freebsd kernel with SKQ
Go to file
Julian Elischer 65cb6b6834 Add code to allow the system to handle multiple routing tables.
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)

Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.

From my notes:

-----

One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.

Constraints:
------------

I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.

One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".

One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.

This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not  always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.

Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.

To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.

The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.

The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.

In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.

One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).

You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.

This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.

Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.

Packets fall into one of a number of classes.

1/ locally generated packets, coming from a socket/PCB.
   Such packets select a FIB from a number associated with the
   socket/PCB. This in turn is inherited from the process,
   but can be changed by a socket option. The process in turn
   inherits it on fork. I have written a utility call setfib
   that acts a bit like nice..

       setfib -3 ping target.example.com # will use fib 3 for ping.

   It is an obvious extension to make it a property of a jail
   but I have not done so. It can be achieved by combining the setfib and
   jail commands.

2/ packets received on an interface for forwarding.
   By default these packets would use table 0,
   (or possibly a number settable in a sysctl(not yet)).
   but prior to routing the firewall can inspect them (see below).
   (possibly in the future you may be able to associate a FIB
   with packets received on an interface..  An ifconfig arg, but not yet.)

3/ packets inspected by a packet classifier, which can arbitrarily
   associate a fib with it on a packet by packet basis.
   A fib assigned to a packet by a packet classifier
   (such as ipfw) would over-ride a fib associated by
   a more default source. (such as cases 1 or 2).

4/ a tcp listen socket associated with a fib will generate
   accept sockets that are associated with that same fib.

5/ Packets generated in response to some other packet (e.g. reset
   or icmp packets). These should use the FIB associated with the
   packet being reponded to.

6/ Packets generated during encapsulation.
   gif, tun and other tunnel interfaces will encapsulate using the FIB
   that was in effect withthe proces that set up the tunnel.
   thus setfib 1 ifconfig gif0 [tunnel instructions]
   will set the fib for the tunnel to use to be fib 1.

Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)

In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.

In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.

Early testing experience:
-------------------------

Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.

For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.

Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.

ipfw has grown 2 new keywords:

setfib N ip from anay to any
count ip from any to any fib N

In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.

SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.

Where to next:
--------------------

After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.

Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.

My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.

When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.

Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.

This work was sponsored by Ironport Systems/Cisco

PR:
Reviewed by:	several including rwatson, bz and mlair (parts each)
Approved by:
Obtained from:	Ironport systems/Cisco
MFC after:
Security:

PR:
Submitted by:
Reviewed by:
Approved by:
Obtained from:
MFC after:
Security:
2008-05-09 23:00:21 +00:00
bin Sigh, when reapplying the patch to HEAD, I somehow forgot to commit this file. 2008-04-28 07:26:34 +00:00
cddl * Handle the different ioctl design. 2008-04-26 05:09:19 +00:00
contrib - Update for 5.6-20080503 2008-05-09 02:30:24 +00:00
crypto Fix conflicts after heimdal-1.1 import and add build infrastructure. Import 2008-05-07 13:53:12 +00:00
etc Fix conflicts after heimdal-1.1 import and add build infrastructure. Import 2008-05-07 13:53:12 +00:00
games This bloke has his priorities straight: 2008-04-29 13:02:21 +00:00
gnu Trim unneeded header. 2008-05-09 19:00:40 +00:00
include Define the size_t type since readpassphrase(3) requires it in its 2008-05-08 23:57:29 +00:00
kerberos5 Update magic sed script for heimdal-1.1 2008-05-09 13:27:20 +00:00
lib Add code to allow the system to handle multiple routing tables. 2008-05-09 23:00:21 +00:00
libexec Fix conflicts after heimdal-1.1 import and add build infrastructure. Import 2008-05-07 13:53:12 +00:00
release libbsdxml is now required by ifconfig(8). 2008-04-22 18:20:05 +00:00
rescue Adding glabel alias killed gpart alias; fix it. 2008-03-29 13:15:33 +00:00
sbin Update the lib/expat tree for the new v2.0.1 expat import. The bsdxml.h 2008-05-08 14:01:42 +00:00
secure Fix conflicts after heimdal-1.1 import and add build infrastructure. Import 2008-05-07 13:53:12 +00:00
share Add a new awk script which parses informations returned by the newly 2008-05-07 21:50:17 +00:00
sys Trim trailing whitespace at ends of lines. 2008-05-09 20:38:25 +00:00
tools Include a very basic (and beta) tool for stressing disks using the POSIX 2008-05-07 07:23:47 +00:00
usr.bin Use a sledgehammer cast (that was in the original patch to boot) to 2008-05-07 21:00:50 +00:00
usr.sbin o Change the warning dialog for the 'W' command in both the label 2008-05-05 06:31:41 +00:00
COPYRIGHT Happy new year 2008! 2007-12-31 22:09:19 +00:00
LOCKS Once the release goes out, RELENG_7_* will need approval from so@. 2008-01-24 22:07:03 +00:00
MAINTAINERS OLDCARD is gone, release imp's lock. 2008-01-26 21:58:52 +00:00
Makefile Mention -U and -ai arguments to mergemaster in a comment for the 2008-04-29 09:08:33 +00:00
Makefile.inc1 Fix conflicts after heimdal-1.1 import and add build infrastructure. Import 2008-05-07 13:53:12 +00:00
ObsoleteFiles.inc Add recent obsolete files. 2008-04-20 16:03:19 +00:00
README
UPDATING More recommendations 2008-04-29 19:55:18 +00:00

This is the top level of the FreeBSD source directory.  This file
was last revised on:
$FreeBSD$

For copyright information, please see the file COPYRIGHT in this
directory (additional copyright information also exists for some
sources in this tree - please see the specific source directories for
more information).

The Makefile in this directory supports a number of targets for
building components (or all) of the FreeBSD source tree, the most
commonly used one being ``world'', which rebuilds and installs
everything in the FreeBSD system from the source tree except the
kernel, the kernel-modules and the contents of /etc.  The ``world''
target should only be used in cases where the source tree has not
changed from the currently running version.  See:
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/makeworld.html
for more information, including setting make(1) variables.

The ``buildkernel'' and ``installkernel'' targets build and install
the kernel and the modules (see below).  Please see the top of
the Makefile in this directory for more information on the
standard build targets and compile-time flags.

Building a kernel is a somewhat more involved process, documentation
for which can be found at:
   http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html
And in the config(8) man page.
Note: If you want to build and install the kernel with the
``buildkernel'' and ``installkernel'' targets, you might need to build
world before.  More information is available in the handbook.

The sample kernel configuration files reside in the sys/<arch>/conf
sub-directory (assuming that you've installed the kernel sources), the
file named GENERIC being the one used to build your initial installation
kernel.  The file NOTES contains entries and documentation for all possible
devices, not just those commonly used.  It is the successor of the ancient
LINT file, but in contrast to LINT, it is not buildable as a kernel but a
pure reference and documentation file.


Source Roadmap:
---------------
bin		System/user commands.

contrib		Packages contributed by 3rd parties.

crypto		Cryptography stuff (see crypto/README).

etc		Template files for /etc.

games		Amusements.

gnu		Various commands and libraries under the GNU Public License.
		Please see gnu/COPYING* for more information.

include		System include files.

kerberos5	Kerberos5 (Heimdal) package.

lib		System libraries.

libexec		System daemons.

release		Release building Makefile & associated tools.

rescue		Build system for statically linked /rescue utilities.

sbin		System commands.

secure		Cryptographic libraries and commands.

share		Shared resources.

sys		Kernel sources.

tools		Utilities for regression testing and miscellaneous tasks.

usr.bin		User commands.

usr.sbin	System administration commands.


For information on synchronizing your source tree with one or more of
the FreeBSD Project's development branches, please see:

  http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/synching.html