freebsd-skq/sys/alpha/include/vmparam.h
2004-04-05 21:00:51 +00:00

166 lines
5.6 KiB
C

/* $FreeBSD$ */
/* From: NetBSD: vmparam.h,v 1.6 1997/09/23 23:23:23 mjacob Exp */
#ifndef _ALPHA_VMPARAM_H
#define _ALPHA_VMPARAM_H
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and Ralph Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: vmparam.h 1.16 91/01/18$
*
* @(#)vmparam.h 8.2 (Berkeley) 4/22/94
*/
/*
* Machine dependent constants for Alpha.
*/
/*
* USRTEXT is the start of the user text/data space, while USRSTACK
* is the top (end) of the user stack. Immediately above the user stack
* resides the user structure, which is UPAGES long and contains the
* kernel stack.
*/
#define USRTEXT CLBYTES
/* #define USRSTACK VM_MAXUSER_ADDRESS */
/*
* This stack location is suitable for OSF1 emulation. Some OSF
* programs are built as 32bit and assume that the stack is reachable
* with a 32bit value. OSF1 manages to have a variable location for
* the user stack which we should probably also support.
*/
#define USRSTACK (0x12000000LL)
/*
* Virtual memory related constants, all in bytes
*/
#ifndef MAXTSIZ
#define MAXTSIZ (1<<30) /* max text size (1G) */
#endif
#ifndef DFLDSIZ
#define DFLDSIZ (1<<27) /* initial data size (128M) */
#endif
#ifndef MAXDSIZ
#define MAXDSIZ (1<<30) /* max data size (1G) */
#endif
#ifndef DFLSSIZ
#define DFLSSIZ (1<<21) /* initial stack size (2M) */
#endif
#ifndef MAXSSIZ
#define MAXSSIZ (1<<25) /* max stack size (32M) */
#endif
#ifndef SGROWSIZ
#define SGROWSIZ (128UL*1024) /* amount to grow stack */
#endif
/*
* PTEs for mapping user space into the kernel for phyio operations.
* 64 pte's are enough to cover 8 disks * MAXBSIZE.
*/
#ifndef USRIOSIZE
#define USRIOSIZE 64
#endif
/*
* Boundary at which to place first MAPMEM segment if not explicitly
* specified. Should be a power of two. This allows some slop for
* the data segment to grow underneath the first mapped segment.
*/
#define MMSEG 0x200000
/*
* The size of the clock loop.
*/
#define LOOPPAGES (maxfree - firstfree)
/*
* The time for a process to be blocked before being very swappable.
* This is a number of seconds which the system takes as being a non-trivial
* amount of real time. You probably shouldn't change this;
* it is used in subtle ways (fractions and multiples of it are, that is, like
* half of a ``long time'', almost a long time, etc.)
* It is related to human patience and other factors which don't really
* change over time.
*/
#define MAXSLP 20
/*
* A swapped in process is given a small amount of core without being bothered
* by the page replacement algorithm. Basically this says that if you are
* swapped in you deserve some resources. We protect the last SAFERSS
* pages against paging and will just swap you out rather than paging you.
* Note that each process has at least UPAGES+CLSIZE pages which are not
* paged anyways, in addition to SAFERSS.
*/
#define SAFERSS 10 /* nominal ``small'' resident set size
protected against replacement */
/*
* Alpha provides a machine specific single page allocator through the use
* of K0SEG.
*/
#define UMA_MD_SMALL_ALLOC
/*
* Mach derived constants
*/
/* user/kernel map constants */
#define VM_MIN_ADDRESS (ALPHA_USEG_BASE) /* 0 */
#define VM_MAXUSER_ADDRESS ((ALPHA_USEG_END + 1LL))
#define VM_MAX_ADDRESS VM_MAXUSER_ADDRESS
#define VM_MIN_KERNEL_ADDRESS (ALPHA_K1SEG_BASE)
#define VM_MAX_KERNEL_ADDRESS (ALPHA_K1SEG_END)
/* virtual sizes (bytes) for various kernel submaps */
#ifndef VM_KMEM_SIZE
#define VM_KMEM_SIZE (12 * 1024 * 1024)
#endif
/*
* How many physical pages per KVA page allocated.
* min(max(VM_KMEM_SIZE, Physical memory/VM_KMEM_SIZE_SCALE), VM_KMEM_SIZE_MAX)
* is the total KVA space allocated for kmem_map.
*/
#ifndef VM_KMEM_SIZE_SCALE
#define VM_KMEM_SIZE_SCALE (4) /* XXX 8192 byte pages */
#endif
/* initial pagein size of beginning of executable file */
#ifndef VM_INITIAL_PAGEIN
#define VM_INITIAL_PAGEIN 16
#endif
/* some Alpha-specific constants */
#define VPTBASE (0xfffffffe00000000LL) /* Virt. pg table */
#endif /* !_ALPHA_VMPARAM_H */