freebsd-skq/sys/arm/mv/gpio.c
Marcin Wojtas edf9ef7384 Enable Marvell gpio driver to work with many controllers
This patch moves all global data structures into mv_gpio_softc,
and puts device_t parameter to functions calls everywhere where needed.
As a result, we can create multiple driver instances.

Removed names in function declaration to keep style.

Submitted by: Patryk Duda <pdk@semihalf.com>
Obtained from: Semihalf
Sponsored by: Stormshield
Differential Revision: https://reviews.freebsd.org/D14755
2018-04-04 13:20:29 +00:00

1128 lines
27 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2006 Benno Rice.
* Copyright (C) 2008 MARVELL INTERNATIONAL LTD.
* Copyright (c) 2017 Semihalf.
* All rights reserved.
*
* Adapted and extended for Marvell SoCs by Semihalf.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* from: FreeBSD: //depot/projects/arm/src/sys/arm/xscale/pxa2x0/pxa2x0_gpio.c, rev 1
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/interrupt.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/queue.h>
#include <sys/timetc.h>
#include <sys/callout.h>
#include <sys/gpio.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <arm/mv/mvvar.h>
#include <arm/mv/mvreg.h>
#define GPIO_MAX_INTR_COUNT 8
#define GPIO_PINS_PER_REG 32
#define DEBOUNCE_CHECK_MS 1
#define DEBOUNCE_LO_HI_MS 2
#define DEBOUNCE_HI_LO_MS 2
#define DEBOUNCE_CHECK_TICKS ((hz / 1000) * DEBOUNCE_CHECK_MS)
struct mv_gpio_softc {
struct resource * mem_res;
int mem_rid;
struct resource * irq_res[GPIO_MAX_INTR_COUNT];
int irq_rid[GPIO_MAX_INTR_COUNT];
struct intr_event * gpio_events[MV_GPIO_MAX_NPINS];
void *ih_cookie[GPIO_MAX_INTR_COUNT];
bus_space_tag_t bst;
bus_space_handle_t bsh;
struct mtx mutex;
uint8_t pin_num; /* number of GPIO pins */
uint8_t irq_num; /* number of real IRQs occupied by GPIO controller */
struct gpio_pin gpio_setup[MV_GPIO_MAX_NPINS];
/* Used for debouncing. */
uint32_t debounced_state_lo;
uint32_t debounced_state_hi;
struct callout **debounce_callouts;
int *debounce_counters;
};
struct mv_gpio_pindev {
device_t dev;
int pin;
};
static int mv_gpio_probe(device_t);
static int mv_gpio_attach(device_t);
static int mv_gpio_intr(device_t, void *);
static int mv_gpio_init(device_t);
static void mv_gpio_double_edge_init(device_t, int);
static int mv_gpio_debounce_setup(device_t, int);
static int mv_gpio_debounce_prepare(device_t, int);
static int mv_gpio_debounce_init(device_t, int);
static void mv_gpio_debounce_start(device_t, int);
static void mv_gpio_debounce(void *);
static void mv_gpio_debounced_state_set(device_t, int, uint8_t);
static uint32_t mv_gpio_debounced_state_get(device_t, int);
static void mv_gpio_exec_intr_handlers(device_t, uint32_t, int);
static void mv_gpio_intr_handler(device_t, int);
static uint32_t mv_gpio_reg_read(device_t, uint32_t);
static void mv_gpio_reg_write(device_t, uint32_t, uint32_t);
static void mv_gpio_reg_set(device_t, uint32_t, uint32_t);
static void mv_gpio_reg_clear(device_t, uint32_t, uint32_t);
static void mv_gpio_blink(device_t, uint32_t, uint8_t);
static void mv_gpio_polarity(device_t, uint32_t, uint8_t, uint8_t);
static void mv_gpio_level(device_t, uint32_t, uint8_t);
static void mv_gpio_edge(device_t, uint32_t, uint8_t);
static void mv_gpio_out_en(device_t, uint32_t, uint8_t);
static void mv_gpio_int_ack(struct mv_gpio_pindev *);
static void mv_gpio_value_set(device_t, uint32_t, uint8_t);
static uint32_t mv_gpio_value_get(device_t, uint32_t, uint8_t);
static void mv_gpio_intr_mask(struct mv_gpio_pindev *);
static void mv_gpio_intr_unmask(struct mv_gpio_pindev *);
void mv_gpio_finish_intrhandler(struct mv_gpio_pindev *);
int mv_gpio_setup_intrhandler(device_t, const char *,
driver_filter_t *, void (*)(void *), void *,
int, int, void **);
int mv_gpio_configure(device_t, uint32_t, uint32_t, uint32_t);
void mv_gpio_out(device_t, uint32_t, uint8_t, uint8_t);
uint8_t mv_gpio_in(device_t, uint32_t);
#define MV_GPIO_LOCK() mtx_lock_spin(&sc->mutex)
#define MV_GPIO_UNLOCK() mtx_unlock_spin(&sc->mutex)
#define MV_GPIO_ASSERT_LOCKED() mtx_assert(&sc->mutex, MA_OWNED)
static device_method_t mv_gpio_methods[] = {
DEVMETHOD(device_probe, mv_gpio_probe),
DEVMETHOD(device_attach, mv_gpio_attach),
{ 0, 0 }
};
static driver_t mv_gpio_driver = {
"gpio",
mv_gpio_methods,
sizeof(struct mv_gpio_softc),
};
static devclass_t mv_gpio_devclass;
DRIVER_MODULE(gpio, simplebus, mv_gpio_driver, mv_gpio_devclass, 0, 0);
typedef int (*gpios_phandler_t)(device_t, phandle_t, pcell_t *, int);
struct gpio_ctrl_entry {
const char *compat;
gpios_phandler_t handler;
};
static int mv_handle_gpios_prop(device_t, phandle_t, pcell_t *, int);
int gpio_get_config_from_dt(void);
struct gpio_ctrl_entry gpio_controllers[] = {
{ "mrvl,gpio", &mv_handle_gpios_prop },
{ NULL, NULL }
};
static int
mv_gpio_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "mrvl,gpio"))
return (ENXIO);
device_set_desc(dev, "Marvell Integrated GPIO Controller");
return (0);
}
static int
mv_gpio_attach(device_t dev)
{
int error, i, size;
struct mv_gpio_softc *sc;
uint32_t dev_id, rev_id;
pcell_t pincnt = 0;
pcell_t irq_cells = 0;
phandle_t iparent;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
if (sc == NULL)
return (ENXIO);
/* Get chip id and revision */
soc_id(&dev_id, &rev_id);
if (dev_id == MV_DEV_88F5182 ||
dev_id == MV_DEV_88F5281 ||
dev_id == MV_DEV_MV78100 ||
dev_id == MV_DEV_MV78100_Z0 ) {
sc->pin_num = 32;
sc->irq_num = 4;
} else if (dev_id == MV_DEV_88F6281 ||
dev_id == MV_DEV_88F6282) {
sc->pin_num = 50;
sc->irq_num = 7;
} else {
if (OF_getencprop(ofw_bus_get_node(dev), "pin-count", &pincnt,
sizeof(pcell_t)) >= 0 ||
OF_getencprop(ofw_bus_get_node(dev), "ngpios", &pincnt,
sizeof(pcell_t)) >= 0) {
sc->pin_num = pincnt;
device_printf(dev, "%d pins available\n", sc->pin_num);
} else {
device_printf(dev, "ERROR: no pin-count entry found!\n");
return (ENXIO);
}
}
/* Find root interrupt controller */
iparent = ofw_bus_find_iparent(ofw_bus_get_node(dev));
if (iparent == 0) {
device_printf(dev, "No interrupt-parrent found. "
"Error in DTB\n");
return (ENXIO);
} else {
/* While at parent - store interrupt cells prop */
if (OF_searchencprop(OF_node_from_xref(iparent),
"#interrupt-cells", &irq_cells, sizeof(irq_cells)) == -1) {
device_printf(dev, "DTB: Missing #interrupt-cells "
"property in interrupt parent node\n");
return (ENXIO);
}
}
size = OF_getproplen(ofw_bus_get_node(dev), "interrupts");
if (size != -1) {
size = size / sizeof(pcell_t);
size = size / irq_cells;
sc->irq_num = size;
device_printf(dev, "%d IRQs available\n", sc->irq_num);
} else {
device_printf(dev, "ERROR: no interrupts entry found!\n");
return (ENXIO);
}
sc->debounce_callouts = (struct callout **)malloc(sc->pin_num *
sizeof(struct callout *), M_DEVBUF, M_WAITOK | M_ZERO);
if (sc->debounce_callouts == NULL)
return (ENOMEM);
sc->debounce_counters = (int *)malloc(sc->pin_num * sizeof(int),
M_DEVBUF, M_WAITOK);
if (sc->debounce_counters == NULL)
return (ENOMEM);
mtx_init(&sc->mutex, device_get_nameunit(dev), NULL, MTX_SPIN);
sc->mem_rid = 0;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
RF_ACTIVE);
if (!sc->mem_res) {
mtx_destroy(&sc->mutex);
device_printf(dev, "could not allocate memory window\n");
return (ENXIO);
}
sc->bst = rman_get_bustag(sc->mem_res);
sc->bsh = rman_get_bushandle(sc->mem_res);
for (i = 0; i < sc->irq_num; i++) {
sc->irq_rid[i] = i;
sc->irq_res[i] = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&sc->irq_rid[i], RF_ACTIVE);
if (!sc->irq_res[i]) {
mtx_destroy(&sc->mutex);
device_printf(dev,
"could not allocate gpio%d interrupt\n", i+1);
return (ENXIO);
}
}
/* Disable all interrupts */
bus_space_write_4(sc->bst, sc->bsh, GPIO_INT_EDGE_MASK, 0);
bus_space_write_4(sc->bst, sc->bsh, GPIO_INT_LEV_MASK, 0);
for (i = 0; i < sc->irq_num; i++) {
if (bus_setup_intr(dev, sc->irq_res[i],
INTR_TYPE_MISC,
(driver_filter_t *)mv_gpio_intr, NULL,
sc, &sc->ih_cookie[i]) != 0) {
mtx_destroy(&sc->mutex);
bus_release_resource(dev, SYS_RES_IRQ,
sc->irq_rid[i], sc->irq_res[i]);
device_printf(dev, "could not set up intr %d\n", i);
return (ENXIO);
}
}
error = mv_gpio_init(dev);
if (error) {
device_printf(dev, "WARNING: failed to initialize GPIO pins, "
"error = %d\n", error);
}
/* Clear interrupt status. */
bus_space_write_4(sc->bst, sc->bsh, GPIO_INT_CAUSE, 0);
device_add_child(dev, "gpioc", device_get_unit(dev));
device_add_child(dev, "gpiobus", device_get_unit(dev));
return (0);
}
static int
mv_gpio_intr(device_t dev, void *arg)
{
uint32_t int_cause, gpio_val;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
MV_GPIO_LOCK();
/*
* According to documentation, edge sensitive interrupts are asserted
* when unmasked GPIO_INT_CAUSE register bits are set.
*/
int_cause = mv_gpio_reg_read(dev, GPIO_INT_CAUSE);
int_cause &= mv_gpio_reg_read(dev, GPIO_INT_EDGE_MASK);
/*
* Level sensitive interrupts are asserted when unmasked GPIO_DATA_IN
* register bits are set.
*/
gpio_val = mv_gpio_reg_read(dev, GPIO_DATA_IN);
gpio_val &= mv_gpio_reg_read(dev, GPIO_INT_LEV_MASK);
mv_gpio_exec_intr_handlers(dev, int_cause | gpio_val, 0);
MV_GPIO_UNLOCK();
return (FILTER_HANDLED);
}
/*
* GPIO interrupt handling
*/
void
mv_gpio_finish_intrhandler(struct mv_gpio_pindev *s)
{
/* When we acheive full interrupt support
* This function will be opposite to
* mv_gpio_setup_intrhandler
*/
/* Now it exists only to remind that
* there should be place to free mv_gpio_pindev
* allocated by mv_gpio_setup_intrhandler
*/
free(s, M_DEVBUF);
}
int
mv_gpio_setup_intrhandler(device_t dev, const char *name, driver_filter_t *filt,
void (*hand)(void *), void *arg, int pin, int flags, void **cookiep)
{
struct intr_event *event;
int error;
struct mv_gpio_pindev *s;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
s = malloc(sizeof(struct mv_gpio_pindev), M_DEVBUF, M_NOWAIT | M_ZERO);
if (pin < 0 || pin >= sc->pin_num)
return (ENXIO);
event = sc->gpio_events[pin];
if (event == NULL) {
MV_GPIO_LOCK();
if (sc->gpio_setup[pin].gp_flags & MV_GPIO_IN_DEBOUNCE) {
error = mv_gpio_debounce_init(dev, pin);
if (error != 0) {
MV_GPIO_UNLOCK();
return (error);
}
} else if (sc->gpio_setup[pin].gp_flags & MV_GPIO_IN_IRQ_DOUBLE_EDGE)
mv_gpio_double_edge_init(dev, pin);
MV_GPIO_UNLOCK();
error = intr_event_create(&event, (void *)s, 0, pin,
(void (*)(void *))mv_gpio_intr_mask,
(void (*)(void *))mv_gpio_intr_unmask,
(void (*)(void *))mv_gpio_int_ack,
NULL,
"gpio%d:", pin);
if (error != 0)
return (error);
sc->gpio_events[pin] = event;
}
intr_event_add_handler(event, name, filt, hand, arg,
intr_priority(flags), flags, cookiep);
return (0);
}
static void
mv_gpio_intr_mask(struct mv_gpio_pindev *s)
{
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(s->dev);
if (s->pin >= sc->pin_num)
return;
MV_GPIO_LOCK();
if (sc->gpio_setup[s->pin].gp_flags & (MV_GPIO_IN_IRQ_EDGE |
MV_GPIO_IN_IRQ_DOUBLE_EDGE))
mv_gpio_edge(s->dev, s->pin, 0);
else
mv_gpio_level(s->dev, s->pin, 0);
/*
* The interrupt has to be acknowledged before scheduling an interrupt
* thread. This way we allow for interrupt source to trigger again
* (which can happen with shared IRQs e.g. PCI) while processing the
* current event.
*/
mv_gpio_int_ack(s);
MV_GPIO_UNLOCK();
return;
}
static void
mv_gpio_intr_unmask(struct mv_gpio_pindev *s)
{
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(s->dev);
if (s->pin >= sc->pin_num)
return;
MV_GPIO_LOCK();
if (sc->gpio_setup[s->pin].gp_flags & (MV_GPIO_IN_IRQ_EDGE |
MV_GPIO_IN_IRQ_DOUBLE_EDGE))
mv_gpio_edge(s->dev, s->pin, 1);
else
mv_gpio_level(s->dev, s->pin, 1);
MV_GPIO_UNLOCK();
return;
}
static void
mv_gpio_exec_intr_handlers(device_t dev, uint32_t status, int high)
{
int i, pin;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
MV_GPIO_ASSERT_LOCKED();
i = 0;
while (status != 0) {
if (status & 1) {
pin = (high ? (i + GPIO_PINS_PER_REG) : i);
if (sc->gpio_setup[pin].gp_flags & MV_GPIO_IN_DEBOUNCE)
mv_gpio_debounce_start(dev, pin);
else if (sc->gpio_setup[pin].gp_flags & MV_GPIO_IN_IRQ_DOUBLE_EDGE) {
mv_gpio_polarity(dev, pin, 0, 1);
mv_gpio_intr_handler(dev, pin);
} else
mv_gpio_intr_handler(dev, pin);
}
status >>= 1;
i++;
}
}
static void
mv_gpio_intr_handler(device_t dev, int pin)
{
#ifdef INTRNG
struct intr_irqsrc isrc;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
MV_GPIO_ASSERT_LOCKED();
#ifdef INTR_SOLO
isrc.isrc_filter = NULL;
#endif
isrc.isrc_event = sc->gpio_events[pin];
if (isrc.isrc_event == NULL || TAILQ_EMPTY(&isrc.isrc_event->ie_handlers))
return;
intr_isrc_dispatch(&isrc, NULL);
#endif
}
int
mv_gpio_configure(device_t dev, uint32_t pin, uint32_t flags, uint32_t mask)
{
int error;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
error = 0;
if (pin >= sc->pin_num)
return (EINVAL);
/* check flags consistency */
if (((flags & mask) & (GPIO_PIN_INPUT | GPIO_PIN_OUTPUT)) ==
(GPIO_PIN_INPUT | GPIO_PIN_OUTPUT))
return (EINVAL);
if (mask & MV_GPIO_IN_DEBOUNCE) {
error = mv_gpio_debounce_prepare(dev, pin);
if (error != 0)
return (error);
}
MV_GPIO_LOCK();
if (mask & MV_GPIO_OUT_BLINK)
mv_gpio_blink(dev, pin, flags & MV_GPIO_OUT_BLINK);
if (mask & MV_GPIO_IN_POL_LOW)
mv_gpio_polarity(dev, pin, flags & MV_GPIO_IN_POL_LOW, 0);
if (mask & MV_GPIO_IN_DEBOUNCE) {
error = mv_gpio_debounce_setup(dev, pin);
if (error) {
MV_GPIO_UNLOCK();
return (error);
}
}
sc->gpio_setup[pin].gp_flags &= ~(mask);
sc->gpio_setup[pin].gp_flags |= (flags & mask);
MV_GPIO_UNLOCK();
return (0);
}
static void
mv_gpio_double_edge_init(device_t dev, int pin)
{
uint8_t raw_read;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
MV_GPIO_ASSERT_LOCKED();
raw_read = (mv_gpio_value_get(dev, pin, 1) ? 1 : 0);
if (raw_read)
mv_gpio_polarity(dev, pin, 1, 0);
else
mv_gpio_polarity(dev, pin, 0, 0);
}
static int
mv_gpio_debounce_setup(device_t dev, int pin)
{
struct callout *c;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
MV_GPIO_ASSERT_LOCKED();
c = sc->debounce_callouts[pin];
if (c == NULL)
return (ENXIO);
if (callout_active(c))
callout_deactivate(c);
callout_stop(c);
return (0);
}
static int
mv_gpio_debounce_prepare(device_t dev, int pin)
{
struct callout *c;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
c = sc->debounce_callouts[pin];
if (c == NULL) {
c = (struct callout *)malloc(sizeof(struct callout),
M_DEVBUF, M_WAITOK);
sc->debounce_callouts[pin] = c;
if (c == NULL)
return (ENOMEM);
callout_init(c, 1);
}
return (0);
}
static int
mv_gpio_debounce_init(device_t dev, int pin)
{
uint8_t raw_read;
int *cnt;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
MV_GPIO_ASSERT_LOCKED();
cnt = &sc->debounce_counters[pin];
raw_read = (mv_gpio_value_get(dev, pin, 1) ? 1 : 0);
if (raw_read) {
mv_gpio_polarity(dev, pin, 1, 0);
*cnt = DEBOUNCE_HI_LO_MS / DEBOUNCE_CHECK_MS;
} else {
mv_gpio_polarity(dev, pin, 0, 0);
*cnt = DEBOUNCE_LO_HI_MS / DEBOUNCE_CHECK_MS;
}
mv_gpio_debounced_state_set(dev, pin, raw_read);
return (0);
}
static void
mv_gpio_debounce_start(device_t dev, int pin)
{
struct callout *c;
struct mv_gpio_pindev s = {dev, pin};
struct mv_gpio_pindev *sd;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
MV_GPIO_ASSERT_LOCKED();
c = sc->debounce_callouts[pin];
if (c == NULL) {
mv_gpio_int_ack(&s);
return;
}
if (callout_pending(c) || callout_active(c)) {
mv_gpio_int_ack(&s);
return;
}
sd = (struct mv_gpio_pindev *)malloc(sizeof(struct mv_gpio_pindev),
M_DEVBUF, M_WAITOK);
if (sd == NULL) {
mv_gpio_int_ack(&s);
return;
}
sd->pin = pin;
sd->dev = dev;
callout_reset(c, DEBOUNCE_CHECK_TICKS, mv_gpio_debounce, sd);
}
static void
mv_gpio_debounce(void *arg)
{
uint8_t raw_read, last_state;
int pin;
device_t dev;
int *debounce_counter;
struct mv_gpio_softc *sc;
struct mv_gpio_pindev *s;
s = (struct mv_gpio_pindev *)arg;
dev = s->dev;
pin = s->pin;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
MV_GPIO_LOCK();
raw_read = (mv_gpio_value_get(dev, pin, 1) ? 1 : 0);
last_state = (mv_gpio_debounced_state_get(dev, pin) ? 1 : 0);
debounce_counter = &sc->debounce_counters[pin];
if (raw_read == last_state) {
if (last_state)
*debounce_counter = DEBOUNCE_HI_LO_MS /
DEBOUNCE_CHECK_MS;
else
*debounce_counter = DEBOUNCE_LO_HI_MS /
DEBOUNCE_CHECK_MS;
callout_reset(sc->debounce_callouts[pin],
DEBOUNCE_CHECK_TICKS, mv_gpio_debounce, arg);
} else {
*debounce_counter = *debounce_counter - 1;
if (*debounce_counter != 0)
callout_reset(sc->debounce_callouts[pin],
DEBOUNCE_CHECK_TICKS, mv_gpio_debounce, arg);
else {
mv_gpio_debounced_state_set(dev, pin, raw_read);
if (last_state)
*debounce_counter = DEBOUNCE_HI_LO_MS /
DEBOUNCE_CHECK_MS;
else
*debounce_counter = DEBOUNCE_LO_HI_MS /
DEBOUNCE_CHECK_MS;
if (((sc->gpio_setup[pin].gp_flags & MV_GPIO_IN_POL_LOW) &&
(raw_read == 0)) ||
(((sc->gpio_setup[pin].gp_flags & MV_GPIO_IN_POL_LOW) == 0) &&
raw_read) ||
(sc->gpio_setup[pin].gp_flags & MV_GPIO_IN_IRQ_DOUBLE_EDGE))
mv_gpio_intr_handler(dev, pin);
/* Toggle polarity for next edge. */
mv_gpio_polarity(dev, pin, 0, 1);
free(arg, M_DEVBUF);
callout_deactivate(sc->debounce_callouts[pin]);
}
}
MV_GPIO_UNLOCK();
}
static void
mv_gpio_debounced_state_set(device_t dev, int pin, uint8_t new_state)
{
uint32_t *old_state;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
MV_GPIO_ASSERT_LOCKED();
if (pin >= GPIO_PINS_PER_REG) {
old_state = &sc->debounced_state_hi;
pin -= GPIO_PINS_PER_REG;
} else
old_state = &sc->debounced_state_lo;
if (new_state)
*old_state |= (1 << pin);
else
*old_state &= ~(1 << pin);
}
static uint32_t
mv_gpio_debounced_state_get(device_t dev, int pin)
{
uint32_t *state;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
MV_GPIO_ASSERT_LOCKED();
if (pin >= GPIO_PINS_PER_REG) {
state = &sc->debounced_state_hi;
pin -= GPIO_PINS_PER_REG;
} else
state = &sc->debounced_state_lo;
return (*state & (1 << pin));
}
void
mv_gpio_out(device_t dev, uint32_t pin, uint8_t val, uint8_t enable)
{
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
MV_GPIO_LOCK();
mv_gpio_value_set(dev, pin, val);
mv_gpio_out_en(dev, pin, enable);
MV_GPIO_UNLOCK();
}
uint8_t
mv_gpio_in(device_t dev, uint32_t pin)
{
uint8_t state;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
MV_GPIO_LOCK();
if (sc->gpio_setup[pin].gp_flags & MV_GPIO_IN_DEBOUNCE) {
if (sc->gpio_setup[pin].gp_flags & MV_GPIO_IN_POL_LOW)
state = (mv_gpio_debounced_state_get(dev, pin) ? 0 : 1);
else
state = (mv_gpio_debounced_state_get(dev, pin) ? 1 : 0);
} else if (sc->gpio_setup[pin].gp_flags & MV_GPIO_IN_IRQ_DOUBLE_EDGE) {
if (sc->gpio_setup[pin].gp_flags & MV_GPIO_IN_POL_LOW)
state = (mv_gpio_value_get(dev, pin, 1) ? 0 : 1);
else
state = (mv_gpio_value_get(dev, pin, 1) ? 1 : 0);
} else
state = (mv_gpio_value_get(dev, pin, 0) ? 1 : 0);
return (state);
}
static uint32_t
mv_gpio_reg_read(device_t dev, uint32_t reg)
{
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
return (bus_space_read_4(sc->bst, sc->bsh, reg));
}
static void
mv_gpio_reg_write(device_t dev, uint32_t reg, uint32_t val)
{
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
bus_space_write_4(sc->bst, sc->bsh, reg, val);
}
static void
mv_gpio_reg_set(device_t dev, uint32_t reg, uint32_t pin)
{
uint32_t reg_val;
reg_val = mv_gpio_reg_read(dev, reg);
reg_val |= GPIO(pin);
mv_gpio_reg_write(dev, reg, reg_val);
}
static void
mv_gpio_reg_clear(device_t dev, uint32_t reg, uint32_t pin)
{
uint32_t reg_val;
reg_val = mv_gpio_reg_read(dev, reg);
reg_val &= ~(GPIO(pin));
mv_gpio_reg_write(dev, reg, reg_val);
}
static void
mv_gpio_out_en(device_t dev, uint32_t pin, uint8_t enable)
{
uint32_t reg;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
if (pin >= sc->pin_num)
return;
reg = GPIO_DATA_OUT_EN_CTRL;
if (enable)
mv_gpio_reg_clear(dev, reg, pin);
else
mv_gpio_reg_set(dev, reg, pin);
}
static void
mv_gpio_blink(device_t dev, uint32_t pin, uint8_t enable)
{
uint32_t reg;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
if (pin >= sc->pin_num)
return;
reg = GPIO_BLINK_EN;
if (enable)
mv_gpio_reg_set(dev, reg, pin);
else
mv_gpio_reg_clear(dev, reg, pin);
}
static void
mv_gpio_polarity(device_t dev, uint32_t pin, uint8_t enable, uint8_t toggle)
{
uint32_t reg, reg_val;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
if (pin >= sc->pin_num)
return;
reg = GPIO_DATA_IN_POLAR;
if (toggle) {
reg_val = mv_gpio_reg_read(dev, reg) & GPIO(pin);
if (reg_val)
mv_gpio_reg_clear(dev, reg, pin);
else
mv_gpio_reg_set(dev, reg, pin);
} else if (enable)
mv_gpio_reg_set(dev, reg, pin);
else
mv_gpio_reg_clear(dev, reg, pin);
}
static void
mv_gpio_level(device_t dev, uint32_t pin, uint8_t enable)
{
uint32_t reg;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
if (pin >= sc->pin_num)
return;
reg = GPIO_INT_LEV_MASK;
if (enable)
mv_gpio_reg_set(dev, reg, pin);
else
mv_gpio_reg_clear(dev, reg, pin);
}
static void
mv_gpio_edge(device_t dev, uint32_t pin, uint8_t enable)
{
uint32_t reg;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
if (pin >= sc->pin_num)
return;
reg = GPIO_INT_EDGE_MASK;
if (enable)
mv_gpio_reg_set(dev, reg, pin);
else
mv_gpio_reg_clear(dev, reg, pin);
}
static void
mv_gpio_int_ack(struct mv_gpio_pindev *s)
{
uint32_t reg, pin;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(s->dev);
pin = s->pin;
if (pin >= sc->pin_num)
return;
reg = GPIO_INT_CAUSE;
mv_gpio_reg_clear(s->dev, reg, pin);
}
static uint32_t
mv_gpio_value_get(device_t dev, uint32_t pin, uint8_t exclude_polar)
{
uint32_t reg, polar_reg, reg_val, polar_reg_val;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
if (pin >= sc->pin_num)
return (0);
reg = GPIO_DATA_IN;
polar_reg = GPIO_DATA_IN_POLAR;
reg_val = mv_gpio_reg_read(dev, reg);
if (exclude_polar) {
polar_reg_val = mv_gpio_reg_read(dev, polar_reg);
return ((reg_val & GPIO(pin)) ^ (polar_reg_val & GPIO(pin)));
} else
return (reg_val & GPIO(pin));
}
static void
mv_gpio_value_set(device_t dev, uint32_t pin, uint8_t val)
{
uint32_t reg;
struct mv_gpio_softc *sc;
sc = (struct mv_gpio_softc *)device_get_softc(dev);
if (pin >= sc->pin_num)
return;
reg = GPIO_DATA_OUT;
if (val)
mv_gpio_reg_set(dev, reg, pin);
else
mv_gpio_reg_clear(dev, reg, pin);
}
static int
mv_handle_gpios_prop(device_t dev, phandle_t ctrl, pcell_t *gpios, int len)
{
pcell_t gpio_cells, pincnt;
int inc, t, tuples, tuple_size;
int dir, flags, pin;
u_long gpio_ctrl, size;
struct mv_gpio_softc sc;
pincnt = 0;
if (!OF_hasprop(ctrl, "gpio-controller"))
/* Node is not a GPIO controller. */
return (ENXIO);
if (OF_getencprop(ctrl, "#gpio-cells", &gpio_cells, sizeof(pcell_t)) < 0)
return (ENXIO);
if (gpio_cells != 3)
return (ENXIO);
tuple_size = gpio_cells * sizeof(pcell_t) + sizeof(phandle_t);
tuples = len / tuple_size;
if (fdt_regsize(ctrl, &gpio_ctrl, &size))
return (ENXIO);
if (OF_getencprop(ctrl, "pin-count", &pincnt, sizeof(pcell_t)) < 0)
return (ENXIO);
sc.pin_num = pincnt;
/*
* Skip controller reference, since controller's phandle is given
* explicitly (in a function argument).
*/
inc = sizeof(ihandle_t) / sizeof(pcell_t);
gpios += inc;
for (t = 0; t < tuples; t++) {
pin = gpios[0];
dir = gpios[1];
flags = gpios[2];
mv_gpio_configure(dev, pin, flags, ~0);
if (dir == 1)
/* Input. */
mv_gpio_out_en(dev, pin, 0);
else {
/* Output. */
if (flags & MV_GPIO_OUT_OPEN_DRAIN)
mv_gpio_out(dev, pin, 0, 1);
if (flags & MV_GPIO_OUT_OPEN_SRC)
mv_gpio_out(dev, pin, 1, 1);
}
gpios += gpio_cells + inc;
}
return (0);
}
#define MAX_PINS_PER_NODE 5
#define GPIOS_PROP_CELLS 4
static int
mv_gpio_init(device_t dev)
{
phandle_t child, parent, root, ctrl;
pcell_t gpios[MAX_PINS_PER_NODE * GPIOS_PROP_CELLS];
struct gpio_ctrl_entry *e;
int len, rv;
root = OF_finddevice("/");
len = 0;
parent = root;
/* Traverse through entire tree to find nodes with 'gpios' prop */
for (child = OF_child(parent); child != 0; child = OF_peer(child)) {
/* Find a 'leaf'. Start the search from this node. */
while (OF_child(child)) {
parent = child;
child = OF_child(child);
}
if ((len = OF_getproplen(child, "gpios")) > 0) {
if (len > sizeof(gpios))
return (ENXIO);
/* Get 'gpios' property. */
OF_getencprop(child, "gpios", gpios, len);
e = (struct gpio_ctrl_entry *)&gpio_controllers;
/* Find and call a handler. */
for (; e->compat; e++) {
/*
* First cell of 'gpios' property should
* contain a ref. to a node defining GPIO
* controller.
*/
ctrl = OF_node_from_xref(gpios[0]);
if (ofw_bus_node_is_compatible(ctrl, e->compat))
/* Call a handler. */
if ((rv = e->handler(dev, ctrl,
(pcell_t *)&gpios, len)))
return (rv);
}
}
if (OF_peer(child) == 0) {
/* No more siblings. */
child = parent;
parent = OF_parent(child);
}
}
return (0);
}