freebsd-skq/sys/arm/arm/mp_machdep.c
andrew fca40282bd Move the arm call to intr_pic_init_secondary earlier in the secondary CPU
initialisation. This ensures it will complete before signalling to the boot
CPU it has booted. This fixes a race with the GIC where the arm_gic_map may
not be populated before it is used to bind interrupts leading to some
interrupts becoming bound to no CPUs.

Approved by:	re (kib)
Sponsored by:	ABT Systems Ltd
2016-06-14 16:41:39 +00:00

543 lines
12 KiB
C

/*-
* Copyright (c) 2011 Semihalf.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_ddb.h"
#include "opt_smp.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/pcpu.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/ktr.h>
#include <sys/malloc.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/pmap.h>
#include <machine/armreg.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/debug_monitor.h>
#include <machine/smp.h>
#include <machine/pcb.h>
#include <machine/physmem.h>
#include <machine/intr.h>
#include <machine/vmparam.h>
#ifdef VFP
#include <machine/vfp.h>
#endif
#ifdef CPU_MV_PJ4B
#include <arm/mv/mvwin.h>
#include <dev/fdt/fdt_common.h>
#endif
extern struct pcpu __pcpu[];
/* used to hold the AP's until we are ready to release them */
struct mtx ap_boot_mtx;
struct pcb stoppcbs[MAXCPU];
/* # of Applications processors */
volatile int mp_naps;
/* Set to 1 once we're ready to let the APs out of the pen. */
volatile int aps_ready = 0;
#ifndef INTRNG
static int ipi_handler(void *arg);
#endif
void set_stackptrs(int cpu);
/* Temporary variables for init_secondary() */
void *dpcpu[MAXCPU - 1];
/* Determine if we running MP machine */
int
cpu_mp_probe(void)
{
KASSERT(mp_ncpus != 0, ("cpu_mp_probe: mp_ncpus is unset"));
CPU_SETOF(0, &all_cpus);
return (mp_ncpus > 1);
}
/* Start Application Processor via platform specific function */
static int
check_ap(void)
{
uint32_t ms;
for (ms = 0; ms < 2000; ++ms) {
if ((mp_naps + 1) == mp_ncpus)
return (0); /* success */
else
DELAY(1000);
}
return (-2);
}
extern unsigned char _end[];
/* Initialize and fire up non-boot processors */
void
cpu_mp_start(void)
{
int error, i;
mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
/* Reserve memory for application processors */
for(i = 0; i < (mp_ncpus - 1); i++)
dpcpu[i] = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
M_WAITOK | M_ZERO);
dcache_wbinv_poc_all();
/* Initialize boot code and start up processors */
platform_mp_start_ap();
/* Check if ap's started properly */
error = check_ap();
if (error)
printf("WARNING: Some AP's failed to start\n");
else
for (i = 1; i < mp_ncpus; i++)
CPU_SET(i, &all_cpus);
}
/* Introduce rest of cores to the world */
void
cpu_mp_announce(void)
{
}
extern vm_paddr_t pmap_pa;
void
init_secondary(int cpu)
{
struct pcpu *pc;
uint32_t loop_counter;
#ifndef INTRNG
int start = 0, end = 0;
#endif
uint32_t actlr_mask, actlr_set;
pmap_set_tex();
cpuinfo_get_actlr_modifier(&actlr_mask, &actlr_set);
reinit_mmu(pmap_kern_ttb, actlr_mask, actlr_set);
cpu_setup();
/* Provide stack pointers for other processor modes. */
set_stackptrs(cpu);
enable_interrupts(PSR_A);
pc = &__pcpu[cpu];
/*
* pcpu_init() updates queue, so it should not be executed in parallel
* on several cores
*/
while(mp_naps < (cpu - 1))
;
pcpu_init(pc, cpu, sizeof(struct pcpu));
dpcpu_init(dpcpu[cpu - 1], cpu);
#if __ARM_ARCH >= 6 && defined(DDB)
dbg_monitor_init_secondary();
#endif
/* Signal our startup to BSP */
atomic_add_rel_32(&mp_naps, 1);
/* Spin until the BSP releases the APs */
while (!atomic_load_acq_int(&aps_ready)) {
#if __ARM_ARCH >= 7
__asm __volatile("wfe");
#endif
}
/* Initialize curthread */
KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
pc->pc_curthread = pc->pc_idlethread;
pc->pc_curpcb = pc->pc_idlethread->td_pcb;
set_curthread(pc->pc_idlethread);
#ifdef VFP
vfp_init();
#endif
/* Configure the interrupt controller */
intr_pic_init_secondary();
mtx_lock_spin(&ap_boot_mtx);
atomic_add_rel_32(&smp_cpus, 1);
if (smp_cpus == mp_ncpus) {
/* enable IPI's, tlb shootdown, freezes etc */
atomic_store_rel_int(&smp_started, 1);
}
mtx_unlock_spin(&ap_boot_mtx);
#ifndef INTRNG
/* Enable ipi */
#ifdef IPI_IRQ_START
start = IPI_IRQ_START;
#ifdef IPI_IRQ_END
end = IPI_IRQ_END;
#else
end = IPI_IRQ_START;
#endif
#endif
for (int i = start; i <= end; i++)
arm_unmask_irq(i);
#endif /* INTRNG */
enable_interrupts(PSR_I);
loop_counter = 0;
while (smp_started == 0) {
DELAY(100);
loop_counter++;
if (loop_counter == 1000)
CTR0(KTR_SMP, "AP still wait for smp_started");
}
/* Start per-CPU event timers. */
cpu_initclocks_ap();
CTR0(KTR_SMP, "go into scheduler");
/* Enter the scheduler */
sched_throw(NULL);
panic("scheduler returned us to %s", __func__);
/* NOTREACHED */
}
#ifdef INTRNG
static void
ipi_rendezvous(void *dummy __unused)
{
CTR0(KTR_SMP, "IPI_RENDEZVOUS");
smp_rendezvous_action();
}
static void
ipi_ast(void *dummy __unused)
{
CTR0(KTR_SMP, "IPI_AST");
}
static void
ipi_stop(void *dummy __unused)
{
u_int cpu;
/*
* IPI_STOP_HARD is mapped to IPI_STOP.
*/
CTR0(KTR_SMP, "IPI_STOP or IPI_STOP_HARD");
cpu = PCPU_GET(cpuid);
savectx(&stoppcbs[cpu]);
/*
* CPUs are stopped when entering the debugger and at
* system shutdown, both events which can precede a
* panic dump. For the dump to be correct, all caches
* must be flushed and invalidated, but on ARM there's
* no way to broadcast a wbinv_all to other cores.
* Instead, we have each core do the local wbinv_all as
* part of stopping the core. The core requesting the
* stop will do the l2 cache flush after all other cores
* have done their l1 flushes and stopped.
*/
dcache_wbinv_poc_all();
/* Indicate we are stopped */
CPU_SET_ATOMIC(cpu, &stopped_cpus);
/* Wait for restart */
while (!CPU_ISSET(cpu, &started_cpus))
cpu_spinwait();
CPU_CLR_ATOMIC(cpu, &started_cpus);
CPU_CLR_ATOMIC(cpu, &stopped_cpus);
#ifdef DDB
dbg_resume_dbreg();
#endif
CTR0(KTR_SMP, "IPI_STOP (restart)");
}
static void
ipi_preempt(void *arg)
{
struct trapframe *oldframe;
struct thread *td;
critical_enter();
td = curthread;
td->td_intr_nesting_level++;
oldframe = td->td_intr_frame;
td->td_intr_frame = (struct trapframe *)arg;
CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__);
sched_preempt(td);
td->td_intr_frame = oldframe;
td->td_intr_nesting_level--;
critical_exit();
}
static void
ipi_hardclock(void *arg)
{
struct trapframe *oldframe;
struct thread *td;
critical_enter();
td = curthread;
td->td_intr_nesting_level++;
oldframe = td->td_intr_frame;
td->td_intr_frame = (struct trapframe *)arg;
CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__);
hardclockintr();
td->td_intr_frame = oldframe;
td->td_intr_nesting_level--;
critical_exit();
}
#else
static int
ipi_handler(void *arg)
{
u_int cpu, ipi;
cpu = PCPU_GET(cpuid);
ipi = pic_ipi_read((int)arg);
while ((ipi != 0x3ff)) {
switch (ipi) {
case IPI_RENDEZVOUS:
CTR0(KTR_SMP, "IPI_RENDEZVOUS");
smp_rendezvous_action();
break;
case IPI_AST:
CTR0(KTR_SMP, "IPI_AST");
break;
case IPI_STOP:
/*
* IPI_STOP_HARD is mapped to IPI_STOP so it is not
* necessary to add it in the switch.
*/
CTR0(KTR_SMP, "IPI_STOP or IPI_STOP_HARD");
savectx(&stoppcbs[cpu]);
/*
* CPUs are stopped when entering the debugger and at
* system shutdown, both events which can precede a
* panic dump. For the dump to be correct, all caches
* must be flushed and invalidated, but on ARM there's
* no way to broadcast a wbinv_all to other cores.
* Instead, we have each core do the local wbinv_all as
* part of stopping the core. The core requesting the
* stop will do the l2 cache flush after all other cores
* have done their l1 flushes and stopped.
*/
dcache_wbinv_poc_all();
/* Indicate we are stopped */
CPU_SET_ATOMIC(cpu, &stopped_cpus);
/* Wait for restart */
while (!CPU_ISSET(cpu, &started_cpus))
cpu_spinwait();
CPU_CLR_ATOMIC(cpu, &started_cpus);
CPU_CLR_ATOMIC(cpu, &stopped_cpus);
#ifdef DDB
dbg_resume_dbreg();
#endif
CTR0(KTR_SMP, "IPI_STOP (restart)");
break;
case IPI_PREEMPT:
CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__);
sched_preempt(curthread);
break;
case IPI_HARDCLOCK:
CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__);
hardclockintr();
break;
default:
panic("Unknown IPI 0x%0x on cpu %d", ipi, curcpu);
}
pic_ipi_clear(ipi);
ipi = pic_ipi_read(-1);
}
return (FILTER_HANDLED);
}
#endif
static void
release_aps(void *dummy __unused)
{
uint32_t loop_counter;
#ifndef INTRNG
int start = 0, end = 0;
#endif
if (mp_ncpus == 1)
return;
#ifdef INTRNG
intr_pic_ipi_setup(IPI_RENDEZVOUS, "rendezvous", ipi_rendezvous, NULL);
intr_pic_ipi_setup(IPI_AST, "ast", ipi_ast, NULL);
intr_pic_ipi_setup(IPI_STOP, "stop", ipi_stop, NULL);
intr_pic_ipi_setup(IPI_PREEMPT, "preempt", ipi_preempt, NULL);
intr_pic_ipi_setup(IPI_HARDCLOCK, "hardclock", ipi_hardclock, NULL);
#else
#ifdef IPI_IRQ_START
start = IPI_IRQ_START;
#ifdef IPI_IRQ_END
end = IPI_IRQ_END;
#else
end = IPI_IRQ_START;
#endif
#endif
for (int i = start; i <= end; i++) {
/*
* IPI handler
*/
/*
* Use 0xdeadbeef as the argument value for irq 0,
* if we used 0, the intr code will give the trap frame
* pointer instead.
*/
arm_setup_irqhandler("ipi", ipi_handler, NULL, (void *)i, i,
INTR_TYPE_MISC | INTR_EXCL, NULL);
/* Enable ipi */
arm_unmask_irq(i);
}
#endif
atomic_store_rel_int(&aps_ready, 1);
/* Wake the other threads up */
#if __ARM_ARCH >= 7
armv7_sev();
#endif
printf("Release APs\n");
for (loop_counter = 0; loop_counter < 2000; loop_counter++) {
if (smp_started)
return;
DELAY(1000);
}
printf("AP's not started\n");
}
SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
struct cpu_group *
cpu_topo(void)
{
return (smp_topo_1level(CG_SHARE_L2, mp_ncpus, 0));
}
void
cpu_mp_setmaxid(void)
{
platform_mp_setmaxid();
}
/* Sending IPI */
void
ipi_all_but_self(u_int ipi)
{
cpuset_t other_cpus;
other_cpus = all_cpus;
CPU_CLR(PCPU_GET(cpuid), &other_cpus);
CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
#ifdef INTRNG
intr_ipi_send(other_cpus, ipi);
#else
pic_ipi_send(other_cpus, ipi);
#endif
}
void
ipi_cpu(int cpu, u_int ipi)
{
cpuset_t cpus;
CPU_ZERO(&cpus);
CPU_SET(cpu, &cpus);
CTR3(KTR_SMP, "%s: cpu: %d, ipi: %x", __func__, cpu, ipi);
#ifdef INTRNG
intr_ipi_send(cpus, ipi);
#else
pic_ipi_send(cpus, ipi);
#endif
}
void
ipi_selected(cpuset_t cpus, u_int ipi)
{
CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
#ifdef INTRNG
intr_ipi_send(cpus, ipi);
#else
pic_ipi_send(cpus, ipi);
#endif
}