77f312d46a
This code merge adds a pNFS service to the NFSv4.1 server. Although it is a large commit it should not affect behaviour for a non-pNFS NFS server. Some documentation on how this works can be found at: http://people.freebsd.org/~rmacklem/pnfs-planb-setup.txt and will hopefully be turned into a proper document soon. This is a merge of the kernel code. Userland and man page changes will come soon, once the dust settles on this merge. It has passed a "make universe", so I hope it will not cause build problems. It also adds NFSv4.1 server support for the "current stateid". Here is a brief overview of the pNFS service: A pNFS service separates the Read/Write oeprations from all the other NFSv4.1 Metadata operations. It is hoped that this separation allows a pNFS service to be configured that exceeds the limits of a single NFS server for either storage capacity and/or I/O bandwidth. It is possible to configure mirroring within the data servers (DSs) so that the data storage file for an MDS file will be mirrored on two or more of the DSs. When this is used, failure of a DS will not stop the pNFS service and a failed DS can be recovered once repaired while the pNFS service continues to operate. Although two way mirroring would be the norm, it is possible to set a mirroring level of up to four or the number of DSs, whichever is less. The Metadata server will always be a single point of failure, just as a single NFS server is. A Plan B pNFS service consists of a single MetaData Server (MDS) and K Data Servers (DS), all of which are recent FreeBSD systems. Clients will mount the MDS as they would a single NFS server. When files are created, the MDS creates a file tree identical to what a single NFS server creates, except that all the regular (VREG) files will be empty. As such, if you look at the exported tree on the MDS directly on the MDS server (not via an NFS mount), the files will all be of size 0. Each of these files will also have two extended attributes in the system attribute name space: pnfsd.dsfile - This extended attrbute stores the information that the MDS needs to find the data storage file(s) on DS(s) for this file. pnfsd.dsattr - This extended attribute stores the Size, AccessTime, ModifyTime and Change attributes for the file, so that the MDS doesn't need to acquire the attributes from the DS for every Getattr operation. For each regular (VREG) file, the MDS creates a data storage file on one (or more if mirroring is enabled) of the DSs in one of the "dsNN" subdirectories. The name of this file is the file handle of the file on the MDS in hexadecimal so that the name is unique. The DSs use subdirectories named "ds0" to "dsN" so that no one directory gets too large. The value of "N" is set via the sysctl vfs.nfsd.dsdirsize on the MDS, with the default being 20. For production servers that will store a lot of files, this value should probably be much larger. It can be increased when the "nfsd" daemon is not running on the MDS, once the "dsK" directories are created. For pNFS aware NFSv4.1 clients, the FreeBSD server will return two pieces of information to the client that allows it to do I/O directly to the DS. DeviceInfo - This is relatively static information that defines what a DS is. The critical bits of information returned by the FreeBSD server is the IP address of the DS and, for the Flexible File layout, that NFSv4.1 is to be used and that it is "tightly coupled". There is a "deviceid" which identifies the DeviceInfo. Layout - This is per file and can be recalled by the server when it is no longer valid. For the FreeBSD server, there is support for two types of layout, call File and Flexible File layout. Both allow the client to do I/O on the DS via NFSv4.1 I/O operations. The Flexible File layout is a more recent variant that allows specification of mirrors, where the client is expected to do writes to all mirrors to maintain them in a consistent state. The Flexible File layout also allows the client to report I/O errors for a DS back to the MDS. The Flexible File layout supports two variants referred to as "tightly coupled" vs "loosely coupled". The FreeBSD server always uses the "tightly coupled" variant where the client uses the same credentials to do I/O on the DS as it would on the MDS. For the "loosely coupled" variant, the layout specifies a synthetic user/group that the client uses to do I/O on the DS. The FreeBSD server does not do striping and always returns layouts for the entire file. The critical information in a layout is Read vs Read/Writea and DeviceID(s) that identify which DS(s) the data is stored on. At this time, the MDS generates File Layout layouts to NFSv4.1 clients that know how to do pNFS for the non-mirrored DS case unless the sysctl vfs.nfsd.default_flexfile is set non-zero, in which case Flexible File layouts are generated. The mirrored DS configuration always generates Flexible File layouts. For NFS clients that do not support NFSv4.1 pNFS, all I/O operations are done against the MDS which acts as a proxy for the appropriate DS(s). When the MDS receives an I/O RPC, it will do the RPC on the DS as a proxy. If the DS is on the same machine, the MDS/DS will do the RPC on the DS as a proxy and so on, until the machine runs out of some resource, such as session slots or mbufs. As such, DSs must be separate systems from the MDS. Tested by: james.rose@framestore.com Relnotes: yes
826 lines
23 KiB
C
826 lines
23 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Rick Macklem at The University of Guelph.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Functions that need to be different for different versions of BSD
|
|
* kernel should be kept here, along with any global storage specific
|
|
* to this BSD variant.
|
|
*/
|
|
#include <fs/nfs/nfsport.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <rpc/rpc_com.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/uma.h>
|
|
|
|
extern int nfscl_ticks;
|
|
extern int nfsrv_nfsuserd;
|
|
extern struct nfssockreq nfsrv_nfsuserdsock;
|
|
extern void (*nfsd_call_recall)(struct vnode *, int, struct ucred *,
|
|
struct thread *);
|
|
extern int nfsrv_useacl;
|
|
struct mount nfsv4root_mnt;
|
|
int newnfs_numnfsd = 0;
|
|
struct nfsstatsv1 nfsstatsv1;
|
|
int nfs_numnfscbd = 0;
|
|
int nfscl_debuglevel = 0;
|
|
char nfsv4_callbackaddr[INET6_ADDRSTRLEN];
|
|
struct callout newnfsd_callout;
|
|
int nfsrv_lughashsize = 100;
|
|
struct mtx nfsrv_dslock_mtx;
|
|
struct nfsdevicehead nfsrv_devidhead;
|
|
volatile int nfsrv_devidcnt = 0;
|
|
void (*nfsd_call_servertimer)(void) = NULL;
|
|
void (*ncl_call_invalcaches)(struct vnode *) = NULL;
|
|
|
|
int nfs_pnfsio(task_fn_t *, void *);
|
|
|
|
static int nfs_realign_test;
|
|
static int nfs_realign_count;
|
|
static struct ext_nfsstats oldnfsstats;
|
|
|
|
SYSCTL_NODE(_vfs, OID_AUTO, nfs, CTLFLAG_RW, 0, "NFS filesystem");
|
|
SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test,
|
|
0, "Number of realign tests done");
|
|
SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count,
|
|
0, "Number of mbuf realignments done");
|
|
SYSCTL_STRING(_vfs_nfs, OID_AUTO, callback_addr, CTLFLAG_RW,
|
|
nfsv4_callbackaddr, sizeof(nfsv4_callbackaddr),
|
|
"NFSv4 callback addr for server to use");
|
|
SYSCTL_INT(_vfs_nfs, OID_AUTO, debuglevel, CTLFLAG_RW, &nfscl_debuglevel,
|
|
0, "Debug level for NFS client");
|
|
SYSCTL_INT(_vfs_nfs, OID_AUTO, userhashsize, CTLFLAG_RDTUN, &nfsrv_lughashsize,
|
|
0, "Size of hash tables for uid/name mapping");
|
|
int nfs_pnfsiothreads = -1;
|
|
SYSCTL_INT(_vfs_nfs, OID_AUTO, pnfsiothreads, CTLFLAG_RW, &nfs_pnfsiothreads,
|
|
0, "Number of pNFS mirror I/O threads");
|
|
|
|
/*
|
|
* Defines for malloc
|
|
* (Here for FreeBSD, since they allocate storage.)
|
|
*/
|
|
MALLOC_DEFINE(M_NEWNFSRVCACHE, "NFSD srvcache", "NFSD Server Request Cache");
|
|
MALLOC_DEFINE(M_NEWNFSDCLIENT, "NFSD V4client", "NFSD V4 Client Id");
|
|
MALLOC_DEFINE(M_NEWNFSDSTATE, "NFSD V4state",
|
|
"NFSD V4 State (Openowner, Open, Lockowner, Delegation");
|
|
MALLOC_DEFINE(M_NEWNFSDLOCK, "NFSD V4lock", "NFSD V4 byte range lock");
|
|
MALLOC_DEFINE(M_NEWNFSDLOCKFILE, "NFSD lckfile", "NFSD Open/Lock file");
|
|
MALLOC_DEFINE(M_NEWNFSSTRING, "NFSD string", "NFSD V4 long string");
|
|
MALLOC_DEFINE(M_NEWNFSUSERGROUP, "NFSD usrgroup", "NFSD V4 User/group map");
|
|
MALLOC_DEFINE(M_NEWNFSDREQ, "NFS req", "NFS request header");
|
|
MALLOC_DEFINE(M_NEWNFSFH, "NFS fh", "NFS file handle");
|
|
MALLOC_DEFINE(M_NEWNFSCLOWNER, "NFSCL owner", "NFSCL Open Owner");
|
|
MALLOC_DEFINE(M_NEWNFSCLOPEN, "NFSCL open", "NFSCL Open");
|
|
MALLOC_DEFINE(M_NEWNFSCLDELEG, "NFSCL deleg", "NFSCL Delegation");
|
|
MALLOC_DEFINE(M_NEWNFSCLCLIENT, "NFSCL client", "NFSCL Client");
|
|
MALLOC_DEFINE(M_NEWNFSCLLOCKOWNER, "NFSCL lckown", "NFSCL Lock Owner");
|
|
MALLOC_DEFINE(M_NEWNFSCLLOCK, "NFSCL lck", "NFSCL Lock");
|
|
MALLOC_DEFINE(M_NEWNFSV4NODE, "NEWNFSnode", "NFS vnode");
|
|
MALLOC_DEFINE(M_NEWNFSDIRECTIO, "NEWdirectio", "NFS Direct IO buffer");
|
|
MALLOC_DEFINE(M_NEWNFSDIROFF, "NFSCL diroffdiroff",
|
|
"NFS directory offset data");
|
|
MALLOC_DEFINE(M_NEWNFSDROLLBACK, "NFSD rollback",
|
|
"NFS local lock rollback");
|
|
MALLOC_DEFINE(M_NEWNFSLAYOUT, "NFSCL layout", "NFSv4.1 Layout");
|
|
MALLOC_DEFINE(M_NEWNFSFLAYOUT, "NFSCL flayout", "NFSv4.1 File Layout");
|
|
MALLOC_DEFINE(M_NEWNFSDEVINFO, "NFSCL devinfo", "NFSv4.1 Device Info");
|
|
MALLOC_DEFINE(M_NEWNFSSOCKREQ, "NFSCL sockreq", "NFS Sock Req");
|
|
MALLOC_DEFINE(M_NEWNFSCLDS, "NFSCL session", "NFSv4.1 Session");
|
|
MALLOC_DEFINE(M_NEWNFSLAYRECALL, "NFSCL layrecall", "NFSv4.1 Layout Recall");
|
|
MALLOC_DEFINE(M_NEWNFSDSESSION, "NFSD session", "NFSD Session for a client");
|
|
|
|
/*
|
|
* Definition of mutex locks.
|
|
* newnfsd_mtx is used in nfsrvd_nfsd() to protect the nfs socket list
|
|
* and assorted other nfsd structures.
|
|
*/
|
|
struct mtx newnfsd_mtx;
|
|
struct mtx nfs_sockl_mutex;
|
|
struct mtx nfs_state_mutex;
|
|
struct mtx nfs_nameid_mutex;
|
|
struct mtx nfs_req_mutex;
|
|
struct mtx nfs_slock_mutex;
|
|
struct mtx nfs_clstate_mutex;
|
|
|
|
/* local functions */
|
|
static int nfssvc_call(struct thread *, struct nfssvc_args *, struct ucred *);
|
|
|
|
#ifdef __NO_STRICT_ALIGNMENT
|
|
/*
|
|
* These architectures don't need re-alignment, so just return.
|
|
*/
|
|
int
|
|
newnfs_realign(struct mbuf **pm, int how)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
#else /* !__NO_STRICT_ALIGNMENT */
|
|
/*
|
|
* newnfs_realign:
|
|
*
|
|
* Check for badly aligned mbuf data and realign by copying the unaligned
|
|
* portion of the data into a new mbuf chain and freeing the portions
|
|
* of the old chain that were replaced.
|
|
*
|
|
* We cannot simply realign the data within the existing mbuf chain
|
|
* because the underlying buffers may contain other rpc commands and
|
|
* we cannot afford to overwrite them.
|
|
*
|
|
* We would prefer to avoid this situation entirely. The situation does
|
|
* not occur with NFS/UDP and is supposed to only occasionally occur
|
|
* with TCP. Use vfs.nfs.realign_count and realign_test to check this.
|
|
*
|
|
*/
|
|
int
|
|
newnfs_realign(struct mbuf **pm, int how)
|
|
{
|
|
struct mbuf *m, *n;
|
|
int off, space;
|
|
|
|
++nfs_realign_test;
|
|
while ((m = *pm) != NULL) {
|
|
if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3)) {
|
|
/*
|
|
* NB: we can't depend on m_pkthdr.len to help us
|
|
* decide what to do here. May not be worth doing
|
|
* the m_length calculation as m_copyback will
|
|
* expand the mbuf chain below as needed.
|
|
*/
|
|
space = m_length(m, NULL);
|
|
if (space >= MINCLSIZE) {
|
|
/* NB: m_copyback handles space > MCLBYTES */
|
|
n = m_getcl(how, MT_DATA, 0);
|
|
} else
|
|
n = m_get(how, MT_DATA);
|
|
if (n == NULL)
|
|
return (ENOMEM);
|
|
/*
|
|
* Align the remainder of the mbuf chain.
|
|
*/
|
|
n->m_len = 0;
|
|
off = 0;
|
|
while (m != NULL) {
|
|
m_copyback(n, off, m->m_len, mtod(m, caddr_t));
|
|
off += m->m_len;
|
|
m = m->m_next;
|
|
}
|
|
m_freem(*pm);
|
|
*pm = n;
|
|
++nfs_realign_count;
|
|
break;
|
|
}
|
|
pm = &m->m_next;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
#endif /* __NO_STRICT_ALIGNMENT */
|
|
|
|
#ifdef notdef
|
|
static void
|
|
nfsrv_object_create(struct vnode *vp, struct thread *td)
|
|
{
|
|
|
|
if (vp == NULL || vp->v_type != VREG)
|
|
return;
|
|
(void) vfs_object_create(vp, td, td->td_ucred);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Look up a file name. Basically just initialize stuff and call namei().
|
|
*/
|
|
int
|
|
nfsrv_lookupfilename(struct nameidata *ndp, char *fname, NFSPROC_T *p)
|
|
{
|
|
int error;
|
|
|
|
NDINIT(ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE, fname,
|
|
p);
|
|
error = namei(ndp);
|
|
if (!error) {
|
|
NDFREE(ndp, NDF_ONLY_PNBUF);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Copy NFS uid, gids to the cred structure.
|
|
*/
|
|
void
|
|
newnfs_copycred(struct nfscred *nfscr, struct ucred *cr)
|
|
{
|
|
|
|
KASSERT(nfscr->nfsc_ngroups >= 0,
|
|
("newnfs_copycred: negative nfsc_ngroups"));
|
|
cr->cr_uid = nfscr->nfsc_uid;
|
|
crsetgroups(cr, nfscr->nfsc_ngroups, nfscr->nfsc_groups);
|
|
}
|
|
|
|
/*
|
|
* Map args from nfsmsleep() to msleep().
|
|
*/
|
|
int
|
|
nfsmsleep(void *chan, void *mutex, int prio, const char *wmesg,
|
|
struct timespec *ts)
|
|
{
|
|
u_int64_t nsecval;
|
|
int error, timeo;
|
|
|
|
if (ts) {
|
|
timeo = hz * ts->tv_sec;
|
|
nsecval = (u_int64_t)ts->tv_nsec;
|
|
nsecval = ((nsecval * ((u_int64_t)hz)) + 500000000) /
|
|
1000000000;
|
|
timeo += (int)nsecval;
|
|
} else {
|
|
timeo = 0;
|
|
}
|
|
error = msleep(chan, (struct mtx *)mutex, prio, wmesg, timeo);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Get the file system info for the server. For now, just assume FFS.
|
|
*/
|
|
void
|
|
nfsvno_getfs(struct nfsfsinfo *sip, int isdgram)
|
|
{
|
|
int pref;
|
|
|
|
/*
|
|
* XXX
|
|
* There should be file system VFS OP(s) to get this information.
|
|
* For now, assume ufs.
|
|
*/
|
|
if (isdgram)
|
|
pref = NFS_MAXDGRAMDATA;
|
|
else
|
|
pref = NFS_SRVMAXIO;
|
|
sip->fs_rtmax = NFS_SRVMAXIO;
|
|
sip->fs_rtpref = pref;
|
|
sip->fs_rtmult = NFS_FABLKSIZE;
|
|
sip->fs_wtmax = NFS_SRVMAXIO;
|
|
sip->fs_wtpref = pref;
|
|
sip->fs_wtmult = NFS_FABLKSIZE;
|
|
sip->fs_dtpref = pref;
|
|
sip->fs_maxfilesize = 0xffffffffffffffffull;
|
|
sip->fs_timedelta.tv_sec = 0;
|
|
sip->fs_timedelta.tv_nsec = 1;
|
|
sip->fs_properties = (NFSV3FSINFO_LINK |
|
|
NFSV3FSINFO_SYMLINK | NFSV3FSINFO_HOMOGENEOUS |
|
|
NFSV3FSINFO_CANSETTIME);
|
|
}
|
|
|
|
/*
|
|
* Do the pathconf vnode op.
|
|
*/
|
|
int
|
|
nfsvno_pathconf(struct vnode *vp, int flag, long *retf,
|
|
struct ucred *cred, struct thread *p)
|
|
{
|
|
int error;
|
|
|
|
error = VOP_PATHCONF(vp, flag, retf);
|
|
if (error == EOPNOTSUPP || error == EINVAL) {
|
|
/*
|
|
* Some file systems return EINVAL for name arguments not
|
|
* supported and some return EOPNOTSUPP for this case.
|
|
* So the NFSv3 Pathconf RPC doesn't fail for these cases,
|
|
* just fake them.
|
|
*/
|
|
switch (flag) {
|
|
case _PC_LINK_MAX:
|
|
*retf = NFS_LINK_MAX;
|
|
break;
|
|
case _PC_NAME_MAX:
|
|
*retf = NAME_MAX;
|
|
break;
|
|
case _PC_CHOWN_RESTRICTED:
|
|
*retf = 1;
|
|
break;
|
|
case _PC_NO_TRUNC:
|
|
*retf = 1;
|
|
break;
|
|
default:
|
|
/*
|
|
* Only happens if a _PC_xxx is added to the server,
|
|
* but this isn't updated.
|
|
*/
|
|
*retf = 0;
|
|
printf("nfsrvd pathconf flag=%d not supp\n", flag);
|
|
}
|
|
error = 0;
|
|
}
|
|
NFSEXITCODE(error);
|
|
return (error);
|
|
}
|
|
|
|
/* Fake nfsrv_atroot. Just return 0 */
|
|
int
|
|
nfsrv_atroot(struct vnode *vp, uint64_t *retp)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set the credentials to refer to root.
|
|
* If only the various BSDen could agree on whether cr_gid is a separate
|
|
* field or cr_groups[0]...
|
|
*/
|
|
void
|
|
newnfs_setroot(struct ucred *cred)
|
|
{
|
|
|
|
cred->cr_uid = 0;
|
|
cred->cr_groups[0] = 0;
|
|
cred->cr_ngroups = 1;
|
|
}
|
|
|
|
/*
|
|
* Get the client credential. Used for Renew and recovery.
|
|
*/
|
|
struct ucred *
|
|
newnfs_getcred(void)
|
|
{
|
|
struct ucred *cred;
|
|
struct thread *td = curthread;
|
|
|
|
cred = crdup(td->td_ucred);
|
|
newnfs_setroot(cred);
|
|
return (cred);
|
|
}
|
|
|
|
/*
|
|
* Nfs timer routine
|
|
* Call the nfsd's timer function once/sec.
|
|
*/
|
|
void
|
|
newnfs_timer(void *arg)
|
|
{
|
|
static time_t lasttime = 0;
|
|
/*
|
|
* Call the server timer, if set up.
|
|
* The argument indicates if it is the next second and therefore
|
|
* leases should be checked.
|
|
*/
|
|
if (lasttime != NFSD_MONOSEC) {
|
|
lasttime = NFSD_MONOSEC;
|
|
if (nfsd_call_servertimer != NULL)
|
|
(*nfsd_call_servertimer)();
|
|
}
|
|
callout_reset(&newnfsd_callout, nfscl_ticks, newnfs_timer, NULL);
|
|
}
|
|
|
|
|
|
/*
|
|
* Sleep for a short period of time unless errval == NFSERR_GRACE, where
|
|
* the sleep should be for 5 seconds.
|
|
* Since lbolt doesn't exist in FreeBSD-CURRENT, just use a timeout on
|
|
* an event that never gets a wakeup. Only return EINTR or 0.
|
|
*/
|
|
int
|
|
nfs_catnap(int prio, int errval, const char *wmesg)
|
|
{
|
|
static int non_event;
|
|
int ret;
|
|
|
|
if (errval == NFSERR_GRACE)
|
|
ret = tsleep(&non_event, prio, wmesg, 5 * hz);
|
|
else
|
|
ret = tsleep(&non_event, prio, wmesg, 1);
|
|
if (ret != EINTR)
|
|
ret = 0;
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Get referral. For now, just fail.
|
|
*/
|
|
struct nfsreferral *
|
|
nfsv4root_getreferral(struct vnode *vp, struct vnode *dvp, u_int32_t fileno)
|
|
{
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
nfssvc_nfscommon(struct thread *td, struct nfssvc_args *uap)
|
|
{
|
|
int error;
|
|
|
|
error = nfssvc_call(td, uap, td->td_ucred);
|
|
NFSEXITCODE(error);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
nfssvc_call(struct thread *p, struct nfssvc_args *uap, struct ucred *cred)
|
|
{
|
|
int error = EINVAL, i, j;
|
|
struct nfsd_idargs nid;
|
|
struct nfsd_oidargs onid;
|
|
struct {
|
|
int vers; /* Just the first field of nfsstats. */
|
|
} nfsstatver;
|
|
|
|
if (uap->flag & NFSSVC_IDNAME) {
|
|
if ((uap->flag & NFSSVC_NEWSTRUCT) != 0)
|
|
error = copyin(uap->argp, &nid, sizeof(nid));
|
|
else {
|
|
error = copyin(uap->argp, &onid, sizeof(onid));
|
|
if (error == 0) {
|
|
nid.nid_flag = onid.nid_flag;
|
|
nid.nid_uid = onid.nid_uid;
|
|
nid.nid_gid = onid.nid_gid;
|
|
nid.nid_usermax = onid.nid_usermax;
|
|
nid.nid_usertimeout = onid.nid_usertimeout;
|
|
nid.nid_name = onid.nid_name;
|
|
nid.nid_namelen = onid.nid_namelen;
|
|
nid.nid_ngroup = 0;
|
|
nid.nid_grps = NULL;
|
|
}
|
|
}
|
|
if (error)
|
|
goto out;
|
|
error = nfssvc_idname(&nid);
|
|
goto out;
|
|
} else if (uap->flag & NFSSVC_GETSTATS) {
|
|
if ((uap->flag & NFSSVC_NEWSTRUCT) == 0) {
|
|
/* Copy fields to the old ext_nfsstat structure. */
|
|
oldnfsstats.attrcache_hits =
|
|
nfsstatsv1.attrcache_hits;
|
|
oldnfsstats.attrcache_misses =
|
|
nfsstatsv1.attrcache_misses;
|
|
oldnfsstats.lookupcache_hits =
|
|
nfsstatsv1.lookupcache_hits;
|
|
oldnfsstats.lookupcache_misses =
|
|
nfsstatsv1.lookupcache_misses;
|
|
oldnfsstats.direofcache_hits =
|
|
nfsstatsv1.direofcache_hits;
|
|
oldnfsstats.direofcache_misses =
|
|
nfsstatsv1.direofcache_misses;
|
|
oldnfsstats.accesscache_hits =
|
|
nfsstatsv1.accesscache_hits;
|
|
oldnfsstats.accesscache_misses =
|
|
nfsstatsv1.accesscache_misses;
|
|
oldnfsstats.biocache_reads =
|
|
nfsstatsv1.biocache_reads;
|
|
oldnfsstats.read_bios =
|
|
nfsstatsv1.read_bios;
|
|
oldnfsstats.read_physios =
|
|
nfsstatsv1.read_physios;
|
|
oldnfsstats.biocache_writes =
|
|
nfsstatsv1.biocache_writes;
|
|
oldnfsstats.write_bios =
|
|
nfsstatsv1.write_bios;
|
|
oldnfsstats.write_physios =
|
|
nfsstatsv1.write_physios;
|
|
oldnfsstats.biocache_readlinks =
|
|
nfsstatsv1.biocache_readlinks;
|
|
oldnfsstats.readlink_bios =
|
|
nfsstatsv1.readlink_bios;
|
|
oldnfsstats.biocache_readdirs =
|
|
nfsstatsv1.biocache_readdirs;
|
|
oldnfsstats.readdir_bios =
|
|
nfsstatsv1.readdir_bios;
|
|
for (i = 0; i < NFSV4_NPROCS; i++)
|
|
oldnfsstats.rpccnt[i] = nfsstatsv1.rpccnt[i];
|
|
oldnfsstats.rpcretries = nfsstatsv1.rpcretries;
|
|
for (i = 0; i < NFSV4OP_NOPS; i++)
|
|
oldnfsstats.srvrpccnt[i] =
|
|
nfsstatsv1.srvrpccnt[i];
|
|
for (i = NFSV42_NOPS, j = NFSV4OP_NOPS;
|
|
i < NFSV42_NOPS + NFSV4OP_FAKENOPS; i++, j++)
|
|
oldnfsstats.srvrpccnt[j] =
|
|
nfsstatsv1.srvrpccnt[i];
|
|
oldnfsstats.srvrpc_errs = nfsstatsv1.srvrpc_errs;
|
|
oldnfsstats.srv_errs = nfsstatsv1.srv_errs;
|
|
oldnfsstats.rpcrequests = nfsstatsv1.rpcrequests;
|
|
oldnfsstats.rpctimeouts = nfsstatsv1.rpctimeouts;
|
|
oldnfsstats.rpcunexpected = nfsstatsv1.rpcunexpected;
|
|
oldnfsstats.rpcinvalid = nfsstatsv1.rpcinvalid;
|
|
oldnfsstats.srvcache_inproghits =
|
|
nfsstatsv1.srvcache_inproghits;
|
|
oldnfsstats.srvcache_idemdonehits =
|
|
nfsstatsv1.srvcache_idemdonehits;
|
|
oldnfsstats.srvcache_nonidemdonehits =
|
|
nfsstatsv1.srvcache_nonidemdonehits;
|
|
oldnfsstats.srvcache_misses =
|
|
nfsstatsv1.srvcache_misses;
|
|
oldnfsstats.srvcache_tcppeak =
|
|
nfsstatsv1.srvcache_tcppeak;
|
|
oldnfsstats.srvcache_size = nfsstatsv1.srvcache_size;
|
|
oldnfsstats.srvclients = nfsstatsv1.srvclients;
|
|
oldnfsstats.srvopenowners = nfsstatsv1.srvopenowners;
|
|
oldnfsstats.srvopens = nfsstatsv1.srvopens;
|
|
oldnfsstats.srvlockowners = nfsstatsv1.srvlockowners;
|
|
oldnfsstats.srvlocks = nfsstatsv1.srvlocks;
|
|
oldnfsstats.srvdelegates = nfsstatsv1.srvdelegates;
|
|
for (i = 0; i < NFSV4OP_CBNOPS; i++)
|
|
oldnfsstats.cbrpccnt[i] =
|
|
nfsstatsv1.cbrpccnt[i];
|
|
oldnfsstats.clopenowners = nfsstatsv1.clopenowners;
|
|
oldnfsstats.clopens = nfsstatsv1.clopens;
|
|
oldnfsstats.cllockowners = nfsstatsv1.cllockowners;
|
|
oldnfsstats.cllocks = nfsstatsv1.cllocks;
|
|
oldnfsstats.cldelegates = nfsstatsv1.cldelegates;
|
|
oldnfsstats.cllocalopenowners =
|
|
nfsstatsv1.cllocalopenowners;
|
|
oldnfsstats.cllocalopens = nfsstatsv1.cllocalopens;
|
|
oldnfsstats.cllocallockowners =
|
|
nfsstatsv1.cllocallockowners;
|
|
oldnfsstats.cllocallocks = nfsstatsv1.cllocallocks;
|
|
error = copyout(&oldnfsstats, uap->argp,
|
|
sizeof (oldnfsstats));
|
|
} else {
|
|
error = copyin(uap->argp, &nfsstatver,
|
|
sizeof(nfsstatver));
|
|
if (error == 0 && nfsstatver.vers != NFSSTATS_V1)
|
|
error = EPERM;
|
|
if (error == 0)
|
|
error = copyout(&nfsstatsv1, uap->argp,
|
|
sizeof (nfsstatsv1));
|
|
}
|
|
if (error == 0) {
|
|
if ((uap->flag & NFSSVC_ZEROCLTSTATS) != 0) {
|
|
nfsstatsv1.attrcache_hits = 0;
|
|
nfsstatsv1.attrcache_misses = 0;
|
|
nfsstatsv1.lookupcache_hits = 0;
|
|
nfsstatsv1.lookupcache_misses = 0;
|
|
nfsstatsv1.direofcache_hits = 0;
|
|
nfsstatsv1.direofcache_misses = 0;
|
|
nfsstatsv1.accesscache_hits = 0;
|
|
nfsstatsv1.accesscache_misses = 0;
|
|
nfsstatsv1.biocache_reads = 0;
|
|
nfsstatsv1.read_bios = 0;
|
|
nfsstatsv1.read_physios = 0;
|
|
nfsstatsv1.biocache_writes = 0;
|
|
nfsstatsv1.write_bios = 0;
|
|
nfsstatsv1.write_physios = 0;
|
|
nfsstatsv1.biocache_readlinks = 0;
|
|
nfsstatsv1.readlink_bios = 0;
|
|
nfsstatsv1.biocache_readdirs = 0;
|
|
nfsstatsv1.readdir_bios = 0;
|
|
nfsstatsv1.rpcretries = 0;
|
|
nfsstatsv1.rpcrequests = 0;
|
|
nfsstatsv1.rpctimeouts = 0;
|
|
nfsstatsv1.rpcunexpected = 0;
|
|
nfsstatsv1.rpcinvalid = 0;
|
|
bzero(nfsstatsv1.rpccnt,
|
|
sizeof(nfsstatsv1.rpccnt));
|
|
}
|
|
if ((uap->flag & NFSSVC_ZEROSRVSTATS) != 0) {
|
|
nfsstatsv1.srvrpc_errs = 0;
|
|
nfsstatsv1.srv_errs = 0;
|
|
nfsstatsv1.srvcache_inproghits = 0;
|
|
nfsstatsv1.srvcache_idemdonehits = 0;
|
|
nfsstatsv1.srvcache_nonidemdonehits = 0;
|
|
nfsstatsv1.srvcache_misses = 0;
|
|
nfsstatsv1.srvcache_tcppeak = 0;
|
|
bzero(nfsstatsv1.srvrpccnt,
|
|
sizeof(nfsstatsv1.srvrpccnt));
|
|
bzero(nfsstatsv1.cbrpccnt,
|
|
sizeof(nfsstatsv1.cbrpccnt));
|
|
}
|
|
}
|
|
goto out;
|
|
} else if (uap->flag & NFSSVC_NFSUSERDPORT) {
|
|
u_short sockport;
|
|
struct sockaddr *sad;
|
|
struct sockaddr_un *sun;
|
|
|
|
if ((uap->flag & NFSSVC_NEWSTRUCT) != 0) {
|
|
/* New nfsuserd using an AF_LOCAL socket. */
|
|
sun = malloc(sizeof(struct sockaddr_un), M_SONAME,
|
|
M_WAITOK | M_ZERO);
|
|
error = copyinstr(uap->argp, sun->sun_path,
|
|
sizeof(sun->sun_path), NULL);
|
|
if (error != 0) {
|
|
free(sun, M_SONAME);
|
|
return (error);
|
|
}
|
|
sun->sun_family = AF_LOCAL;
|
|
sun->sun_len = SUN_LEN(sun);
|
|
sockport = 0;
|
|
sad = (struct sockaddr *)sun;
|
|
} else {
|
|
error = copyin(uap->argp, (caddr_t)&sockport,
|
|
sizeof (u_short));
|
|
sad = NULL;
|
|
}
|
|
if (error == 0)
|
|
error = nfsrv_nfsuserdport(sad, sockport, p);
|
|
} else if (uap->flag & NFSSVC_NFSUSERDDELPORT) {
|
|
nfsrv_nfsuserddelport();
|
|
error = 0;
|
|
}
|
|
|
|
out:
|
|
NFSEXITCODE(error);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* called by all three modevent routines, so that it gets things
|
|
* initialized soon enough.
|
|
*/
|
|
void
|
|
newnfs_portinit(void)
|
|
{
|
|
static int inited = 0;
|
|
|
|
if (inited)
|
|
return;
|
|
inited = 1;
|
|
/* Initialize SMP locks used by both client and server. */
|
|
mtx_init(&newnfsd_mtx, "newnfsd_mtx", NULL, MTX_DEF);
|
|
mtx_init(&nfs_state_mutex, "nfs_state_mutex", NULL, MTX_DEF);
|
|
mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL, MTX_DEF);
|
|
}
|
|
|
|
/*
|
|
* Determine if the file system supports NFSv4 ACLs.
|
|
* Return 1 if it does, 0 otherwise.
|
|
*/
|
|
int
|
|
nfs_supportsnfsv4acls(struct vnode *vp)
|
|
{
|
|
int error;
|
|
long retval;
|
|
|
|
ASSERT_VOP_LOCKED(vp, "nfs supports nfsv4acls");
|
|
|
|
if (nfsrv_useacl == 0)
|
|
return (0);
|
|
error = VOP_PATHCONF(vp, _PC_ACL_NFS4, &retval);
|
|
if (error == 0 && retval != 0)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* These are the first fields of all the context structures passed into
|
|
* nfs_pnfsio().
|
|
*/
|
|
struct pnfsio {
|
|
int done;
|
|
int inprog;
|
|
struct task tsk;
|
|
};
|
|
|
|
/*
|
|
* Do a mirror I/O on a pNFS thread.
|
|
*/
|
|
int
|
|
nfs_pnfsio(task_fn_t *func, void *context)
|
|
{
|
|
struct pnfsio *pio;
|
|
int ret;
|
|
static struct taskqueue *pnfsioq = NULL;
|
|
|
|
pio = (struct pnfsio *)context;
|
|
if (pnfsioq == NULL) {
|
|
if (nfs_pnfsiothreads == 0)
|
|
return (EPERM);
|
|
if (nfs_pnfsiothreads < 0)
|
|
nfs_pnfsiothreads = mp_ncpus * 4;
|
|
pnfsioq = taskqueue_create("pnfsioq", M_WAITOK,
|
|
taskqueue_thread_enqueue, &pnfsioq);
|
|
if (pnfsioq == NULL)
|
|
return (ENOMEM);
|
|
ret = taskqueue_start_threads(&pnfsioq, nfs_pnfsiothreads,
|
|
0, "pnfsiot");
|
|
if (ret != 0) {
|
|
taskqueue_free(pnfsioq);
|
|
pnfsioq = NULL;
|
|
return (ret);
|
|
}
|
|
}
|
|
pio->inprog = 1;
|
|
TASK_INIT(&pio->tsk, 0, func, context);
|
|
ret = taskqueue_enqueue(pnfsioq, &pio->tsk);
|
|
if (ret != 0)
|
|
pio->inprog = 0;
|
|
return (ret);
|
|
}
|
|
|
|
extern int (*nfsd_call_nfscommon)(struct thread *, struct nfssvc_args *);
|
|
|
|
/*
|
|
* Called once to initialize data structures...
|
|
*/
|
|
static int
|
|
nfscommon_modevent(module_t mod, int type, void *data)
|
|
{
|
|
int error = 0;
|
|
static int loaded = 0;
|
|
|
|
switch (type) {
|
|
case MOD_LOAD:
|
|
if (loaded)
|
|
goto out;
|
|
newnfs_portinit();
|
|
mtx_init(&nfs_nameid_mutex, "nfs_nameid_mutex", NULL, MTX_DEF);
|
|
mtx_init(&nfs_sockl_mutex, "nfs_sockl_mutex", NULL, MTX_DEF);
|
|
mtx_init(&nfs_slock_mutex, "nfs_slock_mutex", NULL, MTX_DEF);
|
|
mtx_init(&nfs_req_mutex, "nfs_req_mutex", NULL, MTX_DEF);
|
|
mtx_init(&nfsrv_nfsuserdsock.nr_mtx, "nfsuserd", NULL,
|
|
MTX_DEF);
|
|
mtx_init(&nfsrv_dslock_mtx, "nfs4ds", NULL, MTX_DEF);
|
|
TAILQ_INIT(&nfsrv_devidhead);
|
|
callout_init(&newnfsd_callout, 1);
|
|
newnfs_init();
|
|
nfsd_call_nfscommon = nfssvc_nfscommon;
|
|
loaded = 1;
|
|
break;
|
|
|
|
case MOD_UNLOAD:
|
|
if (newnfs_numnfsd != 0 || nfsrv_nfsuserd != 0 ||
|
|
nfs_numnfscbd != 0) {
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
|
|
nfsd_call_nfscommon = NULL;
|
|
callout_drain(&newnfsd_callout);
|
|
/* Clean out the name<-->id cache. */
|
|
nfsrv_cleanusergroup();
|
|
/* and get rid of the mutexes */
|
|
mtx_destroy(&nfs_nameid_mutex);
|
|
mtx_destroy(&newnfsd_mtx);
|
|
mtx_destroy(&nfs_state_mutex);
|
|
mtx_destroy(&nfs_clstate_mutex);
|
|
mtx_destroy(&nfs_sockl_mutex);
|
|
mtx_destroy(&nfs_slock_mutex);
|
|
mtx_destroy(&nfs_req_mutex);
|
|
mtx_destroy(&nfsrv_nfsuserdsock.nr_mtx);
|
|
mtx_destroy(&nfsrv_dslock_mtx);
|
|
loaded = 0;
|
|
break;
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
out:
|
|
NFSEXITCODE(error);
|
|
return error;
|
|
}
|
|
static moduledata_t nfscommon_mod = {
|
|
"nfscommon",
|
|
nfscommon_modevent,
|
|
NULL,
|
|
};
|
|
DECLARE_MODULE(nfscommon, nfscommon_mod, SI_SUB_VFS, SI_ORDER_ANY);
|
|
|
|
/* So that loader and kldload(2) can find us, wherever we are.. */
|
|
MODULE_VERSION(nfscommon, 1);
|
|
MODULE_DEPEND(nfscommon, nfssvc, 1, 1, 1);
|
|
MODULE_DEPEND(nfscommon, krpc, 1, 1, 1);
|
|
|