5053d272c2
- Make the pcpu estimator update faster.
978 lines
22 KiB
C
978 lines
22 KiB
C
/*-
|
|
* Copyright (c) 2003, Jeffrey Roberson <jeff@freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/vmmeter.h>
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
#ifdef KTRACE
|
|
#include <sys/uio.h>
|
|
#include <sys/ktrace.h>
|
|
#endif
|
|
|
|
#include <machine/cpu.h>
|
|
|
|
/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
|
|
/* XXX This is bogus compatability crap for ps */
|
|
static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
|
|
SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
|
|
|
|
static void sched_setup(void *dummy);
|
|
SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
|
|
|
|
int realstathz;
|
|
|
|
#define SCHED_STRICT_RESCHED 1
|
|
|
|
/*
|
|
* These datastructures are allocated within their parent datastructure but
|
|
* are scheduler specific.
|
|
*/
|
|
|
|
struct ke_sched {
|
|
int ske_slice;
|
|
struct runq *ske_runq;
|
|
/* The following variables are only used for pctcpu calculation */
|
|
int ske_ltick; /* Last tick that we were running on */
|
|
int ske_ftick; /* First tick that we were running on */
|
|
int ske_ticks; /* Tick count */
|
|
u_char ske_cpu;
|
|
};
|
|
#define ke_slice ke_sched->ske_slice
|
|
#define ke_runq ke_sched->ske_runq
|
|
#define ke_ltick ke_sched->ske_ltick
|
|
#define ke_ftick ke_sched->ske_ftick
|
|
#define ke_ticks ke_sched->ske_ticks
|
|
#define ke_cpu ke_sched->ske_cpu
|
|
|
|
struct kg_sched {
|
|
int skg_slptime; /* Number of ticks we vol. slept */
|
|
int skg_runtime; /* Number of ticks we were running */
|
|
};
|
|
#define kg_slptime kg_sched->skg_slptime
|
|
#define kg_runtime kg_sched->skg_runtime
|
|
|
|
struct td_sched {
|
|
int std_slptime;
|
|
int std_schedflag;
|
|
};
|
|
#define td_slptime td_sched->std_slptime
|
|
#define td_schedflag td_sched->std_schedflag
|
|
|
|
#define TD_SCHED_BLOAD 0x0001 /*
|
|
* thread was counted as being in short
|
|
* term sleep.
|
|
*/
|
|
struct td_sched td_sched;
|
|
struct ke_sched ke_sched;
|
|
struct kg_sched kg_sched;
|
|
|
|
struct ke_sched *kse0_sched = &ke_sched;
|
|
struct kg_sched *ksegrp0_sched = &kg_sched;
|
|
struct p_sched *proc0_sched = NULL;
|
|
struct td_sched *thread0_sched = &td_sched;
|
|
|
|
/*
|
|
* This priority range has 20 priorities on either end that are reachable
|
|
* only through nice values.
|
|
*
|
|
* PRI_RANGE: Total priority range for timeshare threads.
|
|
* PRI_NRESV: Reserved priorities for nice.
|
|
* PRI_BASE: The start of the dynamic range.
|
|
* DYN_RANGE: Number of priorities that are available int the dynamic
|
|
* priority range.
|
|
* DYN_HALF: Half of DYN_RANGE for convenience elsewhere.
|
|
* PRI_DYN: The dynamic priority which is derived from the number of ticks
|
|
* running vs the total number of ticks.
|
|
*/
|
|
#define SCHED_PRI_RANGE (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
|
|
#define SCHED_PRI_NRESV PRIO_TOTAL
|
|
#define SCHED_PRI_NHALF (PRIO_TOTAL / 2)
|
|
#define SCHED_PRI_BASE ((SCHED_PRI_NRESV / 2) + PRI_MIN_TIMESHARE)
|
|
#define SCHED_DYN_RANGE (SCHED_PRI_RANGE - SCHED_PRI_NRESV)
|
|
#define SCHED_DYN_HALF (SCHED_DYN_RANGE / 2)
|
|
#define SCHED_PRI_DYN(run, total) (((run) * SCHED_DYN_RANGE) / (total))
|
|
|
|
|
|
/*
|
|
* These determine the interactivity of a process.
|
|
*
|
|
* SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
|
|
* before throttling back.
|
|
* SLP_RUN_THROTTLE: Divisor for reducing slp/run time.
|
|
* INTERACT_RANGE: Range of interactivity values. Smaller is better.
|
|
* INTERACT_HALF: Convenience define, half of the interactivity range.
|
|
* INTERACT_THRESH: Threshhold for placement on the current runq.
|
|
*/
|
|
#define SCHED_SLP_RUN_MAX ((hz * 2) << 10)
|
|
#define SCHED_SLP_RUN_THROTTLE (10)
|
|
#define SCHED_INTERACT_RANGE (100)
|
|
#define SCHED_INTERACT_HALF (SCHED_INTERACT_RANGE / 2)
|
|
#define SCHED_INTERACT_THRESH (10)
|
|
|
|
/*
|
|
* These parameters and macros determine the size of the time slice that is
|
|
* granted to each thread.
|
|
*
|
|
* SLICE_MIN: Minimum time slice granted, in units of ticks.
|
|
* SLICE_MAX: Maximum time slice granted.
|
|
* SLICE_RANGE: Range of available time slices scaled by hz.
|
|
* SLICE_SCALE: The number slices granted per val in the range of [0, max].
|
|
* SLICE_NICE: Determine the amount of slice granted to a scaled nice.
|
|
*/
|
|
#define SCHED_SLICE_MIN (hz / 100)
|
|
#define SCHED_SLICE_MAX (hz / 10)
|
|
#define SCHED_SLICE_RANGE (SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
|
|
#define SCHED_SLICE_SCALE(val, max) (((val) * SCHED_SLICE_RANGE) / (max))
|
|
#define SCHED_SLICE_NICE(nice) \
|
|
(SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_PRI_NHALF))
|
|
|
|
/*
|
|
* This macro determines whether or not the kse belongs on the current or
|
|
* next run queue.
|
|
*
|
|
* XXX nice value should effect how interactive a kg is.
|
|
*/
|
|
#define SCHED_CURR(kg) (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
|
|
|
|
/*
|
|
* Cpu percentage computation macros and defines.
|
|
*
|
|
* SCHED_CPU_TIME: Number of seconds to average the cpu usage across.
|
|
* SCHED_CPU_TICKS: Number of hz ticks to average the cpu usage across.
|
|
*/
|
|
|
|
#define SCHED_CPU_TIME 10
|
|
#define SCHED_CPU_TICKS (hz * SCHED_CPU_TIME)
|
|
|
|
/*
|
|
* kseq - pair of runqs per processor
|
|
*/
|
|
|
|
struct kseq {
|
|
struct runq ksq_runqs[2];
|
|
struct runq *ksq_curr;
|
|
struct runq *ksq_next;
|
|
int ksq_load; /* Total runnable */
|
|
#ifdef SMP
|
|
unsigned int ksq_rslices; /* Slices on run queue */
|
|
unsigned int ksq_bload; /* Threads waiting on IO */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* One kse queue per processor.
|
|
*/
|
|
#ifdef SMP
|
|
struct kseq kseq_cpu[MAXCPU];
|
|
#define KSEQ_SELF() (&kseq_cpu[PCPU_GET(cpuid)])
|
|
#define KSEQ_CPU(x) (&kseq_cpu[(x)])
|
|
#else
|
|
struct kseq kseq_cpu;
|
|
#define KSEQ_SELF() (&kseq_cpu)
|
|
#define KSEQ_CPU(x) (&kseq_cpu)
|
|
#endif
|
|
|
|
static void sched_slice(struct kse *ke);
|
|
static int sched_priority(struct ksegrp *kg);
|
|
static int sched_interact_score(struct ksegrp *kg);
|
|
void sched_pctcpu_update(struct kse *ke);
|
|
int sched_pickcpu(void);
|
|
|
|
/* Operations on per processor queues */
|
|
static struct kse * kseq_choose(struct kseq *kseq);
|
|
static int kseq_nice_min(struct kseq *kseq);
|
|
static void kseq_setup(struct kseq *kseq);
|
|
static __inline void kseq_add(struct kseq *kseq, struct kse *ke);
|
|
static __inline void kseq_rem(struct kseq *kseq, struct kse *ke);
|
|
#ifdef SMP
|
|
static __inline void kseq_sleep(struct kseq *kseq, struct kse *ke);
|
|
static __inline void kseq_wakeup(struct kseq *kseq, struct kse *ke);
|
|
struct kseq * kseq_load_highest(void);
|
|
#endif
|
|
|
|
static __inline void
|
|
kseq_add(struct kseq *kseq, struct kse *ke)
|
|
{
|
|
runq_add(ke->ke_runq, ke);
|
|
kseq->ksq_load++;
|
|
#ifdef SMP
|
|
kseq->ksq_rslices += ke->ke_slice;
|
|
#endif
|
|
}
|
|
static __inline void
|
|
kseq_rem(struct kseq *kseq, struct kse *ke)
|
|
{
|
|
kseq->ksq_load--;
|
|
runq_remove(ke->ke_runq, ke);
|
|
#ifdef SMP
|
|
kseq->ksq_rslices -= ke->ke_slice;
|
|
#endif
|
|
}
|
|
|
|
#ifdef SMP
|
|
static __inline void
|
|
kseq_sleep(struct kseq *kseq, struct kse *ke)
|
|
{
|
|
kseq->ksq_bload++;
|
|
}
|
|
|
|
static __inline void
|
|
kseq_wakeup(struct kseq *kseq, struct kse *ke)
|
|
{
|
|
kseq->ksq_bload--;
|
|
}
|
|
|
|
struct kseq *
|
|
kseq_load_highest(void)
|
|
{
|
|
struct kseq *kseq;
|
|
int load;
|
|
int cpu;
|
|
int i;
|
|
|
|
cpu = 0;
|
|
load = 0;
|
|
|
|
for (i = 0; i < mp_maxid; i++) {
|
|
if (CPU_ABSENT(i))
|
|
continue;
|
|
kseq = KSEQ_CPU(i);
|
|
if (kseq->ksq_load > load) {
|
|
load = kseq->ksq_load;
|
|
cpu = i;
|
|
}
|
|
}
|
|
if (load)
|
|
return (KSEQ_CPU(cpu));
|
|
|
|
return (NULL);
|
|
}
|
|
#endif
|
|
|
|
struct kse *
|
|
kseq_choose(struct kseq *kseq)
|
|
{
|
|
struct kse *ke;
|
|
struct runq *swap;
|
|
|
|
if ((ke = runq_choose(kseq->ksq_curr)) == NULL) {
|
|
swap = kseq->ksq_curr;
|
|
kseq->ksq_curr = kseq->ksq_next;
|
|
kseq->ksq_next = swap;
|
|
ke = runq_choose(kseq->ksq_curr);
|
|
}
|
|
|
|
return (ke);
|
|
}
|
|
|
|
static int
|
|
kseq_nice_min(struct kseq *kseq)
|
|
{
|
|
struct kse *ke0;
|
|
struct kse *ke1;
|
|
|
|
if (kseq->ksq_load == 0)
|
|
return (0);
|
|
|
|
ke0 = runq_choose(kseq->ksq_curr);
|
|
ke1 = runq_choose(kseq->ksq_next);
|
|
|
|
if (ke0 == NULL)
|
|
return (ke1->ke_ksegrp->kg_nice);
|
|
|
|
if (ke1 == NULL)
|
|
return (ke0->ke_ksegrp->kg_nice);
|
|
|
|
return (min(ke0->ke_ksegrp->kg_nice, ke1->ke_ksegrp->kg_nice));
|
|
}
|
|
|
|
static void
|
|
kseq_setup(struct kseq *kseq)
|
|
{
|
|
kseq->ksq_curr = &kseq->ksq_runqs[0];
|
|
kseq->ksq_next = &kseq->ksq_runqs[1];
|
|
runq_init(kseq->ksq_curr);
|
|
runq_init(kseq->ksq_next);
|
|
kseq->ksq_load = 0;
|
|
#ifdef SMP
|
|
kseq->ksq_rslices = 0;
|
|
kseq->ksq_bload = 0;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
sched_setup(void *dummy)
|
|
{
|
|
int i;
|
|
|
|
realstathz = stathz ? stathz : hz;
|
|
|
|
mtx_lock_spin(&sched_lock);
|
|
/* init kseqs */
|
|
for (i = 0; i < MAXCPU; i++)
|
|
kseq_setup(KSEQ_CPU(i));
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
|
|
/*
|
|
* Scale the scheduling priority according to the "interactivity" of this
|
|
* process.
|
|
*/
|
|
static int
|
|
sched_priority(struct ksegrp *kg)
|
|
{
|
|
int pri;
|
|
|
|
if (kg->kg_pri_class != PRI_TIMESHARE)
|
|
return (kg->kg_user_pri);
|
|
|
|
pri = sched_interact_score(kg) * SCHED_DYN_RANGE / SCHED_INTERACT_RANGE;
|
|
pri += SCHED_PRI_BASE;
|
|
pri += kg->kg_nice;
|
|
|
|
if (pri > PRI_MAX_TIMESHARE)
|
|
pri = PRI_MAX_TIMESHARE;
|
|
else if (pri < PRI_MIN_TIMESHARE)
|
|
pri = PRI_MIN_TIMESHARE;
|
|
|
|
kg->kg_user_pri = pri;
|
|
|
|
return (kg->kg_user_pri);
|
|
}
|
|
|
|
/*
|
|
* Calculate a time slice based on the properties of the kseg and the runq
|
|
* that we're on.
|
|
*/
|
|
static void
|
|
sched_slice(struct kse *ke)
|
|
{
|
|
struct ksegrp *kg;
|
|
|
|
kg = ke->ke_ksegrp;
|
|
|
|
/*
|
|
* Rationale:
|
|
* KSEs in interactive ksegs get the minimum slice so that we
|
|
* quickly notice if it abuses its advantage.
|
|
*
|
|
* KSEs in non-interactive ksegs are assigned a slice that is
|
|
* based on the ksegs nice value relative to the least nice kseg
|
|
* on the run queue for this cpu.
|
|
*
|
|
* If the KSE is less nice than all others it gets the maximum
|
|
* slice and other KSEs will adjust their slice relative to
|
|
* this when they first expire.
|
|
*
|
|
* There is 20 point window that starts relative to the least
|
|
* nice kse on the run queue. Slice size is determined by
|
|
* the kse distance from the last nice ksegrp.
|
|
*
|
|
* If you are outside of the window you will get no slice and
|
|
* you will be reevaluated each time you are selected on the
|
|
* run queue.
|
|
*
|
|
*/
|
|
|
|
if (!SCHED_CURR(kg)) {
|
|
struct kseq *kseq;
|
|
int nice_base;
|
|
int nice;
|
|
|
|
kseq = KSEQ_CPU(ke->ke_cpu);
|
|
nice_base = kseq_nice_min(kseq);
|
|
nice = kg->kg_nice + (0 - nice_base);
|
|
|
|
if (kseq->ksq_load == 0 || kg->kg_nice < nice_base)
|
|
ke->ke_slice = SCHED_SLICE_MAX;
|
|
else if (nice <= SCHED_PRI_NHALF)
|
|
ke->ke_slice = SCHED_SLICE_NICE(nice);
|
|
else
|
|
ke->ke_slice = 0;
|
|
} else
|
|
ke->ke_slice = SCHED_SLICE_MIN;
|
|
|
|
/*
|
|
* Every time we grant a new slice check to see if we need to scale
|
|
* back the slp and run time in the kg. This will cause us to forget
|
|
* old interactivity while maintaining the current ratio.
|
|
*/
|
|
if ((kg->kg_runtime + kg->kg_slptime) > SCHED_SLP_RUN_MAX) {
|
|
kg->kg_runtime /= SCHED_SLP_RUN_THROTTLE;
|
|
kg->kg_slptime /= SCHED_SLP_RUN_THROTTLE;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
sched_interact_score(struct ksegrp *kg)
|
|
{
|
|
int big;
|
|
int small;
|
|
int base;
|
|
|
|
if (kg->kg_runtime > kg->kg_slptime) {
|
|
big = kg->kg_runtime;
|
|
small = kg->kg_slptime;
|
|
base = SCHED_INTERACT_HALF;
|
|
} else {
|
|
big = kg->kg_slptime;
|
|
small = kg->kg_runtime;
|
|
base = 0;
|
|
}
|
|
|
|
big /= SCHED_INTERACT_HALF;
|
|
if (big != 0)
|
|
small /= big;
|
|
else
|
|
small = 0;
|
|
|
|
small += base;
|
|
/* XXX Factor in nice */
|
|
return (small);
|
|
}
|
|
|
|
int
|
|
sched_rr_interval(void)
|
|
{
|
|
return (SCHED_SLICE_MAX);
|
|
}
|
|
|
|
void
|
|
sched_pctcpu_update(struct kse *ke)
|
|
{
|
|
/*
|
|
* Adjust counters and watermark for pctcpu calc.
|
|
*/
|
|
/*
|
|
* Shift the tick count out so that the divide doesn't round away
|
|
* our results.
|
|
*/
|
|
ke->ke_ticks <<= 10;
|
|
ke->ke_ticks = (ke->ke_ticks / (ke->ke_ltick - ke->ke_ftick)) *
|
|
SCHED_CPU_TICKS;
|
|
ke->ke_ticks >>= 10;
|
|
ke->ke_ltick = ticks;
|
|
ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
|
|
}
|
|
|
|
#ifdef SMP
|
|
/* XXX Should be changed to kseq_load_lowest() */
|
|
int
|
|
sched_pickcpu(void)
|
|
{
|
|
struct kseq *kseq;
|
|
int load;
|
|
int cpu;
|
|
int i;
|
|
|
|
if (!smp_started)
|
|
return (0);
|
|
|
|
load = 0;
|
|
cpu = 0;
|
|
|
|
for (i = 0; i < mp_maxid; i++) {
|
|
if (CPU_ABSENT(i))
|
|
continue;
|
|
kseq = KSEQ_CPU(i);
|
|
if (kseq->ksq_load < load) {
|
|
cpu = i;
|
|
load = kseq->ksq_load;
|
|
}
|
|
}
|
|
|
|
CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
|
|
return (cpu);
|
|
}
|
|
#else
|
|
int
|
|
sched_pickcpu(void)
|
|
{
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
sched_prio(struct thread *td, u_char prio)
|
|
{
|
|
struct kse *ke;
|
|
struct runq *rq;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
ke = td->td_kse;
|
|
td->td_priority = prio;
|
|
|
|
if (TD_ON_RUNQ(td)) {
|
|
rq = ke->ke_runq;
|
|
|
|
runq_remove(rq, ke);
|
|
runq_add(rq, ke);
|
|
}
|
|
}
|
|
|
|
void
|
|
sched_switchout(struct thread *td)
|
|
{
|
|
struct kse *ke;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
|
|
ke = td->td_kse;
|
|
|
|
td->td_last_kse = ke;
|
|
td->td_lastcpu = ke->ke_oncpu;
|
|
ke->ke_oncpu = NOCPU;
|
|
td->td_flags &= ~TDF_NEEDRESCHED;
|
|
|
|
if (TD_IS_RUNNING(td)) {
|
|
setrunqueue(td);
|
|
return;
|
|
}
|
|
td->td_kse->ke_runq = NULL;
|
|
|
|
/*
|
|
* We will not be on the run queue. So we must be
|
|
* sleeping or similar.
|
|
*/
|
|
if (td->td_proc->p_flag & P_THREADED)
|
|
kse_reassign(ke);
|
|
}
|
|
|
|
void
|
|
sched_switchin(struct thread *td)
|
|
{
|
|
/* struct kse *ke = td->td_kse; */
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
|
|
td->td_kse->ke_oncpu = PCPU_GET(cpuid);
|
|
#if SCHED_STRICT_RESCHED
|
|
if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
|
|
td->td_priority != td->td_ksegrp->kg_user_pri)
|
|
curthread->td_flags |= TDF_NEEDRESCHED;
|
|
#endif
|
|
}
|
|
|
|
void
|
|
sched_nice(struct ksegrp *kg, int nice)
|
|
{
|
|
struct thread *td;
|
|
|
|
kg->kg_nice = nice;
|
|
sched_priority(kg);
|
|
FOREACH_THREAD_IN_GROUP(kg, td) {
|
|
td->td_flags |= TDF_NEEDRESCHED;
|
|
}
|
|
}
|
|
|
|
void
|
|
sched_sleep(struct thread *td, u_char prio)
|
|
{
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
|
|
td->td_slptime = ticks;
|
|
td->td_priority = prio;
|
|
|
|
#ifdef SMP
|
|
if (td->td_priority < PZERO) {
|
|
kseq_sleep(KSEQ_CPU(td->td_kse->ke_cpu), td->td_kse);
|
|
td->td_schedflag |= TD_SCHED_BLOAD;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
sched_wakeup(struct thread *td)
|
|
{
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
|
|
/*
|
|
* Let the kseg know how long we slept for. This is because process
|
|
* interactivity behavior is modeled in the kseg.
|
|
*/
|
|
if (td->td_slptime) {
|
|
struct ksegrp *kg;
|
|
|
|
kg = td->td_ksegrp;
|
|
kg->kg_slptime += (ticks - td->td_slptime) << 10;
|
|
sched_priority(kg);
|
|
td->td_slptime = 0;
|
|
}
|
|
#ifdef SMP
|
|
if (td->td_priority < PZERO && td->td_schedflag & TD_SCHED_BLOAD) {
|
|
kseq_wakeup(KSEQ_CPU(td->td_kse->ke_cpu), td->td_kse);
|
|
td->td_schedflag &= ~TD_SCHED_BLOAD;
|
|
}
|
|
#endif
|
|
setrunqueue(td);
|
|
#if SCHED_STRICT_RESCHED
|
|
if (td->td_priority < curthread->td_priority)
|
|
curthread->td_flags |= TDF_NEEDRESCHED;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Penalize the parent for creating a new child and initialize the child's
|
|
* priority.
|
|
*/
|
|
void
|
|
sched_fork(struct ksegrp *kg, struct ksegrp *child)
|
|
{
|
|
struct kse *ckse;
|
|
struct kse *pkse;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
ckse = FIRST_KSE_IN_KSEGRP(child);
|
|
pkse = FIRST_KSE_IN_KSEGRP(kg);
|
|
|
|
/* XXX Need something better here */
|
|
if (kg->kg_slptime > kg->kg_runtime) {
|
|
child->kg_slptime = SCHED_DYN_RANGE;
|
|
child->kg_runtime = kg->kg_slptime / SCHED_DYN_RANGE;
|
|
} else {
|
|
child->kg_runtime = SCHED_DYN_RANGE;
|
|
child->kg_slptime = kg->kg_runtime / SCHED_DYN_RANGE;
|
|
}
|
|
#if 0
|
|
child->kg_slptime = kg->kg_slptime;
|
|
child->kg_runtime = kg->kg_runtime;
|
|
#endif
|
|
child->kg_user_pri = kg->kg_user_pri;
|
|
|
|
#if 0
|
|
if (pkse->ke_cpu != PCPU_GET(cpuid)) {
|
|
printf("pkse->ke_cpu = %d\n", pkse->ke_cpu);
|
|
printf("cpuid = %d", PCPU_GET(cpuid));
|
|
Debugger("stop");
|
|
}
|
|
#endif
|
|
|
|
ckse->ke_slice = pkse->ke_slice;
|
|
ckse->ke_cpu = pkse->ke_cpu; /* sched_pickcpu(); */
|
|
ckse->ke_runq = NULL;
|
|
/*
|
|
* Claim that we've been running for one second for statistical
|
|
* purposes.
|
|
*/
|
|
ckse->ke_ticks = 0;
|
|
ckse->ke_ltick = ticks;
|
|
ckse->ke_ftick = ticks - hz;
|
|
}
|
|
|
|
/*
|
|
* Return some of the child's priority and interactivity to the parent.
|
|
*/
|
|
void
|
|
sched_exit(struct ksegrp *kg, struct ksegrp *child)
|
|
{
|
|
/* XXX Need something better here */
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
kg->kg_slptime = child->kg_slptime;
|
|
kg->kg_runtime = child->kg_runtime;
|
|
sched_priority(kg);
|
|
}
|
|
|
|
void
|
|
sched_clock(struct thread *td)
|
|
{
|
|
struct kse *ke;
|
|
#if SCHED_STRICT_RESCHED
|
|
struct kse *nke;
|
|
struct kseq *kseq;
|
|
#endif
|
|
struct ksegrp *kg;
|
|
|
|
|
|
ke = td->td_kse;
|
|
kg = td->td_ksegrp;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
KASSERT((td != NULL), ("schedclock: null thread pointer"));
|
|
|
|
/* Adjust ticks for pctcpu */
|
|
ke->ke_ticks++;
|
|
ke->ke_ltick = ticks;
|
|
/* Go up to one second beyond our max and then trim back down */
|
|
if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
|
|
sched_pctcpu_update(ke);
|
|
|
|
if (td->td_kse->ke_flags & KEF_IDLEKSE)
|
|
return;
|
|
|
|
/*
|
|
* Check for a higher priority task on the run queue. This can happen
|
|
* on SMP if another processor woke up a process on our runq.
|
|
*/
|
|
#if SCHED_STRICT_RESCHED
|
|
kseq = KSEQ_SELF();
|
|
nke = runq_choose(kseq->ksq_curr);
|
|
|
|
if (nke && nke->ke_thread &&
|
|
nke->ke_thread->td_priority < td->td_priority)
|
|
td->td_flags |= TDF_NEEDRESCHED;
|
|
#endif
|
|
/*
|
|
* We used a tick charge it to the ksegrp so that we can compute our
|
|
* "interactivity".
|
|
*/
|
|
kg->kg_runtime += 1 << 10;
|
|
|
|
/*
|
|
* We used up one time slice.
|
|
*/
|
|
ke->ke_slice--;
|
|
/*
|
|
* We're out of time, recompute priorities and requeue
|
|
*/
|
|
if (ke->ke_slice <= 0) {
|
|
sched_priority(kg);
|
|
sched_slice(ke);
|
|
td->td_flags |= TDF_NEEDRESCHED;
|
|
ke->ke_runq = NULL;
|
|
}
|
|
}
|
|
|
|
int
|
|
sched_runnable(void)
|
|
{
|
|
struct kseq *kseq;
|
|
|
|
kseq = KSEQ_SELF();
|
|
|
|
if (kseq->ksq_load)
|
|
return (1);
|
|
#ifdef SMP
|
|
/*
|
|
* For SMP we may steal other processor's KSEs. Just search until we
|
|
* verify that at least on other cpu has a runnable task.
|
|
*/
|
|
if (smp_started) {
|
|
int i;
|
|
|
|
#if 0
|
|
if (kseq->ksq_bload)
|
|
return (0);
|
|
#endif
|
|
|
|
for (i = 0; i < mp_maxid; i++) {
|
|
if (CPU_ABSENT(i))
|
|
continue;
|
|
kseq = KSEQ_CPU(i);
|
|
if (kseq->ksq_load)
|
|
return (1);
|
|
}
|
|
}
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
sched_userret(struct thread *td)
|
|
{
|
|
struct ksegrp *kg;
|
|
|
|
kg = td->td_ksegrp;
|
|
|
|
if (td->td_priority != kg->kg_user_pri) {
|
|
mtx_lock_spin(&sched_lock);
|
|
td->td_priority = kg->kg_user_pri;
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
}
|
|
|
|
struct kse *
|
|
sched_choose(void)
|
|
{
|
|
struct kseq *kseq;
|
|
struct kse *ke;
|
|
|
|
kseq = KSEQ_SELF();
|
|
retry:
|
|
ke = kseq_choose(kseq);
|
|
|
|
if (ke) {
|
|
ke->ke_state = KES_THREAD;
|
|
kseq_rem(kseq, ke);
|
|
|
|
/*
|
|
* If we dequeue a kse with a slice of zero it was below the
|
|
* nice threshold to acquire a slice. Recalculate the slice
|
|
* to see if the situation has changed and then requeue.
|
|
*/
|
|
if (ke->ke_slice == 0) {
|
|
sched_slice(ke);
|
|
ke->ke_runq = kseq->ksq_next;
|
|
kseq_add(kseq, ke);
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
#ifdef SMP
|
|
if (ke == NULL && smp_started) {
|
|
#if 0
|
|
if (kseq->ksq_bload)
|
|
return (NULL);
|
|
#endif
|
|
/*
|
|
* Find the cpu with the highest load and steal one proc.
|
|
*/
|
|
kseq = kseq_load_highest();
|
|
if (kseq == NULL)
|
|
return (NULL);
|
|
ke = kseq_choose(kseq);
|
|
kseq_rem(kseq, ke);
|
|
|
|
ke->ke_state = KES_THREAD;
|
|
ke->ke_runq = NULL;
|
|
ke->ke_cpu = PCPU_GET(cpuid);
|
|
}
|
|
#endif
|
|
return (ke);
|
|
}
|
|
|
|
void
|
|
sched_add(struct kse *ke)
|
|
{
|
|
struct kseq *kseq;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
|
|
KASSERT((ke->ke_thread->td_kse != NULL),
|
|
("sched_add: No KSE on thread"));
|
|
KASSERT(ke->ke_state != KES_ONRUNQ,
|
|
("sched_add: kse %p (%s) already in run queue", ke,
|
|
ke->ke_proc->p_comm));
|
|
KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
|
|
("sched_add: process swapped out"));
|
|
|
|
/*
|
|
* Timeshare threads get placed on the appropriate queue on their
|
|
* bound cpu.
|
|
*/
|
|
if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
|
|
kseq = KSEQ_CPU(ke->ke_cpu);
|
|
|
|
if (ke->ke_runq == NULL) {
|
|
if (SCHED_CURR(ke->ke_ksegrp))
|
|
ke->ke_runq = kseq->ksq_curr;
|
|
else
|
|
ke->ke_runq = kseq->ksq_next;
|
|
}
|
|
/*
|
|
* If we're a real-time or interrupt thread place us on the curr
|
|
* queue for the current processor. Hopefully this will yield the
|
|
* lowest latency response.
|
|
*/
|
|
} else {
|
|
kseq = KSEQ_SELF();
|
|
ke->ke_runq = kseq->ksq_curr;
|
|
}
|
|
ke->ke_ksegrp->kg_runq_kses++;
|
|
ke->ke_state = KES_ONRUNQ;
|
|
|
|
kseq_add(kseq, ke);
|
|
}
|
|
|
|
void
|
|
sched_rem(struct kse *ke)
|
|
{
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
/* KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue")); */
|
|
|
|
ke->ke_runq = NULL;
|
|
ke->ke_state = KES_THREAD;
|
|
ke->ke_ksegrp->kg_runq_kses--;
|
|
|
|
kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
|
|
}
|
|
|
|
fixpt_t
|
|
sched_pctcpu(struct kse *ke)
|
|
{
|
|
fixpt_t pctcpu;
|
|
int realstathz;
|
|
|
|
pctcpu = 0;
|
|
realstathz = stathz ? stathz : hz;
|
|
|
|
if (ke->ke_ticks) {
|
|
int rtick;
|
|
|
|
/* Update to account for time potentially spent sleeping */
|
|
ke->ke_ltick = ticks;
|
|
sched_pctcpu_update(ke);
|
|
|
|
/* How many rtick per second ? */
|
|
rtick = ke->ke_ticks / SCHED_CPU_TIME;
|
|
pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
|
|
}
|
|
|
|
ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
|
|
|
|
return (pctcpu);
|
|
}
|
|
|
|
int
|
|
sched_sizeof_kse(void)
|
|
{
|
|
return (sizeof(struct kse) + sizeof(struct ke_sched));
|
|
}
|
|
|
|
int
|
|
sched_sizeof_ksegrp(void)
|
|
{
|
|
return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
|
|
}
|
|
|
|
int
|
|
sched_sizeof_proc(void)
|
|
{
|
|
return (sizeof(struct proc));
|
|
}
|
|
|
|
int
|
|
sched_sizeof_thread(void)
|
|
{
|
|
return (sizeof(struct thread) + sizeof(struct td_sched));
|
|
}
|