915 lines
34 KiB
C
915 lines
34 KiB
C
/*
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2002-2008 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* This is almost the same as ar5416_reset.c but uses the v4k EEPROM and
|
|
* supports only 2Ghz operation.
|
|
*/
|
|
|
|
#include "opt_ah.h"
|
|
|
|
#include "ah.h"
|
|
#include "ah_internal.h"
|
|
#include "ah_devid.h"
|
|
|
|
#include "ah_eeprom_v14.h"
|
|
#include "ah_eeprom_v4k.h"
|
|
|
|
#include "ar9002/ar9285.h"
|
|
#include "ar5416/ar5416.h"
|
|
#include "ar5416/ar5416reg.h"
|
|
#include "ar5416/ar5416phy.h"
|
|
|
|
#include "ar9002/ar9285phy.h"
|
|
|
|
/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
|
|
#define EEP_MINOR(_ah) \
|
|
(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
|
|
#define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
|
|
#define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
|
|
|
|
/* Additional Time delay to wait after activiting the Base band */
|
|
#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
|
|
#define PLL_SETTLE_DELAY 300 /* 300 usec */
|
|
#define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
|
|
|
|
static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah,
|
|
struct ar5416eeprom_4k *pEepData,
|
|
const struct ieee80211_channel *chan, int16_t *ratesArray,
|
|
uint16_t cfgCtl, uint16_t AntennaReduction,
|
|
uint16_t twiceMaxRegulatoryPower,
|
|
uint16_t powerLimit);
|
|
static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah,
|
|
struct ar5416eeprom_4k *pEepData,
|
|
const struct ieee80211_channel *chan,
|
|
int16_t *pTxPowerIndexOffset);
|
|
static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
|
|
const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet,
|
|
uint8_t * bChans, uint16_t availPiers,
|
|
uint16_t tPdGainOverlap, int16_t *pMinCalPower,
|
|
uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
|
|
uint16_t numXpdGains);
|
|
static uint16_t ar9285GetMaxEdgePower(uint16_t, CAL_CTL_EDGES *);
|
|
|
|
/* XXX gag, this is sick */
|
|
typedef enum Ar5416_Rates {
|
|
rate6mb, rate9mb, rate12mb, rate18mb,
|
|
rate24mb, rate36mb, rate48mb, rate54mb,
|
|
rate1l, rate2l, rate2s, rate5_5l,
|
|
rate5_5s, rate11l, rate11s, rateXr,
|
|
rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
|
|
rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
|
|
rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
|
|
rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
|
|
rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
|
|
Ar5416RateSize
|
|
} AR5416_RATES;
|
|
|
|
HAL_BOOL
|
|
ar9285SetTransmitPower(struct ath_hal *ah,
|
|
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
|
|
{
|
|
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
|
|
#define N(a) (sizeof (a) / sizeof (a[0]))
|
|
|
|
MODAL_EEP4K_HEADER *pModal;
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
int16_t ratesArray[Ar5416RateSize];
|
|
int16_t txPowerIndexOffset = 0;
|
|
uint8_t ht40PowerIncForPdadc = 2;
|
|
int i;
|
|
|
|
uint16_t cfgCtl;
|
|
uint16_t powerLimit;
|
|
uint16_t twiceAntennaReduction;
|
|
uint16_t twiceMaxRegulatoryPower;
|
|
int16_t maxPower;
|
|
HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
struct ar5416eeprom_4k *pEepData = &ee->ee_base;
|
|
|
|
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
|
|
|
|
/* Setup info for the actual eeprom */
|
|
OS_MEMZERO(ratesArray, sizeof(ratesArray));
|
|
cfgCtl = ath_hal_getctl(ah, chan);
|
|
powerLimit = chan->ic_maxregpower * 2;
|
|
twiceAntennaReduction = chan->ic_maxantgain;
|
|
twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
|
|
pModal = &pEepData->modalHeader;
|
|
HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
|
|
__func__,chan->ic_freq, cfgCtl );
|
|
|
|
if (IS_EEP_MINOR_V2(ah)) {
|
|
ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
|
|
}
|
|
|
|
if (!ar9285SetPowerPerRateTable(ah, pEepData, chan,
|
|
&ratesArray[0],cfgCtl,
|
|
twiceAntennaReduction,
|
|
twiceMaxRegulatoryPower, powerLimit)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: unable to set tx power per rate table\n", __func__);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
if (!ar9285SetPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
|
|
__func__);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
|
|
maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
|
|
|
|
if (IEEE80211_IS_CHAN_HT40(chan)) {
|
|
maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
|
|
}
|
|
|
|
ahp->ah_tx6PowerInHalfDbm = maxPower;
|
|
AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
|
|
ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
|
|
|
|
/*
|
|
* txPowerIndexOffset is set by the SetPowerTable() call -
|
|
* adjust the rate table (0 offset if rates EEPROM not loaded)
|
|
*/
|
|
for (i = 0; i < N(ratesArray); i++) {
|
|
ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
|
|
/* -5 dBm offset for Merlin and later; this includes Kite */
|
|
ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
|
|
if (ratesArray[i] > AR5416_MAX_RATE_POWER)
|
|
ratesArray[i] = AR5416_MAX_RATE_POWER;
|
|
if (ratesArray[i] < 0)
|
|
ratesArray[i] = 0;
|
|
}
|
|
|
|
#ifdef AH_EEPROM_DUMP
|
|
ar5416PrintPowerPerRate(ah, ratesArray);
|
|
#endif
|
|
|
|
/* Write the OFDM power per rate set */
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
|
|
POW_SM(ratesArray[rate18mb], 24)
|
|
| POW_SM(ratesArray[rate12mb], 16)
|
|
| POW_SM(ratesArray[rate9mb], 8)
|
|
| POW_SM(ratesArray[rate6mb], 0)
|
|
);
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
|
|
POW_SM(ratesArray[rate54mb], 24)
|
|
| POW_SM(ratesArray[rate48mb], 16)
|
|
| POW_SM(ratesArray[rate36mb], 8)
|
|
| POW_SM(ratesArray[rate24mb], 0)
|
|
);
|
|
|
|
/* Write the CCK power per rate set */
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
|
|
POW_SM(ratesArray[rate2s], 24)
|
|
| POW_SM(ratesArray[rate2l], 16)
|
|
| POW_SM(ratesArray[rateXr], 8) /* XR target power */
|
|
| POW_SM(ratesArray[rate1l], 0)
|
|
);
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
|
|
POW_SM(ratesArray[rate11s], 24)
|
|
| POW_SM(ratesArray[rate11l], 16)
|
|
| POW_SM(ratesArray[rate5_5s], 8)
|
|
| POW_SM(ratesArray[rate5_5l], 0)
|
|
);
|
|
HALDEBUG(ah, HAL_DEBUG_RESET,
|
|
"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
|
|
__func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
|
|
OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
|
|
|
|
/* Write the HT20 power per rate set */
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
|
|
POW_SM(ratesArray[rateHt20_3], 24)
|
|
| POW_SM(ratesArray[rateHt20_2], 16)
|
|
| POW_SM(ratesArray[rateHt20_1], 8)
|
|
| POW_SM(ratesArray[rateHt20_0], 0)
|
|
);
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
|
|
POW_SM(ratesArray[rateHt20_7], 24)
|
|
| POW_SM(ratesArray[rateHt20_6], 16)
|
|
| POW_SM(ratesArray[rateHt20_5], 8)
|
|
| POW_SM(ratesArray[rateHt20_4], 0)
|
|
);
|
|
|
|
if (IEEE80211_IS_CHAN_HT40(chan)) {
|
|
/* Write the HT40 power per rate set */
|
|
/* Correct PAR difference between HT40 and HT20/LEGACY */
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
|
|
POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
|
|
| POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
|
|
| POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
|
|
| POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
|
|
);
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
|
|
POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
|
|
| POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
|
|
| POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
|
|
| POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
|
|
);
|
|
/* Write the Dup/Ext 40 power per rate set */
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
|
|
POW_SM(ratesArray[rateExtOfdm], 24)
|
|
| POW_SM(ratesArray[rateExtCck], 16)
|
|
| POW_SM(ratesArray[rateDupOfdm], 8)
|
|
| POW_SM(ratesArray[rateDupCck], 0)
|
|
);
|
|
}
|
|
|
|
return AH_TRUE;
|
|
#undef POW_SM
|
|
#undef N
|
|
}
|
|
|
|
static void
|
|
ar9285SetBoardGain(struct ath_hal *ah, const MODAL_EEP4K_HEADER *pModal,
|
|
const struct ar5416eeprom_4k *eep, uint8_t txRxAttenLocal)
|
|
{
|
|
OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
|
|
pModal->antCtrlChain[0]);
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0),
|
|
(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)) &
|
|
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
|
|
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
|
|
SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
|
|
SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
|
|
|
|
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
|
|
AR5416_EEP_MINOR_VER_3) {
|
|
txRxAttenLocal = pModal->txRxAttenCh[0];
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
|
|
|
|
/* Set the block 1 value to block 0 value */
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
|
|
pModal->bswMargin[0]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
|
|
pModal->xatten2Margin[0]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
|
|
}
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
|
|
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
|
|
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
|
|
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
|
|
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
|
|
}
|
|
|
|
/*
|
|
* Read EEPROM header info and program the device for correct operation
|
|
* given the channel value.
|
|
*/
|
|
HAL_BOOL
|
|
ar9285SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
const struct ar5416eeprom_4k *eep = &ee->ee_base;
|
|
const MODAL_EEP4K_HEADER *pModal;
|
|
uint8_t txRxAttenLocal;
|
|
uint8_t ob[5], db1[5], db2[5];
|
|
uint8_t ant_div_control1, ant_div_control2;
|
|
uint32_t regVal;
|
|
|
|
pModal = &eep->modalHeader;
|
|
txRxAttenLocal = 23;
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
|
|
|
|
/* Single chain for 4K EEPROM*/
|
|
ar9285SetBoardGain(ah, pModal, eep, txRxAttenLocal);
|
|
|
|
/* Initialize Ant Diversity settings from EEPROM */
|
|
if (pModal->version >= 3) {
|
|
ant_div_control1 = pModal->antdiv_ctl1;
|
|
ant_div_control2 = pModal->antdiv_ctl2;
|
|
|
|
regVal = OS_REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
|
|
regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
|
|
|
|
regVal |= SM(ant_div_control1,
|
|
AR_PHY_9285_ANT_DIV_CTL);
|
|
regVal |= SM(ant_div_control2,
|
|
AR_PHY_9285_ANT_DIV_ALT_LNACONF);
|
|
regVal |= SM((ant_div_control2 >> 2),
|
|
AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
|
|
regVal |= SM((ant_div_control1 >> 1),
|
|
AR_PHY_9285_ANT_DIV_ALT_GAINTB);
|
|
regVal |= SM((ant_div_control1 >> 2),
|
|
AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
|
|
regVal = OS_REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
|
|
regVal = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
|
|
regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
|
|
regVal |= SM((ant_div_control1 >> 3),
|
|
AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
|
|
regVal = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
|
|
}
|
|
|
|
if (pModal->version >= 2) {
|
|
ob[0] = pModal->ob_0;
|
|
ob[1] = pModal->ob_1;
|
|
ob[2] = pModal->ob_2;
|
|
ob[3] = pModal->ob_3;
|
|
ob[4] = pModal->ob_4;
|
|
|
|
db1[0] = pModal->db1_0;
|
|
db1[1] = pModal->db1_1;
|
|
db1[2] = pModal->db1_2;
|
|
db1[3] = pModal->db1_3;
|
|
db1[4] = pModal->db1_4;
|
|
|
|
db2[0] = pModal->db2_0;
|
|
db2[1] = pModal->db2_1;
|
|
db2[2] = pModal->db2_2;
|
|
db2[3] = pModal->db2_3;
|
|
db2[4] = pModal->db2_4;
|
|
} else if (pModal->version == 1) {
|
|
ob[0] = pModal->ob_0;
|
|
ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
|
|
db1[0] = pModal->db1_0;
|
|
db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
|
|
db2[0] = pModal->db2_0;
|
|
db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
|
|
} else {
|
|
int i;
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
ob[i] = pModal->ob_0;
|
|
db1[i] = pModal->db1_0;
|
|
db2[i] = pModal->db1_0;
|
|
}
|
|
}
|
|
|
|
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_0, ob[0]);
|
|
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_1, ob[1]);
|
|
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_2, ob[2]);
|
|
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_3, ob[3]);
|
|
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_4, ob[4]);
|
|
|
|
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_0, db1[0]);
|
|
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_1, db1[1]);
|
|
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_2, db1[2]);
|
|
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_3, db1[3]);
|
|
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_4, db1[4]);
|
|
|
|
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_0, db2[0]);
|
|
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_1, db2[1]);
|
|
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_2, db2[2]);
|
|
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_3, db2[3]);
|
|
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_4, db2[4]);
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
|
|
pModal->switchSettling);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
|
|
pModal->adcDesiredSize);
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
|
|
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
|
|
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
|
|
SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
|
|
SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
|
|
pModal->txEndToRxOn);
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
|
|
pModal->thresh62);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
|
|
pModal->thresh62);
|
|
|
|
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
|
|
AR5416_EEP_MINOR_VER_2) {
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
|
|
pModal->txFrameToDataStart);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
|
|
pModal->txFrameToPaOn);
|
|
}
|
|
|
|
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
|
|
AR5416_EEP_MINOR_VER_3) {
|
|
if (IEEE80211_IS_CHAN_HT40(chan))
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
|
|
AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
|
|
}
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Helper functions common for AP/CB/XB
|
|
*/
|
|
|
|
static HAL_BOOL
|
|
ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
|
|
const struct ieee80211_channel *chan,
|
|
int16_t *ratesArray, uint16_t cfgCtl,
|
|
uint16_t AntennaReduction,
|
|
uint16_t twiceMaxRegulatoryPower,
|
|
uint16_t powerLimit)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
/* Local defines to distinguish between extension and control CTL's */
|
|
#define EXT_ADDITIVE (0x8000)
|
|
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
|
|
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
|
|
|
|
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
|
|
int i;
|
|
int16_t twiceLargestAntenna;
|
|
CAL_CTL_DATA_4K *rep;
|
|
CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
|
|
CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
|
|
CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
|
|
int16_t scaledPower, minCtlPower;
|
|
|
|
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
|
|
static const uint16_t ctlModesFor11g[] = {
|
|
CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
|
|
};
|
|
const uint16_t *pCtlMode;
|
|
uint16_t numCtlModes, ctlMode, freq;
|
|
CHAN_CENTERS centers;
|
|
|
|
ar5416GetChannelCenters(ah, chan, ¢ers);
|
|
|
|
/* Compute TxPower reduction due to Antenna Gain */
|
|
|
|
twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
|
|
twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
|
|
|
|
/* XXX setup for 5212 use (really used?) */
|
|
ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
|
|
|
|
/*
|
|
* scaledPower is the minimum of the user input power level and
|
|
* the regulatory allowed power level
|
|
*/
|
|
scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
|
|
|
|
/* Get target powers from EEPROM - our baseline for TX Power */
|
|
/* Setup for CTL modes */
|
|
numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
|
|
pCtlMode = ctlModesFor11g;
|
|
|
|
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
|
|
AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
|
|
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
|
|
AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
|
|
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
|
|
AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
|
|
|
|
if (IEEE80211_IS_CHAN_HT40(chan)) {
|
|
numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
|
|
|
|
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
|
|
AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
|
|
/* Get target powers for extension channels */
|
|
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
|
|
AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
|
|
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
|
|
AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
|
|
}
|
|
|
|
/*
|
|
* For MIMO, need to apply regulatory caps individually across dynamically
|
|
* running modes: CCK, OFDM, HT20, HT40
|
|
*
|
|
* The outer loop walks through each possible applicable runtime mode.
|
|
* The inner loop walks through each ctlIndex entry in EEPROM.
|
|
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
|
|
*
|
|
*/
|
|
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
|
|
HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
|
|
(pCtlMode[ctlMode] == CTL_2GHT40);
|
|
if (isHt40CtlMode) {
|
|
freq = centers.ctl_center;
|
|
} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
|
|
freq = centers.ext_center;
|
|
} else {
|
|
freq = centers.ctl_center;
|
|
}
|
|
|
|
/* walk through each CTL index stored in EEPROM */
|
|
for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
|
|
uint16_t twiceMinEdgePower;
|
|
|
|
/* compare test group from regulatory channel list with test mode from pCtlMode list */
|
|
if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
|
|
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
|
|
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
|
|
rep = &(pEepData->ctlData[i]);
|
|
twiceMinEdgePower = ar9285GetMaxEdgePower(freq,
|
|
rep->ctlEdges[
|
|
owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1]);
|
|
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
|
|
/* Find the minimum of all CTL edge powers that apply to this channel */
|
|
twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
|
|
} else {
|
|
/* specific */
|
|
twiceMaxEdgePower = twiceMinEdgePower;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
|
|
/* Apply ctl mode to correct target power set */
|
|
switch(pCtlMode[ctlMode]) {
|
|
case CTL_11B:
|
|
for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
|
|
targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_11A:
|
|
case CTL_11G:
|
|
for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
|
|
targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_5GHT20:
|
|
case CTL_2GHT20:
|
|
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
|
|
targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_11B_EXT:
|
|
targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
|
|
break;
|
|
case CTL_11G_EXT:
|
|
targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
|
|
break;
|
|
case CTL_5GHT40:
|
|
case CTL_2GHT40:
|
|
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
|
|
targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
|
|
}
|
|
break;
|
|
default:
|
|
return AH_FALSE;
|
|
break;
|
|
}
|
|
} /* end ctl mode checking */
|
|
|
|
/* Set rates Array from collected data */
|
|
ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
|
|
ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
|
|
ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
|
|
ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
|
|
ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
|
|
|
|
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
|
|
ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
|
|
}
|
|
|
|
ratesArray[rate1l] = targetPowerCck.tPow2x[0];
|
|
ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
|
|
ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
|
|
ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
|
|
if (IEEE80211_IS_CHAN_HT40(chan)) {
|
|
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
|
|
ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
|
|
}
|
|
ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
|
|
ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
|
|
ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
|
|
ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
|
|
}
|
|
}
|
|
return AH_TRUE;
|
|
#undef EXT_ADDITIVE
|
|
#undef CTL_11G_EXT
|
|
#undef CTL_11B_EXT
|
|
#undef SUB_NUM_CTL_MODES_AT_2G_40
|
|
#undef N
|
|
}
|
|
|
|
/**************************************************************************
|
|
* fbin2freq
|
|
*
|
|
* Get channel value from binary representation held in eeprom
|
|
* RETURNS: the frequency in MHz
|
|
*/
|
|
static uint16_t
|
|
fbin2freq(uint8_t fbin)
|
|
{
|
|
/*
|
|
* Reserved value 0xFF provides an empty definition both as
|
|
* an fbin and as a frequency - do not convert
|
|
*/
|
|
if (fbin == AR5416_BCHAN_UNUSED) {
|
|
return fbin;
|
|
}
|
|
|
|
return (uint16_t)(2300 + fbin);
|
|
}
|
|
|
|
/*
|
|
* XXX almost the same as ar5416GetMaxEdgePower.
|
|
*/
|
|
static uint16_t
|
|
ar9285GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower)
|
|
{
|
|
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
|
|
int i;
|
|
|
|
/* Get the edge power */
|
|
for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
|
|
/*
|
|
* If there's an exact channel match or an inband flag set
|
|
* on the lower channel use the given rdEdgePower
|
|
*/
|
|
if (freq == fbin2freq(pRdEdgesPower[i].bChannel)) {
|
|
twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
|
|
break;
|
|
} else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel))) {
|
|
if (fbin2freq(pRdEdgesPower[i - 1].bChannel) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
|
|
twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
|
|
}
|
|
/* Leave loop - no more affecting edges possible in this monotonic increasing list */
|
|
break;
|
|
}
|
|
}
|
|
HALASSERT(twiceMaxEdgePower > 0);
|
|
return twiceMaxEdgePower;
|
|
}
|
|
|
|
|
|
|
|
static HAL_BOOL
|
|
ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
|
|
const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
|
|
{
|
|
CAL_DATA_PER_FREQ_4K *pRawDataset;
|
|
uint8_t *pCalBChans = AH_NULL;
|
|
uint16_t pdGainOverlap_t2;
|
|
static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
|
|
uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
|
|
uint16_t numPiers, i;
|
|
int16_t tMinCalPower;
|
|
uint16_t numXpdGain, xpdMask;
|
|
uint16_t xpdGainValues[4]; /* v4k eeprom has 2; the other two stay 0 */
|
|
uint32_t regChainOffset;
|
|
|
|
OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
|
|
|
|
xpdMask = pEepData->modalHeader.xpdGain;
|
|
|
|
if (IS_EEP_MINOR_V2(ah)) {
|
|
pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
|
|
} else {
|
|
pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
|
|
}
|
|
|
|
pCalBChans = pEepData->calFreqPier2G;
|
|
numPiers = AR5416_4K_NUM_2G_CAL_PIERS;
|
|
numXpdGain = 0;
|
|
|
|
/* Calculate the value of xpdgains from the xpdGain Mask */
|
|
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
|
|
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
|
|
if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) {
|
|
HALASSERT(0);
|
|
break;
|
|
}
|
|
xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
|
|
numXpdGain++;
|
|
}
|
|
}
|
|
|
|
/* Write the detector gain biases and their number */
|
|
ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
|
|
|
|
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
|
|
regChainOffset = ar5416GetRegChainOffset(ah, i);
|
|
if (pEepData->baseEepHeader.txMask & (1 << i)) {
|
|
pRawDataset = pEepData->calPierData2G[i];
|
|
|
|
ar9285GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
|
|
pCalBChans, numPiers,
|
|
pdGainOverlap_t2,
|
|
&tMinCalPower, gainBoundaries,
|
|
pdadcValues, numXpdGain);
|
|
|
|
if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
|
|
/*
|
|
* Note the pdadc table may not start at 0 dBm power, could be
|
|
* negative or greater than 0. Need to offset the power
|
|
* values by the amount of minPower for griffin
|
|
*/
|
|
ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, gainBoundaries);
|
|
}
|
|
|
|
/* Write the power values into the baseband power table */
|
|
ar5416WritePdadcValues(ah, i, pdadcValues);
|
|
}
|
|
}
|
|
*pTxPowerIndexOffset = 0;
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
static void
|
|
ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
|
|
const struct ieee80211_channel *chan,
|
|
CAL_DATA_PER_FREQ_4K *pRawDataSet,
|
|
uint8_t * bChans, uint16_t availPiers,
|
|
uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
|
|
uint8_t * pPDADCValues, uint16_t numXpdGains)
|
|
{
|
|
|
|
int i, j, k;
|
|
int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
|
|
uint16_t idxL, idxR, numPiers; /* Pier indexes */
|
|
|
|
/* filled out Vpd table for all pdGains (chanL) */
|
|
static uint8_t vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
|
|
|
|
/* filled out Vpd table for all pdGains (chanR) */
|
|
static uint8_t vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
|
|
|
|
/* filled out Vpd table for all pdGains (interpolated) */
|
|
static uint8_t vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
|
|
|
|
uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
|
|
uint8_t minPwrT4[AR5416_4K_NUM_PD_GAINS];
|
|
uint8_t maxPwrT4[AR5416_4K_NUM_PD_GAINS];
|
|
int16_t vpdStep;
|
|
int16_t tmpVal;
|
|
uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
|
|
HAL_BOOL match;
|
|
int16_t minDelta = 0;
|
|
CHAN_CENTERS centers;
|
|
|
|
ar5416GetChannelCenters(ah, chan, ¢ers);
|
|
|
|
/* Trim numPiers for the number of populated channel Piers */
|
|
for (numPiers = 0; numPiers < availPiers; numPiers++) {
|
|
if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Find pier indexes around the current channel */
|
|
match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
|
|
IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
|
|
|
|
if (match) {
|
|
/* Directly fill both vpd tables from the matching index */
|
|
for (i = 0; i < numXpdGains; i++) {
|
|
minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
|
|
maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
|
|
ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i],
|
|
pRawDataSet[idxL].pwrPdg[i],
|
|
pRawDataSet[idxL].vpdPdg[i],
|
|
AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
|
|
}
|
|
} else {
|
|
for (i = 0; i < numXpdGains; i++) {
|
|
pVpdL = pRawDataSet[idxL].vpdPdg[i];
|
|
pPwrL = pRawDataSet[idxL].pwrPdg[i];
|
|
pVpdR = pRawDataSet[idxR].vpdPdg[i];
|
|
pPwrR = pRawDataSet[idxR].pwrPdg[i];
|
|
|
|
/* Start Vpd interpolation from the max of the minimum powers */
|
|
minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
|
|
|
|
/* End Vpd interpolation from the min of the max powers */
|
|
maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
|
|
HALASSERT(maxPwrT4[i] > minPwrT4[i]);
|
|
|
|
/* Fill pier Vpds */
|
|
ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL,
|
|
AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
|
|
ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR,
|
|
AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
|
|
|
|
/* Interpolate the final vpd */
|
|
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
|
|
vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
|
|
IEEE80211_IS_CHAN_2GHZ(chan)),
|
|
bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
|
|
}
|
|
}
|
|
}
|
|
*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
|
|
|
|
k = 0; /* index for the final table */
|
|
for (i = 0; i < numXpdGains; i++) {
|
|
if (i == (numXpdGains - 1)) {
|
|
pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
|
|
} else {
|
|
pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
|
|
}
|
|
|
|
pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
|
|
|
|
/* NB: only applies to owl 1.0 */
|
|
if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
|
|
/*
|
|
* fix the gain delta, but get a delta that can be applied to min to
|
|
* keep the upper power values accurate, don't think max needs to
|
|
* be adjusted because should not be at that area of the table?
|
|
*/
|
|
minDelta = pPdGainBoundaries[0] - 23;
|
|
pPdGainBoundaries[0] = 23;
|
|
}
|
|
else {
|
|
minDelta = 0;
|
|
}
|
|
|
|
/* Find starting index for this pdGain */
|
|
if (i == 0) {
|
|
if (AR_SREV_MERLIN_20_OR_LATER(ah))
|
|
ss = (int16_t)(0 - (minPwrT4[i] / 2));
|
|
else
|
|
ss = 0; /* for the first pdGain, start from index 0 */
|
|
} else {
|
|
/* need overlap entries extrapolated below. */
|
|
ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
|
|
}
|
|
vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
|
|
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
|
|
/*
|
|
*-ve ss indicates need to extrapolate data below for this pdGain
|
|
*/
|
|
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
|
|
tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
|
|
pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
|
|
ss++;
|
|
}
|
|
|
|
sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
|
|
tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
|
|
maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
|
|
|
|
while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
|
|
pPDADCValues[k++] = vpdTableI[i][ss++];
|
|
}
|
|
|
|
vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
|
|
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
|
|
/*
|
|
* for last gain, pdGainBoundary == Pmax_t2, so will
|
|
* have to extrapolate
|
|
*/
|
|
if (tgtIndex >= maxIndex) { /* need to extrapolate above */
|
|
while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
|
|
tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
|
|
(ss - maxIndex +1) * vpdStep));
|
|
pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
|
|
ss++;
|
|
}
|
|
} /* extrapolated above */
|
|
} /* for all pdGainUsed */
|
|
|
|
/* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
|
|
while (i < AR5416_PD_GAINS_IN_MASK) {
|
|
pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
|
|
i++;
|
|
}
|
|
|
|
while (k < AR5416_NUM_PDADC_VALUES) {
|
|
pPDADCValues[k] = pPDADCValues[k-1];
|
|
k++;
|
|
}
|
|
return;
|
|
}
|