freebsd-skq/sys/dev/usb/if_ural.c
damien 66c6c27e11 o Send management frames at the lowest possible rate.
o Include rate in the Rx radiotap code.
o Fix RSSI value in the Rx path.
o Minor tweaks.
2005-11-29 20:55:53 +00:00

2321 lines
57 KiB
C

/* $FreeBSD$ */
/*-
* Copyright (c) 2005
* Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Ralink Technology RT2500USB chipset driver
* http://www.ralinktech.com/
*/
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/clock.h>
#include <sys/rman.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include "usbdevs.h"
#include <dev/usb/if_uralreg.h>
#include <dev/usb/if_uralvar.h>
#ifdef USB_DEBUG
#define DPRINTF(x) do { if (uraldebug > 0) logprintf x; } while (0)
#define DPRINTFN(n, x) do { if (uraldebug >= (n)) logprintf x; } while (0)
int uraldebug = 0;
SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &uraldebug, 0,
"ural debug level");
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
/* various supported device vendors/products */
static const struct usb_devno ural_devs[] = {
{ USB_VENDOR_ASUS, USB_PRODUCT_ASUS_WL167G },
{ USB_VENDOR_ASUS, USB_PRODUCT_RALINK_RT2570 },
{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
{ USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54U },
{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
{ USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
{ USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
{ USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_WUSB54G },
{ USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_WUSB54GP },
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
{ USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570 },
{ USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_2 },
{ USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_3 },
{ USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
{ USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
{ USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
{ USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_RT2570 }
};
MODULE_DEPEND(ural, wlan, 1, 1, 1);
Static int ural_alloc_tx_list(struct ural_softc *);
Static void ural_free_tx_list(struct ural_softc *);
Static int ural_alloc_rx_list(struct ural_softc *);
Static void ural_free_rx_list(struct ural_softc *);
Static int ural_media_change(struct ifnet *);
Static void ural_next_scan(void *);
Static void ural_task(void *);
Static int ural_newstate(struct ieee80211com *,
enum ieee80211_state, int);
Static int ural_rxrate(struct ural_rx_desc *);
Static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
usbd_status);
Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
usbd_status);
Static int ural_ack_rate(struct ieee80211com *, int);
Static uint16_t ural_txtime(int, int, uint32_t);
Static uint8_t ural_plcp_signal(int);
Static void ural_setup_tx_desc(struct ural_softc *,
struct ural_tx_desc *, uint32_t, int, int);
Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
struct ieee80211_node *);
Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
struct ieee80211_node *);
Static int ural_tx_data(struct ural_softc *, struct mbuf *,
struct ieee80211_node *);
Static void ural_start(struct ifnet *);
Static void ural_watchdog(struct ifnet *);
Static int ural_reset(struct ifnet *);
Static int ural_ioctl(struct ifnet *, u_long, caddr_t);
Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
int);
Static uint16_t ural_read(struct ural_softc *, uint16_t);
Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
int);
Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
int);
Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
Static void ural_set_chan(struct ural_softc *,
struct ieee80211_channel *);
#if 0
Static void ural_disable_rf_tune(struct ural_softc *);
#endif
Static void ural_enable_tsf_sync(struct ural_softc *);
Static void ural_set_bssid(struct ural_softc *, uint8_t *);
Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
Static void ural_update_promisc(struct ural_softc *);
Static const char *ural_get_rf(int);
Static void ural_read_eeprom(struct ural_softc *);
Static int ural_bbp_init(struct ural_softc *);
Static void ural_set_txantenna(struct ural_softc *, int);
Static void ural_set_rxantenna(struct ural_softc *, int);
Static void ural_init(void *);
Static void ural_stop(void *);
Static void ural_amrr_start(struct ural_softc *,
struct ieee80211_node *);
Static void ural_amrr_timeout(void *);
Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
usbd_status status);
Static void ural_ratectl(struct ural_amrr *,
struct ieee80211_node *);
/*
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset ural_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct ieee80211_rateset ural_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset ural_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
/*
* Default values for MAC registers; values taken from the reference driver.
*/
static const struct {
uint16_t reg;
uint16_t val;
} ural_def_mac[] = {
{ RAL_TXRX_CSR5, 0x8c8d },
{ RAL_TXRX_CSR6, 0x8b8a },
{ RAL_TXRX_CSR7, 0x8687 },
{ RAL_TXRX_CSR8, 0x0085 },
{ RAL_MAC_CSR13, 0x1111 },
{ RAL_MAC_CSR14, 0x1e11 },
{ RAL_TXRX_CSR21, 0xe78f },
{ RAL_MAC_CSR9, 0xff1d },
{ RAL_MAC_CSR11, 0x0002 },
{ RAL_MAC_CSR22, 0x0053 },
{ RAL_MAC_CSR15, 0x0000 },
{ RAL_MAC_CSR8, 0x0780 },
{ RAL_TXRX_CSR19, 0x0000 },
{ RAL_TXRX_CSR18, 0x005a },
{ RAL_PHY_CSR2, 0x0000 },
{ RAL_TXRX_CSR0, 0x1ec0 },
{ RAL_PHY_CSR4, 0x000f }
};
/*
* Default values for BBP registers; values taken from the reference driver.
*/
static const struct {
uint8_t reg;
uint8_t val;
} ural_def_bbp[] = {
{ 3, 0x02 },
{ 4, 0x19 },
{ 14, 0x1c },
{ 15, 0x30 },
{ 16, 0xac },
{ 17, 0x48 },
{ 18, 0x18 },
{ 19, 0xff },
{ 20, 0x1e },
{ 21, 0x08 },
{ 22, 0x08 },
{ 23, 0x08 },
{ 24, 0x80 },
{ 25, 0x50 },
{ 26, 0x08 },
{ 27, 0x23 },
{ 30, 0x10 },
{ 31, 0x2b },
{ 32, 0xb9 },
{ 34, 0x12 },
{ 35, 0x50 },
{ 39, 0xc4 },
{ 40, 0x02 },
{ 41, 0x60 },
{ 53, 0x10 },
{ 54, 0x18 },
{ 56, 0x08 },
{ 57, 0x10 },
{ 58, 0x08 },
{ 61, 0x60 },
{ 62, 0x10 },
{ 75, 0xff }
};
/*
* Default values for RF register R2 indexed by channel numbers.
*/
static const uint32_t ural_rf2522_r2[] = {
0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
};
static const uint32_t ural_rf2523_r2[] = {
0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
};
static const uint32_t ural_rf2524_r2[] = {
0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
};
static const uint32_t ural_rf2525_r2[] = {
0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
};
static const uint32_t ural_rf2525_hi_r2[] = {
0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
};
static const uint32_t ural_rf2525e_r2[] = {
0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
};
static const uint32_t ural_rf2526_hi_r2[] = {
0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
};
static const uint32_t ural_rf2526_r2[] = {
0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
};
/*
* For dual-band RF, RF registers R1 and R4 also depend on channel number;
* values taken from the reference driver.
*/
static const struct {
uint8_t chan;
uint32_t r1;
uint32_t r2;
uint32_t r4;
} ural_rf5222[] = {
/* channels in the 2.4GHz band */
{ 1, 0x08808, 0x0044d, 0x00282 },
{ 2, 0x08808, 0x0044e, 0x00282 },
{ 3, 0x08808, 0x0044f, 0x00282 },
{ 4, 0x08808, 0x00460, 0x00282 },
{ 5, 0x08808, 0x00461, 0x00282 },
{ 6, 0x08808, 0x00462, 0x00282 },
{ 7, 0x08808, 0x00463, 0x00282 },
{ 8, 0x08808, 0x00464, 0x00282 },
{ 9, 0x08808, 0x00465, 0x00282 },
{ 10, 0x08808, 0x00466, 0x00282 },
{ 11, 0x08808, 0x00467, 0x00282 },
{ 12, 0x08808, 0x00468, 0x00282 },
{ 13, 0x08808, 0x00469, 0x00282 },
{ 14, 0x08808, 0x0046b, 0x00286 },
/* channels in the 5.2GHz band */
{ 36, 0x08804, 0x06225, 0x00287 },
{ 40, 0x08804, 0x06226, 0x00287 },
{ 44, 0x08804, 0x06227, 0x00287 },
{ 48, 0x08804, 0x06228, 0x00287 },
{ 52, 0x08804, 0x06229, 0x00287 },
{ 56, 0x08804, 0x0622a, 0x00287 },
{ 60, 0x08804, 0x0622b, 0x00287 },
{ 64, 0x08804, 0x0622c, 0x00287 },
{ 100, 0x08804, 0x02200, 0x00283 },
{ 104, 0x08804, 0x02201, 0x00283 },
{ 108, 0x08804, 0x02202, 0x00283 },
{ 112, 0x08804, 0x02203, 0x00283 },
{ 116, 0x08804, 0x02204, 0x00283 },
{ 120, 0x08804, 0x02205, 0x00283 },
{ 124, 0x08804, 0x02206, 0x00283 },
{ 128, 0x08804, 0x02207, 0x00283 },
{ 132, 0x08804, 0x02208, 0x00283 },
{ 136, 0x08804, 0x02209, 0x00283 },
{ 140, 0x08804, 0x0220a, 0x00283 },
{ 149, 0x08808, 0x02429, 0x00281 },
{ 153, 0x08808, 0x0242b, 0x00281 },
{ 157, 0x08808, 0x0242d, 0x00281 },
{ 161, 0x08808, 0x0242f, 0x00281 }
};
USB_DECLARE_DRIVER(ural);
USB_MATCH(ural)
{
USB_MATCH_START(ural, uaa);
if (uaa->iface != NULL)
return UMATCH_NONE;
return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
USB_ATTACH(ural)
{
USB_ATTACH_START(ural, sc, uaa);
struct ifnet *ifp;
struct ieee80211com *ic = &sc->sc_ic;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
usbd_status error;
char devinfo[1024];
int i;
sc->sc_udev = uaa->device;
usbd_devinfo(sc->sc_udev, 0, devinfo);
USB_ATTACH_SETUP;
if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
printf("%s: could not set configuration no\n",
USBDEVNAME(sc->sc_dev));
USB_ATTACH_ERROR_RETURN;
}
/* get the first interface handle */
error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
&sc->sc_iface);
if (error != 0) {
printf("%s: could not get interface handle\n",
USBDEVNAME(sc->sc_dev));
USB_ATTACH_ERROR_RETURN;
}
/*
* Find endpoints.
*/
id = usbd_get_interface_descriptor(sc->sc_iface);
sc->sc_rx_no = sc->sc_tx_no = -1;
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
if (ed == NULL) {
printf("%s: no endpoint descriptor for %d\n",
USBDEVNAME(sc->sc_dev), i);
USB_ATTACH_ERROR_RETURN;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
sc->sc_rx_no = ed->bEndpointAddress;
else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
sc->sc_tx_no = ed->bEndpointAddress;
}
if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
USB_ATTACH_ERROR_RETURN;
}
mtx_init(&sc->sc_mtx, USBDEVNAME(sc->sc_dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
usb_init_task(&sc->sc_task, ural_task, sc);
callout_init(&sc->scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
callout_init(&sc->amrr_ch, 0);
/* retrieve RT2570 rev. no */
sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
/* retrieve MAC address and various other things from EEPROM */
ural_read_eeprom(sc);
printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev));
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
printf("%s: can not if_alloc()\n", USBDEVNAME(sc->sc_dev));
USB_ATTACH_ERROR_RETURN;
}
ifp->if_softc = sc;
if_initname(ifp, "ural", USBDEVUNIT(sc->sc_dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
IFF_NEEDSGIANT; /* USB stack is still under Giant lock */
ifp->if_init = ural_init;
ifp->if_ioctl = ural_ioctl;
ifp->if_start = ural_start;
ifp->if_watchdog = ural_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_IBSS | /* IBSS mode supported */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_HOSTAP | /* HostAp mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_WPA; /* 802.11i */
if (sc->rf_rev == RAL_RF_5222) {
/* set supported .11a rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
/* set supported .11a channels */
for (i = 36; i <= 64; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 100; i <= 140; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 149; i <= 161; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ieee80211_ifattach(ic);
ic->ic_reset = ural_reset;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = ural_newstate;
ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
if (bootverbose)
ieee80211_announce(ic);
USB_ATTACH_SUCCESS_RETURN;
}
USB_DETACH(ural)
{
USB_DETACH_START(ural, sc);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
usb_rem_task(sc->sc_udev, &sc->sc_task);
callout_stop(&sc->scan_ch);
callout_stop(&sc->amrr_ch);
if (sc->amrr_xfer != NULL) {
usbd_free_xfer(sc->amrr_xfer);
sc->amrr_xfer = NULL;
}
if (sc->sc_rx_pipeh != NULL) {
usbd_abort_pipe(sc->sc_rx_pipeh);
usbd_close_pipe(sc->sc_rx_pipeh);
}
if (sc->sc_tx_pipeh != NULL) {
usbd_abort_pipe(sc->sc_tx_pipeh);
usbd_close_pipe(sc->sc_tx_pipeh);
}
ural_free_rx_list(sc);
ural_free_tx_list(sc);
bpfdetach(ifp);
ieee80211_ifdetach(ic);
if_free(ifp);
mtx_destroy(&sc->sc_mtx);
return 0;
}
Static int
ural_alloc_tx_list(struct ural_softc *sc)
{
struct ural_tx_data *data;
int i, error;
sc->tx_queued = 0;
for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
data = &sc->tx_data[i];
data->sc = sc;
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
printf("%s: could not allocate tx xfer\n",
USBDEVNAME(sc->sc_dev));
error = ENOMEM;
goto fail;
}
data->buf = usbd_alloc_buffer(data->xfer,
RAL_TX_DESC_SIZE + MCLBYTES);
if (data->buf == NULL) {
printf("%s: could not allocate tx buffer\n",
USBDEVNAME(sc->sc_dev));
error = ENOMEM;
goto fail;
}
}
return 0;
fail: ural_free_tx_list(sc);
return error;
}
Static void
ural_free_tx_list(struct ural_softc *sc)
{
struct ural_tx_data *data;
int i;
for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
data = &sc->tx_data[i];
if (data->xfer != NULL) {
usbd_free_xfer(data->xfer);
data->xfer = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
}
}
Static int
ural_alloc_rx_list(struct ural_softc *sc)
{
struct ural_rx_data *data;
int i, error;
for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
data = &sc->rx_data[i];
data->sc = sc;
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
printf("%s: could not allocate rx xfer\n",
USBDEVNAME(sc->sc_dev));
error = ENOMEM;
goto fail;
}
if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
printf("%s: could not allocate rx buffer\n",
USBDEVNAME(sc->sc_dev));
error = ENOMEM;
goto fail;
}
data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (data->m == NULL) {
printf("%s: could not allocate rx mbuf\n",
USBDEVNAME(sc->sc_dev));
error = ENOMEM;
goto fail;
}
data->buf = mtod(data->m, uint8_t *);
}
return 0;
fail: ural_free_tx_list(sc);
return error;
}
Static void
ural_free_rx_list(struct ural_softc *sc)
{
struct ural_rx_data *data;
int i;
for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
data = &sc->rx_data[i];
if (data->xfer != NULL) {
usbd_free_xfer(data->xfer);
data->xfer = NULL;
}
if (data->m != NULL) {
m_freem(data->m);
data->m = NULL;
}
}
}
Static int
ural_media_change(struct ifnet *ifp)
{
struct ural_softc *sc = ifp->if_softc;
int error;
RAL_LOCK(sc);
error = ieee80211_media_change(ifp);
if (error != ENETRESET) {
RAL_UNLOCK(sc);
return error;
}
if ((ifp->if_flags & IFF_UP) &&
(ifp->if_drv_flags & IFF_DRV_RUNNING))
ural_init(sc);
RAL_UNLOCK(sc);
return 0;
}
/*
* This function is called periodically (every 200ms) during scanning to
* switch from one channel to another.
*/
Static void
ural_next_scan(void *arg)
{
struct ural_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
}
Static void
ural_task(void *arg)
{
struct ural_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
enum ieee80211_state ostate;
struct mbuf *m;
ostate = ic->ic_state;
switch (sc->sc_state) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN) {
/* abort TSF synchronization */
ural_write(sc, RAL_TXRX_CSR19, 0);
/* force tx led to stop blinking */
ural_write(sc, RAL_MAC_CSR20, 0);
}
break;
case IEEE80211_S_SCAN:
ural_set_chan(sc, ic->ic_curchan);
callout_reset(&sc->scan_ch, hz / 5, ural_next_scan, sc);
break;
case IEEE80211_S_AUTH:
ural_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_ASSOC:
ural_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_RUN:
ural_set_chan(sc, ic->ic_curchan);
/* update basic rate set */
if (ic->ic_curmode == IEEE80211_MODE_11B) {
/* 11b basic rates: 1, 2Mbps */
ural_write(sc, RAL_TXRX_CSR11, 0x3);
} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
/* 11a basic rates: 6, 12, 24Mbps */
ural_write(sc, RAL_TXRX_CSR11, 0x150);
} else {
/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
ural_write(sc, RAL_TXRX_CSR11, 0x15f);
}
if (ic->ic_opmode != IEEE80211_M_MONITOR)
ural_set_bssid(sc, ic->ic_bss->ni_bssid);
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_IBSS) {
m = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
if (m == NULL) {
printf("%s: could not allocate beacon\n",
USBDEVNAME(sc->sc_dev));
return;
}
if (ural_tx_bcn(sc, m, ic->ic_bss) != 0) {
printf("%s: could not send beacon\n",
USBDEVNAME(sc->sc_dev));
return;
}
}
/* make tx led blink on tx (controlled by ASIC) */
ural_write(sc, RAL_MAC_CSR20, 1);
if (ic->ic_opmode != IEEE80211_M_MONITOR)
ural_enable_tsf_sync(sc);
/* enable automatic rate adaptation in STA mode */
if (ic->ic_opmode == IEEE80211_M_STA &&
ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
ural_amrr_start(sc, ic->ic_bss);
break;
}
sc->sc_newstate(ic, sc->sc_state, -1);
}
Static int
ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ural_softc *sc = ic->ic_ifp->if_softc;
usb_rem_task(sc->sc_udev, &sc->sc_task);
callout_stop(&sc->scan_ch);
callout_stop(&sc->amrr_ch);
/* do it in a process context */
sc->sc_state = nstate;
usb_add_task(sc->sc_udev, &sc->sc_task);
return 0;
}
/* quickly determine if a given rate is CCK or OFDM */
#define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
#define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
#define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
#define RAL_SIFS 10
/*
* This function is only used by the Rx radiotap code.
*/
Static int
ural_rxrate(struct ural_rx_desc *desc)
{
if (le32toh(desc->flags) & RAL_RX_OFDM) {
/* reverse function of ural_plcp_signal */
switch (desc->rate) {
case 0xb: return 12;
case 0xf: return 18;
case 0xa: return 24;
case 0xe: return 36;
case 0x9: return 48;
case 0xd: return 72;
case 0x8: return 96;
case 0xc: return 108;
}
} else {
if (desc->rate == 10)
return 2;
if (desc->rate == 20)
return 4;
if (desc->rate == 55)
return 11;
if (desc->rate == 110)
return 22;
}
return 2; /* should not get there */
}
Static void
ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct ural_tx_data *data = priv;
struct ural_softc *sc = data->sc;
struct ifnet *ifp = sc->sc_ic.ic_ifp;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
printf("%s: could not transmit buffer: %s\n",
USBDEVNAME(sc->sc_dev), usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->sc_rx_pipeh);
ifp->if_oerrors++;
return;
}
m_freem(data->m);
data->m = NULL;
ieee80211_free_node(data->ni);
data->ni = NULL;
sc->tx_queued--;
ifp->if_opackets++;
DPRINTFN(10, ("tx done\n"));
sc->sc_tx_timer = 0;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ural_start(ifp);
}
Static void
ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct ural_rx_data *data = priv;
struct ural_softc *sc = data->sc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ural_rx_desc *desc;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *mnew, *m;
int len;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->sc_rx_pipeh);
goto skip;
}
usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
printf("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev), len);
ifp->if_ierrors++;
goto skip;
}
/* rx descriptor is located at the end */
desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
(le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
/*
* This should not happen since we did not request to receive
* those frames when we filled RAL_TXRX_CSR2.
*/
DPRINTFN(5, ("PHY or CRC error\n"));
ifp->if_ierrors++;
goto skip;
}
mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (mnew == NULL) {
ifp->if_ierrors++;
goto skip;
}
m = data->m;
data->m = mnew;
data->buf = mtod(data->m, uint8_t *);
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
m->m_flags |= M_HASFCS; /* h/w leaves FCS */
if (sc->sc_drvbpf != NULL) {
struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_rate = ural_rxrate(desc);
tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
tap->wr_antenna = sc->rx_ant;
tap->wr_antsignal = desc->rssi;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* send the frame to the 802.11 layer */
ieee80211_input(ic, m, ni, desc->rssi, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
DPRINTFN(15, ("rx done\n"));
skip: /* setup a new transfer */
usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
usbd_transfer(xfer);
}
/*
* Return the expected ack rate for a frame transmitted at rate `rate'.
* XXX: this should depend on the destination node basic rate set.
*/
Static int
ural_ack_rate(struct ieee80211com *ic, int rate)
{
switch (rate) {
/* CCK rates */
case 2:
return 2;
case 4:
case 11:
case 22:
return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
/* OFDM rates */
case 12:
case 18:
return 12;
case 24:
case 36:
return 24;
case 48:
case 72:
case 96:
case 108:
return 48;
}
/* default to 1Mbps */
return 2;
}
/*
* Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
* The function automatically determines the operating mode depending on the
* given rate. `flags' indicates whether short preamble is in use or not.
*/
Static uint16_t
ural_txtime(int len, int rate, uint32_t flags)
{
uint16_t txtime;
if (RAL_RATE_IS_OFDM(rate)) {
/* IEEE Std 802.11a-1999, pp. 37 */
txtime = (8 + 4 * len + 3 + rate - 1) / rate;
txtime = 16 + 4 + 4 * txtime + 6;
} else {
/* IEEE Std 802.11b-1999, pp. 28 */
txtime = (16 * len + rate - 1) / rate;
if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
txtime += 72 + 24;
else
txtime += 144 + 48;
}
return txtime;
}
Static uint8_t
ural_plcp_signal(int rate)
{
switch (rate) {
/* CCK rates (returned values are device-dependent) */
case 2: return 0x0;
case 4: return 0x1;
case 11: return 0x2;
case 22: return 0x3;
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return 0xb;
case 18: return 0xf;
case 24: return 0xa;
case 36: return 0xe;
case 48: return 0x9;
case 72: return 0xd;
case 96: return 0x8;
case 108: return 0xc;
/* unsupported rates (should not get there) */
default: return 0xff;
}
}
Static void
ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
uint32_t flags, int len, int rate)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t plcp_length;
int remainder;
desc->flags = htole32(flags);
desc->flags |= htole32(RAL_TX_NEWSEQ);
desc->flags |= htole32(len << 16);
if (RAL_RATE_IS_OFDM(rate))
desc->flags |= htole32(RAL_TX_OFDM);
desc->wme = htole16(RAL_AIFSN(3) | RAL_LOGCWMIN(4) | RAL_LOGCWMAX(6));
desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
/*
* Fill PLCP fields.
*/
desc->plcp_service = 4;
len += IEEE80211_CRC_LEN;
if (RAL_RATE_IS_OFDM(rate)) {
/* IEEE Std 802.11a-1999, pp. 14 */
plcp_length = len & 0xfff;
desc->plcp_length_hi = plcp_length >> 6;
desc->plcp_length_lo = plcp_length & 0x3f;
} else {
/* IEEE Std 802.11b-1999, pp. 16 */
plcp_length = (16 * len + rate - 1) / rate;
if (rate == 22) {
remainder = (16 * len) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= RAL_PLCP_LENGEXT;
}
desc->plcp_length_hi = plcp_length >> 8;
desc->plcp_length_lo = plcp_length & 0xff;
}
desc->plcp_signal = ural_plcp_signal(rate);
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->plcp_signal |= 0x08;
desc->iv = 0;
desc->eiv = 0;
}
#define RAL_TX_TIMEOUT 5000
Static int
ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ural_tx_desc *desc;
usbd_xfer_handle xfer;
uint8_t cmd = 0;
usbd_status error;
uint8_t *buf;
int xferlen, rate;
rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
xfer = usbd_alloc_xfer(sc->sc_udev);
if (xfer == NULL)
return ENOMEM;
/* xfer length needs to be a multiple of two! */
xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
buf = usbd_alloc_buffer(xfer, xferlen);
if (buf == NULL) {
usbd_free_xfer(xfer);
return ENOMEM;
}
usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
error = usbd_sync_transfer(xfer);
if (error != 0) {
usbd_free_xfer(xfer);
return error;
}
desc = (struct ural_tx_desc *)buf;
m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
m0->m_pkthdr.len, rate);
DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
m0->m_pkthdr.len, rate, xferlen));
usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
error = usbd_sync_transfer(xfer);
usbd_free_xfer(xfer);
return error;
}
Static int
ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ural_tx_desc *desc;
struct ural_tx_data *data;
struct ieee80211_frame *wh;
uint32_t flags = 0;
uint16_t dur;
usbd_status error;
int xferlen, rate;
data = &sc->tx_data[0];
desc = (struct ural_tx_desc *)data->buf;
rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
data->m = m0;
data->ni = ni;
wh = mtod(m0, struct ieee80211_frame *);
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RAL_TX_ACK;
dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
*(uint16_t *)wh->i_dur = htole16(dur);
/* tell hardware to add timestamp for probe responses */
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT &&
(wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= RAL_TX_TIMESTAMP;
}
if (sc->sc_drvbpf != NULL) {
struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
tap->wt_antenna = sc->tx_ant;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
/* align end on a 2-bytes boundary */
xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
/*
* No space left in the last URB to store the extra 2 bytes, force
* sending of another URB.
*/
if ((xferlen % 64) == 0)
xferlen += 2;
DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
m0->m_pkthdr.len, rate, xferlen));
usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
ural_txeof);
error = usbd_transfer(data->xfer);
if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
return error;
sc->tx_queued++;
return 0;
}
Static int
ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ural_tx_desc *desc;
struct ural_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
uint32_t flags = 0;
uint16_t dur;
usbd_status error;
int xferlen, rate;
wh = mtod(m0, struct ieee80211_frame *);
if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
else
rate = ni->ni_rates.rs_rates[ni->ni_txrate];
rate &= IEEE80211_RATE_VAL;
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
data = &sc->tx_data[0];
desc = (struct ural_tx_desc *)data->buf;
data->m = m0;
data->ni = ni;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RAL_TX_ACK;
flags |= RAL_TX_RETRY(7);
dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
ic->ic_flags) + RAL_SIFS;
*(uint16_t *)wh->i_dur = htole16(dur);
}
if (sc->sc_drvbpf != NULL) {
struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
tap->wt_antenna = sc->tx_ant;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
/* align end on a 2-bytes boundary */
xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
/*
* No space left in the last URB to store the extra 2 bytes, force
* sending of another URB.
*/
if ((xferlen % 64) == 0)
xferlen += 2;
DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
m0->m_pkthdr.len, rate, xferlen));
usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
ural_txeof);
error = usbd_transfer(data->xfer);
if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
return error;
sc->tx_queued++;
return 0;
}
Static void
ural_start(struct ifnet *ifp)
{
struct ural_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m0;
struct ether_header *eh;
struct ieee80211_node *ni;
for (;;) {
IF_POLL(&ic->ic_mgtq, m0);
if (m0 != NULL) {
if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IF_DEQUEUE(&ic->ic_mgtq, m0);
ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
m0->m_pkthdr.rcvif = NULL;
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m0);
if (ural_tx_mgt(sc, m0, ni) != 0)
break;
} else {
if (ic->ic_state != IEEE80211_S_RUN)
break;
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
IFQ_DRV_PREPEND(&ifp->if_snd, m0);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
if (m0->m_len < sizeof (struct ether_header) &&
!(m0 = m_pullup(m0, sizeof (struct ether_header))))
continue;
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
continue;
}
BPF_MTAP(ifp, m0);
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL) {
ieee80211_free_node(ni);
continue;
}
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m0);
if (ural_tx_data(sc, m0, ni) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
Static void
ural_watchdog(struct ifnet *ifp)
{
struct ural_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
RAL_LOCK(sc);
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
device_printf(sc->sc_dev, "device timeout\n");
/*ural_init(sc); XXX needs a process context! */
ifp->if_oerrors++;
RAL_UNLOCK(sc);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ic);
RAL_UNLOCK(sc);
}
/*
* This function allows for fast channel switching in monitor mode (used by
* net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
* generate a new beacon frame.
*/
Static int
ural_reset(struct ifnet *ifp)
{
struct ural_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_opmode != IEEE80211_M_MONITOR)
return ENETRESET;
ural_set_chan(sc, ic->ic_ibss_chan);
return 0;
}
Static int
ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ural_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int error = 0;
RAL_LOCK(sc);
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ural_update_promisc(sc);
else
ural_init(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ural_stop(sc);
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & IFF_UP) &&
(ifp->if_drv_flags & IFF_DRV_RUNNING) &&
(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
ural_init(sc);
error = 0;
}
RAL_UNLOCK(sc);
return error;
}
Static void
ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
{
usb_device_request_t req;
usbd_status error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RAL_READ_EEPROM;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, len);
error = usbd_do_request(sc->sc_udev, &req, buf);
if (error != 0) {
printf("%s: could not read EEPROM: %s\n",
USBDEVNAME(sc->sc_dev), usbd_errstr(error));
}
}
Static uint16_t
ural_read(struct ural_softc *sc, uint16_t reg)
{
usb_device_request_t req;
usbd_status error;
uint16_t val;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RAL_READ_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, sizeof (uint16_t));
error = usbd_do_request(sc->sc_udev, &req, &val);
if (error != 0) {
printf("%s: could not read MAC register: %s\n",
USBDEVNAME(sc->sc_dev), usbd_errstr(error));
return 0;
}
return le16toh(val);
}
Static void
ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
{
usb_device_request_t req;
usbd_status error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RAL_READ_MULTI_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, len);
error = usbd_do_request(sc->sc_udev, &req, buf);
if (error != 0) {
printf("%s: could not read MAC register: %s\n",
USBDEVNAME(sc->sc_dev), usbd_errstr(error));
}
}
Static void
ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
{
usb_device_request_t req;
usbd_status error;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RAL_WRITE_MAC;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
error = usbd_do_request(sc->sc_udev, &req, NULL);
if (error != 0) {
printf("%s: could not write MAC register: %s\n",
USBDEVNAME(sc->sc_dev), usbd_errstr(error));
}
}
Static void
ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
{
usb_device_request_t req;
usbd_status error;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RAL_WRITE_MULTI_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, len);
error = usbd_do_request(sc->sc_udev, &req, buf);
if (error != 0) {
printf("%s: could not write MAC register: %s\n",
USBDEVNAME(sc->sc_dev), usbd_errstr(error));
}
}
Static void
ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
{
uint16_t tmp;
int ntries;
for (ntries = 0; ntries < 5; ntries++) {
if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
break;
}
if (ntries == 5) {
printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
return;
}
tmp = reg << 8 | val;
ural_write(sc, RAL_PHY_CSR7, tmp);
}
Static uint8_t
ural_bbp_read(struct ural_softc *sc, uint8_t reg)
{
uint16_t val;
int ntries;
val = RAL_BBP_WRITE | reg << 8;
ural_write(sc, RAL_PHY_CSR7, val);
for (ntries = 0; ntries < 5; ntries++) {
if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
break;
}
if (ntries == 5) {
printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
return 0;
}
return ural_read(sc, RAL_PHY_CSR7) & 0xff;
}
Static void
ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 5; ntries++) {
if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
break;
}
if (ntries == 5) {
printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
return;
}
tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
/* remember last written value in sc */
sc->rf_regs[reg] = val;
DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
}
Static void
ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
struct ieee80211com *ic = &sc->sc_ic;
uint8_t power, tmp;
u_int i, chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
if (IEEE80211_IS_CHAN_2GHZ(c))
power = min(sc->txpow[chan - 1], 31);
else
power = 31;
DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
switch (sc->rf_rev) {
case RAL_RF_2522:
ural_rf_write(sc, RAL_RF1, 0x00814);
ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
break;
case RAL_RF_2523:
ural_rf_write(sc, RAL_RF1, 0x08804);
ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RAL_RF_2524:
ural_rf_write(sc, RAL_RF1, 0x0c808);
ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RAL_RF_2525:
ural_rf_write(sc, RAL_RF1, 0x08808);
ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
ural_rf_write(sc, RAL_RF1, 0x08808);
ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RAL_RF_2525E:
ural_rf_write(sc, RAL_RF1, 0x08808);
ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
break;
case RAL_RF_2526:
ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
ural_rf_write(sc, RAL_RF1, 0x08804);
ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
break;
/* dual-band RF */
case RAL_RF_5222:
for (i = 0; i < N(ural_rf5222); i++)
if (ural_rf5222[i].chan == chan)
break;
if (i < N(ural_rf5222)) {
ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
}
break;
}
if (ic->ic_opmode != IEEE80211_M_MONITOR &&
ic->ic_state != IEEE80211_S_SCAN) {
/* set Japan filter bit for channel 14 */
tmp = ural_bbp_read(sc, 70);
tmp &= ~RAL_JAPAN_FILTER;
if (chan == 14)
tmp |= RAL_JAPAN_FILTER;
ural_bbp_write(sc, 70, tmp);
/* clear CRC errors */
ural_read(sc, RAL_STA_CSR0);
}
#undef N
}
#if 0
/*
* Disable RF auto-tuning.
*/
Static void
ural_disable_rf_tune(struct ural_softc *sc)
{
uint32_t tmp;
if (sc->rf_rev != RAL_RF_2523) {
tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
ural_rf_write(sc, RAL_RF1, tmp);
}
tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
ural_rf_write(sc, RAL_RF3, tmp);
DPRINTFN(2, ("disabling RF autotune\n"));
}
#endif
/*
* Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
* synchronization.
*/
Static void
ural_enable_tsf_sync(struct ural_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t logcwmin, preload, tmp;
/* first, disable TSF synchronization */
ural_write(sc, RAL_TXRX_CSR19, 0);
tmp = (16 * ic->ic_bss->ni_intval) << 4;
ural_write(sc, RAL_TXRX_CSR18, tmp);
logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
tmp = logcwmin << 12 | preload;
ural_write(sc, RAL_TXRX_CSR20, tmp);
/* finally, enable TSF synchronization */
tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
if (ic->ic_opmode == IEEE80211_M_STA)
tmp |= RAL_ENABLE_TSF_SYNC(1);
else
tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
ural_write(sc, RAL_TXRX_CSR19, tmp);
DPRINTF(("enabling TSF synchronization\n"));
}
Static void
ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
{
uint16_t tmp;
tmp = bssid[0] | bssid[1] << 8;
ural_write(sc, RAL_MAC_CSR5, tmp);
tmp = bssid[2] | bssid[3] << 8;
ural_write(sc, RAL_MAC_CSR6, tmp);
tmp = bssid[4] | bssid[5] << 8;
ural_write(sc, RAL_MAC_CSR7, tmp);
DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
}
Static void
ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
{
uint16_t tmp;
tmp = addr[0] | addr[1] << 8;
ural_write(sc, RAL_MAC_CSR2, tmp);
tmp = addr[2] | addr[3] << 8;
ural_write(sc, RAL_MAC_CSR3, tmp);
tmp = addr[4] | addr[5] << 8;
ural_write(sc, RAL_MAC_CSR4, tmp);
DPRINTF(("setting MAC address to %6D\n", addr, ":"));
}
Static void
ural_update_promisc(struct ural_softc *sc)
{
struct ifnet *ifp = sc->sc_ic.ic_ifp;
uint32_t tmp;
tmp = ural_read(sc, RAL_TXRX_CSR2);
tmp &= ~RAL_DROP_NOT_TO_ME;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RAL_DROP_NOT_TO_ME;
ural_write(sc, RAL_TXRX_CSR2, tmp);
DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
"entering" : "leaving"));
}
Static const char *
ural_get_rf(int rev)
{
switch (rev) {
case RAL_RF_2522: return "RT2522";
case RAL_RF_2523: return "RT2523";
case RAL_RF_2524: return "RT2524";
case RAL_RF_2525: return "RT2525";
case RAL_RF_2525E: return "RT2525e";
case RAL_RF_2526: return "RT2526";
case RAL_RF_5222: return "RT5222";
default: return "unknown";
}
}
Static void
ural_read_eeprom(struct ural_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
val = le16toh(val);
sc->rf_rev = (val >> 11) & 0x7;
sc->hw_radio = (val >> 10) & 0x1;
sc->led_mode = (val >> 6) & 0x7;
sc->rx_ant = (val >> 4) & 0x3;
sc->tx_ant = (val >> 2) & 0x3;
sc->nb_ant = val & 0x3;
/* read MAC address */
ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
/* read default values for BBP registers */
ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
/* read Tx power for all b/g channels */
ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
}
Static int
ural_bbp_init(struct ural_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
int i, ntries;
/* wait for BBP to be ready */
for (ntries = 0; ntries < 100; ntries++) {
if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
break;
DELAY(1000);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for BBP\n");
return EIO;
}
/* initialize BBP registers to default values */
for (i = 0; i < N(ural_def_bbp); i++)
ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
#if 0
/* initialize BBP registers to values stored in EEPROM */
for (i = 0; i < 16; i++) {
if (sc->bbp_prom[i].reg == 0xff)
continue;
ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
}
#endif
return 0;
#undef N
}
Static void
ural_set_txantenna(struct ural_softc *sc, int antenna)
{
uint16_t tmp;
uint8_t tx;
tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
if (antenna == 1)
tx |= RAL_BBP_ANTA;
else if (antenna == 2)
tx |= RAL_BBP_ANTB;
else
tx |= RAL_BBP_DIVERSITY;
/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
sc->rf_rev == RAL_RF_5222)
tx |= RAL_BBP_FLIPIQ;
ural_bbp_write(sc, RAL_BBP_TX, tx);
/* update values in PHY_CSR5 and PHY_CSR6 */
tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
}
Static void
ural_set_rxantenna(struct ural_softc *sc, int antenna)
{
uint8_t rx;
rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
if (antenna == 1)
rx |= RAL_BBP_ANTA;
else if (antenna == 2)
rx |= RAL_BBP_ANTB;
else
rx |= RAL_BBP_DIVERSITY;
/* need to force no I/Q flip for RF 2525e and 2526 */
if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
rx &= ~RAL_BBP_FLIPIQ;
ural_bbp_write(sc, RAL_BBP_RX, rx);
}
Static void
ural_init(void *priv)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
struct ural_softc *sc = priv;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ieee80211_key *wk;
struct ural_rx_data *data;
uint16_t tmp;
usbd_status error;
int i, ntries;
ural_stop(sc);
/* initialize MAC registers to default values */
for (i = 0; i < N(ural_def_mac); i++)
ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
/* wait for BBP and RF to wake up (this can take a long time!) */
for (ntries = 0; ntries < 100; ntries++) {
tmp = ural_read(sc, RAL_MAC_CSR17);
if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
(RAL_BBP_AWAKE | RAL_RF_AWAKE))
break;
DELAY(1000);
}
if (ntries == 100) {
printf("%s: timeout waiting for BBP/RF to wakeup\n",
USBDEVNAME(sc->sc_dev));
goto fail;
}
/* we're ready! */
ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
/* set basic rate set (will be updated later) */
ural_write(sc, RAL_TXRX_CSR11, 0x153);
if (ural_bbp_init(sc) != 0)
goto fail;
/* set default BSS channel */
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
ic->ic_curchan = ic->ic_ibss_chan;
ural_set_chan(sc, ic->ic_curchan);
/* clear statistic registers (STA_CSR0 to STA_CSR10) */
ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
ural_set_txantenna(sc, sc->tx_ant);
ural_set_rxantenna(sc, sc->rx_ant);
IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
ural_set_macaddr(sc, ic->ic_myaddr);
/*
* Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
*/
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
wk = &ic->ic_crypto.cs_nw_keys[i];
ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
}
/*
* Allocate xfer for AMRR statistics requests.
*/
sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
if (sc->amrr_xfer == NULL) {
printf("%s: could not allocate AMRR xfer\n",
USBDEVNAME(sc->sc_dev));
goto fail;
}
/*
* Open Tx and Rx USB bulk pipes.
*/
error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
&sc->sc_tx_pipeh);
if (error != 0) {
printf("%s: could not open Tx pipe: %s\n",
USBDEVNAME(sc->sc_dev), usbd_errstr(error));
goto fail;
}
error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
&sc->sc_rx_pipeh);
if (error != 0) {
printf("%s: could not open Rx pipe: %s\n",
USBDEVNAME(sc->sc_dev), usbd_errstr(error));
goto fail;
}
/*
* Allocate Tx and Rx xfer queues.
*/
error = ural_alloc_tx_list(sc);
if (error != 0) {
printf("%s: could not allocate Tx list\n",
USBDEVNAME(sc->sc_dev));
goto fail;
}
error = ural_alloc_rx_list(sc);
if (error != 0) {
printf("%s: could not allocate Rx list\n",
USBDEVNAME(sc->sc_dev));
goto fail;
}
/*
* Start up the receive pipe.
*/
for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
data = &sc->rx_data[i];
usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
usbd_transfer(data->xfer);
}
/* kick Rx */
tmp = RAL_DROP_PHY | RAL_DROP_CRC;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
tmp |= RAL_DROP_TODS;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RAL_DROP_NOT_TO_ME;
}
ural_write(sc, RAL_TXRX_CSR2, tmp);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
} else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
return;
fail: ural_stop(sc);
#undef N
}
Static void
ural_stop(void *priv)
{
struct ural_softc *sc = priv;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
/* disable Rx */
ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
/* reset ASIC and BBP (but won't reset MAC registers!) */
ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
ural_write(sc, RAL_MAC_CSR1, 0);
if (sc->amrr_xfer != NULL) {
usbd_free_xfer(sc->amrr_xfer);
sc->amrr_xfer = NULL;
}
if (sc->sc_rx_pipeh != NULL) {
usbd_abort_pipe(sc->sc_rx_pipeh);
usbd_close_pipe(sc->sc_rx_pipeh);
sc->sc_rx_pipeh = NULL;
}
if (sc->sc_tx_pipeh != NULL) {
usbd_abort_pipe(sc->sc_tx_pipeh);
usbd_close_pipe(sc->sc_tx_pipeh);
sc->sc_tx_pipeh = NULL;
}
ural_free_rx_list(sc);
ural_free_tx_list(sc);
}
#define URAL_AMRR_MIN_SUCCESS_THRESHOLD 1
#define URAL_AMRR_MAX_SUCCESS_THRESHOLD 10
Static void
ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
{
struct ural_amrr *amrr = &sc->amrr;
int i;
/* clear statistic registers (STA_CSR0 to STA_CSR10) */
ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
amrr->success = 0;
amrr->recovery = 0;
amrr->txcnt = amrr->retrycnt = 0;
amrr->success_threshold = URAL_AMRR_MIN_SUCCESS_THRESHOLD;
/* set rate to some reasonable initial value */
for (i = ni->ni_rates.rs_nrates - 1;
i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
i--);
ni->ni_txrate = i;
callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
}
Static void
ural_amrr_timeout(void *arg)
{
struct ural_softc *sc = (struct ural_softc *)arg;
usb_device_request_t req;
int s;
s = splusb();
/*
* Asynchronously read statistic registers (cleared by read).
*/
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RAL_READ_MULTI_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, RAL_STA_CSR0);
USETW(req.wLength, sizeof sc->sta);
usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
ural_amrr_update);
(void)usbd_transfer(sc->amrr_xfer);
splx(s);
}
Static void
ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
usbd_status status)
{
struct ural_softc *sc = (struct ural_softc *)priv;
struct ural_amrr *amrr = &sc->amrr;
if (status != USBD_NORMAL_COMPLETION)
return;
amrr->retrycnt =
sc->sta[7] + /* TX one-retry ok count */
sc->sta[8] + /* TX more-retry ok count */
sc->sta[8]; /* TX retry-fail count */
amrr->txcnt =
amrr->retrycnt +
sc->sta[6]; /* TX no-retry ok count */
ural_ratectl(amrr, sc->sc_ic.ic_bss);
callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
}
/*-
* Naive implementation of the Adaptive Multi Rate Retry algorithm:
* "IEEE 802.11 Rate Adaptation: A Practical Approach"
* Mathieu Lacage, Hossein Manshaei, Thierry Turletti
* INRIA Sophia - Projet Planete
* http://www-sop.inria.fr/rapports/sophia/RR-5208.html
*
* This algorithm is particularly well suited for ural since it does not
* require per-frame retry statistics. Note however that since h/w does
* not provide per-frame stats, we can't do per-node rate adaptation and
* thus automatic rate adaptation is only enabled in STA operating mode.
*/
#define is_success(amrr) \
((amrr)->retrycnt < (amrr)->txcnt / 10)
#define is_failure(amrr) \
((amrr)->retrycnt > (amrr)->txcnt / 3)
#define is_enough(amrr) \
((amrr)->txcnt > 10)
#define is_min_rate(ni) \
((ni)->ni_txrate == 0)
#define is_max_rate(ni) \
((ni)->ni_txrate == (ni)->ni_rates.rs_nrates - 1)
#define increase_rate(ni) \
((ni)->ni_txrate++)
#define decrease_rate(ni) \
((ni)->ni_txrate--)
#define reset_cnt(amrr) \
do { (amrr)->txcnt = (amrr)->retrycnt = 0; } while (0)
Static void
ural_ratectl(struct ural_amrr *amrr, struct ieee80211_node *ni)
{
int need_change = 0;
if (is_success(amrr) && is_enough(amrr)) {
amrr->success++;
if (amrr->success >= amrr->success_threshold &&
!is_max_rate(ni)) {
amrr->recovery = 1;
amrr->success = 0;
increase_rate(ni);
need_change = 1;
} else {
amrr->recovery = 0;
}
} else if (is_failure(amrr)) {
amrr->success = 0;
if (!is_min_rate(ni)) {
if (amrr->recovery) {
amrr->success_threshold *= 2;
if (amrr->success_threshold >
URAL_AMRR_MAX_SUCCESS_THRESHOLD)
amrr->success_threshold =
URAL_AMRR_MAX_SUCCESS_THRESHOLD;
} else {
amrr->success_threshold =
URAL_AMRR_MIN_SUCCESS_THRESHOLD;
}
decrease_rate(ni);
need_change = 1;
}
amrr->recovery = 0; /* original paper was incorrect */
}
if (is_enough(amrr) || need_change)
reset_cnt(amrr);
}
DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, usbd_driver_load, 0);