freebsd-skq/sys/i386/pci/if_de.c
se 2c2e442f7b Submitted by: Matt Thomas <thomas@lkg.dec.com>
Preliminary FAST Ethernet support added (DEC21140).
1994-10-12 11:19:36 +00:00

1208 lines
34 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*-
* Copyright (c) 1994 Matt Thomas (thomas@lkg.dec.com)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software withough specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id: if_de.c,v 1.6 1994/10/11 18:20:10 thomas Exp $
*
* $Log: if_de.c,v $
* Revision 1.6 1994/10/11 18:20:10 thomas
* new pci interface
* new 100mb/s prelim support
*
* Revision 1.5 1994/10/01 16:10:24 thomas
* Modifications for FreeBSD 2.0
*
* Revision 1.4 1994/09/09 21:10:05 thomas
* mbuf debugging code
* transmit fifo owkraroudns
*
* Revision 1.3 1994/08/16 20:40:56 thomas
* New README files (one per driver)
* Minor updates to drivers (DEPCA support and add pass to attach
* output)
*
* Revision 1.2 1994/08/15 20:41:22 thomas
* Support AUI and TP. Autosense either.
* Revamp receive logic to use private kmem_alloc'ed 64K region.
* Some cleanup
*
* Revision 1.1 1994/08/12 21:01:18 thomas
* Initial revision
*
*/
/*
* DEC DC21040 PCI Ethernet Controller
*
* Written by Matt Thomas
* BPF support code stolen directly from if_ec.c
*
* This driver supports the DEC DE435 or any other PCI
* board which support DC21040.
*/
#include <de.h>
#if NDE > 0
#include <param.h>
#include <systm.h>
#include <mbuf.h>
#include <protosw.h>
#include <socket.h>
#include <ioctl.h>
#include <errno.h>
#include <malloc.h>
#include <syslog.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_dl.h>
#include <net/route.h>
#include <bpfilter.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_param.h>
#include <pci.h>
#if NPCI > 0
#include <i386/pci/pcireg.h>
#endif
#include <i386/isa/icu.h>
#include <i386/pci/dc21040.h>
/*
* This module supports the DEC DC21040 PCI Ethernet Controller.
*/
typedef struct {
unsigned long addr;
unsigned long length;
} tulip_addrvec_t;
typedef struct {
tulip_desc_t *ri_first;
tulip_desc_t *ri_last;
tulip_desc_t *ri_nextin;
tulip_desc_t *ri_nextout;
int ri_max;
int ri_free;
} tulip_ringinfo_t;
typedef struct {
volatile tulip_uint32_t *csr_busmode; /* CSR0 */
volatile tulip_uint32_t *csr_txpoll; /* CSR1 */
volatile tulip_uint32_t *csr_rxpoll; /* CSR2 */
volatile tulip_uint32_t *csr_rxlist; /* CSR3 */
volatile tulip_uint32_t *csr_txlist; /* CSR4 */
volatile tulip_uint32_t *csr_status; /* CSR5 */
volatile tulip_uint32_t *csr_command; /* CSR6 */
volatile tulip_uint32_t *csr_intr; /* CSR7 */
volatile tulip_uint32_t *csr_missed_frame; /* CSR8 */
volatile tulip_sint32_t *csr_enetrom; /* CSR9 */
volatile tulip_uint32_t *csr_reserved; /* CSR10 */
volatile tulip_uint32_t *csr_full_duplex; /* CSR11 */
volatile tulip_uint32_t *csr_sia_status; /* CSR12 */
volatile tulip_uint32_t *csr_sia_connectivity; /* CSR13 */
volatile tulip_uint32_t *csr_sia_tx_rx; /* CSR14 */
volatile tulip_uint32_t *csr_sia_general; /* CSR15 */
} tulip_regfile_t;
/*
* The DC21040 has a stupid restriction in that the receive
* buffers must be longword aligned. But since Ethernet
* headers are not a multiple of longwords in size this forces
* the data to non-longword aligned. Since IP requires the
* data to be longword aligned, we can to copy it after it has
* been DMA'ed in our memory.
*
* Since we have to copy it anyways, we might as well as allocate
* dedicated receive space for the input. This allows to use a
* small receive buffer size and more ring entries to be able to
* better keep with a foold of tiny Ethernet packets.
*
* The receive space MUST ALWAYS be a multiple of the page size.
* And the number of receive descriptors multiplied by the size
* of the receive buffers must equal the recevive space. This
* is that we can manipulate the page tables so that even if a
* packet wraps around the end of the receive space, we can
* treat it as virtually contiguous.
*/
#define TULIP_RXBUFSIZE 512
#define TULIP_RXDESCS 128
#define TULIP_RXSPACE (TULIP_RXBUFSIZE * TULIP_RXDESCS)
#define TULIP_TXDESCS 128
typedef struct {
struct arpcom tulip_ac;
tulip_regfile_t tulip_csrs;
vm_offset_t tulip_rxspace;
unsigned tulip_high_intrspins;
unsigned tulip_flags;
#define TULIP_WANTSETUP 0x01
#define TULIP_WANTHASH 0x02
#define TULIP_DOINGSETUP 0x04
#define TULIP_ALTPHYS 0x08 /* use AUI */
unsigned char tulip_rombuf[32];
tulip_uint32_t tulip_setupbuf[192/sizeof(tulip_uint32_t)];
tulip_uint32_t tulip_setupdata[192/sizeof(tulip_uint32_t)];
tulip_uint32_t tulip_intrmask;
tulip_uint32_t tulip_cmdmode;
tulip_uint32_t tulip_revinfo;
#if NBPFILTER > 0
caddr_t tulip_bpf; /* BPF context */
#endif
struct ifqueue tulip_txq;
tulip_ringinfo_t tulip_rxinfo;
tulip_ringinfo_t tulip_txinfo;
} tulip_softc_t;
#ifndef IFF_ALTPHYS
#define IFF_ALTPHYS IFF_LINK0 /* In case it isn't defined */
#endif
typedef enum { TULIP_DC21040, TULIP_DC21140 } tulip_chipid_t;
const char *tulip_chipdescs[] = {
"DC21040 [10Mb/s]",
"DC21140 [100Mb/s]",
};
tulip_softc_t *tulips[NDE];
tulip_chipid_t tulip_chipids[NDE];
unsigned tulip_intrs[NDE];
#define tulip_if tulip_ac.ac_if
#define tulip_unit tulip_ac.ac_if.if_unit
#define tulip_name tulip_ac.ac_if.if_name
#define tulip_hwaddr tulip_ac.ac_enaddr
#define TULIP_CRC32_POLY 0xEDB88320UL /* CRC-32 Poly -- Little Endian */
#define TULIP_CHECK_RXCRC 0
#define TULIP_MAX_TXSEG 32
#define TULIP_ADDREQUAL(a1, a2) \
(((u_short *)a1)[0] == ((u_short *)a2)[0] \
|| ((u_short *)a1)[1] == ((u_short *)a2)[1] \
|| ((u_short *)a1)[2] == ((u_short *)a2)[2])
#define TULIP_ADDRBRDCST(a1) \
(((u_short *)a1)[0] == 0xFFFFU \
|| ((u_short *)a1)[1] == 0xFFFFU \
|| ((u_short *)a1)[2] == 0xFFFFU)
static void tulip_start(struct ifnet *ifp);
static void tulip_addr_filter(tulip_softc_t *sc);
#if __FreeBSD__ > 1
#define TULIP_IFRESET_ARGS int unit
#define TULIP_RESET(sc) tulip_reset((sc)->tulip_unit)
#else
#define TULIP_IFRESET_ARGS int unit, int uban
#define TULIP_RESET(sc) tulip_reset((sc)->tulip_unit, 0)
#endif
static void
tulip_reset(
TULIP_IFRESET_ARGS)
{
tulip_softc_t *sc = tulips[unit];
tulip_ringinfo_t *ri;
tulip_desc_t *di;
vm_offset_t vmoff;
*sc->tulip_csrs.csr_busmode = TULIP_BUSMODE_SWRESET;
DELAY(10); /* Wait 10 microsends (actually 50 PCI cycles but at
33MHz that comes to two microseconds but wait a
bit longer anyways) */
/*
* Use the
*/
*sc->tulip_csrs.csr_sia_connectivity = TULIP_SIACONN_RESET;
if (sc->tulip_if.if_flags & IFF_ALTPHYS) {
if ((sc->tulip_flags & TULIP_ALTPHYS) == 0)
printf("%s%d: enabling Thinwire/AUI port\n",
sc->tulip_if.if_name, sc->tulip_if.if_unit);
*sc->tulip_csrs.csr_sia_connectivity = TULIP_SIACONN_AUI;
sc->tulip_flags |= TULIP_ALTPHYS;
} else {
if (sc->tulip_flags & TULIP_ALTPHYS)
printf("%s%d: enabling 10baseT/UTP port\n",
sc->tulip_if.if_name, sc->tulip_if.if_unit);
*sc->tulip_csrs.csr_sia_connectivity = TULIP_SIACONN_10BASET;
sc->tulip_flags &= ~TULIP_ALTPHYS;
}
*sc->tulip_csrs.csr_txlist = vtophys(&sc->tulip_txinfo.ri_first[0]);
*sc->tulip_csrs.csr_rxlist = vtophys(&sc->tulip_rxinfo.ri_first[0]);
*sc->tulip_csrs.csr_intr = 0;
*sc->tulip_csrs.csr_busmode = 0x4800;
sc->tulip_txq.ifq_maxlen = TULIP_TXDESCS;
/*
* Free all the mbufs that were on the transmit ring.
*/
for (;;) {
struct mbuf *m;
IF_DEQUEUE(&sc->tulip_txq, m);
if (m == NULL)
break;
m_freem(m);
}
ri = &sc->tulip_txinfo;
ri->ri_nextin = ri->ri_nextout = ri->ri_first;
ri->ri_free = ri->ri_max;
for (di = ri->ri_first; di < ri->ri_last; di++)
di->d_status = 0;
/*
* We need to collect all the mbufs were on the
* receive ring before we reinit it either to put
* them back on or to know if we have to allocate
* more.
*/
ri = &sc->tulip_rxinfo;
ri->ri_nextin = ri->ri_nextout = ri->ri_first;
ri->ri_free = ri->ri_max;
for (vmoff = vtophys(sc->tulip_rxspace), di = ri->ri_first;
di < ri->ri_last; di++, vmoff += TULIP_RXBUFSIZE) {
di->d_status |= TULIP_DSTS_OWNER;
di->d_length1 = TULIP_RXBUFSIZE; di->d_addr1 = vmoff;
di->d_length2 = 0; di->d_addr2 = 0;
}
sc->tulip_intrmask = TULIP_STS_NORMALINTR|TULIP_STS_RXINTR|TULIP_STS_TXINTR
|TULIP_STS_ABNRMLINTR|TULIP_STS_SYSERROR|TULIP_STS_TXSTOPPED
|TULIP_STS_TXBABBLE|TULIP_STS_LINKFAIL|TULIP_STS_RXSTOPPED;
sc->tulip_flags &= ~(TULIP_DOINGSETUP|TULIP_WANTSETUP);
tulip_addr_filter(sc);
}
static void
tulip_init(
int unit)
{
tulip_softc_t *sc = tulips[unit];
if (sc->tulip_if.if_flags & IFF_UP) {
sc->tulip_if.if_flags |= IFF_RUNNING;
if (sc->tulip_if.if_flags & IFF_PROMISC) {
sc->tulip_cmdmode |= TULIP_CMD_PROMISCUOUS;
} else {
sc->tulip_cmdmode &= ~TULIP_CMD_PROMISCUOUS;
if (sc->tulip_if.if_flags & IFF_ALLMULTI) {
sc->tulip_cmdmode |= TULIP_CMD_ALLMULTI;
} else {
sc->tulip_cmdmode &= ~TULIP_CMD_ALLMULTI;
}
}
sc->tulip_cmdmode |= TULIP_CMD_TXRUN;
if ((sc->tulip_flags & TULIP_WANTSETUP) == 0) {
sc->tulip_cmdmode |= TULIP_CMD_RXRUN;
sc->tulip_intrmask |= TULIP_STS_RXSTOPPED;
} else {
sc->tulip_intrmask &= ~TULIP_STS_RXSTOPPED;
tulip_start(&sc->tulip_if);
}
sc->tulip_cmdmode |= TULIP_CMD_THRSHLD160;
*sc->tulip_csrs.csr_intr = sc->tulip_intrmask;
*sc->tulip_csrs.csr_command = sc->tulip_cmdmode;
} else {
TULIP_RESET(sc);
sc->tulip_if.if_flags &= ~IFF_RUNNING;
}
}
static struct {
unsigned notwhole;
unsigned rxerror;
unsigned nombufs[2];
unsigned rcvs;
#if TULIP_CHECK_RXCRC
unsigned badcrc;
#endif
unsigned badsop;
} tulip_rx;
#if TULIP_CHECK_RXCRC
static unsigned
tulip_crc32(
u_char *addr,
int len)
{
unsigned int crc = 0xFFFFFFFF;
static unsigned int crctbl[256];
int idx;
static int done;
/*
* initialize the multicast address CRC table
*/
for (idx = 0; !done && idx < 256; idx++) {
unsigned int tmp = idx;
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
tmp = (tmp >> 1) ^ (tmp & 1 ? TULIP_CRC32_POLY : 0); /* XOR */
crctbl[idx] = tmp;
}
done = 1;
while (len-- > 0)
crc = (crc >> 8) ^ crctbl[*addr++] ^ crctbl[crc & 0xFF];
return crc;
}
#endif
static void
tulip_rx_intr(
tulip_softc_t *sc)
{
tulip_ringinfo_t *ri = &sc->tulip_rxinfo;
for (;; tulip_rx.rcvs++) {
tulip_desc_t *eop;
int total_len, ndescs;
caddr_t bufaddr = (caddr_t) sc->tulip_rxspace;
for (ndescs = 1, eop = ri->ri_nextin;; ndescs++) {
if (((volatile tulip_desc_t *) eop)->d_status & TULIP_DSTS_OWNER)
return;
if ((eop->d_status & TULIP_DSTS_RxFIRSTDESC) && eop != ri->ri_nextin) {
tulip_rx.badsop++;
}
if (eop->d_status & TULIP_DSTS_RxLASTDESC)
break;
if (++eop == ri->ri_last)
eop = ri->ri_first;
}
bufaddr += TULIP_RXBUFSIZE * (ri->ri_nextin - ri->ri_first);
total_len = ((eop->d_status >> 16) & 0x7FF) - 4;
if ((eop->d_status & TULIP_DSTS_ERRSUM) == 0) {
struct ether_header eh;
struct mbuf *m;
#if TULIP_CHECK_RXCRC
unsigned crc = tulip_crc32(bufaddr, total_len);
if (~crc != *((unsigned *) &bufaddr[total_len])) {
printf("de0: %d: bad rx crc: %08x [rx] != %08x\n",
tulip_rx.rcvs,
*((unsigned *) &bufaddr[total_len]), ~crc);
goto next;
}
#endif
eh = *(struct ether_header *) bufaddr;
eh.ether_type = ntohs(eh.ether_type);
#if NBPFILTER > 0
if (sc->tulip_bpf != NULL) {
bpf_tap(sc->tulip_bpf, bufaddr, total_len);
if (eh.ether_type != ETHERTYPE_IP && eh.ether_type != ETHERTYPE_ARP)
goto next;
if ((eh.ether_dhost[0] & 1) == 0 &&
!TULIP_ADDREQUAL(eh.ether_dhost, sc->tulip_ac.ac_enaddr))
goto next;
} else if (!TULIP_ADDREQUAL(eh.ether_dhost, sc->tulip_ac.ac_enaddr)
&& !TULIP_ADDRBRDCST(eh.ether_dhost)) {
goto next;
}
#endif
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m != NULL) {
total_len -= sizeof(eh);
if (total_len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
tulip_rx.nombufs[1]++;
sc->tulip_if.if_ierrors++;
goto next;
}
}
bcopy(bufaddr + sizeof(eh), mtod(m, caddr_t), total_len);
m->m_len = m->m_pkthdr.len = total_len;
ether_input(&sc->tulip_if, &eh, m);
} else {
tulip_rx.nombufs[0]++;
sc->tulip_if.if_ierrors++;
}
} else {
tulip_rx.rxerror++;
sc->tulip_if.if_ierrors++;
}
next:
sc->tulip_if.if_ipackets++;
while (ndescs-- > 0) {
ri->ri_nextin->d_status |= TULIP_DSTS_OWNER;
if (++ri->ri_nextin == ri->ri_last)
ri->ri_nextin = ri->ri_first;
}
}
}
static int
tulip_tx_intr(
tulip_softc_t *sc)
{
tulip_ringinfo_t *ri = &sc->tulip_txinfo;
struct mbuf *m;
int xmits = 0;
while (ri->ri_free < ri->ri_max) {
if (((volatile tulip_desc_t *) ri->ri_nextin)->d_status & TULIP_DSTS_OWNER)
break;
if (ri->ri_nextin->d_flag & TULIP_DFLAG_TxLASTSEG) {
if (ri->ri_nextin->d_flag & TULIP_DFLAG_TxSETUPPKT) {
/*
* We've just finished processing a setup packet.
* Mark that we can finished it. If there's not
* another pending, startup the TULIP receiver.
*/
sc->tulip_flags &= ~TULIP_DOINGSETUP;
if ((sc->tulip_flags & TULIP_WANTSETUP) == 0) {
sc->tulip_cmdmode |= TULIP_CMD_RXRUN;
sc->tulip_intrmask |= TULIP_STS_RXSTOPPED;
*sc->tulip_csrs.csr_command = sc->tulip_cmdmode;
*sc->tulip_csrs.csr_intr = sc->tulip_intrmask;
}
} else {
IF_DEQUEUE(&sc->tulip_txq, m);
m_freem(m);
sc->tulip_if.if_collisions +=
(ri->ri_nextin->d_status & TULIP_DSTS_TxCOLLMASK)
>> TULIP_DSTS_V_TxCOLLCNT;
if (ri->ri_nextin->d_status & TULIP_DSTS_ERRSUM)
sc->tulip_if.if_oerrors++;
xmits++;
}
}
if (++ri->ri_nextin == ri->ri_last)
ri->ri_nextin = ri->ri_first;
ri->ri_free++;
sc->tulip_if.if_flags &= ~IFF_OACTIVE;
}
sc->tulip_if.if_opackets += xmits;
return xmits;
}
static int
tulip_txsegment(
tulip_softc_t *sc,
struct mbuf *m,
tulip_addrvec_t *avp,
size_t maxseg)
{
int segcnt;
for (segcnt = 0; m; m = m->m_next) {
int len = m->m_len;
caddr_t addr = mtod(m, caddr_t);
unsigned clsize = CLBYTES - (((u_long) addr) & (CLBYTES-1));
while (len > 0) {
unsigned slen = min(len, clsize);
if (segcnt < maxseg) {
avp->addr = vtophys(addr);
avp->length = slen;
}
len -= slen;
addr += slen;
clsize = CLBYTES;
avp++;
segcnt++;
}
}
if (segcnt >= maxseg) {
printf("%s%d: tulip_txsegment: extremely fragmented packet dropped (%d segments)\n",
sc->tulip_name, sc->tulip_unit, segcnt);
return -1;
}
avp->addr = 0;
avp->length = 0;
return segcnt;
}
static void
tulip_start(
struct ifnet *ifp)
{
tulip_softc_t *sc = (tulip_softc_t *) ifp;
struct ifqueue *ifq = &ifp->if_snd;
tulip_ringinfo_t *ri = &sc->tulip_txinfo;
tulip_desc_t *sop, *eop;
struct mbuf *m;
tulip_addrvec_t addrvec[TULIP_MAX_TXSEG+1], *avp;
int segcnt;
tulip_uint32_t d_status;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
for (;;) {
if (sc->tulip_flags & TULIP_WANTSETUP) {
if ((sc->tulip_flags & TULIP_DOINGSETUP) || ri->ri_free == 1) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
bcopy(sc->tulip_setupdata, sc->tulip_setupbuf,
sizeof(sc->tulip_setupbuf));
sc->tulip_flags &= ~TULIP_WANTSETUP;
sc->tulip_flags |= TULIP_DOINGSETUP;
ri->ri_free--;
ri->ri_nextout->d_flag &= TULIP_DFLAG_ENDRING|TULIP_DFLAG_CHAIN;
ri->ri_nextout->d_flag |= TULIP_DFLAG_TxFIRSTSEG|TULIP_DFLAG_TxLASTSEG
|TULIP_DFLAG_TxSETUPPKT|TULIP_DFLAG_TxWANTINTR;
if (sc->tulip_flags & TULIP_WANTHASH)
ri->ri_nextout->d_flag |= TULIP_DFLAG_TxHASHFILT;
ri->ri_nextout->d_length1 = sizeof(sc->tulip_setupbuf);
ri->ri_nextout->d_addr1 = vtophys(sc->tulip_setupbuf);
ri->ri_nextout->d_length2 = 0;
ri->ri_nextout->d_addr2 = 0;
ri->ri_nextout->d_status = TULIP_DSTS_OWNER;
*sc->tulip_csrs.csr_txpoll = 1;
/*
* Advance the ring for the next transmit packet.
*/
if (++ri->ri_nextout == ri->ri_last)
ri->ri_nextout = ri->ri_first;
}
IF_DEQUEUE(ifq, m);
if (m == NULL)
break;
/*
* First find out how many and which different pages
* the mbuf data occupies. Then check to see if we
* have enough descriptor space in our transmit ring
* to actually send it.
*/
segcnt = tulip_txsegment(sc, m, addrvec,
min(ri->ri_max - 1, TULIP_MAX_TXSEG));
if (segcnt < 0) {
#if 0
struct mbuf *m0;
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 != NULL) {
if (m->m_pkthdr.len > MHLEN) {
MCLGET(m0, M_DONTWAIT);
if ((m0->m_flags & M_EXT) == 0) {
m_freem(m);
continue;
}
}
m_copydata(m, 0, mtod(m0, caddr_t), m->m_pkthdr.len);
m0->m_pkthdr.len = m0->m_len = m->m_pkthdr.len;
m_freem(m);
IF_PREPEND(ifq, m0);
continue;
} else {
#endif
m_freem(m);
continue;
#if 0
}
#endif
}
if (ri->ri_free - 2 <= (segcnt + 1) / 2)
break;
ri->ri_free -= (segcnt + 1) / 2;
/*
* Now we fill in our transmit descriptors. This is
* a bit reminiscent of going on the Ark two by two
* since each descriptor for the TULIP can describe
* two buffers. So we advance through the address
* vector two entries at a time to to fill each
* descriptor. Clear the first and last segment bits
* in each descriptor (actually just clear everything
* but the end-of-ring or chain bits) to make sure
* we don't get messed up by previously sent packets.
*/
sop = ri->ri_nextout;
d_status = 0;
avp = addrvec;
do {
eop = ri->ri_nextout;
eop->d_flag &= TULIP_DFLAG_ENDRING|TULIP_DFLAG_CHAIN;
eop->d_status = d_status;
eop->d_addr1 = avp->addr; eop->d_length1 = avp->length; avp++;
eop->d_addr2 = avp->addr; eop->d_length2 = avp->length; avp++;
d_status = TULIP_DSTS_OWNER;
if (++ri->ri_nextout == ri->ri_last)
ri->ri_nextout = ri->ri_first;
} while ((segcnt -= 2) > 0);
/*
* The descriptors have been filled in. Mark the first
* and last segments, indicate we want a transmit complete
* interrupt, give the descriptors to the TULIP, and tell
* it to transmit!
*/
IF_ENQUEUE(&sc->tulip_txq, m);
eop->d_flag |= TULIP_DFLAG_TxLASTSEG|TULIP_DFLAG_TxWANTINTR;
sop->d_flag |= TULIP_DFLAG_TxFIRSTSEG;
sop->d_status = TULIP_DSTS_OWNER;
*sc->tulip_csrs.csr_txpoll = 1;
}
if (m != NULL) {
ifp->if_flags |= IFF_OACTIVE;
IF_PREPEND(ifq, m);
}
}
static int
tulip_intr(
tulip_softc_t *sc)
{
tulip_uint32_t csr;
unsigned spins = 0;
tulip_intrs[sc->tulip_unit]++;
while ((csr = *sc->tulip_csrs.csr_status) & (TULIP_STS_NORMALINTR|TULIP_STS_ABNRMLINTR)) {
*sc->tulip_csrs.csr_status = csr & sc->tulip_intrmask;
spins++;
if (csr & TULIP_STS_SYSERROR) {
if ((csr & TULIP_STS_ERRORMASK) == TULIP_STS_ERR_PARITY) {
TULIP_RESET(sc);
tulip_init(sc->tulip_unit);
return 1;
}
}
if (csr & TULIP_STS_RXINTR)
tulip_rx_intr(sc);
if (sc->tulip_txinfo.ri_free < sc->tulip_txinfo.ri_max) {
tulip_tx_intr(sc);
tulip_start(&sc->tulip_if);
}
if (csr & TULIP_STS_ABNRMLINTR) {
printf("%s%d: abnormal interrupt: 0x%05x [0x%05x]\n",
sc->tulip_name, sc->tulip_unit, csr, csr & sc->tulip_intrmask);
*sc->tulip_csrs.csr_command = sc->tulip_cmdmode;
}
}
if (spins > sc->tulip_high_intrspins)
sc->tulip_high_intrspins = spins;
return 1;
}
/*
* This is the standard method of reading the DEC Address ROMS.
*/
static int
tulip_read_macaddr(
tulip_softc_t *sc)
{
int cksum, rom_cksum, idx;
tulip_sint32_t csr;
unsigned char tmpbuf[8];
static u_char testpat[] = { 0xFF, 0, 0x55, 0xAA, 0xFF, 0, 0x55, 0xAA };
*sc->tulip_csrs.csr_enetrom = 1;
for (idx = 0; idx < 32; idx++) {
int cnt = 0;
while ((csr = *sc->tulip_csrs.csr_enetrom) < 0 && cnt < 10000)
cnt++;
sc->tulip_rombuf[idx] = csr & 0xFF;
}
if (bcmp(&sc->tulip_rombuf[0], &sc->tulip_rombuf[16], 8) != 0)
return -4;
if (bcmp(&sc->tulip_rombuf[24], testpat, 8) != 0)
return -3;
tmpbuf[0] = sc->tulip_rombuf[15]; tmpbuf[1] = sc->tulip_rombuf[14];
tmpbuf[2] = sc->tulip_rombuf[13]; tmpbuf[3] = sc->tulip_rombuf[12];
tmpbuf[4] = sc->tulip_rombuf[11]; tmpbuf[5] = sc->tulip_rombuf[10];
tmpbuf[6] = sc->tulip_rombuf[9]; tmpbuf[7] = sc->tulip_rombuf[8];
if (bcmp(&sc->tulip_rombuf[0], tmpbuf, 8) != 0)
return -2;
bcopy(sc->tulip_rombuf, sc->tulip_hwaddr, 6);
cksum = *(u_short *) &sc->tulip_hwaddr[0];
cksum *= 2;
if (cksum > 65535) cksum -= 65535;
cksum += *(u_short *) &sc->tulip_hwaddr[2];
if (cksum > 65535) cksum -= 65535;
cksum *= 2;
if (cksum > 65535) cksum -= 65535;
cksum += *(u_short *) &sc->tulip_hwaddr[4];
if (cksum >= 65535) cksum -= 65535;
rom_cksum = *(u_short *) &sc->tulip_rombuf[6];
if (cksum != rom_cksum)
return -1;
return 0;
}
#ifdef MULTICAST
static unsigned
tulip_mchash(
unsigned char *mca)
{
u_int idx, bit, data, crc = 0xFFFFFFFFUL;
#ifdef __alpha
for (data = *(__unaligned u_long *) mca, bit = 0; bit < 48; bit++, data >>=
1)
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? TULIP_CRC32_POLY : 0);
#else
for (idx = 0; idx < 6; idx++)
for (data = *mca++, bit = 0; bit < 8; bit++, data >>= 1)
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? TULIP_CRC32_POLY : 0);
#endif
return crc & 0x1FF;
}
#endif MULTICAST
static void
tulip_addr_filter(
tulip_softc_t *sc)
{
tulip_uint32_t *sp = sc->tulip_setupdata;
#ifdef MULTICAST
struct ether_multistep step;
struct ether_multi *enm;
#endif
int i;
sc->tulip_flags &= ~TULIP_WANTHASH;
sc->tulip_flags |= TULIP_WANTSETUP;
sc->tulip_cmdmode &= ~TULIP_CMD_RXRUN;
sc->tulip_intrmask &= ~TULIP_STS_RXSTOPPED;
#ifdef MULTICAST
if (sc->tulip_ac.ac_multicnt > 14) {
unsigned hash;
/*
* If we have more than 14 multicasts, we have
* go into hash perfect mode (512 bit multicast
* hash and one perfect hardware).
*/
bzero(sc->tulip_setupdata, sizeof(sc->tulip_setupdata));
hash = tulip_mchash(etherbroadcastaddr);
sp[hash >> 4] |= 1 << (hash & 0xF);
ETHER_FIRST_MULTI(step, &sc->tulip_ac, enm);
while (enm != NULL) {
hash = tulip_mchash(enm->enm_addrlo);
sp[hash >> 4] |= 1 << (hash & 0xF);
ETHER_NEXT_MULTI(step, enm);
}
sc->tulip_cmdmode |= TULIP_WANTHASH;
sp[40] = ((u_short *) sc->tulip_ac.ac_enaddr)[0];
sp[41] = ((u_short *) sc->tulip_ac.ac_enaddr)[1];
sp[42] = ((u_short *) sc->tulip_ac.ac_enaddr)[2];
} else {
#endif
/*
* Else can get perfect filtering for 16 addresses.
*/
i = 0;
#ifdef MULTICAST
ETHER_FIRST_MULTI(step, &sc->tulip_ac, enm);
for (; enm != NULL; i++) {
*sp++ = ((u_short *) enm->enm_addrlo)[0];
*sp++ = ((u_short *) enm->enm_addrlo)[1];
*sp++ = ((u_short *) enm->enm_addrlo)[2];
ETHER_NEXT_MULTI(step, enm);
}
#endif
/*
* If an IP address is enabled, turn on broadcast
*/
if (sc->tulip_ac.ac_ipaddr.s_addr != 0) {
i++;
*sp++ = 0xFFFF;
*sp++ = 0xFFFF;
*sp++ = 0xFFFF;
}
/*
* Pad the rest with our hardware address
*/
for (; i < 16; i++) {
*sp++ = ((u_short *) sc->tulip_ac.ac_enaddr)[0];
*sp++ = ((u_short *) sc->tulip_ac.ac_enaddr)[1];
*sp++ = ((u_short *) sc->tulip_ac.ac_enaddr)[2];
}
#ifdef MULTICAST
}
#endif
}
static int
tulip_ioctl(
struct ifnet *ifp,
int cmd,
caddr_t data)
{
tulip_softc_t *sc = tulips[ifp->if_unit];
int s, error = 0;
s = splimp();
switch (cmd) {
case SIOCSIFADDR: {
struct ifaddr *ifa = (struct ifaddr *)data;
ifp->if_flags |= IFF_UP;
switch(ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET: {
((struct arpcom *)ifp)->ac_ipaddr = IA_SIN(ifa)->sin_addr;
(*ifp->if_init)(ifp->if_unit);
arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
break;
}
#endif /* INET */
#ifdef NS
/* This magic copied from if_is.c; I don't use XNS,
* so I have no way of telling if this actually
* works or not.
*/
case AF_NS: {
struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
if (ns_nullhost(*ina)) {
ina->x_host = *(union ns_host *)(sc->tulip_ac.ac_enaddr);
} else {
ifp->if_flags &= ~IFF_RUNNING;
bcopy((caddr_t)ina->x_host.c_host,
(caddr_t)sc->tulip_ac.ac_enaddr,
sizeof sc->tulip_ac.ac_enaddr);
}
(*ifp->if_init)(ifp->if_unit);
break;
}
#endif /* NS */
default: {
(*ifp->if_init)(ifp->if_unit);
break;
}
}
break;
}
case SIOCSIFFLAGS: {
/*
* Changing the connection forces a reset.
*/
if (sc->tulip_flags & TULIP_ALTPHYS) {
if ((ifp->if_flags & IFF_ALTPHYS) == 0)
TULIP_RESET(sc);
} else {
if (ifp->if_flags & IFF_ALTPHYS)
TULIP_RESET(sc);
}
(*ifp->if_init)(ifp->if_unit);
break;
}
#ifdef MULTICAST
case SIOCADDMULTI:
case SIOCDELMULTI: {
/*
* Update multicast listeners
*/
if (cmd == SIOCADDMULTI)
error = ether_addmulti((struct ifreq *)data, &sc->tulip_ac);
else
error = ether_delmulti((struct ifreq *)data, &sc->tulip_ac);
if (error == ENETRESET) {
tulip_addr_filter(sc); /* reset multicast filtering */
(*ifp->if_init)(ifp->if_unit);
error = 0;
}
break;
}
#endif /* MULTICAST */
default: {
error = EINVAL;
break;
}
}
splx(s);
return error;
}
static void
tulip_attach(
tulip_softc_t *sc)
{
struct ifnet *ifp = &sc->tulip_if;
struct ifaddr *ifa = ifp->if_addrlist;
int cnt;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS;
#ifdef MULTICAST
ifp->if_flags |= IFF_MULTICAST;
#endif /* MULTICAST */
*sc->tulip_csrs.csr_sia_connectivity = 0;
*sc->tulip_csrs.csr_sia_connectivity = TULIP_SIACONN_10BASET;
for (cnt = 0; cnt < 240000; cnt++) {
if ((*sc->tulip_csrs.csr_sia_status & TULIP_SIASTS_LINKFAIL) == 0)
break;
DELAY(10);
}
if (*sc->tulip_csrs.csr_sia_status & TULIP_SIASTS_LINKFAIL) {
ifp->if_flags |= IFF_ALTPHYS;
} else {
sc->tulip_flags |= TULIP_ALTPHYS;
}
TULIP_RESET(sc);
ifp->if_init = tulip_init;
ifp->if_ioctl = tulip_ioctl;
ifp->if_output = ether_output;
ifp->if_reset = tulip_reset;
ifp->if_start = tulip_start;
ifp->if_mtu = ETHERMTU;
ifp->if_type = IFT_ETHER;
ifp->if_addrlen = 6;
ifp->if_hdrlen = 14;
printf("%s%d: %s pass %d.%d ethernet address %s\n",
sc->tulip_name, sc->tulip_unit,
tulip_chipdescs[tulip_chipids[sc->tulip_unit]],
(sc->tulip_revinfo & 0xF0) >> 4,
sc->tulip_revinfo & 0x0F,
ether_sprintf(sc->tulip_hwaddr));
#if NBPFILTER > 0
bpfattach(&sc->tulip_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
if_attach(ifp);
while (ifa && ifa->ifa_addr && ifa->ifa_addr->sa_family != AF_LINK)
ifa = ifa->ifa_next;
if (ifa != NULL && ifa->ifa_addr != NULL) {
struct sockaddr_dl *sdl;
/*
* Provide our ether address to the higher layers
*/
sdl = (struct sockaddr_dl *) ifa->ifa_addr;
sdl->sdl_type = IFT_ETHER;
sdl->sdl_alen = 6;
sdl->sdl_slen = 0;
bcopy(sc->tulip_ac.ac_enaddr, LLADDR(sdl), 6);
}
}
static void
tulip_initcsrs(
tulip_softc_t *sc,
volatile tulip_uint32_t *va_csrs,
size_t csr_size)
{
sc->tulip_csrs.csr_busmode = va_csrs + 0 * csr_size;
sc->tulip_csrs.csr_txpoll = va_csrs + 1 * csr_size;
sc->tulip_csrs.csr_rxpoll = va_csrs + 2 * csr_size;
sc->tulip_csrs.csr_rxlist = va_csrs + 3 * csr_size;
sc->tulip_csrs.csr_txlist = va_csrs + 4 * csr_size;
sc->tulip_csrs.csr_status = va_csrs + 5 * csr_size;
sc->tulip_csrs.csr_command = va_csrs + 6 * csr_size;
sc->tulip_csrs.csr_intr = va_csrs + 7 * csr_size;
sc->tulip_csrs.csr_missed_frame = va_csrs + 8 * csr_size;
sc->tulip_csrs.csr_enetrom = va_csrs + 9 * csr_size;
sc->tulip_csrs.csr_reserved = va_csrs + 10 * csr_size;
sc->tulip_csrs.csr_full_duplex = va_csrs + 11 * csr_size;
sc->tulip_csrs.csr_sia_status = va_csrs + 12 * csr_size;
sc->tulip_csrs.csr_sia_connectivity = va_csrs + 13 * csr_size;
sc->tulip_csrs.csr_sia_tx_rx = va_csrs + 14 * csr_size;
sc->tulip_csrs.csr_sia_general = va_csrs + 15 * csr_size;
}
static void
tulip_initring(
tulip_softc_t *sc,
tulip_ringinfo_t *ri,
tulip_desc_t *descs,
int ndescs)
{
ri->ri_max = ndescs;
ri->ri_first = descs;
ri->ri_last = ri->ri_first + ri->ri_max;
bzero((caddr_t) ri->ri_first, sizeof(ri->ri_first[0]) * ri->ri_max);
ri->ri_last[-1].d_flag = TULIP_DFLAG_ENDRING;
}
#if NPCI > 0
/*
* This is the PCI configuration support. Since the DC21040 is available
* on both EISA and PCI boards, one must be careful in how defines the
* DC21040 in the config file.
*/
static char* tulip_pci_probe (pcici_t config_id, pcidi_t device_id);
static void tulip_pci_attach(pcici_t config_id, int unit);
static u_long tulip_count;
struct pci_driver dedevice = {
tulip_pci_probe,
tulip_pci_attach,
&tulip_count,
};
#define PCI_CFID 0x00 /* Configuration ID */
#define PCI_CFCS 0x04 /* Configurtion Command/Status */
#define PCI_CFRV 0x08 /* Configuration Revision */
#define PCI_CFLT 0x0c /* Configuration Latency Timer */
#define PCI_CBIO 0x10 /* Configuration Base IO Address */
#define PCI_CBMA 0x14 /* Configuration Base Memory Address */
#define PCI_CFIT 0x3c /* Configuration Interrupt */
#define PCI_CFDA 0x40 /* Configuration Driver Area */
#define TULIP_PCI_CSRSIZE (8 / sizeof(tulip_uint32_t))
static char*
tulip_pci_probe(
pcici_t config_id,
pcidi_t device_id)
{
int idx;
for (idx = 0; idx < NDE; idx++) {
if (tulips[idx] == NULL) {
if (device_id == 0x00021011ul) {
tulip_chipids[idx] = TULIP_DC21040;
return "digital dc21040 ethernet";
}
if (device_id == 0x00091011ul) {
tulip_chipids[idx] = TULIP_DC21140;
return "digital dc21140 fast ethernet";
}
return NULL;
}
}
return NULL;
}
static void
tulip_pci_attach(
pcici_t config_id,
int unit)
{
tulip_softc_t *sc;
int retval, idx;
vm_offset_t va_csrs, pa_csrs;
tulip_desc_t *rxdescs, *txdescs;
sc = (tulip_softc_t *) malloc(sizeof(*sc), M_DEVBUF, M_NOWAIT);
if (sc == NULL)
return;
rxdescs = (tulip_desc_t *)
malloc(sizeof(tulip_desc_t) * TULIP_RXDESCS, M_DEVBUF, M_NOWAIT);
if (rxdescs == NULL) {
free((caddr_t) sc, M_DEVBUF);
return;
}
txdescs = (tulip_desc_t *)
malloc(sizeof(tulip_desc_t) * TULIP_TXDESCS, M_DEVBUF, M_NOWAIT);
if (txdescs == NULL) {
free((caddr_t) rxdescs, M_DEVBUF);
free((caddr_t) sc, M_DEVBUF);
return;
}
bzero(sc, sizeof(sc)); /* Zero out the softc*/
sc->tulip_rxspace = kmem_alloc(kernel_map, TULIP_RXSPACE + NBPG);
/*
* We've allocated an extra page of receive space so we can double map
* the first page of the receive space into the page after the last page
* of the receive space. This means that even if a receive wraps around
* the end of the receive space, it will still virtually contiguous and
* that greatly simplifies the recevie logic.
*/
pmap_enter(pmap_kernel(), sc->tulip_rxspace + TULIP_RXSPACE,
vtophys(sc->tulip_rxspace), VM_PROT_READ, TRUE);
sc->tulip_unit = unit;
sc->tulip_name = "de";
retval = pci_map_mem(config_id, PCI_CBMA, &va_csrs, &pa_csrs);
if (!retval) {
kmem_free(kernel_map, sc->tulip_rxspace, TULIP_RXSPACE + NBPG);
free((caddr_t) txdescs, M_DEVBUF);
free((caddr_t) rxdescs, M_DEVBUF);
free((caddr_t) sc, M_DEVBUF);
return;
}
tulips[unit] = sc;
tulip_initcsrs(sc, (volatile tulip_uint32_t *) va_csrs, TULIP_PCI_CSRSIZE);
tulip_initring(sc, &sc->tulip_rxinfo, rxdescs, TULIP_RXDESCS);
tulip_initring(sc, &sc->tulip_txinfo, txdescs, TULIP_TXDESCS);
sc->tulip_revinfo = pci_conf_read(config_id, PCI_CFRV);
if ((retval = tulip_read_macaddr(sc)) < 0) {
printf("de%d: can't read ENET ROM (why=%d) (", sc->tulip_unit, retval);
for (idx = 0; idx < 32; idx++)
printf("%02x", sc->tulip_rombuf[idx]);
printf("\n");
printf("%s%d: %s %d.%d ethernet address %s\n",
sc->tulip_name, sc->tulip_unit,
tulip_chipdescs[tulip_chipids[sc->tulip_unit]],
(sc->tulip_revinfo & 0xF0) >> 4, sc->tulip_revinfo & 0x0F,
"unknown");
} else {
pci_map_int (config_id, tulip_intr, (void*) sc, &net_imask);
TULIP_RESET(sc);
tulip_attach(sc);
}
}
#endif /* NPCI > 0 */
#endif /* NDE > 0 */