freebsd-skq/stand/libsa/zfs/zfsimpl.c
Toomas Soome 653c3383c7 loader: update zfsimpl.c from illumos review suggestions
Add extra comments and update error handling.

MFH:		1 week
2020-01-06 19:35:22 +00:00

3557 lines
81 KiB
C

/*-
* Copyright (c) 2007 Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Stand-alone ZFS file reader.
*/
#include <sys/endian.h>
#include <sys/stat.h>
#include <sys/stdint.h>
#include <sys/list.h>
#include <machine/_inttypes.h>
#include "zfsimpl.h"
#include "zfssubr.c"
struct zfsmount {
const spa_t *spa;
objset_phys_t objset;
uint64_t rootobj;
};
static struct zfsmount zfsmount __unused;
/*
* The indirect_child_t represents the vdev that we will read from, when we
* need to read all copies of the data (e.g. for scrub or reconstruction).
* For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
* ic_vdev is the same as is_vdev. However, for mirror top-level vdevs,
* ic_vdev is a child of the mirror.
*/
typedef struct indirect_child {
void *ic_data;
vdev_t *ic_vdev;
} indirect_child_t;
/*
* The indirect_split_t represents one mapped segment of an i/o to the
* indirect vdev. For non-split (contiguously-mapped) blocks, there will be
* only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
* For split blocks, there will be several of these.
*/
typedef struct indirect_split {
list_node_t is_node; /* link on iv_splits */
/*
* is_split_offset is the offset into the i/o.
* This is the sum of the previous splits' is_size's.
*/
uint64_t is_split_offset;
vdev_t *is_vdev; /* top-level vdev */
uint64_t is_target_offset; /* offset on is_vdev */
uint64_t is_size;
int is_children; /* number of entries in is_child[] */
/*
* is_good_child is the child that we are currently using to
* attempt reconstruction.
*/
int is_good_child;
indirect_child_t is_child[1]; /* variable-length */
} indirect_split_t;
/*
* The indirect_vsd_t is associated with each i/o to the indirect vdev.
* It is the "Vdev-Specific Data" in the zio_t's io_vsd.
*/
typedef struct indirect_vsd {
boolean_t iv_split_block;
boolean_t iv_reconstruct;
list_t iv_splits; /* list of indirect_split_t's */
} indirect_vsd_t;
/*
* List of all vdevs, chained through v_alllink.
*/
static vdev_list_t zfs_vdevs;
/*
* List of ZFS features supported for read
*/
static const char *features_for_read[] = {
"org.illumos:lz4_compress",
"com.delphix:hole_birth",
"com.delphix:extensible_dataset",
"com.delphix:embedded_data",
"org.open-zfs:large_blocks",
"org.illumos:sha512",
"org.illumos:skein",
"org.zfsonlinux:large_dnode",
"com.joyent:multi_vdev_crash_dump",
"com.delphix:spacemap_histogram",
"com.delphix:zpool_checkpoint",
"com.delphix:spacemap_v2",
"com.datto:encryption",
"org.zfsonlinux:allocation_classes",
"com.datto:resilver_defer",
"com.delphix:device_removal",
"com.delphix:obsolete_counts",
"com.intel:allocation_classes",
NULL
};
/*
* List of all pools, chained through spa_link.
*/
static spa_list_t zfs_pools;
static const dnode_phys_t *dnode_cache_obj;
static uint64_t dnode_cache_bn;
static char *dnode_cache_buf;
static char *zap_scratch;
static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr;
#define TEMP_SIZE (1024 * 1024)
static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
static int zfs_get_root(const spa_t *spa, uint64_t *objid);
static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
const char *name, uint64_t integer_size, uint64_t num_integers,
void *value);
static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
dnode_phys_t *);
static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
size_t);
static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
size_t);
static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
uint64_t);
vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
uint64_t, uint64_t *);
static void
zfs_init(void)
{
STAILQ_INIT(&zfs_vdevs);
STAILQ_INIT(&zfs_pools);
zfs_temp_buf = malloc(TEMP_SIZE);
zfs_temp_end = zfs_temp_buf + TEMP_SIZE;
zfs_temp_ptr = zfs_temp_buf;
dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
zap_scratch = malloc(SPA_MAXBLOCKSIZE);
zfs_init_crc();
}
static void *
zfs_alloc(size_t size)
{
char *ptr;
if (zfs_temp_ptr + size > zfs_temp_end) {
panic("ZFS: out of temporary buffer space");
}
ptr = zfs_temp_ptr;
zfs_temp_ptr += size;
return (ptr);
}
static void
zfs_free(void *ptr, size_t size)
{
zfs_temp_ptr -= size;
if (zfs_temp_ptr != ptr) {
panic("ZFS: zfs_alloc()/zfs_free() mismatch");
}
}
static int
xdr_int(const unsigned char **xdr, int *ip)
{
*ip = be32dec(*xdr);
(*xdr) += 4;
return (0);
}
static int
xdr_u_int(const unsigned char **xdr, u_int *ip)
{
*ip = be32dec(*xdr);
(*xdr) += 4;
return (0);
}
static int
xdr_uint64_t(const unsigned char **xdr, uint64_t *lp)
{
u_int hi, lo;
xdr_u_int(xdr, &hi);
xdr_u_int(xdr, &lo);
*lp = (((uint64_t)hi) << 32) | lo;
return (0);
}
static int
nvlist_find(const unsigned char *nvlist, const char *name, int type,
int *elementsp, void *valuep)
{
const unsigned char *p, *pair;
int junk;
int encoded_size, decoded_size;
p = nvlist;
xdr_int(&p, &junk);
xdr_int(&p, &junk);
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
while (encoded_size && decoded_size) {
int namelen, pairtype, elements;
const char *pairname;
xdr_int(&p, &namelen);
pairname = (const char *)p;
p += roundup(namelen, 4);
xdr_int(&p, &pairtype);
if (memcmp(name, pairname, namelen) == 0 && type == pairtype) {
xdr_int(&p, &elements);
if (elementsp)
*elementsp = elements;
if (type == DATA_TYPE_UINT64) {
xdr_uint64_t(&p, (uint64_t *)valuep);
return (0);
} else if (type == DATA_TYPE_STRING) {
int len;
xdr_int(&p, &len);
(*(const char **)valuep) = (const char *)p;
return (0);
} else if (type == DATA_TYPE_NVLIST ||
type == DATA_TYPE_NVLIST_ARRAY) {
(*(const unsigned char **)valuep) =
(const unsigned char *)p;
return (0);
} else {
return (EIO);
}
} else {
/*
* Not the pair we are looking for, skip to the
* next one.
*/
p = pair + encoded_size;
}
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
}
return (EIO);
}
static int
nvlist_check_features_for_read(const unsigned char *nvlist)
{
const unsigned char *p, *pair;
int junk;
int encoded_size, decoded_size;
int rc;
rc = 0;
p = nvlist;
xdr_int(&p, &junk);
xdr_int(&p, &junk);
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
while (encoded_size && decoded_size) {
int namelen, pairtype;
const char *pairname;
int i, found;
found = 0;
xdr_int(&p, &namelen);
pairname = (const char *)p;
p += roundup(namelen, 4);
xdr_int(&p, &pairtype);
for (i = 0; features_for_read[i] != NULL; i++) {
if (memcmp(pairname, features_for_read[i],
namelen) == 0) {
found = 1;
break;
}
}
if (!found) {
printf("ZFS: unsupported feature: %s\n", pairname);
rc = EIO;
}
p = pair + encoded_size;
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
}
return (rc);
}
/*
* Return the next nvlist in an nvlist array.
*/
static const unsigned char *
nvlist_next(const unsigned char *nvlist)
{
const unsigned char *p, *pair;
int junk;
int encoded_size, decoded_size;
p = nvlist;
xdr_int(&p, &junk);
xdr_int(&p, &junk);
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
while (encoded_size && decoded_size) {
p = pair + encoded_size;
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
}
return (p);
}
#ifdef TEST
static const unsigned char *
nvlist_print(const unsigned char *nvlist, unsigned int indent)
{
static const char *typenames[] = {
"DATA_TYPE_UNKNOWN",
"DATA_TYPE_BOOLEAN",
"DATA_TYPE_BYTE",
"DATA_TYPE_INT16",
"DATA_TYPE_UINT16",
"DATA_TYPE_INT32",
"DATA_TYPE_UINT32",
"DATA_TYPE_INT64",
"DATA_TYPE_UINT64",
"DATA_TYPE_STRING",
"DATA_TYPE_BYTE_ARRAY",
"DATA_TYPE_INT16_ARRAY",
"DATA_TYPE_UINT16_ARRAY",
"DATA_TYPE_INT32_ARRAY",
"DATA_TYPE_UINT32_ARRAY",
"DATA_TYPE_INT64_ARRAY",
"DATA_TYPE_UINT64_ARRAY",
"DATA_TYPE_STRING_ARRAY",
"DATA_TYPE_HRTIME",
"DATA_TYPE_NVLIST",
"DATA_TYPE_NVLIST_ARRAY",
"DATA_TYPE_BOOLEAN_VALUE",
"DATA_TYPE_INT8",
"DATA_TYPE_UINT8",
"DATA_TYPE_BOOLEAN_ARRAY",
"DATA_TYPE_INT8_ARRAY",
"DATA_TYPE_UINT8_ARRAY"
};
unsigned int i, j;
const unsigned char *p, *pair;
int junk;
int encoded_size, decoded_size;
p = nvlist;
xdr_int(&p, &junk);
xdr_int(&p, &junk);
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
while (encoded_size && decoded_size) {
int namelen, pairtype, elements;
const char *pairname;
xdr_int(&p, &namelen);
pairname = (const char *)p;
p += roundup(namelen, 4);
xdr_int(&p, &pairtype);
for (i = 0; i < indent; i++)
printf(" ");
printf("%s %s", typenames[pairtype], pairname);
xdr_int(&p, &elements);
switch (pairtype) {
case DATA_TYPE_UINT64: {
uint64_t val;
xdr_uint64_t(&p, &val);
printf(" = 0x%jx\n", (uintmax_t)val);
break;
}
case DATA_TYPE_STRING: {
int len;
xdr_int(&p, &len);
printf(" = \"%s\"\n", p);
break;
}
case DATA_TYPE_NVLIST:
printf("\n");
nvlist_print(p, indent + 1);
break;
case DATA_TYPE_NVLIST_ARRAY:
for (j = 0; j < elements; j++) {
printf("[%d]\n", j);
p = nvlist_print(p, indent + 1);
if (j != elements - 1) {
for (i = 0; i < indent; i++)
printf(" ");
printf("%s %s", typenames[pairtype],
pairname);
}
}
break;
default:
printf("\n");
}
p = pair + encoded_size;
pair = p;
xdr_int(&p, &encoded_size);
xdr_int(&p, &decoded_size);
}
return (p);
}
#endif
static int
vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
off_t offset, size_t size)
{
size_t psize;
int rc;
if (!vdev->v_phys_read)
return (EIO);
if (bp) {
psize = BP_GET_PSIZE(bp);
} else {
psize = size;
}
rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize);
if (rc == 0) {
if (bp != NULL)
rc = zio_checksum_verify(vdev->v_spa, bp, buf);
}
return (rc);
}
typedef struct remap_segment {
vdev_t *rs_vd;
uint64_t rs_offset;
uint64_t rs_asize;
uint64_t rs_split_offset;
list_node_t rs_node;
} remap_segment_t;
static remap_segment_t *
rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
{
remap_segment_t *rs = malloc(sizeof (remap_segment_t));
if (rs != NULL) {
rs->rs_vd = vd;
rs->rs_offset = offset;
rs->rs_asize = asize;
rs->rs_split_offset = split_offset;
}
return (rs);
}
vdev_indirect_mapping_t *
vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
uint64_t mapping_object)
{
vdev_indirect_mapping_t *vim;
vdev_indirect_mapping_phys_t *vim_phys;
int rc;
vim = calloc(1, sizeof (*vim));
if (vim == NULL)
return (NULL);
vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
if (vim->vim_dn == NULL) {
free(vim);
return (NULL);
}
rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
if (rc != 0) {
free(vim->vim_dn);
free(vim);
return (NULL);
}
vim->vim_spa = spa;
vim->vim_phys = malloc(sizeof (*vim->vim_phys));
if (vim->vim_phys == NULL) {
free(vim->vim_dn);
free(vim);
return (NULL);
}
vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
*vim->vim_phys = *vim_phys;
vim->vim_objset = os;
vim->vim_object = mapping_object;
vim->vim_entries = NULL;
vim->vim_havecounts =
(vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
return (vim);
}
/*
* Compare an offset with an indirect mapping entry; there are three
* possible scenarios:
*
* 1. The offset is "less than" the mapping entry; meaning the
* offset is less than the source offset of the mapping entry. In
* this case, there is no overlap between the offset and the
* mapping entry and -1 will be returned.
*
* 2. The offset is "greater than" the mapping entry; meaning the
* offset is greater than the mapping entry's source offset plus
* the entry's size. In this case, there is no overlap between
* the offset and the mapping entry and 1 will be returned.
*
* NOTE: If the offset is actually equal to the entry's offset
* plus size, this is considered to be "greater" than the entry,
* and this case applies (i.e. 1 will be returned). Thus, the
* entry's "range" can be considered to be inclusive at its
* start, but exclusive at its end: e.g. [src, src + size).
*
* 3. The last case to consider is if the offset actually falls
* within the mapping entry's range. If this is the case, the
* offset is considered to be "equal to" the mapping entry and
* 0 will be returned.
*
* NOTE: If the offset is equal to the entry's source offset,
* this case applies and 0 will be returned. If the offset is
* equal to the entry's source plus its size, this case does
* *not* apply (see "NOTE" above for scenario 2), and 1 will be
* returned.
*/
static int
dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
{
const uint64_t *key = v_key;
const vdev_indirect_mapping_entry_phys_t *array_elem =
v_array_elem;
uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
if (*key < src_offset) {
return (-1);
} else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
return (0);
} else {
return (1);
}
}
/*
* Return array entry.
*/
static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
{
uint64_t size;
off_t offset = 0;
int rc;
if (vim->vim_phys->vimp_num_entries == 0)
return (NULL);
if (vim->vim_entries == NULL) {
uint64_t bsize;
bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
size = vim->vim_phys->vimp_num_entries *
sizeof (*vim->vim_entries);
if (size > bsize) {
size = bsize / sizeof (*vim->vim_entries);
size *= sizeof (*vim->vim_entries);
}
vim->vim_entries = malloc(size);
if (vim->vim_entries == NULL)
return (NULL);
vim->vim_num_entries = size / sizeof (*vim->vim_entries);
offset = index * sizeof (*vim->vim_entries);
}
/* We have data in vim_entries */
if (offset == 0) {
if (index >= vim->vim_entry_offset &&
index <= vim->vim_entry_offset + vim->vim_num_entries) {
index -= vim->vim_entry_offset;
return (&vim->vim_entries[index]);
}
offset = index * sizeof (*vim->vim_entries);
}
vim->vim_entry_offset = index;
size = vim->vim_num_entries * sizeof (*vim->vim_entries);
rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
size);
if (rc != 0) {
/* Read error, invalidate vim_entries. */
free(vim->vim_entries);
vim->vim_entries = NULL;
return (NULL);
}
index -= vim->vim_entry_offset;
return (&vim->vim_entries[index]);
}
/*
* Returns the mapping entry for the given offset.
*
* It's possible that the given offset will not be in the mapping table
* (i.e. no mapping entries contain this offset), in which case, the
* return value value depends on the "next_if_missing" parameter.
*
* If the offset is not found in the table and "next_if_missing" is
* B_FALSE, then NULL will always be returned. The behavior is intended
* to allow consumers to get the entry corresponding to the offset
* parameter, iff the offset overlaps with an entry in the table.
*
* If the offset is not found in the table and "next_if_missing" is
* B_TRUE, then the entry nearest to the given offset will be returned,
* such that the entry's source offset is greater than the offset
* passed in (i.e. the "next" mapping entry in the table is returned, if
* the offset is missing from the table). If there are no entries whose
* source offset is greater than the passed in offset, NULL is returned.
*/
static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
uint64_t offset)
{
ASSERT(vim->vim_phys->vimp_num_entries > 0);
vdev_indirect_mapping_entry_phys_t *entry;
uint64_t last = vim->vim_phys->vimp_num_entries - 1;
uint64_t base = 0;
/*
* We don't define these inside of the while loop because we use
* their value in the case that offset isn't in the mapping.
*/
uint64_t mid;
int result;
while (last >= base) {
mid = base + ((last - base) >> 1);
entry = vdev_indirect_mapping_entry(vim, mid);
if (entry == NULL)
break;
result = dva_mapping_overlap_compare(&offset, entry);
if (result == 0) {
break;
} else if (result < 0) {
last = mid - 1;
} else {
base = mid + 1;
}
}
return (entry);
}
/*
* Given an indirect vdev and an extent on that vdev, it duplicates the
* physical entries of the indirect mapping that correspond to the extent
* to a new array and returns a pointer to it. In addition, copied_entries
* is populated with the number of mapping entries that were duplicated.
*
* Finally, since we are doing an allocation, it is up to the caller to
* free the array allocated in this function.
*/
vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
uint64_t asize, uint64_t *copied_entries)
{
vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
vdev_indirect_mapping_t *vim = vd->v_mapping;
uint64_t entries = 0;
vdev_indirect_mapping_entry_phys_t *first_mapping =
vdev_indirect_mapping_entry_for_offset(vim, offset);
ASSERT3P(first_mapping, !=, NULL);
vdev_indirect_mapping_entry_phys_t *m = first_mapping;
while (asize > 0) {
uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
uint64_t inner_size = MIN(asize, size - inner_offset);
offset += inner_size;
asize -= inner_size;
entries++;
m++;
}
size_t copy_length = entries * sizeof (*first_mapping);
duplicate_mappings = malloc(copy_length);
if (duplicate_mappings != NULL)
bcopy(first_mapping, duplicate_mappings, copy_length);
else
entries = 0;
*copied_entries = entries;
return (duplicate_mappings);
}
static vdev_t *
vdev_lookup_top(spa_t *spa, uint64_t vdev)
{
vdev_t *rvd;
vdev_list_t *vlist;
vlist = &spa->spa_root_vdev->v_children;
STAILQ_FOREACH(rvd, vlist, v_childlink)
if (rvd->v_id == vdev)
break;
return (rvd);
}
/*
* This is a callback for vdev_indirect_remap() which allocates an
* indirect_split_t for each split segment and adds it to iv_splits.
*/
static void
vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
uint64_t size, void *arg)
{
int n = 1;
zio_t *zio = arg;
indirect_vsd_t *iv = zio->io_vsd;
if (vd->v_read == vdev_indirect_read)
return;
if (vd->v_read == vdev_mirror_read)
n = vd->v_nchildren;
indirect_split_t *is =
malloc(offsetof(indirect_split_t, is_child[n]));
if (is == NULL) {
zio->io_error = ENOMEM;
return;
}
bzero(is, offsetof(indirect_split_t, is_child[n]));
is->is_children = n;
is->is_size = size;
is->is_split_offset = split_offset;
is->is_target_offset = offset;
is->is_vdev = vd;
/*
* Note that we only consider multiple copies of the data for
* *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even
* though they use the same ops as mirror, because there's only one
* "good" copy under the replacing/spare.
*/
if (vd->v_read == vdev_mirror_read) {
int i = 0;
vdev_t *kid;
STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
is->is_child[i++].ic_vdev = kid;
}
} else {
is->is_child[0].ic_vdev = vd;
}
list_insert_tail(&iv->iv_splits, is);
}
static void
vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
{
list_t stack;
spa_t *spa = vd->v_spa;
zio_t *zio = arg;
remap_segment_t *rs;
list_create(&stack, sizeof (remap_segment_t),
offsetof(remap_segment_t, rs_node));
rs = rs_alloc(vd, offset, asize, 0);
if (rs == NULL) {
printf("vdev_indirect_remap: out of memory.\n");
zio->io_error = ENOMEM;
}
for (; rs != NULL; rs = list_remove_head(&stack)) {
vdev_t *v = rs->rs_vd;
uint64_t num_entries = 0;
/* vdev_indirect_mapping_t *vim = v->v_mapping; */
vdev_indirect_mapping_entry_phys_t *mapping =
vdev_indirect_mapping_duplicate_adjacent_entries(v,
rs->rs_offset, rs->rs_asize, &num_entries);
if (num_entries == 0)
zio->io_error = ENOMEM;
for (uint64_t i = 0; i < num_entries; i++) {
vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
uint64_t inner_offset = rs->rs_offset -
DVA_MAPPING_GET_SRC_OFFSET(m);
uint64_t inner_size =
MIN(rs->rs_asize, size - inner_offset);
vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
if (dst_v->v_read == vdev_indirect_read) {
remap_segment_t *o;
o = rs_alloc(dst_v, dst_offset + inner_offset,
inner_size, rs->rs_split_offset);
if (o == NULL) {
printf("vdev_indirect_remap: "
"out of memory.\n");
zio->io_error = ENOMEM;
break;
}
list_insert_head(&stack, o);
}
vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
dst_offset + inner_offset,
inner_size, arg);
/*
* vdev_indirect_gather_splits can have memory
* allocation error, we can not recover from it.
*/
if (zio->io_error != 0)
break;
rs->rs_offset += inner_size;
rs->rs_asize -= inner_size;
rs->rs_split_offset += inner_size;
}
free(mapping);
free(rs);
if (zio->io_error != 0)
break;
}
list_destroy(&stack);
}
static void
vdev_indirect_map_free(zio_t *zio)
{
indirect_vsd_t *iv = zio->io_vsd;
indirect_split_t *is;
while ((is = list_head(&iv->iv_splits)) != NULL) {
for (int c = 0; c < is->is_children; c++) {
indirect_child_t *ic = &is->is_child[c];
free(ic->ic_data);
}
list_remove(&iv->iv_splits, is);
free(is);
}
free(iv);
}
static int
vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
off_t offset, size_t bytes)
{
zio_t zio;
spa_t *spa = vdev->v_spa;
indirect_vsd_t *iv;
indirect_split_t *first;
int rc = EIO;
iv = calloc(1, sizeof(*iv));
if (iv == NULL)
return (ENOMEM);
list_create(&iv->iv_splits,
sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
bzero(&zio, sizeof(zio));
zio.io_spa = spa;
zio.io_bp = (blkptr_t *)bp;
zio.io_data = buf;
zio.io_size = bytes;
zio.io_offset = offset;
zio.io_vd = vdev;
zio.io_vsd = iv;
if (vdev->v_mapping == NULL) {
vdev_indirect_config_t *vic;
vic = &vdev->vdev_indirect_config;
vdev->v_mapping = vdev_indirect_mapping_open(spa,
&spa->spa_mos, vic->vic_mapping_object);
}
vdev_indirect_remap(vdev, offset, bytes, &zio);
if (zio.io_error != 0)
return (zio.io_error);
first = list_head(&iv->iv_splits);
if (first->is_size == zio.io_size) {
/*
* This is not a split block; we are pointing to the entire
* data, which will checksum the same as the original data.
* Pass the BP down so that the child i/o can verify the
* checksum, and try a different location if available
* (e.g. on a mirror).
*
* While this special case could be handled the same as the
* general (split block) case, doing it this way ensures
* that the vast majority of blocks on indirect vdevs
* (which are not split) are handled identically to blocks
* on non-indirect vdevs. This allows us to be less strict
* about performance in the general (but rare) case.
*/
rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
zio.io_data, first->is_target_offset, bytes);
} else {
iv->iv_split_block = B_TRUE;
/*
* Read one copy of each split segment, from the
* top-level vdev. Since we don't know the
* checksum of each split individually, the child
* zio can't ensure that we get the right data.
* E.g. if it's a mirror, it will just read from a
* random (healthy) leaf vdev. We have to verify
* the checksum in vdev_indirect_io_done().
*/
for (indirect_split_t *is = list_head(&iv->iv_splits);
is != NULL; is = list_next(&iv->iv_splits, is)) {
char *ptr = zio.io_data;
rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
ptr + is->is_split_offset, is->is_target_offset,
is->is_size);
}
if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
rc = ECKSUM;
else
rc = 0;
}
vdev_indirect_map_free(&zio);
if (rc == 0)
rc = zio.io_error;
return (rc);
}
static int
vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
off_t offset, size_t bytes)
{
return (vdev_read_phys(vdev, bp, buf,
offset + VDEV_LABEL_START_SIZE, bytes));
}
static int
vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
off_t offset, size_t bytes)
{
vdev_t *kid;
int rc;
rc = EIO;
STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
if (kid->v_state != VDEV_STATE_HEALTHY)
continue;
rc = kid->v_read(kid, bp, buf, offset, bytes);
if (!rc)
return (0);
}
return (rc);
}
static int
vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
off_t offset, size_t bytes)
{
vdev_t *kid;
/*
* Here we should have two kids:
* First one which is the one we are replacing and we can trust
* only this one to have valid data, but it might not be present.
* Second one is that one we are replacing with. It is most likely
* healthy, but we can't trust it has needed data, so we won't use it.
*/
kid = STAILQ_FIRST(&vdev->v_children);
if (kid == NULL)
return (EIO);
if (kid->v_state != VDEV_STATE_HEALTHY)
return (EIO);
return (kid->v_read(kid, bp, buf, offset, bytes));
}
static vdev_t *
vdev_find(uint64_t guid)
{
vdev_t *vdev;
STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
if (vdev->v_guid == guid)
return (vdev);
return (0);
}
static vdev_t *
vdev_create(uint64_t guid, vdev_read_t *_read)
{
vdev_t *vdev;
vdev_indirect_config_t *vic;
vdev = calloc(1, sizeof(vdev_t));
if (vdev != NULL) {
STAILQ_INIT(&vdev->v_children);
vdev->v_guid = guid;
vdev->v_read = _read;
/*
* root vdev has no read function, we use this fact to
* skip setting up data we do not need for root vdev.
* We only point root vdev from spa.
*/
if (_read != NULL) {
vic = &vdev->vdev_indirect_config;
vic->vic_prev_indirect_vdev = UINT64_MAX;
STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
}
}
return (vdev);
}
static void
vdev_set_initial_state(vdev_t *vdev, const unsigned char *nvlist)
{
uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
uint64_t is_log;
is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
is_log = 0;
(void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
&is_offline);
(void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
&is_removed);
(void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
&is_faulted);
(void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
NULL, &is_degraded);
(void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
NULL, &isnt_present);
(void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
&is_log);
if (is_offline != 0)
vdev->v_state = VDEV_STATE_OFFLINE;
else if (is_removed != 0)
vdev->v_state = VDEV_STATE_REMOVED;
else if (is_faulted != 0)
vdev->v_state = VDEV_STATE_FAULTED;
else if (is_degraded != 0)
vdev->v_state = VDEV_STATE_DEGRADED;
else if (isnt_present != 0)
vdev->v_state = VDEV_STATE_CANT_OPEN;
vdev->v_islog = is_log != 0;
}
static int
vdev_init(uint64_t guid, const unsigned char *nvlist, vdev_t **vdevp)
{
uint64_t id, ashift, asize, nparity;
const char *path;
const char *type;
vdev_t *vdev;
if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id) ||
nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
NULL, &type)) {
return (ENOENT);
}
if (strcmp(type, VDEV_TYPE_MIRROR) != 0 &&
strcmp(type, VDEV_TYPE_DISK) != 0 &&
#ifdef ZFS_TEST
strcmp(type, VDEV_TYPE_FILE) != 0 &&
#endif
strcmp(type, VDEV_TYPE_RAIDZ) != 0 &&
strcmp(type, VDEV_TYPE_INDIRECT) != 0 &&
strcmp(type, VDEV_TYPE_REPLACING) != 0) {
printf("ZFS: can only boot from disk, mirror, raidz1, "
"raidz2 and raidz3 vdevs\n");
return (EIO);
}
if (strcmp(type, VDEV_TYPE_MIRROR) == 0)
vdev = vdev_create(guid, vdev_mirror_read);
else if (strcmp(type, VDEV_TYPE_RAIDZ) == 0)
vdev = vdev_create(guid, vdev_raidz_read);
else if (strcmp(type, VDEV_TYPE_REPLACING) == 0)
vdev = vdev_create(guid, vdev_replacing_read);
else if (strcmp(type, VDEV_TYPE_INDIRECT) == 0) {
vdev_indirect_config_t *vic;
vdev = vdev_create(guid, vdev_indirect_read);
if (vdev != NULL) {
vdev->v_state = VDEV_STATE_HEALTHY;
vic = &vdev->vdev_indirect_config;
nvlist_find(nvlist,
ZPOOL_CONFIG_INDIRECT_OBJECT,
DATA_TYPE_UINT64,
NULL, &vic->vic_mapping_object);
nvlist_find(nvlist,
ZPOOL_CONFIG_INDIRECT_BIRTHS,
DATA_TYPE_UINT64,
NULL, &vic->vic_births_object);
nvlist_find(nvlist,
ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
DATA_TYPE_UINT64,
NULL, &vic->vic_prev_indirect_vdev);
}
} else {
vdev = vdev_create(guid, vdev_disk_read);
}
if (vdev == NULL)
return (ENOMEM);
vdev_set_initial_state(vdev, nvlist);
vdev->v_id = id;
if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
DATA_TYPE_UINT64, NULL, &ashift) == 0)
vdev->v_ashift = ashift;
if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
DATA_TYPE_UINT64, NULL, &asize) == 0) {
vdev->v_psize = asize +
VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
}
if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
DATA_TYPE_UINT64, NULL, &nparity) == 0)
vdev->v_nparity = nparity;
if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
DATA_TYPE_STRING, NULL, &path) == 0) {
if (strncmp(path, "/dev/", 5) == 0)
path += 5;
vdev->v_name = strdup(path);
} else {
char *name;
name = NULL;
if (strcmp(type, "raidz") == 0) {
if (vdev->v_nparity < 1 ||
vdev->v_nparity > 3) {
printf("ZFS: invalid raidz parity: %d\n",
vdev->v_nparity);
return (EIO);
}
(void) asprintf(&name, "%s%d-%" PRIu64, type,
vdev->v_nparity, id);
} else {
(void) asprintf(&name, "%s-%" PRIu64, type, id);
}
vdev->v_name = name;
}
*vdevp = vdev;
return (0);
}
/*
* Find slot for vdev. We return either NULL to signal to use
* STAILQ_INSERT_HEAD, or we return link element to be used with
* STAILQ_INSERT_AFTER.
*/
static vdev_t *
vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev)
{
vdev_t *v, *previous;
if (STAILQ_EMPTY(&top_vdev->v_children))
return (NULL);
previous = NULL;
STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
if (v->v_id > vdev->v_id)
return (previous);
if (v->v_id == vdev->v_id)
return (v);
if (v->v_id < vdev->v_id)
previous = v;
}
return (previous);
}
static size_t
vdev_child_count(vdev_t *vdev)
{
vdev_t *v;
size_t count;
count = 0;
STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
count++;
}
return (count);
}
/*
* Insert vdev into top_vdev children list. List is ordered by v_id.
*/
static void
vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
{
vdev_t *previous;
size_t count;
/*
* The top level vdev can appear in random order, depending how
* the firmware is presenting the disk devices.
* However, we will insert vdev to create list ordered by v_id,
* so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
* as STAILQ does not have insert before.
*/
previous = vdev_find_previous(top_vdev, vdev);
if (previous == NULL) {
STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
} else if (previous->v_id == vdev->v_id) {
/*
* This vdev was configured from label config,
* do not insert duplicate.
*/
return;
} else {
STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
v_childlink);
}
count = vdev_child_count(top_vdev);
if (top_vdev->v_nchildren < count)
top_vdev->v_nchildren = count;
}
static int
vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const unsigned char *nvlist)
{
vdev_t *top_vdev, *vdev;
const unsigned char *kids;
int rc, nkids;
/* Get top vdev. */
top_vdev = vdev_find(top_guid);
if (top_vdev == NULL) {
rc = vdev_init(top_guid, nvlist, &top_vdev);
if (rc != 0)
return (rc);
top_vdev->v_spa = spa;
top_vdev->v_top = top_vdev;
vdev_insert(spa->spa_root_vdev, top_vdev);
}
/* Add children if there are any. */
rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
&nkids, &kids);
if (rc == 0) {
for (int i = 0; i < nkids; i++) {
uint64_t guid;
rc = nvlist_find(kids, ZPOOL_CONFIG_GUID,
DATA_TYPE_UINT64, NULL, &guid);
if (rc != 0)
return (rc);
rc = vdev_init(guid, kids, &vdev);
if (rc != 0)
return (rc);
vdev->v_spa = spa;
vdev->v_top = top_vdev;
vdev_insert(top_vdev, vdev);
kids = nvlist_next(kids);
}
} else {
/*
* When there are no children, nvlist_find() does return
* error, reset it because leaf devices have no children.
*/
rc = 0;
}
return (rc);
}
static int
vdev_init_from_label(spa_t *spa, const unsigned char *nvlist)
{
uint64_t pool_guid, top_guid;
const unsigned char *vdevs;
if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
NULL, &pool_guid) ||
nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
NULL, &top_guid) ||
nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
NULL, &vdevs)) {
printf("ZFS: can't find vdev details\n");
return (ENOENT);
}
return (vdev_from_nvlist(spa, top_guid, vdevs));
}
static void
vdev_set_state(vdev_t *vdev)
{
vdev_t *kid;
int good_kids;
int bad_kids;
STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
vdev_set_state(kid);
}
/*
* A mirror or raidz is healthy if all its kids are healthy. A
* mirror is degraded if any of its kids is healthy; a raidz
* is degraded if at most nparity kids are offline.
*/
if (STAILQ_FIRST(&vdev->v_children)) {
good_kids = 0;
bad_kids = 0;
STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
if (kid->v_state == VDEV_STATE_HEALTHY)
good_kids++;
else
bad_kids++;
}
if (bad_kids == 0) {
vdev->v_state = VDEV_STATE_HEALTHY;
} else {
if (vdev->v_read == vdev_mirror_read) {
if (good_kids) {
vdev->v_state = VDEV_STATE_DEGRADED;
} else {
vdev->v_state = VDEV_STATE_OFFLINE;
}
} else if (vdev->v_read == vdev_raidz_read) {
if (bad_kids > vdev->v_nparity) {
vdev->v_state = VDEV_STATE_OFFLINE;
} else {
vdev->v_state = VDEV_STATE_DEGRADED;
}
}
}
}
}
static int
vdev_update_from_nvlist(uint64_t top_guid, const unsigned char *nvlist)
{
vdev_t *vdev;
const unsigned char *kids;
int rc, nkids;
/* Update top vdev. */
vdev = vdev_find(top_guid);
if (vdev != NULL)
vdev_set_initial_state(vdev, nvlist);
/* Update children if there are any. */
rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
&nkids, &kids);
if (rc == 0) {
for (int i = 0; i < nkids; i++) {
uint64_t guid;
rc = nvlist_find(kids, ZPOOL_CONFIG_GUID,
DATA_TYPE_UINT64, NULL, &guid);
if (rc != 0)
break;
vdev = vdev_find(guid);
if (vdev != NULL)
vdev_set_initial_state(vdev, kids);
kids = nvlist_next(kids);
}
} else {
rc = 0;
}
return (rc);
}
static int
vdev_init_from_nvlist(spa_t *spa, const unsigned char *nvlist)
{
uint64_t pool_guid, vdev_children;
const unsigned char *vdevs, *kids;
int rc, nkids;
if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
NULL, &pool_guid) ||
nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
NULL, &vdev_children) ||
nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
NULL, &vdevs)) {
printf("ZFS: can't find vdev details\n");
return (ENOENT);
}
/* Wrong guid?! */
if (spa->spa_guid != pool_guid)
return (EINVAL);
spa->spa_root_vdev->v_nchildren = vdev_children;
rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
&nkids, &kids);
/*
* MOS config has at least one child for root vdev.
*/
if (rc != 0)
return (rc);
for (int i = 0; i < nkids; i++) {
uint64_t guid;
vdev_t *vdev;
rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
NULL, &guid);
if (rc != 0)
break;
vdev = vdev_find(guid);
/*
* Top level vdev is missing, create it.
*/
if (vdev == NULL)
rc = vdev_from_nvlist(spa, guid, kids);
else
rc = vdev_update_from_nvlist(guid, kids);
if (rc != 0)
break;
kids = nvlist_next(kids);
}
/*
* Re-evaluate top-level vdev state.
*/
vdev_set_state(spa->spa_root_vdev);
return (rc);
}
static spa_t *
spa_find_by_guid(uint64_t guid)
{
spa_t *spa;
STAILQ_FOREACH(spa, &zfs_pools, spa_link)
if (spa->spa_guid == guid)
return (spa);
return (NULL);
}
static spa_t *
spa_find_by_name(const char *name)
{
spa_t *spa;
STAILQ_FOREACH(spa, &zfs_pools, spa_link)
if (strcmp(spa->spa_name, name) == 0)
return (spa);
return (NULL);
}
#ifdef BOOT2
static spa_t *
spa_get_primary(void)
{
return (STAILQ_FIRST(&zfs_pools));
}
static vdev_t *
spa_get_primary_vdev(const spa_t *spa)
{
vdev_t *vdev;
vdev_t *kid;
if (spa == NULL)
spa = spa_get_primary();
if (spa == NULL)
return (NULL);
vdev = spa->spa_root_vdev;
if (vdev == NULL)
return (NULL);
for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL;
kid = STAILQ_FIRST(&vdev->v_children))
vdev = kid;
return (vdev);
}
#endif
static spa_t *
spa_create(uint64_t guid, const char *name)
{
spa_t *spa;
if ((spa = calloc(1, sizeof(spa_t))) == NULL)
return (NULL);
if ((spa->spa_name = strdup(name)) == NULL) {
free(spa);
return (NULL);
}
spa->spa_guid = guid;
spa->spa_root_vdev = vdev_create(guid, NULL);
if (spa->spa_root_vdev == NULL) {
free(spa->spa_name);
free(spa);
return (NULL);
}
spa->spa_root_vdev->v_name = strdup("root");
STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
return (spa);
}
static const char *
state_name(vdev_state_t state)
{
static const char *names[] = {
"UNKNOWN",
"CLOSED",
"OFFLINE",
"REMOVED",
"CANT_OPEN",
"FAULTED",
"DEGRADED",
"ONLINE"
};
return (names[state]);
}
#ifdef BOOT2
#define pager_printf printf
#else
static int
pager_printf(const char *fmt, ...)
{
char line[80];
va_list args;
va_start(args, fmt);
vsnprintf(line, sizeof(line), fmt, args);
va_end(args);
return (pager_output(line));
}
#endif
#define STATUS_FORMAT " %s %s\n"
static int
print_state(int indent, const char *name, vdev_state_t state)
{
int i;
char buf[512];
buf[0] = 0;
for (i = 0; i < indent; i++)
strcat(buf, " ");
strcat(buf, name);
return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
}
static int
vdev_status(vdev_t *vdev, int indent)
{
vdev_t *kid;
int ret;
if (vdev->v_islog) {
(void) pager_output(" logs\n");
indent++;
}
ret = print_state(indent, vdev->v_name, vdev->v_state);
if (ret != 0)
return (ret);
STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
ret = vdev_status(kid, indent + 1);
if (ret != 0)
return (ret);
}
return (ret);
}
static int
spa_status(spa_t *spa)
{
static char bootfs[ZFS_MAXNAMELEN];
uint64_t rootid;
vdev_list_t *vlist;
vdev_t *vdev;
int good_kids, bad_kids, degraded_kids, ret;
vdev_state_t state;
ret = pager_printf(" pool: %s\n", spa->spa_name);
if (ret != 0)
return (ret);
if (zfs_get_root(spa, &rootid) == 0 &&
zfs_rlookup(spa, rootid, bootfs) == 0) {
if (bootfs[0] == '\0')
ret = pager_printf("bootfs: %s\n", spa->spa_name);
else
ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
bootfs);
if (ret != 0)
return (ret);
}
ret = pager_printf("config:\n\n");
if (ret != 0)
return (ret);
ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
if (ret != 0)
return (ret);
good_kids = 0;
degraded_kids = 0;
bad_kids = 0;
vlist = &spa->spa_root_vdev->v_children;
STAILQ_FOREACH(vdev, vlist, v_childlink) {
if (vdev->v_state == VDEV_STATE_HEALTHY)
good_kids++;
else if (vdev->v_state == VDEV_STATE_DEGRADED)
degraded_kids++;
else
bad_kids++;
}
state = VDEV_STATE_CLOSED;
if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
state = VDEV_STATE_HEALTHY;
else if ((good_kids + degraded_kids) > 0)
state = VDEV_STATE_DEGRADED;
ret = print_state(0, spa->spa_name, state);
if (ret != 0)
return (ret);
STAILQ_FOREACH(vdev, vlist, v_childlink) {
ret = vdev_status(vdev, 1);
if (ret != 0)
return (ret);
}
return (ret);
}
static int
spa_all_status(void)
{
spa_t *spa;
int first = 1, ret = 0;
STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
if (!first) {
ret = pager_printf("\n");
if (ret != 0)
return (ret);
}
first = 0;
ret = spa_status(spa);
if (ret != 0)
return (ret);
}
return (ret);
}
static uint64_t
vdev_label_offset(uint64_t psize, int l, uint64_t offset)
{
uint64_t label_offset;
if (l < VDEV_LABELS / 2)
label_offset = 0;
else
label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
return (offset + l * sizeof (vdev_label_t) + label_offset);
}
static int
vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
{
unsigned int seq1 = 0;
unsigned int seq2 = 0;
int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
if (cmp != 0)
return (cmp);
cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
if (cmp != 0)
return (cmp);
if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
seq1 = MMP_SEQ(ub1);
if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
seq2 = MMP_SEQ(ub2);
return (AVL_CMP(seq1, seq2));
}
static int
uberblock_verify(uberblock_t *ub)
{
if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
byteswap_uint64_array(ub, sizeof (uberblock_t));
}
if (ub->ub_magic != UBERBLOCK_MAGIC ||
!SPA_VERSION_IS_SUPPORTED(ub->ub_version))
return (EINVAL);
return (0);
}
static int
vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
size_t size)
{
blkptr_t bp;
off_t off;
off = vdev_label_offset(vd->v_psize, l, offset);
BP_ZERO(&bp);
BP_SET_LSIZE(&bp, size);
BP_SET_PSIZE(&bp, size);
BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
return (vdev_read_phys(vd, &bp, buf, off, size));
}
static unsigned char *
vdev_label_read_config(vdev_t *vd, uint64_t txg)
{
vdev_phys_t *label;
uint64_t best_txg = 0;
uint64_t label_txg = 0;
uint64_t asize;
unsigned char *nvl;
size_t nvl_size;
int error;
label = malloc(sizeof (vdev_phys_t));
if (label == NULL)
return (NULL);
nvl_size = VDEV_PHYS_SIZE - sizeof (zio_eck_t) - 4;
nvl = malloc(nvl_size);
if (nvl == NULL)
goto done;
for (int l = 0; l < VDEV_LABELS; l++) {
const unsigned char *nvlist;
if (vdev_label_read(vd, l, label,
offsetof(vdev_label_t, vl_vdev_phys),
sizeof (vdev_phys_t)))
continue;
if (label->vp_nvlist[0] != NV_ENCODE_XDR)
continue;
nvlist = (const unsigned char *) label->vp_nvlist + 4;
error = nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG,
DATA_TYPE_UINT64, NULL, &label_txg);
if (error != 0 || label_txg == 0) {
memcpy(nvl, nvlist, nvl_size);
goto done;
}
if (label_txg <= txg && label_txg > best_txg) {
best_txg = label_txg;
memcpy(nvl, nvlist, nvl_size);
/*
* Use asize from pool config. We need this
* because we can get bad value from BIOS.
*/
if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
DATA_TYPE_UINT64, NULL, &asize) == 0) {
vd->v_psize = asize +
VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
}
}
}
if (best_txg == 0) {
free(nvl);
nvl = NULL;
}
done:
free(label);
return (nvl);
}
static void
vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
{
uberblock_t *buf;
buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
if (buf == NULL)
return;
for (int l = 0; l < VDEV_LABELS; l++) {
for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
if (vdev_label_read(vd, l, buf,
VDEV_UBERBLOCK_OFFSET(vd, n),
VDEV_UBERBLOCK_SIZE(vd)))
continue;
if (uberblock_verify(buf) != 0)
continue;
if (vdev_uberblock_compare(buf, ub) > 0)
*ub = *buf;
}
}
free(buf);
}
static int
vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap)
{
vdev_t vtmp;
spa_t *spa;
vdev_t *vdev;
unsigned char *nvlist;
uint64_t val;
uint64_t guid, vdev_children;
uint64_t pool_txg, pool_guid;
const char *pool_name;
const unsigned char *features;
int rc;
/*
* Load the vdev label and figure out which
* uberblock is most current.
*/
memset(&vtmp, 0, sizeof(vtmp));
vtmp.v_phys_read = _read;
vtmp.v_read_priv = read_priv;
vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv),
(uint64_t)sizeof (vdev_label_t));
/* Test for minimum device size. */
if (vtmp.v_psize < SPA_MINDEVSIZE)
return (EIO);
nvlist = vdev_label_read_config(&vtmp, UINT64_MAX);
if (nvlist == NULL)
return (EIO);
if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
NULL, &val) != 0) {
free(nvlist);
return (EIO);
}
if (!SPA_VERSION_IS_SUPPORTED(val)) {
printf("ZFS: unsupported ZFS version %u (should be %u)\n",
(unsigned)val, (unsigned)SPA_VERSION);
free(nvlist);
return (EIO);
}
/* Check ZFS features for read */
if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ,
DATA_TYPE_NVLIST, NULL, &features) == 0 &&
nvlist_check_features_for_read(features) != 0) {
free(nvlist);
return (EIO);
}
if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
NULL, &val) != 0) {
free(nvlist);
return (EIO);
}
if (val == POOL_STATE_DESTROYED) {
/* We don't boot only from destroyed pools. */
free(nvlist);
return (EIO);
}
if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
NULL, &pool_txg) != 0 ||
nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
NULL, &pool_guid) != 0 ||
nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
NULL, &pool_name) != 0) {
/*
* Cache and spare devices end up here - just ignore
* them.
*/
free(nvlist);
return (EIO);
}
/*
* Create the pool if this is the first time we've seen it.
*/
spa = spa_find_by_guid(pool_guid);
if (spa == NULL) {
nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN,
DATA_TYPE_UINT64, NULL, &vdev_children);
spa = spa_create(pool_guid, pool_name);
if (spa == NULL) {
free(nvlist);
return (ENOMEM);
}
spa->spa_root_vdev->v_nchildren = vdev_children;
}
if (pool_txg > spa->spa_txg)
spa->spa_txg = pool_txg;
/*
* Get the vdev tree and create our in-core copy of it.
* If we already have a vdev with this guid, this must
* be some kind of alias (overlapping slices, dangerously dedicated
* disks etc).
*/
if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
NULL, &guid) != 0) {
free(nvlist);
return (EIO);
}
vdev = vdev_find(guid);
/* Has this vdev already been inited? */
if (vdev && vdev->v_phys_read) {
free(nvlist);
return (EIO);
}
rc = vdev_init_from_label(spa, nvlist);
free(nvlist);
if (rc != 0)
return (rc);
/*
* We should already have created an incomplete vdev for this
* vdev. Find it and initialise it with our read proc.
*/
vdev = vdev_find(guid);
if (vdev != NULL) {
vdev->v_phys_read = _read;
vdev->v_read_priv = read_priv;
vdev->v_psize = vtmp.v_psize;
/*
* If no other state is set, mark vdev healthy.
*/
if (vdev->v_state == VDEV_STATE_UNKNOWN)
vdev->v_state = VDEV_STATE_HEALTHY;
} else {
printf("ZFS: inconsistent nvlist contents\n");
return (EIO);
}
if (vdev->v_islog)
spa->spa_with_log = vdev->v_islog;
/*
* Re-evaluate top-level vdev state.
*/
vdev_set_state(vdev->v_top);
/*
* Ok, we are happy with the pool so far. Lets find
* the best uberblock and then we can actually access
* the contents of the pool.
*/
vdev_uberblock_load(vdev, &spa->spa_uberblock);
if (spap != NULL)
*spap = spa;
return (0);
}
static int
ilog2(int n)
{
int v;
for (v = 0; v < 32; v++)
if (n == (1 << v))
return (v);
return (-1);
}
static int
zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
{
blkptr_t gbh_bp;
zio_gbh_phys_t zio_gb;
char *pbuf;
int i;
/* Artificial BP for gang block header. */
gbh_bp = *bp;
BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
for (i = 0; i < SPA_DVAS_PER_BP; i++)
DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
/* Read gang header block using the artificial BP. */
if (zio_read(spa, &gbh_bp, &zio_gb))
return (EIO);
pbuf = buf;
for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
blkptr_t *gbp = &zio_gb.zg_blkptr[i];
if (BP_IS_HOLE(gbp))
continue;
if (zio_read(spa, gbp, pbuf))
return (EIO);
pbuf += BP_GET_PSIZE(gbp);
}
if (zio_checksum_verify(spa, bp, buf))
return (EIO);
return (0);
}
static int
zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
{
int cpfunc = BP_GET_COMPRESS(bp);
uint64_t align, size;
void *pbuf;
int i, error;
/*
* Process data embedded in block pointer
*/
if (BP_IS_EMBEDDED(bp)) {
ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
size = BPE_GET_PSIZE(bp);
ASSERT(size <= BPE_PAYLOAD_SIZE);
if (cpfunc != ZIO_COMPRESS_OFF)
pbuf = zfs_alloc(size);
else
pbuf = buf;
decode_embedded_bp_compressed(bp, pbuf);
error = 0;
if (cpfunc != ZIO_COMPRESS_OFF) {
error = zio_decompress_data(cpfunc, pbuf,
size, buf, BP_GET_LSIZE(bp));
zfs_free(pbuf, size);
}
if (error != 0)
printf("ZFS: i/o error - unable to decompress "
"block pointer data, error %d\n", error);
return (error);
}
error = EIO;
for (i = 0; i < SPA_DVAS_PER_BP; i++) {
const dva_t *dva = &bp->blk_dva[i];
vdev_t *vdev;
vdev_list_t *vlist;
uint64_t vdevid;
off_t offset;
if (!dva->dva_word[0] && !dva->dva_word[1])
continue;
vdevid = DVA_GET_VDEV(dva);
offset = DVA_GET_OFFSET(dva);
vlist = &spa->spa_root_vdev->v_children;
STAILQ_FOREACH(vdev, vlist, v_childlink) {
if (vdev->v_id == vdevid)
break;
}
if (!vdev || !vdev->v_read)
continue;
size = BP_GET_PSIZE(bp);
if (vdev->v_read == vdev_raidz_read) {
align = 1ULL << vdev->v_ashift;
if (P2PHASE(size, align) != 0)
size = P2ROUNDUP(size, align);
}
if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
pbuf = zfs_alloc(size);
else
pbuf = buf;
if (DVA_GET_GANG(dva))
error = zio_read_gang(spa, bp, pbuf);
else
error = vdev->v_read(vdev, bp, pbuf, offset, size);
if (error == 0) {
if (cpfunc != ZIO_COMPRESS_OFF)
error = zio_decompress_data(cpfunc, pbuf,
BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
else if (size != BP_GET_PSIZE(bp))
bcopy(pbuf, buf, BP_GET_PSIZE(bp));
}
if (buf != pbuf)
zfs_free(pbuf, size);
if (error == 0)
break;
}
if (error != 0)
printf("ZFS: i/o error - all block copies unavailable\n");
return (error);
}
static int
dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
void *buf, size_t buflen)
{
int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
int nlevels = dnode->dn_nlevels;
int i, rc;
if (bsize > SPA_MAXBLOCKSIZE) {
printf("ZFS: I/O error - blocks larger than %llu are not "
"supported\n", SPA_MAXBLOCKSIZE);
return (EIO);
}
/*
* Note: bsize may not be a power of two here so we need to do an
* actual divide rather than a bitshift.
*/
while (buflen > 0) {
uint64_t bn = offset / bsize;
int boff = offset % bsize;
int ibn;
const blkptr_t *indbp;
blkptr_t bp;
if (bn > dnode->dn_maxblkid)
return (EIO);
if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
goto cached;
indbp = dnode->dn_blkptr;
for (i = 0; i < nlevels; i++) {
/*
* Copy the bp from the indirect array so that
* we can re-use the scratch buffer for multi-level
* objects.
*/
ibn = bn >> ((nlevels - i - 1) * ibshift);
ibn &= ((1 << ibshift) - 1);
bp = indbp[ibn];
if (BP_IS_HOLE(&bp)) {
memset(dnode_cache_buf, 0, bsize);
break;
}
rc = zio_read(spa, &bp, dnode_cache_buf);
if (rc)
return (rc);
indbp = (const blkptr_t *) dnode_cache_buf;
}
dnode_cache_obj = dnode;
dnode_cache_bn = bn;
cached:
/*
* The buffer contains our data block. Copy what we
* need from it and loop.
*/
i = bsize - boff;
if (i > buflen) i = buflen;
memcpy(buf, &dnode_cache_buf[boff], i);
buf = ((char *)buf) + i;
offset += i;
buflen -= i;
}
return (0);
}
/*
* Lookup a value in a microzap directory. Assumes that the zap
* scratch buffer contains the directory contents.
*/
static int
mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value)
{
const mzap_phys_t *mz;
const mzap_ent_phys_t *mze;
size_t size;
int chunks, i;
/*
* Microzap objects use exactly one block. Read the whole
* thing.
*/
size = dnode->dn_datablkszsec * 512;
mz = (const mzap_phys_t *) zap_scratch;
chunks = size / MZAP_ENT_LEN - 1;
for (i = 0; i < chunks; i++) {
mze = &mz->mz_chunk[i];
if (strcmp(mze->mze_name, name) == 0) {
*value = mze->mze_value;
return (0);
}
}
return (ENOENT);
}
/*
* Compare a name with a zap leaf entry. Return non-zero if the name
* matches.
*/
static int
fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
const char *name)
{
size_t namelen;
const zap_leaf_chunk_t *nc;
const char *p;
namelen = zc->l_entry.le_name_numints;
nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
p = name;
while (namelen > 0) {
size_t len;
len = namelen;
if (len > ZAP_LEAF_ARRAY_BYTES)
len = ZAP_LEAF_ARRAY_BYTES;
if (memcmp(p, nc->l_array.la_array, len))
return (0);
p += len;
namelen -= len;
nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
}
return (1);
}
/*
* Extract a uint64_t value from a zap leaf entry.
*/
static uint64_t
fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
{
const zap_leaf_chunk_t *vc;
int i;
uint64_t value;
const uint8_t *p;
vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
value = (value << 8) | p[i];
}
return (value);
}
static void
stv(int len, void *addr, uint64_t value)
{
switch (len) {
case 1:
*(uint8_t *)addr = value;
return;
case 2:
*(uint16_t *)addr = value;
return;
case 4:
*(uint32_t *)addr = value;
return;
case 8:
*(uint64_t *)addr = value;
return;
}
}
/*
* Extract a array from a zap leaf entry.
*/
static void
fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
uint64_t integer_size, uint64_t num_integers, void *buf)
{
uint64_t array_int_len = zc->l_entry.le_value_intlen;
uint64_t value = 0;
uint64_t *u64 = buf;
char *p = buf;
int len = MIN(zc->l_entry.le_value_numints, num_integers);
int chunk = zc->l_entry.le_value_chunk;
int byten = 0;
if (integer_size == 8 && len == 1) {
*u64 = fzap_leaf_value(zl, zc);
return;
}
while (len > 0) {
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
int i;
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
value = (value << 8) | la->la_array[i];
byten++;
if (byten == array_int_len) {
stv(integer_size, p, value);
byten = 0;
len--;
if (len == 0)
return;
p += integer_size;
}
}
chunk = la->la_next;
}
}
static int
fzap_check_size(uint64_t integer_size, uint64_t num_integers)
{
switch (integer_size) {
case 1:
case 2:
case 4:
case 8:
break;
default:
return (EINVAL);
}
if (integer_size * num_integers > ZAP_MAXVALUELEN)
return (E2BIG);
return (0);
}
/*
* Lookup a value in a fatzap directory. Assumes that the zap scratch
* buffer contains the directory header.
*/
static int
fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
uint64_t integer_size, uint64_t num_integers, void *value)
{
int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
zap_phys_t zh = *(zap_phys_t *)zap_scratch;
fat_zap_t z;
uint64_t *ptrtbl;
uint64_t hash;
int rc;
if (zh.zap_magic != ZAP_MAGIC)
return (EIO);
if ((rc = fzap_check_size(integer_size, num_integers)) != 0)
return (rc);
z.zap_block_shift = ilog2(bsize);
z.zap_phys = (zap_phys_t *)zap_scratch;
/*
* Figure out where the pointer table is and read it in if necessary.
*/
if (zh.zap_ptrtbl.zt_blk) {
rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize,
zap_scratch, bsize);
if (rc)
return (rc);
ptrtbl = (uint64_t *)zap_scratch;
} else {
ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0);
}
hash = zap_hash(zh.zap_salt, name);
zap_leaf_t zl;
zl.l_bs = z.zap_block_shift;
off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs;
zap_leaf_chunk_t *zc;
rc = dnode_read(spa, dnode, off, zap_scratch, bsize);
if (rc)
return (rc);
zl.l_phys = (zap_leaf_phys_t *)zap_scratch;
/*
* Make sure this chunk matches our hash.
*/
if (zl.l_phys->l_hdr.lh_prefix_len > 0 &&
zl.l_phys->l_hdr.lh_prefix !=
hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len))
return (ENOENT);
/*
* Hash within the chunk to find our entry.
*/
int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) -
zl.l_phys->l_hdr.lh_prefix_len);
int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1);
h = zl.l_phys->l_hash[h];
if (h == 0xffff)
return (ENOENT);
zc = &ZAP_LEAF_CHUNK(&zl, h);
while (zc->l_entry.le_hash != hash) {
if (zc->l_entry.le_next == 0xffff)
return (ENOENT);
zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next);
}
if (fzap_name_equal(&zl, zc, name)) {
if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints >
integer_size * num_integers)
return (E2BIG);
fzap_leaf_array(&zl, zc, integer_size, num_integers, value);
return (0);
}
return (ENOENT);
}
/*
* Lookup a name in a zap object and return its value as a uint64_t.
*/
static int
zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
uint64_t integer_size, uint64_t num_integers, void *value)
{
int rc;
uint64_t zap_type;
size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
rc = dnode_read(spa, dnode, 0, zap_scratch, size);
if (rc)
return (rc);
zap_type = *(uint64_t *)zap_scratch;
if (zap_type == ZBT_MICRO)
return (mzap_lookup(dnode, name, value));
else if (zap_type == ZBT_HEADER) {
return (fzap_lookup(spa, dnode, name, integer_size,
num_integers, value));
}
printf("ZFS: invalid zap_type=%d\n", (int)zap_type);
return (EIO);
}
/*
* List a microzap directory. Assumes that the zap scratch buffer contains
* the directory contents.
*/
static int
mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t))
{
const mzap_phys_t *mz;
const mzap_ent_phys_t *mze;
size_t size;
int chunks, i, rc;
/*
* Microzap objects use exactly one block. Read the whole
* thing.
*/
size = dnode->dn_datablkszsec * 512;
mz = (const mzap_phys_t *) zap_scratch;
chunks = size / MZAP_ENT_LEN - 1;
for (i = 0; i < chunks; i++) {
mze = &mz->mz_chunk[i];
if (mze->mze_name[0]) {
rc = callback(mze->mze_name, mze->mze_value);
if (rc != 0)
return (rc);
}
}
return (0);
}
/*
* List a fatzap directory. Assumes that the zap scratch buffer contains
* the directory header.
*/
static int
fzap_list(const spa_t *spa, const dnode_phys_t *dnode,
int (*callback)(const char *, uint64_t))
{
int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
zap_phys_t zh = *(zap_phys_t *)zap_scratch;
fat_zap_t z;
int i, j, rc;
if (zh.zap_magic != ZAP_MAGIC)
return (EIO);
z.zap_block_shift = ilog2(bsize);
z.zap_phys = (zap_phys_t *)zap_scratch;
/*
* This assumes that the leaf blocks start at block 1. The
* documentation isn't exactly clear on this.
*/
zap_leaf_t zl;
zl.l_bs = z.zap_block_shift;
for (i = 0; i < zh.zap_num_leafs; i++) {
off_t off = ((off_t)(i + 1)) << zl.l_bs;
char name[256], *p;
uint64_t value;
if (dnode_read(spa, dnode, off, zap_scratch, bsize))
return (EIO);
zl.l_phys = (zap_leaf_phys_t *)zap_scratch;
for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
zap_leaf_chunk_t *zc, *nc;
int namelen;
zc = &ZAP_LEAF_CHUNK(&zl, j);
if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
continue;
namelen = zc->l_entry.le_name_numints;
if (namelen > sizeof(name))
namelen = sizeof(name);
/*
* Paste the name back together.
*/
nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
p = name;
while (namelen > 0) {
int len;
len = namelen;
if (len > ZAP_LEAF_ARRAY_BYTES)
len = ZAP_LEAF_ARRAY_BYTES;
memcpy(p, nc->l_array.la_array, len);
p += len;
namelen -= len;
nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
}
/*
* Assume the first eight bytes of the value are
* a uint64_t.
*/
value = fzap_leaf_value(&zl, zc);
/* printf("%s 0x%jx\n", name, (uintmax_t)value); */
rc = callback((const char *)name, value);
if (rc != 0)
return (rc);
}
}
return (0);
}
static int zfs_printf(const char *name, uint64_t value __unused)
{
printf("%s\n", name);
return (0);
}
/*
* List a zap directory.
*/
static int
zap_list(const spa_t *spa, const dnode_phys_t *dnode)
{
uint64_t zap_type;
size_t size = dnode->dn_datablkszsec * 512;
if (dnode_read(spa, dnode, 0, zap_scratch, size))
return (EIO);
zap_type = *(uint64_t *)zap_scratch;
if (zap_type == ZBT_MICRO)
return (mzap_list(dnode, zfs_printf));
else
return (fzap_list(spa, dnode, zfs_printf));
}
static int
objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
dnode_phys_t *dnode)
{
off_t offset;
offset = objnum * sizeof(dnode_phys_t);
return dnode_read(spa, &os->os_meta_dnode, offset,
dnode, sizeof(dnode_phys_t));
}
static int
mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
uint64_t value)
{
const mzap_phys_t *mz;
const mzap_ent_phys_t *mze;
size_t size;
int chunks, i;
/*
* Microzap objects use exactly one block. Read the whole
* thing.
*/
size = dnode->dn_datablkszsec * 512;
mz = (const mzap_phys_t *)zap_scratch;
chunks = size / MZAP_ENT_LEN - 1;
for (i = 0; i < chunks; i++) {
mze = &mz->mz_chunk[i];
if (value == mze->mze_value) {
strcpy(name, mze->mze_name);
return (0);
}
}
return (ENOENT);
}
static void
fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
{
size_t namelen;
const zap_leaf_chunk_t *nc;
char *p;
namelen = zc->l_entry.le_name_numints;
nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
p = name;
while (namelen > 0) {
size_t len;
len = namelen;
if (len > ZAP_LEAF_ARRAY_BYTES)
len = ZAP_LEAF_ARRAY_BYTES;
memcpy(p, nc->l_array.la_array, len);
p += len;
namelen -= len;
nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
}
*p = '\0';
}
static int
fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
uint64_t value)
{
int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
zap_phys_t zh = *(zap_phys_t *)zap_scratch;
fat_zap_t z;
int i, j;
if (zh.zap_magic != ZAP_MAGIC)
return (EIO);
z.zap_block_shift = ilog2(bsize);
z.zap_phys = (zap_phys_t *)zap_scratch;
/*
* This assumes that the leaf blocks start at block 1. The
* documentation isn't exactly clear on this.
*/
zap_leaf_t zl;
zl.l_bs = z.zap_block_shift;
for (i = 0; i < zh.zap_num_leafs; i++) {
off_t off = ((off_t)(i + 1)) << zl.l_bs;
if (dnode_read(spa, dnode, off, zap_scratch, bsize))
return (EIO);
zl.l_phys = (zap_leaf_phys_t *)zap_scratch;
for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
zap_leaf_chunk_t *zc;
zc = &ZAP_LEAF_CHUNK(&zl, j);
if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
continue;
if (zc->l_entry.le_value_intlen != 8 ||
zc->l_entry.le_value_numints != 1)
continue;
if (fzap_leaf_value(&zl, zc) == value) {
fzap_name_copy(&zl, zc, name);
return (0);
}
}
}
return (ENOENT);
}
static int
zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
uint64_t value)
{
int rc;
uint64_t zap_type;
size_t size = dnode->dn_datablkszsec * 512;
rc = dnode_read(spa, dnode, 0, zap_scratch, size);
if (rc)
return (rc);
zap_type = *(uint64_t *)zap_scratch;
if (zap_type == ZBT_MICRO)
return (mzap_rlookup(spa, dnode, name, value));
else
return (fzap_rlookup(spa, dnode, name, value));
}
static int
zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
{
char name[256];
char component[256];
uint64_t dir_obj, parent_obj, child_dir_zapobj;
dnode_phys_t child_dir_zap, dataset, dir, parent;
dsl_dir_phys_t *dd;
dsl_dataset_phys_t *ds;
char *p;
int len;
p = &name[sizeof(name) - 1];
*p = '\0';
if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
return (EIO);
}
ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
dir_obj = ds->ds_dir_obj;
for (;;) {
if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0)
return (EIO);
dd = (dsl_dir_phys_t *)&dir.dn_bonus;
/* Actual loop condition. */
parent_obj = dd->dd_parent_obj;
if (parent_obj == 0)
break;
if (objset_get_dnode(spa, &spa->spa_mos, parent_obj,
&parent) != 0)
return (EIO);
dd = (dsl_dir_phys_t *)&parent.dn_bonus;
child_dir_zapobj = dd->dd_child_dir_zapobj;
if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
&child_dir_zap) != 0)
return (EIO);
if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
return (EIO);
len = strlen(component);
p -= len;
memcpy(p, component, len);
--p;
*p = '/';
/* Actual loop iteration. */
dir_obj = parent_obj;
}
if (*p != '\0')
++p;
strcpy(result, p);
return (0);
}
static int
zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
{
char element[256];
uint64_t dir_obj, child_dir_zapobj;
dnode_phys_t child_dir_zap, dir;
dsl_dir_phys_t *dd;
const char *p, *q;
if (objset_get_dnode(spa, &spa->spa_mos,
DMU_POOL_DIRECTORY_OBJECT, &dir))
return (EIO);
if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
1, &dir_obj))
return (EIO);
p = name;
for (;;) {
if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir))
return (EIO);
dd = (dsl_dir_phys_t *)&dir.dn_bonus;
while (*p == '/')
p++;
/* Actual loop condition #1. */
if (*p == '\0')
break;
q = strchr(p, '/');
if (q) {
memcpy(element, p, q - p);
element[q - p] = '\0';
p = q + 1;
} else {
strcpy(element, p);
p += strlen(p);
}
child_dir_zapobj = dd->dd_child_dir_zapobj;
if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
&child_dir_zap) != 0)
return (EIO);
/* Actual loop condition #2. */
if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
1, &dir_obj) != 0)
return (ENOENT);
}
*objnum = dd->dd_head_dataset_obj;
return (0);
}
#ifndef BOOT2
static int
zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
{
uint64_t dir_obj, child_dir_zapobj;
dnode_phys_t child_dir_zap, dir, dataset;
dsl_dataset_phys_t *ds;
dsl_dir_phys_t *dd;
if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
return (EIO);
}
ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
dir_obj = ds->ds_dir_obj;
if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) {
printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
return (EIO);
}
dd = (dsl_dir_phys_t *)&dir.dn_bonus;
child_dir_zapobj = dd->dd_child_dir_zapobj;
if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
&child_dir_zap) != 0) {
printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
return (EIO);
}
return (zap_list(spa, &child_dir_zap) != 0);
}
int
zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
int (*callback)(const char *, uint64_t))
{
uint64_t dir_obj, child_dir_zapobj, zap_type;
dnode_phys_t child_dir_zap, dir, dataset;
dsl_dataset_phys_t *ds;
dsl_dir_phys_t *dd;
int err;
err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset);
if (err != 0) {
printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
return (err);
}
ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
dir_obj = ds->ds_dir_obj;
err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir);
if (err != 0) {
printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
return (err);
}
dd = (dsl_dir_phys_t *)&dir.dn_bonus;
child_dir_zapobj = dd->dd_child_dir_zapobj;
err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
&child_dir_zap);
if (err != 0) {
printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
return (err);
}
err = dnode_read(spa, &child_dir_zap, 0, zap_scratch,
child_dir_zap.dn_datablkszsec * 512);
if (err != 0)
return (err);
zap_type = *(uint64_t *)zap_scratch;
if (zap_type == ZBT_MICRO)
return (mzap_list(&child_dir_zap, callback));
else
return (fzap_list(spa, &child_dir_zap, callback));
}
#endif
/*
* Find the object set given the object number of its dataset object
* and return its details in *objset
*/
static int
zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
{
dnode_phys_t dataset;
dsl_dataset_phys_t *ds;
if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
return (EIO);
}
ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
if (zio_read(spa, &ds->ds_bp, objset)) {
printf("ZFS: can't read object set for dataset %ju\n",
(uintmax_t)objnum);
return (EIO);
}
return (0);
}
/*
* Find the object set pointed to by the BOOTFS property or the root
* dataset if there is none and return its details in *objset
*/
static int
zfs_get_root(const spa_t *spa, uint64_t *objid)
{
dnode_phys_t dir, propdir;
uint64_t props, bootfs, root;
*objid = 0;
/*
* Start with the MOS directory object.
*/
if (objset_get_dnode(spa, &spa->spa_mos,
DMU_POOL_DIRECTORY_OBJECT, &dir)) {
printf("ZFS: can't read MOS object directory\n");
return (EIO);
}
/*
* Lookup the pool_props and see if we can find a bootfs.
*/
if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
sizeof(props), 1, &props) == 0 &&
objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 &&
zap_lookup(spa, &propdir, "bootfs",
sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) {
*objid = bootfs;
return (0);
}
/*
* Lookup the root dataset directory
*/
if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
sizeof(root), 1, &root) ||
objset_get_dnode(spa, &spa->spa_mos, root, &dir)) {
printf("ZFS: can't find root dsl_dir\n");
return (EIO);
}
/*
* Use the information from the dataset directory's bonus buffer
* to find the dataset object and from that the object set itself.
*/
dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
*objid = dd->dd_head_dataset_obj;
return (0);
}
static int
zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
{
mount->spa = spa;
/*
* Find the root object set if not explicitly provided
*/
if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
printf("ZFS: can't find root filesystem\n");
return (EIO);
}
if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
printf("ZFS: can't open root filesystem\n");
return (EIO);
}
mount->rootobj = rootobj;
return (0);
}
/*
* callback function for feature name checks.
*/
static int
check_feature(const char *name, uint64_t value)
{
int i;
if (value == 0)
return (0);
if (name[0] == '\0')
return (0);
for (i = 0; features_for_read[i] != NULL; i++) {
if (strcmp(name, features_for_read[i]) == 0)
return (0);
}
printf("ZFS: unsupported feature: %s\n", name);
return (EIO);
}
/*
* Checks whether the MOS features that are active are supported.
*/
static int
check_mos_features(const spa_t *spa)
{
dnode_phys_t dir;
uint64_t objnum, zap_type;
size_t size;
int rc;
if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
&dir)) != 0)
return (rc);
if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
sizeof (objnum), 1, &objnum)) != 0) {
/*
* It is older pool without features. As we have already
* tested the label, just return without raising the error.
*/
return (0);
}
if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0)
return (rc);
if (dir.dn_type != DMU_OTN_ZAP_METADATA)
return (EIO);
size = dir.dn_datablkszsec * 512;
if (dnode_read(spa, &dir, 0, zap_scratch, size))
return (EIO);
zap_type = *(uint64_t *)zap_scratch;
if (zap_type == ZBT_MICRO)
rc = mzap_list(&dir, check_feature);
else
rc = fzap_list(spa, &dir, check_feature);
return (rc);
}
static int
load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value)
{
dnode_phys_t dir;
size_t size;
int rc;
unsigned char *nv;
*value = NULL;
if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0)
return (rc);
if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
return (EIO);
}
if (dir.dn_bonuslen != sizeof (uint64_t))
return (EIO);
size = *(uint64_t *)DN_BONUS(&dir);
nv = malloc(size);
if (nv == NULL)
return (ENOMEM);
rc = dnode_read(spa, &dir, 0, nv, size);
if (rc != 0) {
free(nv);
nv = NULL;
return (rc);
}
*value = nv;
return (rc);
}
static int
zfs_spa_init(spa_t *spa)
{
dnode_phys_t dir;
uint64_t config_object;
unsigned char *nvlist;
int rc;
if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
return (EIO);
}
if (spa->spa_mos.os_type != DMU_OST_META) {
printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
return (EIO);
}
if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT,
&dir)) {
printf("ZFS: failed to read pool %s directory object\n",
spa->spa_name);
return (EIO);
}
/* this is allowed to fail, older pools do not have salt */
rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
sizeof (spa->spa_cksum_salt.zcs_bytes),
spa->spa_cksum_salt.zcs_bytes);
rc = check_mos_features(spa);
if (rc != 0) {
printf("ZFS: pool %s is not supported\n", spa->spa_name);
return (rc);
}
rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
sizeof (config_object), 1, &config_object);
if (rc != 0) {
printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
return (EIO);
}
rc = load_nvlist(spa, config_object, &nvlist);
if (rc != 0)
return (rc);
/*
* Update vdevs from MOS config. Note, we do skip encoding bytes
* here. See also vdev_label_read_config().
*/
rc = vdev_init_from_nvlist(spa, nvlist + 4);
free(nvlist);
return (rc);
}
static int
zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
{
if (dn->dn_bonustype != DMU_OT_SA) {
znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
sb->st_mode = zp->zp_mode;
sb->st_uid = zp->zp_uid;
sb->st_gid = zp->zp_gid;
sb->st_size = zp->zp_size;
} else {
sa_hdr_phys_t *sahdrp;
int hdrsize;
size_t size = 0;
void *buf = NULL;
if (dn->dn_bonuslen != 0)
sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
else {
if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
blkptr_t *bp = DN_SPILL_BLKPTR(dn);
int error;
size = BP_GET_LSIZE(bp);
buf = zfs_alloc(size);
error = zio_read(spa, bp, buf);
if (error != 0) {
zfs_free(buf, size);
return (error);
}
sahdrp = buf;
} else {
return (EIO);
}
}
hdrsize = SA_HDR_SIZE(sahdrp);
sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
SA_MODE_OFFSET);
sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
SA_UID_OFFSET);
sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
SA_GID_OFFSET);
sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
SA_SIZE_OFFSET);
if (buf != NULL)
zfs_free(buf, size);
}
return (0);
}
static int
zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
{
int rc = 0;
if (dn->dn_bonustype == DMU_OT_SA) {
sa_hdr_phys_t *sahdrp = NULL;
size_t size = 0;
void *buf = NULL;
int hdrsize;
char *p;
if (dn->dn_bonuslen != 0)
sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
else {
blkptr_t *bp;
if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
return (EIO);
bp = DN_SPILL_BLKPTR(dn);
size = BP_GET_LSIZE(bp);
buf = zfs_alloc(size);
rc = zio_read(spa, bp, buf);
if (rc != 0) {
zfs_free(buf, size);
return (rc);
}
sahdrp = buf;
}
hdrsize = SA_HDR_SIZE(sahdrp);
p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
memcpy(path, p, psize);
if (buf != NULL)
zfs_free(buf, size);
return (0);
}
/*
* Second test is purely to silence bogus compiler
* warning about accessing past the end of dn_bonus.
*/
if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
} else {
rc = dnode_read(spa, dn, 0, path, psize);
}
return (rc);
}
struct obj_list {
uint64_t objnum;
STAILQ_ENTRY(obj_list) entry;
};
/*
* Lookup a file and return its dnode.
*/
static int
zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
{
int rc;
uint64_t objnum;
const spa_t *spa;
dnode_phys_t dn;
const char *p, *q;
char element[256];
char path[1024];
int symlinks_followed = 0;
struct stat sb;
struct obj_list *entry, *tentry;
STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
spa = mount->spa;
if (mount->objset.os_type != DMU_OST_ZFS) {
printf("ZFS: unexpected object set type %ju\n",
(uintmax_t)mount->objset.os_type);
return (EIO);
}
if ((entry = malloc(sizeof(struct obj_list))) == NULL)
return (ENOMEM);
/*
* Get the root directory dnode.
*/
rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
if (rc) {
free(entry);
return (rc);
}
rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum);
if (rc) {
free(entry);
return (rc);
}
entry->objnum = objnum;
STAILQ_INSERT_HEAD(&on_cache, entry, entry);
rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
if (rc != 0)
goto done;
p = upath;
while (p && *p) {
rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
if (rc != 0)
goto done;
while (*p == '/')
p++;
if (*p == '\0')
break;
q = p;
while (*q != '\0' && *q != '/')
q++;
/* skip dot */
if (p + 1 == q && p[0] == '.') {
p++;
continue;
}
/* double dot */
if (p + 2 == q && p[0] == '.' && p[1] == '.') {
p += 2;
if (STAILQ_FIRST(&on_cache) ==
STAILQ_LAST(&on_cache, obj_list, entry)) {
rc = ENOENT;
goto done;
}
entry = STAILQ_FIRST(&on_cache);
STAILQ_REMOVE_HEAD(&on_cache, entry);
free(entry);
objnum = (STAILQ_FIRST(&on_cache))->objnum;
continue;
}
if (q - p + 1 > sizeof(element)) {
rc = ENAMETOOLONG;
goto done;
}
memcpy(element, p, q - p);
element[q - p] = 0;
p = q;
if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
goto done;
if (!S_ISDIR(sb.st_mode)) {
rc = ENOTDIR;
goto done;
}
rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
if (rc)
goto done;
objnum = ZFS_DIRENT_OBJ(objnum);
if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
rc = ENOMEM;
goto done;
}
entry->objnum = objnum;
STAILQ_INSERT_HEAD(&on_cache, entry, entry);
rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
if (rc)
goto done;
/*
* Check for symlink.
*/
rc = zfs_dnode_stat(spa, &dn, &sb);
if (rc)
goto done;
if (S_ISLNK(sb.st_mode)) {
if (symlinks_followed > 10) {
rc = EMLINK;
goto done;
}
symlinks_followed++;
/*
* Read the link value and copy the tail of our
* current path onto the end.
*/
if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
rc = ENAMETOOLONG;
goto done;
}
strcpy(&path[sb.st_size], p);
rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
if (rc != 0)
goto done;
/*
* Restart with the new path, starting either at
* the root or at the parent depending whether or
* not the link is relative.
*/
p = path;
if (*p == '/') {
while (STAILQ_FIRST(&on_cache) !=
STAILQ_LAST(&on_cache, obj_list, entry)) {
entry = STAILQ_FIRST(&on_cache);
STAILQ_REMOVE_HEAD(&on_cache, entry);
free(entry);
}
} else {
entry = STAILQ_FIRST(&on_cache);
STAILQ_REMOVE_HEAD(&on_cache, entry);
free(entry);
}
objnum = (STAILQ_FIRST(&on_cache))->objnum;
}
}
*dnode = dn;
done:
STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
free(entry);
return (rc);
}