
error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
fw->text, fw->textsz);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not load firmware %s section, error %d\n",
__func__, ".text", error);
return error;
}
error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
fw->data, fw->datasz);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not load firmware %s section, error %d\n",
__func__, ".data", error);
return error;
}
/* Now press "execute". */
IWN_WRITE(sc, IWN_RESET, 0);
return 0;
}
/*
* Extract text and data sections from a legacy firmware image.
*/
static int
iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
{
const uint32_t *ptr;
size_t hdrlen = 24;
uint32_t rev;
ptr = (const uint32_t *)fw->data;
rev = le32toh(*ptr++);
/* Check firmware API version. */
if (IWN_FW_API(rev) <= 1) {
device_printf(sc->sc_dev,
"%s: bad firmware, need API version >=2\n", __func__);
return EINVAL;
}
if (IWN_FW_API(rev) >= 3) {
/* Skip build number (version 2 header). */
hdrlen += 4;
ptr++;
}
if (fw->size < hdrlen) {
device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
__func__, fw->size);
return EINVAL;
}
fw->main.textsz = le32toh(*ptr++);
fw->main.datasz = le32toh(*ptr++);
fw->init.textsz = le32toh(*ptr++);
fw->init.datasz = le32toh(*ptr++);
fw->boot.textsz = le32toh(*ptr++);
/* Check that all firmware sections fit. */
if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
__func__, fw->size);
return EINVAL;
}
/* Get pointers to firmware sections. */
fw->main.text = (const uint8_t *)ptr;
fw->main.data = fw->main.text + fw->main.textsz;
fw->init.text = fw->main.data + fw->main.datasz;
fw->init.data = fw->init.text + fw->init.textsz;
fw->boot.text = fw->init.data + fw->init.datasz;
return 0;
}
/*
* Extract text and data sections from a TLV firmware image.
*/
static int
iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
uint16_t alt)
{
const struct iwn_fw_tlv_hdr *hdr;
const struct iwn_fw_tlv *tlv;
const uint8_t *ptr, *end;
uint64_t altmask;
uint32_t len, tmp;
if (fw->size < sizeof (*hdr)) {
device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
__func__, fw->size);
return EINVAL;
}
hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
__func__, le32toh(hdr->signature));
return EINVAL;
}
DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
le32toh(hdr->build));
/*
* Select the closest supported alternative that is less than
* or equal to the specified one.
*/
altmask = le64toh(hdr->altmask);
while (alt > 0 && !(altmask & (1ULL << alt)))
alt--; /* Downgrade. */
DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
ptr = (const uint8_t *)(hdr + 1);
end = (const uint8_t *)(fw->data + fw->size);
/* Parse type-length-value fields. */
while (ptr + sizeof (*tlv) <= end) {
tlv = (const struct iwn_fw_tlv *)ptr;
len = le32toh(tlv->len);
ptr += sizeof (*tlv);
if (ptr + len > end) {
device_printf(sc->sc_dev,
"%s: firmware too short: %zu bytes\n", __func__,
fw->size);
return EINVAL;
}
/* Skip other alternatives. */
if (tlv->alt != 0 && tlv->alt != htole16(alt))
goto next;
switch (le16toh(tlv->type)) {
case IWN_FW_TLV_MAIN_TEXT:
fw->main.text = ptr;
fw->main.textsz = len;
break;
case IWN_FW_TLV_MAIN_DATA:
fw->main.data = ptr;
fw->main.datasz = len;
break;
case IWN_FW_TLV_INIT_TEXT:
fw->init.text = ptr;
fw->init.textsz = len;
break;
case IWN_FW_TLV_INIT_DATA:
fw->init.data = ptr;
fw->init.datasz = len;
break;
case IWN_FW_TLV_BOOT_TEXT:
fw->boot.text = ptr;
fw->boot.textsz = len;
break;
case IWN_FW_TLV_ENH_SENS:
if (!len)
sc->sc_flags |= IWN_FLAG_ENH_SENS;
break;
case IWN_FW_TLV_PHY_CALIB:
tmp = htole32(*ptr);
if (tmp < 253) {
sc->reset_noise_gain = tmp;
sc->noise_gain = tmp + 1;
}
break;
default:
DPRINTF(sc, IWN_DEBUG_RESET,
"TLV type %d not handled\n", le16toh(tlv->type));
break;
}
next: /* TLV fields are 32-bit aligned. */
ptr += (len + 3) & ~3;
}
return 0;
}
static int
iwn_read_firmware(struct iwn_softc *sc)
{
struct iwn_fw_info *fw = &sc->fw;
int error;
IWN_UNLOCK(sc);
memset(fw, 0, sizeof (*fw));
/* Read firmware image from filesystem. */
sc->fw_fp = firmware_get(sc->fwname);
if (sc->fw_fp == NULL) {
device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
__func__, sc->fwname);
IWN_LOCK(sc);
return EINVAL;
}
IWN_LOCK(sc);
fw->size = sc->fw_fp->datasize;
fw->data = (const uint8_t *)sc->fw_fp->data;
if (fw->size < sizeof (uint32_t)) {
device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
__func__, fw->size);
firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
sc->fw_fp = NULL;
return EINVAL;
}
/* Retrieve text and data sections. */
if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
error = iwn_read_firmware_leg(sc, fw);
else
error = iwn_read_firmware_tlv(sc, fw, 1);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not read firmware sections, error %d\n",
__func__, error);
firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
sc->fw_fp = NULL;
return error;
}
/* Make sure text and data sections fit in hardware memory. */
if (fw->main.textsz > sc->fw_text_maxsz ||
fw->main.datasz > sc->fw_data_maxsz ||
fw->init.textsz > sc->fw_text_maxsz ||
fw->init.datasz > sc->fw_data_maxsz ||
fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
(fw->boot.textsz & 3) != 0) {
device_printf(sc->sc_dev, "%s: firmware sections too large\n",
__func__);
firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
sc->fw_fp = NULL;
return EINVAL;
}
/* We can proceed with loading the firmware. */
return 0;
}
static int
iwn_clock_wait(struct iwn_softc *sc)
{
int ntries;
/* Set "initialization complete" bit. */
IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
/* Wait for clock stabilization. */
for (ntries = 0; ntries < 2500; ntries++) {
if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
return 0;
DELAY(10);
}
device_printf(sc->sc_dev,
"%s: timeout waiting for clock stabilization\n", __func__);
return ETIMEDOUT;
}
static int
iwn_apm_init(struct iwn_softc *sc)
{
uint32_t reg;
int error;
/* Disable L0s exit timer (NMI bug workaround). */
IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
/* Don't wait for ICH L0s (ICH bug workaround). */
IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
/* Set FH wait threshold to max (HW bug under stress workaround). */
IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
/* Enable HAP INTA to move adapter from L1a to L0s. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
/* Retrieve PCIe Active State Power Management (ASPM). */
reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
if (reg & 0x02) /* L1 Entry enabled. */
IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
else
IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
sc->hw_type <= IWN_HW_REV_TYPE_1000)
IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
/* Wait for clock stabilization before accessing prph. */
if ((error = iwn_clock_wait(sc)) != 0)
return error;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
/* Enable DMA and BSM (Bootstrap State Machine). */
iwn_prph_write(sc, IWN_APMG_CLK_EN,
IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
} else {
/* Enable DMA. */
iwn_prph_write(sc, IWN_APMG_CLK_EN,
IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
}
DELAY(20);
/* Disable L1-Active. */
iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
iwn_nic_unlock(sc);
return 0;
}
static void
iwn_apm_stop_master(struct iwn_softc *sc)
{
int ntries;
/* Stop busmaster DMA activity. */
IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
for (ntries = 0; ntries < 100; ntries++) {
if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
return;
DELAY(10);
}
device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
}
static void
iwn_apm_stop(struct iwn_softc *sc)
{
iwn_apm_stop_master(sc);
/* Reset the entire device. */
IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
DELAY(10);
/* Clear "initialization complete" bit. */
IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
}
static int
iwn4965_nic_config(struct iwn_softc *sc)
{
if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
/*
* I don't believe this to be correct but this is what the
* vendor driver is doing. Probably the bits should not be
* shifted in IWN_RFCFG_*.
*/
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_RFCFG_TYPE(sc->rfcfg) |
IWN_RFCFG_STEP(sc->rfcfg) |
IWN_RFCFG_DASH(sc->rfcfg));
}
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
return 0;
}
static int
iwn5000_nic_config(struct iwn_softc *sc)
{
uint32_t tmp;
int error;
if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_RFCFG_TYPE(sc->rfcfg) |
IWN_RFCFG_STEP(sc->rfcfg) |
IWN_RFCFG_DASH(sc->rfcfg));
}
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
/*
* Select first Switching Voltage Regulator (1.32V) to
* solve a stability issue related to noisy DC2DC line
* in the silicon of 1000 Series.
*/
tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
}
iwn_nic_unlock(sc);
if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
/* Use internal power amplifier only. */
IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
}
if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
/* Indicate that ROM calibration version is >=6. */
IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
}
if (sc->hw_type == IWN_HW_REV_TYPE_6005)
IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
return 0;
}
/*
* Take NIC ownership over Intel Active Management Technology (AMT).
*/
static int
iwn_hw_prepare(struct iwn_softc *sc)
{
int ntries;
/* Check if hardware is ready. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
for (ntries = 0; ntries < 5; ntries++) {
if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_NIC_READY)
return 0;
DELAY(10);
}
/* Hardware not ready, force into ready state. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
for (ntries = 0; ntries < 15000; ntries++) {
if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_PREPARE_DONE))
break;
DELAY(10);
}
if (ntries == 15000)
return ETIMEDOUT;
/* Hardware should be ready now. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
for (ntries = 0; ntries < 5; ntries++) {
if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_NIC_READY)
return 0;
DELAY(10);
}
return ETIMEDOUT;
}
static int
iwn_hw_init(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
int error, chnl, qid;
/* Clear pending interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
if ((error = iwn_apm_init(sc)) != 0) {
device_printf(sc->sc_dev,
"%s: could not power ON adapter, error %d\n", __func__,
error);
return error;
}
/* Select VMAIN power source. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
iwn_nic_unlock(sc);
/* Perform adapter-specific initialization. */
if ((error = ops->nic_config(sc)) != 0)
return error;
/* Initialize RX ring. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
/* Set physical address of RX ring (256-byte aligned). */
IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
/* Set physical address of RX status (16-byte aligned). */
IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
/* Enable RX. */
IWN_WRITE(sc, IWN_FH_RX_CONFIG,
IWN_FH_RX_CONFIG_ENA |
IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
IWN_FH_RX_CONFIG_IRQ_DST_HOST |
IWN_FH_RX_CONFIG_SINGLE_FRAME |
IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
iwn_nic_unlock(sc);
IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Initialize TX scheduler. */
iwn_prph_write(sc, sc->sched_txfact_addr, 0);
/* Set physical address of "keep warm" page (16-byte aligned). */
IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
/* Initialize TX rings. */
for (qid = 0; qid < sc->ntxqs; qid++) {
struct iwn_tx_ring *txq = &sc->txq[qid];
/* Set physical address of TX ring (256-byte aligned). */
IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
txq->desc_dma.paddr >> 8);
}
iwn_nic_unlock(sc);
/* Enable DMA channels. */
for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
IWN_FH_TX_CONFIG_DMA_ENA |
IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
}
/* Clear "radio off" and "commands blocked" bits. */
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
/* Clear pending interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
/* Enable interrupt coalescing. */
IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
/* Enable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
/* _Really_ make sure "radio off" bit is cleared! */
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
/* Enable shadow registers. */
if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
if ((error = ops->load_firmware(sc)) != 0) {
device_printf(sc->sc_dev,
"%s: could not load firmware, error %d\n", __func__,
error);
return error;
}
/* Wait at most one second for firmware alive notification. */
if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
device_printf(sc->sc_dev,
"%s: timeout waiting for adapter to initialize, error %d\n",
__func__, error);
return error;
}
/* Do post-firmware initialization. */
return ops->post_alive(sc);
}
static void
iwn_hw_stop(struct iwn_softc *sc)
{
int chnl, qid, ntries;
IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
/* Disable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, 0);
IWN_WRITE(sc, IWN_INT, 0xffffffff);
IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
sc->sc_flags &= ~IWN_FLAG_USE_ICT;
/* Make sure we no longer hold the NIC lock. */
iwn_nic_unlock(sc);
/* Stop TX scheduler. */
iwn_prph_write(sc, sc->sched_txfact_addr, 0);
/* Stop all DMA channels. */
if (iwn_nic_lock(sc) == 0) {
for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
for (ntries = 0; ntries < 200; ntries++) {
if (IWN_READ(sc, IWN_FH_TX_STATUS) &
IWN_FH_TX_STATUS_IDLE(chnl))
break;
DELAY(10);
}
}
iwn_nic_unlock(sc);
}
/* Stop RX ring. */
iwn_reset_rx_ring(sc, &sc->rxq);
/* Reset all TX rings. */
for (qid = 0; qid < sc->ntxqs; qid++)
iwn_reset_tx_ring(sc, &sc->txq[qid]);
if (iwn_nic_lock(sc) == 0) {
iwn_prph_write(sc, IWN_APMG_CLK_DIS,
IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
iwn_nic_unlock(sc);
}
DELAY(5);
/* Power OFF adapter. */
iwn_apm_stop(sc);
}
static void
iwn_radio_on(void *arg0, int pending)
{
struct iwn_softc *sc = arg0;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
if (vap != NULL) {
iwn_init(sc);
ieee80211_init(vap);
}
}
static void
iwn_radio_off(void *arg0, int pending)
{
struct iwn_softc *sc = arg0;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
iwn_stop(sc);
if (vap != NULL)
ieee80211_stop(vap);
/* Enable interrupts to get RF toggle notification. */
IWN_LOCK(sc);
IWN_WRITE(sc, IWN_INT, 0xffffffff);
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
IWN_UNLOCK(sc);
}
static void
iwn_init_locked(struct iwn_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
int error;
IWN_LOCK_ASSERT(sc);
if ((error = iwn_hw_prepare(sc)) != 0) {
device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
__func__, error);
goto fail;
}
/* Initialize interrupt mask to default value. */
sc->int_mask = IWN_INT_MASK_DEF;
sc->sc_flags &= ~IWN_FLAG_USE_ICT;
/* Check that the radio is not disabled by hardware switch. */
if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
device_printf(sc->sc_dev,
"radio is disabled by hardware switch\n");
/* Enable interrupts to get RF toggle notifications. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
return;
}
/* Read firmware images from the filesystem. */
if ((error = iwn_read_firmware(sc)) != 0) {
device_printf(sc->sc_dev,
"%s: could not read firmware, error %d\n", __func__,
error);
goto fail;
}
/* Initialize hardware and upload firmware. */
error = iwn_hw_init(sc);
firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
sc->fw_fp = NULL;
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not initialize hardware, error %d\n", __func__,
error);
goto fail;
}
/* Configure adapter now that it is ready. */
if ((error = iwn_config(sc)) != 0) {
device_printf(sc->sc_dev,
"%s: could not configure device, error %d\n", __func__,
error);
goto fail;
}
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
return;
fail: iwn_stop_locked(sc);
}
static void
iwn_init(void *arg)
{
struct iwn_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
IWN_LOCK(sc);
iwn_init_locked(sc);
IWN_UNLOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ieee80211_start_all(ic);
}
static void
iwn_stop_locked(struct iwn_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
IWN_LOCK_ASSERT(sc);
sc->sc_tx_timer = 0;
callout_stop(&sc->watchdog_to);
callout_stop(&sc->calib_to);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
/* Power OFF hardware. */
iwn_hw_stop(sc);
}
static void
iwn_stop(struct iwn_softc *sc)
{
IWN_LOCK(sc);
iwn_stop_locked(sc);
IWN_UNLOCK(sc);
}
/*
* Callback from net80211 to start a scan.
*/
static void
iwn_scan_start(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct iwn_softc *sc = ifp->if_softc;
IWN_LOCK(sc);
/* make the link LED blink while we're scanning */
iwn_set_led(sc, IWN_LED_LINK, 20, 2);
IWN_UNLOCK(sc);
}
/*
* Callback from net80211 to terminate a scan.
*/
static void
iwn_scan_end(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
IWN_LOCK(sc);
if (vap->iv_state == IEEE80211_S_RUN) {
/* Set link LED to ON status if we are associated */
iwn_set_led(sc, IWN_LED_LINK, 0, 1);
}
IWN_UNLOCK(sc);
}
/*
* Callback from net80211 to force a channel change.
*/
static void
iwn_set_channel(struct ieee80211com *ic)
{
const struct ieee80211_channel *c = ic->ic_curchan;
struct ifnet *ifp = ic->ic_ifp;
struct iwn_softc *sc = ifp->if_softc;
IWN_LOCK(sc);
sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
IWN_UNLOCK(sc);
}
/*
* Callback from net80211 to start scanning of the current channel.
*/
static void
iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
{
struct ieee80211vap *vap = ss->ss_vap;
struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
int error;
IWN_LOCK(sc);
error = iwn_scan(sc);
IWN_UNLOCK(sc);
if (error != 0)
ieee80211_cancel_scan(vap);
}
/*
* Callback from net80211 to handle the minimum dwell time being met.
* The intent is to terminate the scan but we just let the firmware
* notify us when it's finished as we have no safe way to abort it.
*/
static void
iwn_scan_mindwell(struct ieee80211_scan_state *ss)
{
/* NB: don't try to abort scan; wait for firmware to finish */
}
static void
iwn_hw_reset(void *arg0, int pending)
{
struct iwn_softc *sc = arg0;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
iwn_stop(sc);
iwn_init(sc);
ieee80211_notify_radio(ic, 1);
}