c63dab466c
Also some minor style cleanups.
1488 lines
40 KiB
C
1488 lines
40 KiB
C
/*-
|
|
* Copyright (c) 1999 The NetBSD Foundation, Inc.
|
|
* Copyright (c) 2001-2003 Thomas Moestl <tmm@FreeBSD.org>.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Paul Kranenburg.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* from: NetBSD: hme.c,v 1.20 2000/12/14 06:27:25 thorpej Exp
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* HME Ethernet module driver.
|
|
*
|
|
* The HME is e.g. part of the PCIO PCI multi function device.
|
|
* It supports TX gathering and TX and RX checksum offloading.
|
|
* RX buffers must be aligned at a programmable offset modulo 16. We choose 2
|
|
* for this offset: mbuf clusters are usually on about 2^11 boundaries, 2 bytes
|
|
* are skipped to make sure the header after the ethernet header is aligned on a
|
|
* natural boundary, so this ensures minimal wastage in the most common case.
|
|
*
|
|
* Also, apparently, the buffers must extend to a DMA burst boundary beyond the
|
|
* maximum packet size (this is not verified). Buffers starting on odd
|
|
* boundaries must be mapped so that the burst can start on a natural boundary.
|
|
*
|
|
* Checksumming is not yet supported.
|
|
*/
|
|
|
|
#define HMEDEBUG
|
|
#define KTR_HME KTR_CT2 /* XXX */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/hme/if_hmereg.h>
|
|
#include <dev/hme/if_hmevar.h>
|
|
|
|
static void hme_start(struct ifnet *);
|
|
static void hme_stop(struct hme_softc *);
|
|
static int hme_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void hme_tick(void *);
|
|
static void hme_watchdog(struct ifnet *);
|
|
static void hme_init(void *);
|
|
static int hme_add_rxbuf(struct hme_softc *, unsigned int, int);
|
|
static int hme_meminit(struct hme_softc *);
|
|
static int hme_mac_bitflip(struct hme_softc *, u_int32_t, u_int32_t,
|
|
u_int32_t, u_int32_t);
|
|
static void hme_mifinit(struct hme_softc *);
|
|
static void hme_reset(struct hme_softc *);
|
|
static void hme_setladrf(struct hme_softc *, int);
|
|
|
|
static int hme_mediachange(struct ifnet *);
|
|
static void hme_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
static int hme_load_txmbuf(struct hme_softc *, struct mbuf *);
|
|
static void hme_read(struct hme_softc *, int, int);
|
|
static void hme_eint(struct hme_softc *, u_int);
|
|
static void hme_rint(struct hme_softc *);
|
|
static void hme_tint(struct hme_softc *);
|
|
|
|
static void hme_cdma_callback(void *, bus_dma_segment_t *, int, int);
|
|
static void hme_rxdma_callback(void *, bus_dma_segment_t *, int,
|
|
bus_size_t, int);
|
|
static void hme_txdma_callback(void *, bus_dma_segment_t *, int,
|
|
bus_size_t, int);
|
|
|
|
devclass_t hme_devclass;
|
|
|
|
static int hme_nerr;
|
|
|
|
DRIVER_MODULE(miibus, hme, miibus_driver, miibus_devclass, 0, 0);
|
|
MODULE_DEPEND(hme, miibus, 1, 1, 1);
|
|
|
|
#define HME_SPC_READ_4(spc, sc, offs) \
|
|
bus_space_read_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \
|
|
(sc)->sc_ ## spc ## o + (offs))
|
|
#define HME_SPC_WRITE_4(spc, sc, offs, v) \
|
|
bus_space_write_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \
|
|
(sc)->sc_ ## spc ## o + (offs), (v))
|
|
|
|
#define HME_SEB_READ_4(sc, offs) HME_SPC_READ_4(seb, (sc), (offs))
|
|
#define HME_SEB_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(seb, (sc), (offs), (v))
|
|
#define HME_ERX_READ_4(sc, offs) HME_SPC_READ_4(erx, (sc), (offs))
|
|
#define HME_ERX_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(erx, (sc), (offs), (v))
|
|
#define HME_ETX_READ_4(sc, offs) HME_SPC_READ_4(etx, (sc), (offs))
|
|
#define HME_ETX_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(etx, (sc), (offs), (v))
|
|
#define HME_MAC_READ_4(sc, offs) HME_SPC_READ_4(mac, (sc), (offs))
|
|
#define HME_MAC_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(mac, (sc), (offs), (v))
|
|
#define HME_MIF_READ_4(sc, offs) HME_SPC_READ_4(mif, (sc), (offs))
|
|
#define HME_MIF_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(mif, (sc), (offs), (v))
|
|
|
|
#define HME_MAXERR 5
|
|
#define HME_WHINE(dev, ...) do { \
|
|
if (hme_nerr++ < HME_MAXERR) \
|
|
device_printf(dev, __VA_ARGS__); \
|
|
if (hme_nerr == HME_MAXERR) { \
|
|
device_printf(dev, "too may errors; not reporting any " \
|
|
"more\n"); \
|
|
} \
|
|
} while(0)
|
|
|
|
int
|
|
hme_config(struct hme_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
struct mii_softc *child;
|
|
bus_size_t size;
|
|
int error, rdesc, tdesc, i;
|
|
|
|
/*
|
|
* HME common initialization.
|
|
*
|
|
* hme_softc fields that must be initialized by the front-end:
|
|
*
|
|
* the dma bus tag:
|
|
* sc_dmatag
|
|
*
|
|
* the bus handles, tags and offsets (splitted for SBus compatability):
|
|
* sc_seb{t,h,o} (Shared Ethernet Block registers)
|
|
* sc_erx{t,h,o} (Receiver Unit registers)
|
|
* sc_etx{t,h,o} (Transmitter Unit registers)
|
|
* sc_mac{t,h,o} (MAC registers)
|
|
* sc_mif{t,h,o} (Managment Interface registers)
|
|
*
|
|
* the maximum bus burst size:
|
|
* sc_burst
|
|
*
|
|
*/
|
|
|
|
/* Make sure the chip is stopped. */
|
|
hme_stop(sc);
|
|
|
|
/*
|
|
* Allocate DMA capable memory
|
|
* Buffer descriptors must be aligned on a 2048 byte boundary;
|
|
* take this into account when calculating the size. Note that
|
|
* the maximum number of descriptors (256) occupies 2048 bytes,
|
|
* so we allocate that much regardless of HME_N*DESC.
|
|
*/
|
|
size = 4096;
|
|
|
|
error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, size, HME_NTXDESC + HME_NRXDESC + 1,
|
|
BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->sc_pdmatag);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = bus_dma_tag_create(sc->sc_pdmatag, 2048, 0,
|
|
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
|
|
1, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW, busdma_lock_mutex,
|
|
&Giant, &sc->sc_cdmatag);
|
|
if (error)
|
|
goto fail_ptag;
|
|
|
|
error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0,
|
|
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
|
|
HME_NRXDESC, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW,
|
|
NULL, NULL, &sc->sc_rdmatag);
|
|
if (error)
|
|
goto fail_ctag;
|
|
|
|
error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0,
|
|
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
|
|
HME_NTXDESC, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW,
|
|
NULL, NULL, &sc->sc_tdmatag);
|
|
if (error)
|
|
goto fail_rtag;
|
|
|
|
/* Allocate control/TX DMA buffer */
|
|
error = bus_dmamem_alloc(sc->sc_cdmatag, (void **)&sc->sc_rb.rb_membase,
|
|
0, &sc->sc_cdmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev, "DMA buffer alloc error %d\n", error);
|
|
goto fail_ttag;
|
|
}
|
|
|
|
/* Load the buffer */
|
|
sc->sc_rb.rb_dmabase = 0;
|
|
if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cdmamap,
|
|
sc->sc_rb.rb_membase, size, hme_cdma_callback, sc, 0)) != 0 ||
|
|
sc->sc_rb.rb_dmabase == 0) {
|
|
device_printf(sc->sc_dev, "DMA buffer map load error %d\n",
|
|
error);
|
|
goto fail_free;
|
|
}
|
|
CTR2(KTR_HME, "hme_config: dma va %p, pa %#lx", sc->sc_rb.rb_membase,
|
|
sc->sc_rb.rb_dmabase);
|
|
|
|
/*
|
|
* Prepare the RX descriptors. rdesc serves as marker for the last
|
|
* processed descriptor and may be used later on.
|
|
*/
|
|
for (rdesc = 0; rdesc < HME_NRXDESC; rdesc++) {
|
|
sc->sc_rb.rb_rxdesc[rdesc].hrx_m = NULL;
|
|
error = bus_dmamap_create(sc->sc_rdmatag, 0,
|
|
&sc->sc_rb.rb_rxdesc[rdesc].hrx_dmamap);
|
|
if (error != 0)
|
|
goto fail_rxdesc;
|
|
}
|
|
error = bus_dmamap_create(sc->sc_rdmatag, 0,
|
|
&sc->sc_rb.rb_spare_dmamap);
|
|
if (error != 0)
|
|
goto fail_rxdesc;
|
|
/* Same for the TX descs. */
|
|
for (tdesc = 0; tdesc < HME_NTXQ; tdesc++) {
|
|
sc->sc_rb.rb_txdesc[tdesc].htx_m = NULL;
|
|
error = bus_dmamap_create(sc->sc_tdmatag, 0,
|
|
&sc->sc_rb.rb_txdesc[tdesc].htx_dmamap);
|
|
if (error != 0)
|
|
goto fail_txdesc;
|
|
}
|
|
|
|
device_printf(sc->sc_dev, "Ethernet address:");
|
|
for (i = 0; i < 6; i++)
|
|
printf("%c%02x", i > 0 ? ':' : ' ', sc->sc_arpcom.ac_enaddr[i]);
|
|
printf("\n");
|
|
|
|
/* Initialize ifnet structure. */
|
|
ifp->if_softc = sc;
|
|
ifp->if_unit = device_get_unit(sc->sc_dev);
|
|
ifp->if_name = "hme";
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX |IFF_MULTICAST;
|
|
ifp->if_start = hme_start;
|
|
ifp->if_ioctl = hme_ioctl;
|
|
ifp->if_init = hme_init;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_watchdog = hme_watchdog;
|
|
ifp->if_snd.ifq_maxlen = HME_NTXQ;
|
|
|
|
hme_mifinit(sc);
|
|
|
|
if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, hme_mediachange,
|
|
hme_mediastatus)) != 0) {
|
|
device_printf(sc->sc_dev, "phy probe failed: %d\n", error);
|
|
goto fail_rxdesc;
|
|
}
|
|
sc->sc_mii = device_get_softc(sc->sc_miibus);
|
|
|
|
/*
|
|
* Walk along the list of attached MII devices and
|
|
* establish an `MII instance' to `phy number'
|
|
* mapping. We'll use this mapping in media change
|
|
* requests to determine which phy to use to program
|
|
* the MIF configuration register.
|
|
*/
|
|
for (child = LIST_FIRST(&sc->sc_mii->mii_phys); child != NULL;
|
|
child = LIST_NEXT(child, mii_list)) {
|
|
/*
|
|
* Note: we support just two PHYs: the built-in
|
|
* internal device and an external on the MII
|
|
* connector.
|
|
*/
|
|
if (child->mii_phy > 1 || child->mii_inst > 1) {
|
|
device_printf(sc->sc_dev, "cannot accomodate "
|
|
"MII device %s at phy %d, instance %d\n",
|
|
device_get_name(child->mii_dev),
|
|
child->mii_phy, child->mii_inst);
|
|
continue;
|
|
}
|
|
|
|
sc->sc_phys[child->mii_inst] = child->mii_phy;
|
|
}
|
|
|
|
/* Attach the interface. */
|
|
ether_ifattach(ifp, sc->sc_arpcom.ac_enaddr);
|
|
|
|
callout_init(&sc->sc_tick_ch, 0);
|
|
return (0);
|
|
|
|
fail_txdesc:
|
|
for (i = 0; i < tdesc; i++) {
|
|
bus_dmamap_destroy(sc->sc_tdmatag,
|
|
sc->sc_rb.rb_txdesc[i].htx_dmamap);
|
|
}
|
|
bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap);
|
|
fail_rxdesc:
|
|
for (i = 0; i < rdesc; i++) {
|
|
bus_dmamap_destroy(sc->sc_rdmatag,
|
|
sc->sc_rb.rb_rxdesc[i].hrx_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cdmamap);
|
|
fail_free:
|
|
bus_dmamem_free(sc->sc_cdmatag, sc->sc_rb.rb_membase, sc->sc_cdmamap);
|
|
fail_ttag:
|
|
bus_dma_tag_destroy(sc->sc_tdmatag);
|
|
fail_rtag:
|
|
bus_dma_tag_destroy(sc->sc_rdmatag);
|
|
fail_ctag:
|
|
bus_dma_tag_destroy(sc->sc_cdmatag);
|
|
fail_ptag:
|
|
bus_dma_tag_destroy(sc->sc_pdmatag);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
hme_detach(struct hme_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
int i;
|
|
|
|
ether_ifdetach(ifp);
|
|
hme_stop(sc);
|
|
device_delete_child(sc->sc_dev, sc->sc_miibus);
|
|
|
|
for (i = 0; i < HME_NTXQ; i++) {
|
|
bus_dmamap_destroy(sc->sc_tdmatag,
|
|
sc->sc_rb.rb_txdesc[i].htx_dmamap);
|
|
}
|
|
bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap);
|
|
for (i = 0; i < HME_NRXDESC; i++) {
|
|
bus_dmamap_destroy(sc->sc_rdmatag,
|
|
sc->sc_rb.rb_rxdesc[i].hrx_dmamap);
|
|
}
|
|
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cdmamap);
|
|
bus_dmamem_free(sc->sc_cdmatag, sc->sc_rb.rb_membase, sc->sc_cdmamap);
|
|
bus_dma_tag_destroy(sc->sc_tdmatag);
|
|
bus_dma_tag_destroy(sc->sc_rdmatag);
|
|
bus_dma_tag_destroy(sc->sc_cdmatag);
|
|
bus_dma_tag_destroy(sc->sc_pdmatag);
|
|
}
|
|
|
|
void
|
|
hme_suspend(struct hme_softc *sc)
|
|
{
|
|
|
|
hme_stop(sc);
|
|
}
|
|
|
|
void
|
|
hme_resume(struct hme_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
|
|
if ((ifp->if_flags & IFF_UP) != 0)
|
|
hme_init(ifp);
|
|
}
|
|
|
|
static void
|
|
hme_cdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
struct hme_softc *sc = (struct hme_softc *)xsc;
|
|
|
|
if (error != 0)
|
|
return;
|
|
KASSERT(nsegs == 1, ("hme_cdma_callback: bad dma segment count"));
|
|
sc->sc_rb.rb_dmabase = segs[0].ds_addr;
|
|
}
|
|
|
|
static void
|
|
hme_tick(void *arg)
|
|
{
|
|
struct hme_softc *sc = arg;
|
|
int s;
|
|
|
|
s = splnet();
|
|
mii_tick(sc->sc_mii);
|
|
splx(s);
|
|
|
|
callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
|
|
}
|
|
|
|
static void
|
|
hme_reset(struct hme_softc *sc)
|
|
{
|
|
int s;
|
|
|
|
s = splnet();
|
|
hme_init(sc);
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
hme_stop(struct hme_softc *sc)
|
|
{
|
|
u_int32_t v;
|
|
int n;
|
|
|
|
callout_stop(&sc->sc_tick_ch);
|
|
|
|
/* Reset transmitter and receiver */
|
|
HME_SEB_WRITE_4(sc, HME_SEBI_RESET, HME_SEB_RESET_ETX |
|
|
HME_SEB_RESET_ERX);
|
|
|
|
for (n = 0; n < 20; n++) {
|
|
v = HME_SEB_READ_4(sc, HME_SEBI_RESET);
|
|
if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
|
|
return;
|
|
DELAY(20);
|
|
}
|
|
|
|
device_printf(sc->sc_dev, "hme_stop: reset failed\n");
|
|
}
|
|
|
|
static void
|
|
hme_rxdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs,
|
|
bus_size_t totsize, int error)
|
|
{
|
|
bus_addr_t *a = xsc;
|
|
|
|
KASSERT(nsegs == 1, ("hme_rxdma_callback: multiple segments!"));
|
|
if (error != 0)
|
|
return;
|
|
*a = segs[0].ds_addr;
|
|
}
|
|
|
|
/*
|
|
* Discard the contents of an mbuf in the RX ring, freeing the buffer in the
|
|
* ring for subsequent use.
|
|
*/
|
|
static __inline void
|
|
hme_discard_rxbuf(struct hme_softc *sc, int ix)
|
|
{
|
|
|
|
/*
|
|
* Dropped a packet, reinitialize the descriptor and turn the
|
|
* ownership back to the hardware.
|
|
*/
|
|
HME_XD_SETFLAGS(sc->sc_pci, sc->sc_rb.rb_rxd, ix, HME_XD_OWN |
|
|
HME_XD_ENCODE_RSIZE(HME_DESC_RXLEN(sc, &sc->sc_rb.rb_rxdesc[ix])));
|
|
}
|
|
|
|
static int
|
|
hme_add_rxbuf(struct hme_softc *sc, unsigned int ri, int keepold)
|
|
{
|
|
struct hme_rxdesc *rd;
|
|
struct mbuf *m;
|
|
bus_addr_t ba;
|
|
bus_dmamap_t map;
|
|
uintptr_t b;
|
|
int a, unmap;
|
|
|
|
rd = &sc->sc_rb.rb_rxdesc[ri];
|
|
unmap = rd->hrx_m != NULL;
|
|
if (unmap && keepold) {
|
|
/*
|
|
* Reinitialize the descriptor flags, as they may have been
|
|
* altered by the hardware.
|
|
*/
|
|
hme_discard_rxbuf(sc, ri);
|
|
return (0);
|
|
}
|
|
if ((m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR)) == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
|
|
b = mtod(m, uintptr_t);
|
|
/*
|
|
* Required alignment boundary. At least 16 is needed, but since
|
|
* the mapping must be done in a way that a burst can start on a
|
|
* natural boundary we might need to extend this.
|
|
*/
|
|
a = max(HME_MINRXALIGN, sc->sc_burst);
|
|
/*
|
|
* Make sure the buffer suitably aligned. The 2 byte offset is removed
|
|
* when the mbuf is handed up. XXX: this ensures at least 16 byte
|
|
* alignment of the header adjacent to the ethernet header, which
|
|
* should be sufficient in all cases. Nevertheless, this second-guesses
|
|
* ALIGN().
|
|
*/
|
|
m_adj(m, roundup2(b, a) - b);
|
|
if (bus_dmamap_load_mbuf(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap,
|
|
m, hme_rxdma_callback, &ba, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
if (unmap) {
|
|
bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_rdmatag, rd->hrx_dmamap);
|
|
}
|
|
map = rd->hrx_dmamap;
|
|
rd->hrx_dmamap = sc->sc_rb.rb_spare_dmamap;
|
|
sc->sc_rb.rb_spare_dmamap = map;
|
|
bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap, BUS_DMASYNC_PREREAD);
|
|
HME_XD_SETADDR(sc->sc_pci, sc->sc_rb.rb_rxd, ri, ba);
|
|
rd->hrx_m = m;
|
|
HME_XD_SETFLAGS(sc->sc_pci, sc->sc_rb.rb_rxd, ri, HME_XD_OWN |
|
|
HME_XD_ENCODE_RSIZE(HME_DESC_RXLEN(sc, rd)));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
hme_meminit(struct hme_softc *sc)
|
|
{
|
|
struct hme_ring *hr = &sc->sc_rb;
|
|
struct hme_txdesc *td;
|
|
bus_addr_t dma;
|
|
caddr_t p;
|
|
unsigned int i;
|
|
int error;
|
|
|
|
p = hr->rb_membase;
|
|
dma = hr->rb_dmabase;
|
|
|
|
/*
|
|
* Allocate transmit descriptors
|
|
*/
|
|
hr->rb_txd = p;
|
|
hr->rb_txddma = dma;
|
|
p += HME_NTXDESC * HME_XD_SIZE;
|
|
dma += HME_NTXDESC * HME_XD_SIZE;
|
|
/* We have reserved descriptor space until the next 2048 byte boundary.*/
|
|
dma = (bus_addr_t)roundup((u_long)dma, 2048);
|
|
p = (caddr_t)roundup((u_long)p, 2048);
|
|
|
|
/*
|
|
* Allocate receive descriptors
|
|
*/
|
|
hr->rb_rxd = p;
|
|
hr->rb_rxddma = dma;
|
|
p += HME_NRXDESC * HME_XD_SIZE;
|
|
dma += HME_NRXDESC * HME_XD_SIZE;
|
|
/* Again move forward to the next 2048 byte boundary.*/
|
|
dma = (bus_addr_t)roundup((u_long)dma, 2048);
|
|
p = (caddr_t)roundup((u_long)p, 2048);
|
|
|
|
/*
|
|
* Initialize transmit buffer descriptors
|
|
*/
|
|
for (i = 0; i < HME_NTXDESC; i++) {
|
|
HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, 0);
|
|
HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
|
|
}
|
|
|
|
STAILQ_INIT(&sc->sc_rb.rb_txfreeq);
|
|
STAILQ_INIT(&sc->sc_rb.rb_txbusyq);
|
|
for (i = 0; i < HME_NTXQ; i++) {
|
|
td = &sc->sc_rb.rb_txdesc[i];
|
|
if (td->htx_m != NULL) {
|
|
m_freem(td->htx_m);
|
|
bus_dmamap_sync(sc->sc_tdmatag, td->htx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_tdmatag, td->htx_dmamap);
|
|
td->htx_m = NULL;
|
|
}
|
|
STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txfreeq, td, htx_q);
|
|
}
|
|
|
|
/*
|
|
* Initialize receive buffer descriptors
|
|
*/
|
|
for (i = 0; i < HME_NRXDESC; i++) {
|
|
error = hme_add_rxbuf(sc, i, 1);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_PREREAD);
|
|
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_PREWRITE);
|
|
|
|
hr->rb_tdhead = hr->rb_tdtail = 0;
|
|
hr->rb_td_nbusy = 0;
|
|
hr->rb_rdtail = 0;
|
|
CTR2(KTR_HME, "hme_meminit: tx ring va %p, pa %#lx", hr->rb_txd,
|
|
hr->rb_txddma);
|
|
CTR2(KTR_HME, "hme_meminit: rx ring va %p, pa %#lx", hr->rb_rxd,
|
|
hr->rb_rxddma);
|
|
CTR2(KTR_HME, "rx entry 1: flags %x, address %x",
|
|
*(u_int32_t *)hr->rb_rxd, *(u_int32_t *)(hr->rb_rxd + 4));
|
|
CTR2(KTR_HME, "tx entry 1: flags %x, address %x",
|
|
*(u_int32_t *)hr->rb_txd, *(u_int32_t *)(hr->rb_txd + 4));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
hme_mac_bitflip(struct hme_softc *sc, u_int32_t reg, u_int32_t val,
|
|
u_int32_t clr, u_int32_t set)
|
|
{
|
|
int i = 0;
|
|
|
|
val &= ~clr;
|
|
val |= set;
|
|
HME_MAC_WRITE_4(sc, reg, val);
|
|
if (clr == 0 && set == 0)
|
|
return (1); /* just write, no bits to wait for */
|
|
do {
|
|
DELAY(100);
|
|
i++;
|
|
val = HME_MAC_READ_4(sc, reg);
|
|
if (i > 40) {
|
|
/* After 3.5ms, we should have been done. */
|
|
device_printf(sc->sc_dev, "timeout while writing to "
|
|
"MAC configuration register\n");
|
|
return (0);
|
|
}
|
|
} while ((val & clr) != 0 && (val & set) != set);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Initialization of interface; set up initialization block
|
|
* and transmit/receive descriptor rings.
|
|
*/
|
|
static void
|
|
hme_init(void *xsc)
|
|
{
|
|
struct hme_softc *sc = (struct hme_softc *)xsc;
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
u_int8_t *ea;
|
|
u_int32_t v;
|
|
|
|
/*
|
|
* Initialization sequence. The numbered steps below correspond
|
|
* to the sequence outlined in section 6.3.5.1 in the Ethernet
|
|
* Channel Engine manual (part of the PCIO manual).
|
|
* See also the STP2002-STQ document from Sun Microsystems.
|
|
*/
|
|
|
|
/* step 1 & 2. Reset the Ethernet Channel */
|
|
hme_stop(sc);
|
|
|
|
/* Re-initialize the MIF */
|
|
hme_mifinit(sc);
|
|
|
|
#if 0
|
|
/* Mask all MIF interrupts, just in case */
|
|
HME_MIF_WRITE_4(sc, HME_MIFI_IMASK, 0xffff);
|
|
#endif
|
|
|
|
/* step 3. Setup data structures in host memory */
|
|
if (hme_meminit(sc) != 0) {
|
|
device_printf(sc->sc_dev, "out of buffers; init aborted.");
|
|
return;
|
|
}
|
|
|
|
/* step 4. TX MAC registers & counters */
|
|
HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_TXSIZE, ETHER_MAX_LEN);
|
|
|
|
/* Load station MAC address */
|
|
ea = sc->sc_arpcom.ac_enaddr;
|
|
HME_MAC_WRITE_4(sc, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
|
|
|
|
/*
|
|
* Init seed for backoff
|
|
* (source suggested by manual: low 10 bits of MAC address)
|
|
*/
|
|
v = ((ea[4] << 8) | ea[5]) & 0x3fff;
|
|
HME_MAC_WRITE_4(sc, HME_MACI_RANDSEED, v);
|
|
|
|
|
|
/* Note: Accepting power-on default for other MAC registers here.. */
|
|
|
|
/* step 5. RX MAC registers & counters */
|
|
hme_setladrf(sc, 0);
|
|
|
|
/* step 6 & 7. Program Descriptor Ring Base Addresses */
|
|
HME_ETX_WRITE_4(sc, HME_ETXI_RING, sc->sc_rb.rb_txddma);
|
|
/* Transmit Descriptor ring size: in increments of 16 */
|
|
HME_ETX_WRITE_4(sc, HME_ETXI_RSIZE, HME_NTXDESC / 16 - 1);
|
|
|
|
HME_ERX_WRITE_4(sc, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_RXSIZE, ETHER_MAX_LEN);
|
|
|
|
/* step 8. Global Configuration & Interrupt Mask */
|
|
HME_SEB_WRITE_4(sc, HME_SEBI_IMASK,
|
|
~(/*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
|
|
HME_SEB_STAT_HOSTTOTX |
|
|
HME_SEB_STAT_RXTOHOST |
|
|
HME_SEB_STAT_TXALL |
|
|
HME_SEB_STAT_TXPERR |
|
|
HME_SEB_STAT_RCNTEXP |
|
|
HME_SEB_STAT_ALL_ERRORS ));
|
|
|
|
switch (sc->sc_burst) {
|
|
default:
|
|
v = 0;
|
|
break;
|
|
case 16:
|
|
v = HME_SEB_CFG_BURST16;
|
|
break;
|
|
case 32:
|
|
v = HME_SEB_CFG_BURST32;
|
|
break;
|
|
case 64:
|
|
v = HME_SEB_CFG_BURST64;
|
|
break;
|
|
}
|
|
HME_SEB_WRITE_4(sc, HME_SEBI_CFG, v);
|
|
|
|
/* step 9. ETX Configuration: use mostly default values */
|
|
|
|
/* Enable DMA */
|
|
v = HME_ETX_READ_4(sc, HME_ETXI_CFG);
|
|
v |= HME_ETX_CFG_DMAENABLE;
|
|
HME_ETX_WRITE_4(sc, HME_ETXI_CFG, v);
|
|
|
|
/* step 10. ERX Configuration */
|
|
v = HME_ERX_READ_4(sc, HME_ERXI_CFG);
|
|
|
|
/* Encode Receive Descriptor ring size: four possible values */
|
|
v &= ~HME_ERX_CFG_RINGSIZEMSK;
|
|
switch (HME_NRXDESC) {
|
|
case 32:
|
|
v |= HME_ERX_CFG_RINGSIZE32;
|
|
break;
|
|
case 64:
|
|
v |= HME_ERX_CFG_RINGSIZE64;
|
|
break;
|
|
case 128:
|
|
v |= HME_ERX_CFG_RINGSIZE128;
|
|
break;
|
|
case 256:
|
|
v |= HME_ERX_CFG_RINGSIZE256;
|
|
break;
|
|
default:
|
|
printf("hme: invalid Receive Descriptor ring size\n");
|
|
break;
|
|
}
|
|
|
|
/* Enable DMA, fix RX first byte offset. */
|
|
v &= ~HME_ERX_CFG_FBO_MASK;
|
|
v |= HME_ERX_CFG_DMAENABLE | (HME_RXOFFS << HME_ERX_CFG_FBO_SHIFT);
|
|
CTR1(KTR_HME, "hme_init: programming ERX_CFG to %x", (u_int)v);
|
|
HME_ERX_WRITE_4(sc, HME_ERXI_CFG, v);
|
|
|
|
/* step 11. XIF Configuration */
|
|
v = HME_MAC_READ_4(sc, HME_MACI_XIF);
|
|
v |= HME_MAC_XIF_OE;
|
|
/* If an external transceiver is connected, enable its MII drivers */
|
|
if ((HME_MIF_READ_4(sc, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
|
|
v |= HME_MAC_XIF_MIIENABLE;
|
|
CTR1(KTR_HME, "hme_init: programming XIF to %x", (u_int)v);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_XIF, v);
|
|
|
|
/* step 12. RX_MAC Configuration Register */
|
|
v = HME_MAC_READ_4(sc, HME_MACI_RXCFG);
|
|
v |= HME_MAC_RXCFG_ENABLE;
|
|
v &= ~(HME_MAC_RXCFG_DCRCS);
|
|
CTR1(KTR_HME, "hme_init: programming RX_MAC to %x", (u_int)v);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_RXCFG, v);
|
|
|
|
/* step 13. TX_MAC Configuration Register */
|
|
v = HME_MAC_READ_4(sc, HME_MACI_TXCFG);
|
|
v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
|
|
CTR1(KTR_HME, "hme_init: programming TX_MAC to %x", (u_int)v);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, v);
|
|
|
|
/* step 14. Issue Transmit Pending command */
|
|
|
|
#ifdef HMEDEBUG
|
|
/* Debug: double-check. */
|
|
CTR4(KTR_HME, "hme_init: tx ring %#x, rsz %#x, rx ring %#x, "
|
|
"rxsize %#x", HME_ETX_READ_4(sc, HME_ETXI_RING),
|
|
HME_ETX_READ_4(sc, HME_ETXI_RSIZE),
|
|
HME_ERX_READ_4(sc, HME_ERXI_RING),
|
|
HME_MAC_READ_4(sc, HME_MACI_RXSIZE));
|
|
CTR3(KTR_HME, "hme_init: intr mask %#x, erx cfg %#x, etx cfg %#x",
|
|
HME_SEB_READ_4(sc, HME_SEBI_IMASK),
|
|
HME_ERX_READ_4(sc, HME_ERXI_CFG),
|
|
HME_ETX_READ_4(sc, HME_ETXI_CFG));
|
|
CTR2(KTR_HME, "hme_init: mac rxcfg %#x, maci txcfg %#x",
|
|
HME_MAC_READ_4(sc, HME_MACI_RXCFG),
|
|
HME_MAC_READ_4(sc, HME_MACI_TXCFG));
|
|
#endif
|
|
|
|
/* Start the one second timer. */
|
|
callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
ifp->if_timer = 0;
|
|
hme_start(ifp);
|
|
}
|
|
|
|
struct hme_txdma_arg {
|
|
struct hme_softc *hta_sc;
|
|
struct hme_txdesc *hta_htx;
|
|
int hta_ndescs;
|
|
};
|
|
|
|
/*
|
|
* XXX: this relies on the fact that segments returned by bus_dmamap_load_mbuf()
|
|
* are readable from the nearest burst boundary on (i.e. potentially before
|
|
* ds_addr) to the first boundary beyond the end. This is usually a safe
|
|
* assumption to make, but is not documented.
|
|
*/
|
|
static void
|
|
hme_txdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs,
|
|
bus_size_t totsz, int error)
|
|
{
|
|
struct hme_txdma_arg *ta = xsc;
|
|
struct hme_txdesc *htx;
|
|
bus_size_t len = 0;
|
|
caddr_t txd;
|
|
u_int32_t flags = 0;
|
|
int i, tdhead, pci;
|
|
|
|
if (error != 0)
|
|
return;
|
|
|
|
tdhead = ta->hta_sc->sc_rb.rb_tdhead;
|
|
pci = ta->hta_sc->sc_pci;
|
|
txd = ta->hta_sc->sc_rb.rb_txd;
|
|
htx = ta->hta_htx;
|
|
|
|
if (ta->hta_sc->sc_rb.rb_td_nbusy + nsegs >= HME_NTXDESC) {
|
|
ta->hta_ndescs = -1;
|
|
return;
|
|
}
|
|
ta->hta_ndescs = nsegs;
|
|
|
|
for (i = 0; i < nsegs; i++) {
|
|
if (segs[i].ds_len == 0)
|
|
continue;
|
|
|
|
/* Fill the ring entry. */
|
|
flags = HME_XD_ENCODE_TSIZE(segs[i].ds_len);
|
|
if (len == 0)
|
|
flags |= HME_XD_SOP;
|
|
if (len + segs[i].ds_len == totsz)
|
|
flags |= HME_XD_EOP;
|
|
CTR5(KTR_HME, "hme_txdma_callback: seg %d/%d, ri %d, "
|
|
"flags %#x, addr %#x", i + 1, nsegs, tdhead, (u_int)flags,
|
|
(u_int)segs[i].ds_addr);
|
|
HME_XD_SETFLAGS(pci, txd, tdhead, flags);
|
|
HME_XD_SETADDR(pci, txd, tdhead, segs[i].ds_addr);
|
|
|
|
ta->hta_sc->sc_rb.rb_td_nbusy++;
|
|
htx->htx_lastdesc = tdhead;
|
|
tdhead = (tdhead + 1) % HME_NTXDESC;
|
|
len += segs[i].ds_len;
|
|
}
|
|
ta->hta_sc->sc_rb.rb_tdhead = tdhead;
|
|
KASSERT((flags & HME_XD_EOP) != 0,
|
|
("hme_txdma_callback: missed end of packet!"));
|
|
}
|
|
|
|
/*
|
|
* Routine to dma map an mbuf chain, set up the descriptor rings accordingly and
|
|
* start the transmission.
|
|
* Returns 0 on success, -1 if there were not enough free descriptors to map
|
|
* the packet, or an errno otherwise.
|
|
*/
|
|
static int
|
|
hme_load_txmbuf(struct hme_softc *sc, struct mbuf *m0)
|
|
{
|
|
struct hme_txdma_arg cba;
|
|
struct hme_txdesc *td;
|
|
int error, si, ri;
|
|
u_int32_t flags;
|
|
|
|
si = sc->sc_rb.rb_tdhead;
|
|
if ((td = STAILQ_FIRST(&sc->sc_rb.rb_txfreeq)) == NULL)
|
|
return (-1);
|
|
td->htx_m = m0;
|
|
cba.hta_sc = sc;
|
|
cba.hta_htx = td;
|
|
if ((error = bus_dmamap_load_mbuf(sc->sc_tdmatag, td->htx_dmamap,
|
|
m0, hme_txdma_callback, &cba, 0)) != 0)
|
|
goto fail;
|
|
if (cba.hta_ndescs == -1) {
|
|
error = -1;
|
|
goto fail;
|
|
}
|
|
bus_dmamap_sync(sc->sc_tdmatag, td->htx_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
STAILQ_REMOVE_HEAD(&sc->sc_rb.rb_txfreeq, htx_q);
|
|
STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txbusyq, td, htx_q);
|
|
|
|
/* Turn descriptor ownership to the hme, back to forth. */
|
|
ri = sc->sc_rb.rb_tdhead;
|
|
CTR2(KTR_HME, "hme_load_mbuf: next desc is %d (%#x)",
|
|
ri, HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri));
|
|
do {
|
|
ri = (ri + HME_NTXDESC - 1) % HME_NTXDESC;
|
|
flags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri) |
|
|
HME_XD_OWN;
|
|
CTR3(KTR_HME, "hme_load_mbuf: activating ri %d, si %d (%#x)",
|
|
ri, si, flags);
|
|
HME_XD_SETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri, flags);
|
|
} while (ri != si);
|
|
|
|
/* start the transmission. */
|
|
HME_ETX_WRITE_4(sc, HME_ETXI_PENDING, HME_ETX_TP_DMAWAKEUP);
|
|
return (0);
|
|
fail:
|
|
bus_dmamap_unload(sc->sc_tdmatag, td->htx_dmamap);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Pass a packet to the higher levels.
|
|
*/
|
|
static void
|
|
hme_read(struct hme_softc *sc, int ix, int len)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
struct mbuf *m;
|
|
|
|
if (len <= sizeof(struct ether_header) ||
|
|
len > ETHERMTU + sizeof(struct ether_header)) {
|
|
#ifdef HMEDEBUG
|
|
HME_WHINE(sc->sc_dev, "invalid packet size %d; dropping\n",
|
|
len);
|
|
#endif
|
|
ifp->if_ierrors++;
|
|
hme_discard_rxbuf(sc, ix);
|
|
return;
|
|
}
|
|
|
|
m = sc->sc_rb.rb_rxdesc[ix].hrx_m;
|
|
CTR1(KTR_HME, "hme_read: len %d", len);
|
|
|
|
if (hme_add_rxbuf(sc, ix, 0) != 0) {
|
|
/*
|
|
* hme_add_rxbuf will leave the old buffer in the ring until
|
|
* it is sure that a new buffer can be mapped. If it can not,
|
|
* drop the packet, but leave the interface up.
|
|
*/
|
|
ifp->if_iqdrops++;
|
|
hme_discard_rxbuf(sc, ix);
|
|
return;
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len + HME_RXOFFS;
|
|
m_adj(m, HME_RXOFFS);
|
|
/* Pass the packet up. */
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
static void
|
|
hme_start(struct ifnet *ifp)
|
|
{
|
|
struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
|
|
struct mbuf *m;
|
|
int error, enq = 0;
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
error = 0;
|
|
for (;;) {
|
|
IF_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == NULL)
|
|
break;
|
|
|
|
error = hme_load_txmbuf(sc, m);
|
|
if (error == -1) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
IF_PREPEND(&ifp->if_snd, m);
|
|
break;
|
|
} else if (error > 0) {
|
|
printf("hme_start: error %d while loading mbuf\n",
|
|
error);
|
|
} else {
|
|
enq = 1;
|
|
BPF_MTAP(ifp, m);
|
|
}
|
|
}
|
|
|
|
if (sc->sc_rb.rb_td_nbusy == HME_NTXDESC || error == -1)
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
/* Set watchdog timer if a packet was queued */
|
|
if (enq) {
|
|
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
ifp->if_timer = 5;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Transmit interrupt.
|
|
*/
|
|
static void
|
|
hme_tint(struct hme_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
struct hme_txdesc *htx;
|
|
unsigned int ri, txflags;
|
|
|
|
/*
|
|
* Unload collision counters
|
|
*/
|
|
ifp->if_collisions +=
|
|
HME_MAC_READ_4(sc, HME_MACI_NCCNT) +
|
|
HME_MAC_READ_4(sc, HME_MACI_FCCNT) +
|
|
HME_MAC_READ_4(sc, HME_MACI_EXCNT) +
|
|
HME_MAC_READ_4(sc, HME_MACI_LTCNT);
|
|
|
|
/*
|
|
* then clear the hardware counters.
|
|
*/
|
|
HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0);
|
|
|
|
htx = STAILQ_FIRST(&sc->sc_rb.rb_txbusyq);
|
|
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD);
|
|
/* Fetch current position in the transmit ring */
|
|
for (ri = sc->sc_rb.rb_tdtail;; ri = (ri + 1) % HME_NTXDESC) {
|
|
if (sc->sc_rb.rb_td_nbusy <= 0) {
|
|
CTR0(KTR_HME, "hme_tint: not busy!");
|
|
break;
|
|
}
|
|
|
|
txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
|
|
CTR2(KTR_HME, "hme_tint: index %d, flags %#x", ri, txflags);
|
|
|
|
if ((txflags & HME_XD_OWN) != 0)
|
|
break;
|
|
|
|
CTR0(KTR_HME, "hme_tint: not owned");
|
|
--sc->sc_rb.rb_td_nbusy;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/* Complete packet transmitted? */
|
|
if ((txflags & HME_XD_EOP) == 0)
|
|
continue;
|
|
|
|
KASSERT(htx->htx_lastdesc == ri,
|
|
("hme_tint: ring indices skewed: %d != %d!",
|
|
htx->htx_lastdesc, ri));
|
|
bus_dmamap_sync(sc->sc_tdmatag, htx->htx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_tdmatag, htx->htx_dmamap);
|
|
|
|
ifp->if_opackets++;
|
|
m_freem(htx->htx_m);
|
|
htx->htx_m = NULL;
|
|
STAILQ_REMOVE_HEAD(&sc->sc_rb.rb_txbusyq, htx_q);
|
|
STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txfreeq, htx, htx_q);
|
|
htx = STAILQ_FIRST(&sc->sc_rb.rb_txbusyq);
|
|
}
|
|
/* Turn off watchdog */
|
|
if (sc->sc_rb.rb_td_nbusy == 0)
|
|
ifp->if_timer = 0;
|
|
|
|
/* Update ring */
|
|
sc->sc_rb.rb_tdtail = ri;
|
|
|
|
hme_start(ifp);
|
|
|
|
if (sc->sc_rb.rb_td_nbusy == 0)
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* Receive interrupt.
|
|
*/
|
|
static void
|
|
hme_rint(struct hme_softc *sc)
|
|
{
|
|
caddr_t xdr = sc->sc_rb.rb_rxd;
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
unsigned int ri, len;
|
|
int progress = 0;
|
|
u_int32_t flags;
|
|
|
|
/*
|
|
* Process all buffers with valid data.
|
|
*/
|
|
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD);
|
|
for (ri = sc->sc_rb.rb_rdtail;; ri = (ri + 1) % HME_NRXDESC) {
|
|
flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
|
|
CTR2(KTR_HME, "hme_rint: index %d, flags %#x", ri, flags);
|
|
if ((flags & HME_XD_OWN) != 0)
|
|
break;
|
|
|
|
progress++;
|
|
if ((flags & HME_XD_OFL) != 0) {
|
|
device_printf(sc->sc_dev, "buffer overflow, ri=%d; "
|
|
"flags=0x%x\n", ri, flags);
|
|
ifp->if_ierrors++;
|
|
hme_discard_rxbuf(sc, ri);
|
|
} else {
|
|
len = HME_XD_DECODE_RSIZE(flags);
|
|
hme_read(sc, ri, len);
|
|
}
|
|
}
|
|
if (progress) {
|
|
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
sc->sc_rb.rb_rdtail = ri;
|
|
}
|
|
|
|
static void
|
|
hme_eint(struct hme_softc *sc, u_int status)
|
|
{
|
|
|
|
if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
|
|
device_printf(sc->sc_dev, "XXXlink status changed\n");
|
|
return;
|
|
}
|
|
|
|
HME_WHINE(sc->sc_dev, "error signaled, status=%#x\n", status);
|
|
}
|
|
|
|
void
|
|
hme_intr(void *v)
|
|
{
|
|
struct hme_softc *sc = (struct hme_softc *)v;
|
|
u_int32_t status;
|
|
|
|
status = HME_SEB_READ_4(sc, HME_SEBI_STAT);
|
|
CTR1(KTR_HME, "hme_intr: status %#x", (u_int)status);
|
|
|
|
if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
|
|
hme_eint(sc, status);
|
|
|
|
if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
|
|
hme_tint(sc);
|
|
|
|
if ((status & HME_SEB_STAT_RXTOHOST) != 0)
|
|
hme_rint(sc);
|
|
}
|
|
|
|
|
|
static void
|
|
hme_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct hme_softc *sc = ifp->if_softc;
|
|
#ifdef HMEDEBUG
|
|
u_int32_t status;
|
|
|
|
status = HME_SEB_READ_4(sc, HME_SEBI_STAT);
|
|
CTR1(KTR_HME, "hme_watchdog: status %x", (u_int)status);
|
|
#endif
|
|
device_printf(sc->sc_dev, "device timeout\n");
|
|
++ifp->if_oerrors;
|
|
|
|
hme_reset(sc);
|
|
}
|
|
|
|
/*
|
|
* Initialize the MII Management Interface
|
|
*/
|
|
static void
|
|
hme_mifinit(struct hme_softc *sc)
|
|
{
|
|
u_int32_t v;
|
|
|
|
/* Configure the MIF in frame mode */
|
|
v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
|
|
v &= ~HME_MIF_CFG_BBMODE;
|
|
HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
|
|
}
|
|
|
|
/*
|
|
* MII interface
|
|
*/
|
|
int
|
|
hme_mii_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct hme_softc *sc = device_get_softc(dev);
|
|
int n;
|
|
u_int32_t v;
|
|
|
|
/* Select the desired PHY in the MIF configuration register */
|
|
v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
|
|
/* Clear PHY select bit */
|
|
v &= ~HME_MIF_CFG_PHY;
|
|
if (phy == HME_PHYAD_EXTERNAL)
|
|
/* Set PHY select bit to get at external device */
|
|
v |= HME_MIF_CFG_PHY;
|
|
HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
|
|
|
|
/* Construct the frame command */
|
|
v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
|
|
HME_MIF_FO_TAMSB |
|
|
(MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
|
|
(phy << HME_MIF_FO_PHYAD_SHIFT) |
|
|
(reg << HME_MIF_FO_REGAD_SHIFT);
|
|
|
|
HME_MIF_WRITE_4(sc, HME_MIFI_FO, v);
|
|
for (n = 0; n < 100; n++) {
|
|
DELAY(1);
|
|
v = HME_MIF_READ_4(sc, HME_MIFI_FO);
|
|
if (v & HME_MIF_FO_TALSB)
|
|
return (v & HME_MIF_FO_DATA);
|
|
}
|
|
|
|
device_printf(sc->sc_dev, "mii_read timeout\n");
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
hme_mii_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct hme_softc *sc = device_get_softc(dev);
|
|
int n;
|
|
u_int32_t v;
|
|
|
|
/* Select the desired PHY in the MIF configuration register */
|
|
v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
|
|
/* Clear PHY select bit */
|
|
v &= ~HME_MIF_CFG_PHY;
|
|
if (phy == HME_PHYAD_EXTERNAL)
|
|
/* Set PHY select bit to get at external device */
|
|
v |= HME_MIF_CFG_PHY;
|
|
HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
|
|
|
|
/* Construct the frame command */
|
|
v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
|
|
HME_MIF_FO_TAMSB |
|
|
(MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
|
|
(phy << HME_MIF_FO_PHYAD_SHIFT) |
|
|
(reg << HME_MIF_FO_REGAD_SHIFT) |
|
|
(val & HME_MIF_FO_DATA);
|
|
|
|
HME_MIF_WRITE_4(sc, HME_MIFI_FO, v);
|
|
for (n = 0; n < 100; n++) {
|
|
DELAY(1);
|
|
v = HME_MIF_READ_4(sc, HME_MIFI_FO);
|
|
if (v & HME_MIF_FO_TALSB)
|
|
return (1);
|
|
}
|
|
|
|
device_printf(sc->sc_dev, "mii_write timeout\n");
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
hme_mii_statchg(device_t dev)
|
|
{
|
|
struct hme_softc *sc = device_get_softc(dev);
|
|
int instance = IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media);
|
|
int phy = sc->sc_phys[instance];
|
|
u_int32_t v;
|
|
|
|
#ifdef HMEDEBUG
|
|
if (sc->sc_debug)
|
|
printf("hme_mii_statchg: status change: phy = %d\n", phy);
|
|
#endif
|
|
|
|
/* Select the current PHY in the MIF configuration register */
|
|
v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
|
|
v &= ~HME_MIF_CFG_PHY;
|
|
if (phy == HME_PHYAD_EXTERNAL)
|
|
v |= HME_MIF_CFG_PHY;
|
|
HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
|
|
|
|
/* Set the MAC Full Duplex bit appropriately */
|
|
v = HME_MAC_READ_4(sc, HME_MACI_TXCFG);
|
|
if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, v, HME_MAC_TXCFG_ENABLE, 0))
|
|
return;
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
|
|
v |= HME_MAC_TXCFG_FULLDPLX;
|
|
else
|
|
v &= ~HME_MAC_TXCFG_FULLDPLX;
|
|
HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, v);
|
|
if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, v, 0, HME_MAC_TXCFG_ENABLE))
|
|
return;
|
|
}
|
|
|
|
static int
|
|
hme_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct hme_softc *sc = ifp->if_softc;
|
|
|
|
return (mii_mediachg(sc->sc_mii));
|
|
}
|
|
|
|
static void
|
|
hme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct hme_softc *sc = ifp->if_softc;
|
|
|
|
if ((ifp->if_flags & IFF_UP) == 0)
|
|
return;
|
|
|
|
mii_pollstat(sc->sc_mii);
|
|
ifmr->ifm_active = sc->sc_mii->mii_media_active;
|
|
ifmr->ifm_status = sc->sc_mii->mii_media_status;
|
|
}
|
|
|
|
/*
|
|
* Process an ioctl request.
|
|
*/
|
|
static int
|
|
hme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct hme_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
if ((ifp->if_flags & IFF_UP) == 0 &&
|
|
(ifp->if_flags & IFF_RUNNING) != 0) {
|
|
/*
|
|
* If interface is marked down and it is running, then
|
|
* stop it.
|
|
*/
|
|
hme_stop(sc);
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
} else if ((ifp->if_flags & IFF_UP) != 0 &&
|
|
(ifp->if_flags & IFF_RUNNING) == 0) {
|
|
/*
|
|
* If interface is marked up and it is stopped, then
|
|
* start it.
|
|
*/
|
|
hme_init(sc);
|
|
} else if ((ifp->if_flags & IFF_UP) != 0) {
|
|
/*
|
|
* Reset the interface to pick up changes in any other
|
|
* flags that affect hardware registers.
|
|
*/
|
|
hme_init(sc);
|
|
}
|
|
#ifdef HMEDEBUG
|
|
sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
|
|
#endif
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
hme_setladrf(sc, 1);
|
|
error = 0;
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
break;
|
|
}
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set up the logical address filter.
|
|
*/
|
|
static void
|
|
hme_setladrf(struct hme_softc *sc, int reenable)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
struct ifmultiaddr *inm;
|
|
struct sockaddr_dl *sdl;
|
|
u_char *cp;
|
|
u_int32_t crc;
|
|
u_int32_t hash[4];
|
|
u_int32_t macc;
|
|
int len;
|
|
|
|
/* Clear hash table */
|
|
hash[3] = hash[2] = hash[1] = hash[0] = 0;
|
|
|
|
/* Get current RX configuration */
|
|
macc = HME_MAC_READ_4(sc, HME_MACI_RXCFG);
|
|
|
|
/*
|
|
* Disable the receiver while changing it's state as the documentation
|
|
* mandates.
|
|
* We then must wait until the bit clears in the register. This should
|
|
* take at most 3.5ms.
|
|
*/
|
|
if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc, HME_MAC_RXCFG_ENABLE, 0))
|
|
return;
|
|
/* Disable the hash filter before writing to the filter registers. */
|
|
if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc,
|
|
HME_MAC_RXCFG_HENABLE, 0))
|
|
return;
|
|
|
|
if (reenable)
|
|
macc |= HME_MAC_RXCFG_ENABLE;
|
|
else
|
|
macc &= ~HME_MAC_RXCFG_ENABLE;
|
|
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0) {
|
|
/* Turn on promiscuous mode; turn off the hash filter */
|
|
macc |= HME_MAC_RXCFG_PMISC;
|
|
macc &= ~HME_MAC_RXCFG_HENABLE;
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
goto chipit;
|
|
}
|
|
|
|
/* Turn off promiscuous mode; turn on the hash filter */
|
|
macc &= ~HME_MAC_RXCFG_PMISC;
|
|
macc |= HME_MAC_RXCFG_HENABLE;
|
|
|
|
/*
|
|
* Set up multicast address filter by passing all multicast addresses
|
|
* through a crc generator, and then using the high order 6 bits as an
|
|
* index into the 64 bit logical address filter. The high order bit
|
|
* selects the word, while the rest of the bits select the bit within
|
|
* the word.
|
|
*/
|
|
|
|
TAILQ_FOREACH(inm, &sc->sc_arpcom.ac_if.if_multiaddrs, ifma_link) {
|
|
if (inm->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
sdl = (struct sockaddr_dl *)inm->ifma_addr;
|
|
cp = LLADDR(sdl);
|
|
crc = 0xffffffff;
|
|
for (len = sdl->sdl_alen; --len >= 0;) {
|
|
int octet = *cp++;
|
|
int i;
|
|
|
|
#define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
|
|
for (i = 0; i < 8; i++) {
|
|
if ((crc & 1) ^ (octet & 1)) {
|
|
crc >>= 1;
|
|
crc ^= MC_POLY_LE;
|
|
} else {
|
|
crc >>= 1;
|
|
}
|
|
octet >>= 1;
|
|
}
|
|
}
|
|
/* Just want the 6 most significant bits. */
|
|
crc >>= 26;
|
|
|
|
/* Set the corresponding bit in the filter. */
|
|
hash[crc >> 4] |= 1 << (crc & 0xf);
|
|
}
|
|
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
|
|
chipit:
|
|
/* Now load the hash table into the chip */
|
|
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB0, hash[0]);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB1, hash[1]);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB2, hash[2]);
|
|
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB3, hash[3]);
|
|
hme_mac_bitflip(sc, HME_MACI_RXCFG, macc, 0,
|
|
macc & (HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_HENABLE));
|
|
}
|