742b58778c
PR: 234015 Submitted by: Andrejs Bogdanovs <sinchiroca86@gmail.com> MFC after: 1 week
3417 lines
88 KiB
C
3417 lines
88 KiB
C
/* $OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp>
|
|
* Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
|
|
* Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_device_polling.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <dev/nfe/if_nfereg.h>
|
|
#include <dev/nfe/if_nfevar.h>
|
|
|
|
MODULE_DEPEND(nfe, pci, 1, 1, 1);
|
|
MODULE_DEPEND(nfe, ether, 1, 1, 1);
|
|
MODULE_DEPEND(nfe, miibus, 1, 1, 1);
|
|
|
|
/* "device miibus" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
static int nfe_probe(device_t);
|
|
static int nfe_attach(device_t);
|
|
static int nfe_detach(device_t);
|
|
static int nfe_suspend(device_t);
|
|
static int nfe_resume(device_t);
|
|
static int nfe_shutdown(device_t);
|
|
static int nfe_can_use_msix(struct nfe_softc *);
|
|
static int nfe_detect_msik9(struct nfe_softc *);
|
|
static void nfe_power(struct nfe_softc *);
|
|
static int nfe_miibus_readreg(device_t, int, int);
|
|
static int nfe_miibus_writereg(device_t, int, int, int);
|
|
static void nfe_miibus_statchg(device_t);
|
|
static void nfe_mac_config(struct nfe_softc *, struct mii_data *);
|
|
static void nfe_set_intr(struct nfe_softc *);
|
|
static __inline void nfe_enable_intr(struct nfe_softc *);
|
|
static __inline void nfe_disable_intr(struct nfe_softc *);
|
|
static int nfe_ioctl(if_t, u_long, caddr_t);
|
|
static void nfe_alloc_msix(struct nfe_softc *, int);
|
|
static int nfe_intr(void *);
|
|
static void nfe_int_task(void *, int);
|
|
static __inline void nfe_discard_rxbuf(struct nfe_softc *, int);
|
|
static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int);
|
|
static int nfe_newbuf(struct nfe_softc *, int);
|
|
static int nfe_jnewbuf(struct nfe_softc *, int);
|
|
static int nfe_rxeof(struct nfe_softc *, int, int *);
|
|
static int nfe_jrxeof(struct nfe_softc *, int, int *);
|
|
static void nfe_txeof(struct nfe_softc *);
|
|
static int nfe_encap(struct nfe_softc *, struct mbuf **);
|
|
static void nfe_setmulti(struct nfe_softc *);
|
|
static void nfe_start(if_t);
|
|
static void nfe_start_locked(if_t);
|
|
static void nfe_watchdog(if_t);
|
|
static void nfe_init(void *);
|
|
static void nfe_init_locked(void *);
|
|
static void nfe_stop(if_t);
|
|
static int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
|
|
static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
|
|
static int nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
|
|
static int nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
|
|
static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
|
|
static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
|
|
static int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
|
|
static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
|
|
static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
|
|
static int nfe_ifmedia_upd(if_t);
|
|
static void nfe_ifmedia_sts(if_t, struct ifmediareq *);
|
|
static void nfe_tick(void *);
|
|
static void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
|
|
static void nfe_set_macaddr(struct nfe_softc *, uint8_t *);
|
|
static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int);
|
|
|
|
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
|
|
static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS);
|
|
static void nfe_sysctl_node(struct nfe_softc *);
|
|
static void nfe_stats_clear(struct nfe_softc *);
|
|
static void nfe_stats_update(struct nfe_softc *);
|
|
static void nfe_set_linkspeed(struct nfe_softc *);
|
|
static void nfe_set_wol(struct nfe_softc *);
|
|
|
|
#ifdef NFE_DEBUG
|
|
static int nfedebug = 0;
|
|
#define DPRINTF(sc, ...) do { \
|
|
if (nfedebug) \
|
|
device_printf((sc)->nfe_dev, __VA_ARGS__); \
|
|
} while (0)
|
|
#define DPRINTFN(sc, n, ...) do { \
|
|
if (nfedebug >= (n)) \
|
|
device_printf((sc)->nfe_dev, __VA_ARGS__); \
|
|
} while (0)
|
|
#else
|
|
#define DPRINTF(sc, ...)
|
|
#define DPRINTFN(sc, n, ...)
|
|
#endif
|
|
|
|
#define NFE_LOCK(_sc) mtx_lock(&(_sc)->nfe_mtx)
|
|
#define NFE_UNLOCK(_sc) mtx_unlock(&(_sc)->nfe_mtx)
|
|
#define NFE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->nfe_mtx, MA_OWNED)
|
|
|
|
/* Tunables. */
|
|
static int msi_disable = 0;
|
|
static int msix_disable = 0;
|
|
static int jumbo_disable = 0;
|
|
TUNABLE_INT("hw.nfe.msi_disable", &msi_disable);
|
|
TUNABLE_INT("hw.nfe.msix_disable", &msix_disable);
|
|
TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable);
|
|
|
|
static device_method_t nfe_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, nfe_probe),
|
|
DEVMETHOD(device_attach, nfe_attach),
|
|
DEVMETHOD(device_detach, nfe_detach),
|
|
DEVMETHOD(device_suspend, nfe_suspend),
|
|
DEVMETHOD(device_resume, nfe_resume),
|
|
DEVMETHOD(device_shutdown, nfe_shutdown),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, nfe_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, nfe_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, nfe_miibus_statchg),
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t nfe_driver = {
|
|
"nfe",
|
|
nfe_methods,
|
|
sizeof(struct nfe_softc)
|
|
};
|
|
|
|
static devclass_t nfe_devclass;
|
|
|
|
DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
static struct nfe_type nfe_devs[] = {
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
|
|
"NVIDIA nForce MCP Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
|
|
"NVIDIA nForce2 MCP2 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
|
|
"NVIDIA nForce2 400 MCP4 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
|
|
"NVIDIA nForce2 400 MCP5 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
|
|
"NVIDIA nForce3 MCP3 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
|
|
"NVIDIA nForce3 250 MCP6 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
|
|
"NVIDIA nForce3 MCP7 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
|
|
"NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
|
|
"NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
|
|
"NVIDIA nForce MCP04 Networking Adapter"}, /* MCP10 */
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
|
|
"NVIDIA nForce MCP04 Networking Adapter"}, /* MCP11 */
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
|
|
"NVIDIA nForce 430 MCP12 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
|
|
"NVIDIA nForce 430 MCP13 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
|
|
"NVIDIA nForce MCP55 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
|
|
"NVIDIA nForce MCP55 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
|
|
"NVIDIA nForce MCP61 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
|
|
"NVIDIA nForce MCP61 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
|
|
"NVIDIA nForce MCP61 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
|
|
"NVIDIA nForce MCP61 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
|
|
"NVIDIA nForce MCP65 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
|
|
"NVIDIA nForce MCP65 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
|
|
"NVIDIA nForce MCP65 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
|
|
"NVIDIA nForce MCP65 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
|
|
"NVIDIA nForce MCP67 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
|
|
"NVIDIA nForce MCP67 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
|
|
"NVIDIA nForce MCP67 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
|
|
"NVIDIA nForce MCP67 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
|
|
"NVIDIA nForce MCP73 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
|
|
"NVIDIA nForce MCP73 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
|
|
"NVIDIA nForce MCP73 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
|
|
"NVIDIA nForce MCP73 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
|
|
"NVIDIA nForce MCP77 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
|
|
"NVIDIA nForce MCP77 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
|
|
"NVIDIA nForce MCP77 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
|
|
"NVIDIA nForce MCP77 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
|
|
"NVIDIA nForce MCP79 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
|
|
"NVIDIA nForce MCP79 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
|
|
"NVIDIA nForce MCP79 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
|
|
"NVIDIA nForce MCP79 Networking Adapter"},
|
|
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP89_LAN,
|
|
"NVIDIA nForce MCP89 Networking Adapter"},
|
|
{0, 0, NULL}
|
|
};
|
|
|
|
|
|
/* Probe for supported hardware ID's */
|
|
static int
|
|
nfe_probe(device_t dev)
|
|
{
|
|
struct nfe_type *t;
|
|
|
|
t = nfe_devs;
|
|
/* Check for matching PCI DEVICE ID's */
|
|
while (t->name != NULL) {
|
|
if ((pci_get_vendor(dev) == t->vid_id) &&
|
|
(pci_get_device(dev) == t->dev_id)) {
|
|
device_set_desc(dev, t->name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
static void
|
|
nfe_alloc_msix(struct nfe_softc *sc, int count)
|
|
{
|
|
int rid;
|
|
|
|
rid = PCIR_BAR(2);
|
|
sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY,
|
|
&rid, RF_ACTIVE);
|
|
if (sc->nfe_msix_res == NULL) {
|
|
device_printf(sc->nfe_dev,
|
|
"couldn't allocate MSIX table resource\n");
|
|
return;
|
|
}
|
|
rid = PCIR_BAR(3);
|
|
sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev,
|
|
SYS_RES_MEMORY, &rid, RF_ACTIVE);
|
|
if (sc->nfe_msix_pba_res == NULL) {
|
|
device_printf(sc->nfe_dev,
|
|
"couldn't allocate MSIX PBA resource\n");
|
|
bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2),
|
|
sc->nfe_msix_res);
|
|
sc->nfe_msix_res = NULL;
|
|
return;
|
|
}
|
|
|
|
if (pci_alloc_msix(sc->nfe_dev, &count) == 0) {
|
|
if (count == NFE_MSI_MESSAGES) {
|
|
if (bootverbose)
|
|
device_printf(sc->nfe_dev,
|
|
"Using %d MSIX messages\n", count);
|
|
sc->nfe_msix = 1;
|
|
} else {
|
|
if (bootverbose)
|
|
device_printf(sc->nfe_dev,
|
|
"couldn't allocate MSIX\n");
|
|
pci_release_msi(sc->nfe_dev);
|
|
bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(3), sc->nfe_msix_pba_res);
|
|
bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(2), sc->nfe_msix_res);
|
|
sc->nfe_msix_pba_res = NULL;
|
|
sc->nfe_msix_res = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_detect_msik9(struct nfe_softc *sc)
|
|
{
|
|
static const char *maker = "MSI";
|
|
static const char *product = "K9N6PGM2-V2 (MS-7309)";
|
|
char *m, *p;
|
|
int found;
|
|
|
|
found = 0;
|
|
m = kern_getenv("smbios.planar.maker");
|
|
p = kern_getenv("smbios.planar.product");
|
|
if (m != NULL && p != NULL) {
|
|
if (strcmp(m, maker) == 0 && strcmp(p, product) == 0)
|
|
found = 1;
|
|
}
|
|
if (m != NULL)
|
|
freeenv(m);
|
|
if (p != NULL)
|
|
freeenv(p);
|
|
|
|
return (found);
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_attach(device_t dev)
|
|
{
|
|
struct nfe_softc *sc;
|
|
if_t ifp;
|
|
bus_addr_t dma_addr_max;
|
|
int error = 0, i, msic, phyloc, reg, rid;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->nfe_dev = dev;
|
|
|
|
mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0);
|
|
|
|
pci_enable_busmaster(dev);
|
|
|
|
rid = PCIR_BAR(0);
|
|
sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
|
|
RF_ACTIVE);
|
|
if (sc->nfe_res[0] == NULL) {
|
|
device_printf(dev, "couldn't map memory resources\n");
|
|
mtx_destroy(&sc->nfe_mtx);
|
|
return (ENXIO);
|
|
}
|
|
|
|
if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) {
|
|
uint16_t v, width;
|
|
|
|
v = pci_read_config(dev, reg + 0x08, 2);
|
|
/* Change max. read request size to 4096. */
|
|
v &= ~(7 << 12);
|
|
v |= (5 << 12);
|
|
pci_write_config(dev, reg + 0x08, v, 2);
|
|
|
|
v = pci_read_config(dev, reg + 0x0c, 2);
|
|
/* link capability */
|
|
v = (v >> 4) & 0x0f;
|
|
width = pci_read_config(dev, reg + 0x12, 2);
|
|
/* negotiated link width */
|
|
width = (width >> 4) & 0x3f;
|
|
if (v != width)
|
|
device_printf(sc->nfe_dev,
|
|
"warning, negotiated width of link(x%d) != "
|
|
"max. width of link(x%d)\n", width, v);
|
|
}
|
|
|
|
if (nfe_can_use_msix(sc) == 0) {
|
|
device_printf(sc->nfe_dev,
|
|
"MSI/MSI-X capability black-listed, will use INTx\n");
|
|
msix_disable = 1;
|
|
msi_disable = 1;
|
|
}
|
|
|
|
/* Allocate interrupt */
|
|
if (msix_disable == 0 || msi_disable == 0) {
|
|
if (msix_disable == 0 &&
|
|
(msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES)
|
|
nfe_alloc_msix(sc, msic);
|
|
if (msi_disable == 0 && sc->nfe_msix == 0 &&
|
|
(msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES &&
|
|
pci_alloc_msi(dev, &msic) == 0) {
|
|
if (msic == NFE_MSI_MESSAGES) {
|
|
if (bootverbose)
|
|
device_printf(dev,
|
|
"Using %d MSI messages\n", msic);
|
|
sc->nfe_msi = 1;
|
|
} else
|
|
pci_release_msi(dev);
|
|
}
|
|
}
|
|
|
|
if (sc->nfe_msix == 0 && sc->nfe_msi == 0) {
|
|
rid = 0;
|
|
sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
if (sc->nfe_irq[0] == NULL) {
|
|
device_printf(dev, "couldn't allocate IRQ resources\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
} else {
|
|
for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
|
|
sc->nfe_irq[i] = bus_alloc_resource_any(dev,
|
|
SYS_RES_IRQ, &rid, RF_ACTIVE);
|
|
if (sc->nfe_irq[i] == NULL) {
|
|
device_printf(dev,
|
|
"couldn't allocate IRQ resources for "
|
|
"message %d\n", rid);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
}
|
|
/* Map interrupts to vector 0. */
|
|
if (sc->nfe_msix != 0) {
|
|
NFE_WRITE(sc, NFE_MSIX_MAP0, 0);
|
|
NFE_WRITE(sc, NFE_MSIX_MAP1, 0);
|
|
} else if (sc->nfe_msi != 0) {
|
|
NFE_WRITE(sc, NFE_MSI_MAP0, 0);
|
|
NFE_WRITE(sc, NFE_MSI_MAP1, 0);
|
|
}
|
|
}
|
|
|
|
/* Set IRQ status/mask register. */
|
|
sc->nfe_irq_status = NFE_IRQ_STATUS;
|
|
sc->nfe_irq_mask = NFE_IRQ_MASK;
|
|
sc->nfe_intrs = NFE_IRQ_WANTED;
|
|
sc->nfe_nointrs = 0;
|
|
if (sc->nfe_msix != 0) {
|
|
sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS;
|
|
sc->nfe_nointrs = NFE_IRQ_WANTED;
|
|
} else if (sc->nfe_msi != 0) {
|
|
sc->nfe_irq_mask = NFE_MSI_IRQ_MASK;
|
|
sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED;
|
|
}
|
|
|
|
sc->nfe_devid = pci_get_device(dev);
|
|
sc->nfe_revid = pci_get_revid(dev);
|
|
sc->nfe_flags = 0;
|
|
|
|
switch (sc->nfe_devid) {
|
|
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
|
|
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
|
|
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
|
|
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
|
|
break;
|
|
case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
|
|
sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | NFE_MIB_V1;
|
|
break;
|
|
case PCI_PRODUCT_NVIDIA_CK804_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_CK804_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
|
|
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
|
|
NFE_MIB_V1;
|
|
break;
|
|
case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
|
|
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
|
|
NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
|
|
break;
|
|
|
|
case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
|
|
case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
|
|
case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
|
|
case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
|
|
case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
|
|
case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
|
|
sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT |
|
|
NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | NFE_MIB_V2;
|
|
break;
|
|
case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
|
|
case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
|
|
/* XXX flow control */
|
|
sc->nfe_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_PWR_MGMT |
|
|
NFE_CORRECT_MACADDR | NFE_MIB_V3;
|
|
break;
|
|
case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
|
|
case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
|
|
case PCI_PRODUCT_NVIDIA_MCP89_LAN:
|
|
/* XXX flow control */
|
|
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
|
|
NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_MIB_V3;
|
|
break;
|
|
case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
|
|
case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
|
|
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
|
|
NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL |
|
|
NFE_MIB_V2;
|
|
break;
|
|
}
|
|
|
|
nfe_power(sc);
|
|
/* Check for reversed ethernet address */
|
|
if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
|
|
sc->nfe_flags |= NFE_CORRECT_MACADDR;
|
|
nfe_get_macaddr(sc, sc->eaddr);
|
|
/*
|
|
* Allocate the parent bus DMA tag appropriate for PCI.
|
|
*/
|
|
dma_addr_max = BUS_SPACE_MAXADDR_32BIT;
|
|
if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0)
|
|
dma_addr_max = NFE_DMA_MAXADDR;
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(sc->nfe_dev), /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
dma_addr_max, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, 0, /* maxsize, nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->nfe_parent_tag);
|
|
if (error)
|
|
goto fail;
|
|
|
|
ifp = sc->nfe_ifp = if_gethandle(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "can not if_gethandle()\n");
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Allocate Tx and Rx rings.
|
|
*/
|
|
if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0)
|
|
goto fail;
|
|
|
|
if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0)
|
|
goto fail;
|
|
|
|
nfe_alloc_jrx_ring(sc, &sc->jrxq);
|
|
/* Create sysctl node. */
|
|
nfe_sysctl_node(sc);
|
|
|
|
if_setsoftc(ifp, sc);
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
|
|
if_setioctlfn(ifp, nfe_ioctl);
|
|
if_setstartfn(ifp, nfe_start);
|
|
if_sethwassist(ifp, 0);
|
|
if_setcapabilities(ifp, 0);
|
|
if_setinitfn(ifp, nfe_init);
|
|
if_setsendqlen(ifp, NFE_TX_RING_COUNT - 1);
|
|
if_setsendqready(ifp);
|
|
|
|
|
|
if (sc->nfe_flags & NFE_HW_CSUM) {
|
|
if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
|
|
if_sethwassistbits(ifp, NFE_CSUM_FEATURES | CSUM_TSO, 0);
|
|
}
|
|
if_setcapenable(ifp, if_getcapabilities(ifp));
|
|
|
|
sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS;
|
|
/* VLAN capability setup. */
|
|
if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
|
|
if ((sc->nfe_flags & NFE_HW_VLAN) != 0) {
|
|
if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING, 0);
|
|
if ((if_getcapabilities(ifp) & IFCAP_HWCSUM) != 0)
|
|
if_setcapabilitiesbit(ifp,
|
|
(IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO), 0);
|
|
}
|
|
|
|
if (pci_find_cap(dev, PCIY_PMG, ®) == 0)
|
|
if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
|
|
if_setcapenable(ifp, if_getcapabilities(ifp));
|
|
|
|
/*
|
|
* Tell the upper layer(s) we support long frames.
|
|
* Must appear after the call to ether_ifattach() because
|
|
* ether_ifattach() sets ifi_hdrlen to the default value.
|
|
*/
|
|
if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
|
|
#endif
|
|
|
|
/* Do MII setup */
|
|
phyloc = MII_PHY_ANY;
|
|
if (sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN1 ||
|
|
sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN2 ||
|
|
sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN3 ||
|
|
sc->nfe_devid == PCI_PRODUCT_NVIDIA_MCP61_LAN4) {
|
|
if (nfe_detect_msik9(sc) != 0)
|
|
phyloc = 0;
|
|
}
|
|
error = mii_attach(dev, &sc->nfe_miibus, ifp,
|
|
(ifm_change_cb_t)nfe_ifmedia_upd, (ifm_stat_cb_t)nfe_ifmedia_sts,
|
|
BMSR_DEFCAPMASK, phyloc, MII_OFFSET_ANY, MIIF_DOPAUSE);
|
|
if (error != 0) {
|
|
device_printf(dev, "attaching PHYs failed\n");
|
|
goto fail;
|
|
}
|
|
ether_ifattach(ifp, sc->eaddr);
|
|
|
|
TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc);
|
|
sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK,
|
|
taskqueue_thread_enqueue, &sc->nfe_tq);
|
|
taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq",
|
|
device_get_nameunit(sc->nfe_dev));
|
|
error = 0;
|
|
if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
|
|
error = bus_setup_intr(dev, sc->nfe_irq[0],
|
|
INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
|
|
&sc->nfe_intrhand[0]);
|
|
} else {
|
|
for (i = 0; i < NFE_MSI_MESSAGES; i++) {
|
|
error = bus_setup_intr(dev, sc->nfe_irq[i],
|
|
INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
|
|
&sc->nfe_intrhand[i]);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
}
|
|
if (error) {
|
|
device_printf(dev, "couldn't set up irq\n");
|
|
taskqueue_free(sc->nfe_tq);
|
|
sc->nfe_tq = NULL;
|
|
ether_ifdetach(ifp);
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error)
|
|
nfe_detach(dev);
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_detach(device_t dev)
|
|
{
|
|
struct nfe_softc *sc;
|
|
if_t ifp;
|
|
uint8_t eaddr[ETHER_ADDR_LEN];
|
|
int i, rid;
|
|
|
|
sc = device_get_softc(dev);
|
|
KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized"));
|
|
ifp = sc->nfe_ifp;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING)
|
|
ether_poll_deregister(ifp);
|
|
#endif
|
|
if (device_is_attached(dev)) {
|
|
NFE_LOCK(sc);
|
|
nfe_stop(ifp);
|
|
if_setflagbits(ifp, 0, IFF_UP);
|
|
NFE_UNLOCK(sc);
|
|
callout_drain(&sc->nfe_stat_ch);
|
|
ether_ifdetach(ifp);
|
|
}
|
|
|
|
if (ifp) {
|
|
/* restore ethernet address */
|
|
if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++) {
|
|
eaddr[i] = sc->eaddr[5 - i];
|
|
}
|
|
} else
|
|
bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN);
|
|
nfe_set_macaddr(sc, eaddr);
|
|
if_free(ifp);
|
|
}
|
|
if (sc->nfe_miibus)
|
|
device_delete_child(dev, sc->nfe_miibus);
|
|
bus_generic_detach(dev);
|
|
if (sc->nfe_tq != NULL) {
|
|
taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task);
|
|
taskqueue_free(sc->nfe_tq);
|
|
sc->nfe_tq = NULL;
|
|
}
|
|
|
|
for (i = 0; i < NFE_MSI_MESSAGES; i++) {
|
|
if (sc->nfe_intrhand[i] != NULL) {
|
|
bus_teardown_intr(dev, sc->nfe_irq[i],
|
|
sc->nfe_intrhand[i]);
|
|
sc->nfe_intrhand[i] = NULL;
|
|
}
|
|
}
|
|
|
|
if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
|
|
if (sc->nfe_irq[0] != NULL)
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0,
|
|
sc->nfe_irq[0]);
|
|
} else {
|
|
for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
|
|
if (sc->nfe_irq[i] != NULL) {
|
|
bus_release_resource(dev, SYS_RES_IRQ, rid,
|
|
sc->nfe_irq[i]);
|
|
sc->nfe_irq[i] = NULL;
|
|
}
|
|
}
|
|
pci_release_msi(dev);
|
|
}
|
|
if (sc->nfe_msix_pba_res != NULL) {
|
|
bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3),
|
|
sc->nfe_msix_pba_res);
|
|
sc->nfe_msix_pba_res = NULL;
|
|
}
|
|
if (sc->nfe_msix_res != NULL) {
|
|
bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2),
|
|
sc->nfe_msix_res);
|
|
sc->nfe_msix_res = NULL;
|
|
}
|
|
if (sc->nfe_res[0] != NULL) {
|
|
bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
|
|
sc->nfe_res[0]);
|
|
sc->nfe_res[0] = NULL;
|
|
}
|
|
|
|
nfe_free_tx_ring(sc, &sc->txq);
|
|
nfe_free_rx_ring(sc, &sc->rxq);
|
|
nfe_free_jrx_ring(sc, &sc->jrxq);
|
|
|
|
if (sc->nfe_parent_tag) {
|
|
bus_dma_tag_destroy(sc->nfe_parent_tag);
|
|
sc->nfe_parent_tag = NULL;
|
|
}
|
|
|
|
mtx_destroy(&sc->nfe_mtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_suspend(device_t dev)
|
|
{
|
|
struct nfe_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
NFE_LOCK(sc);
|
|
nfe_stop(sc->nfe_ifp);
|
|
nfe_set_wol(sc);
|
|
sc->nfe_suspended = 1;
|
|
NFE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_resume(device_t dev)
|
|
{
|
|
struct nfe_softc *sc;
|
|
if_t ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
NFE_LOCK(sc);
|
|
nfe_power(sc);
|
|
ifp = sc->nfe_ifp;
|
|
if (if_getflags(ifp) & IFF_UP)
|
|
nfe_init_locked(sc);
|
|
sc->nfe_suspended = 0;
|
|
NFE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_can_use_msix(struct nfe_softc *sc)
|
|
{
|
|
static struct msix_blacklist {
|
|
char *maker;
|
|
char *product;
|
|
} msix_blacklists[] = {
|
|
{ "ASUSTeK Computer INC.", "P5N32-SLI PREMIUM" }
|
|
};
|
|
|
|
struct msix_blacklist *mblp;
|
|
char *maker, *product;
|
|
int count, n, use_msix;
|
|
|
|
/*
|
|
* Search base board manufacturer and product name table
|
|
* to see this system has a known MSI/MSI-X issue.
|
|
*/
|
|
maker = kern_getenv("smbios.planar.maker");
|
|
product = kern_getenv("smbios.planar.product");
|
|
use_msix = 1;
|
|
if (maker != NULL && product != NULL) {
|
|
count = nitems(msix_blacklists);
|
|
mblp = msix_blacklists;
|
|
for (n = 0; n < count; n++) {
|
|
if (strcmp(maker, mblp->maker) == 0 &&
|
|
strcmp(product, mblp->product) == 0) {
|
|
use_msix = 0;
|
|
break;
|
|
}
|
|
mblp++;
|
|
}
|
|
}
|
|
if (maker != NULL)
|
|
freeenv(maker);
|
|
if (product != NULL)
|
|
freeenv(product);
|
|
|
|
return (use_msix);
|
|
}
|
|
|
|
|
|
/* Take PHY/NIC out of powerdown, from Linux */
|
|
static void
|
|
nfe_power(struct nfe_softc *sc)
|
|
{
|
|
uint32_t pwr;
|
|
|
|
if ((sc->nfe_flags & NFE_PWR_MGMT) == 0)
|
|
return;
|
|
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
|
|
NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
|
|
DELAY(100);
|
|
NFE_WRITE(sc, NFE_MAC_RESET, 0);
|
|
DELAY(100);
|
|
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
|
|
pwr = NFE_READ(sc, NFE_PWR2_CTL);
|
|
pwr &= ~NFE_PWR2_WAKEUP_MASK;
|
|
if (sc->nfe_revid >= 0xa3 &&
|
|
(sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 ||
|
|
sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2))
|
|
pwr |= NFE_PWR2_REVA3;
|
|
NFE_WRITE(sc, NFE_PWR2_CTL, pwr);
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_miibus_statchg(device_t dev)
|
|
{
|
|
struct nfe_softc *sc;
|
|
struct mii_data *mii;
|
|
if_t ifp;
|
|
uint32_t rxctl, txctl;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
mii = device_get_softc(sc->nfe_miibus);
|
|
ifp = sc->nfe_ifp;
|
|
|
|
sc->nfe_link = 0;
|
|
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
|
|
(IFM_ACTIVE | IFM_AVALID)) {
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_10_T:
|
|
case IFM_100_TX:
|
|
case IFM_1000_T:
|
|
sc->nfe_link = 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
nfe_mac_config(sc, mii);
|
|
txctl = NFE_READ(sc, NFE_TX_CTL);
|
|
rxctl = NFE_READ(sc, NFE_RX_CTL);
|
|
if (sc->nfe_link != 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
|
|
txctl |= NFE_TX_START;
|
|
rxctl |= NFE_RX_START;
|
|
} else {
|
|
txctl &= ~NFE_TX_START;
|
|
rxctl &= ~NFE_RX_START;
|
|
}
|
|
NFE_WRITE(sc, NFE_TX_CTL, txctl);
|
|
NFE_WRITE(sc, NFE_RX_CTL, rxctl);
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_mac_config(struct nfe_softc *sc, struct mii_data *mii)
|
|
{
|
|
uint32_t link, misc, phy, seed;
|
|
uint32_t val;
|
|
|
|
NFE_LOCK_ASSERT(sc);
|
|
|
|
phy = NFE_READ(sc, NFE_PHY_IFACE);
|
|
phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
|
|
|
|
seed = NFE_READ(sc, NFE_RNDSEED);
|
|
seed &= ~NFE_SEED_MASK;
|
|
|
|
misc = NFE_MISC1_MAGIC;
|
|
link = NFE_MEDIA_SET;
|
|
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) {
|
|
phy |= NFE_PHY_HDX; /* half-duplex */
|
|
misc |= NFE_MISC1_HDX;
|
|
}
|
|
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_1000_T: /* full-duplex only */
|
|
link |= NFE_MEDIA_1000T;
|
|
seed |= NFE_SEED_1000T;
|
|
phy |= NFE_PHY_1000T;
|
|
break;
|
|
case IFM_100_TX:
|
|
link |= NFE_MEDIA_100TX;
|
|
seed |= NFE_SEED_100TX;
|
|
phy |= NFE_PHY_100TX;
|
|
break;
|
|
case IFM_10_T:
|
|
link |= NFE_MEDIA_10T;
|
|
seed |= NFE_SEED_10T;
|
|
break;
|
|
}
|
|
|
|
if ((phy & 0x10000000) != 0) {
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
|
|
val = NFE_R1_MAGIC_1000;
|
|
else
|
|
val = NFE_R1_MAGIC_10_100;
|
|
} else
|
|
val = NFE_R1_MAGIC_DEFAULT;
|
|
NFE_WRITE(sc, NFE_SETUP_R1, val);
|
|
|
|
NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
|
|
|
|
NFE_WRITE(sc, NFE_PHY_IFACE, phy);
|
|
NFE_WRITE(sc, NFE_MISC1, misc);
|
|
NFE_WRITE(sc, NFE_LINKSPEED, link);
|
|
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
|
|
/* It seems all hardwares supports Rx pause frames. */
|
|
val = NFE_READ(sc, NFE_RXFILTER);
|
|
if ((IFM_OPTIONS(mii->mii_media_active) &
|
|
IFM_ETH_RXPAUSE) != 0)
|
|
val |= NFE_PFF_RX_PAUSE;
|
|
else
|
|
val &= ~NFE_PFF_RX_PAUSE;
|
|
NFE_WRITE(sc, NFE_RXFILTER, val);
|
|
if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
|
|
val = NFE_READ(sc, NFE_MISC1);
|
|
if ((IFM_OPTIONS(mii->mii_media_active) &
|
|
IFM_ETH_TXPAUSE) != 0) {
|
|
NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
|
|
NFE_TX_PAUSE_FRAME_ENABLE);
|
|
val |= NFE_MISC1_TX_PAUSE;
|
|
} else {
|
|
val &= ~NFE_MISC1_TX_PAUSE;
|
|
NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
|
|
NFE_TX_PAUSE_FRAME_DISABLE);
|
|
}
|
|
NFE_WRITE(sc, NFE_MISC1, val);
|
|
}
|
|
} else {
|
|
/* disable rx/tx pause frames */
|
|
val = NFE_READ(sc, NFE_RXFILTER);
|
|
val &= ~NFE_PFF_RX_PAUSE;
|
|
NFE_WRITE(sc, NFE_RXFILTER, val);
|
|
if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
|
|
NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
|
|
NFE_TX_PAUSE_FRAME_DISABLE);
|
|
val = NFE_READ(sc, NFE_MISC1);
|
|
val &= ~NFE_MISC1_TX_PAUSE;
|
|
NFE_WRITE(sc, NFE_MISC1, val);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct nfe_softc *sc = device_get_softc(dev);
|
|
uint32_t val;
|
|
int ntries;
|
|
|
|
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
|
|
|
|
if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
|
|
NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
|
|
DELAY(100);
|
|
}
|
|
|
|
NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
|
|
|
|
for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
|
|
DELAY(100);
|
|
if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
|
|
break;
|
|
}
|
|
if (ntries == NFE_TIMEOUT) {
|
|
DPRINTFN(sc, 2, "timeout waiting for PHY\n");
|
|
return 0;
|
|
}
|
|
|
|
if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
|
|
DPRINTFN(sc, 2, "could not read PHY\n");
|
|
return 0;
|
|
}
|
|
|
|
val = NFE_READ(sc, NFE_PHY_DATA);
|
|
if (val != 0xffffffff && val != 0)
|
|
sc->mii_phyaddr = phy;
|
|
|
|
DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
|
|
|
|
return (val);
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct nfe_softc *sc = device_get_softc(dev);
|
|
uint32_t ctl;
|
|
int ntries;
|
|
|
|
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
|
|
|
|
if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
|
|
NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
|
|
DELAY(100);
|
|
}
|
|
|
|
NFE_WRITE(sc, NFE_PHY_DATA, val);
|
|
ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
|
|
NFE_WRITE(sc, NFE_PHY_CTL, ctl);
|
|
|
|
for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
|
|
DELAY(100);
|
|
if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
|
|
break;
|
|
}
|
|
#ifdef NFE_DEBUG
|
|
if (nfedebug >= 2 && ntries == NFE_TIMEOUT)
|
|
device_printf(sc->nfe_dev, "could not write to PHY\n");
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
struct nfe_dmamap_arg {
|
|
bus_addr_t nfe_busaddr;
|
|
};
|
|
|
|
static int
|
|
nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
|
|
{
|
|
struct nfe_dmamap_arg ctx;
|
|
struct nfe_rx_data *data;
|
|
void *desc;
|
|
int i, error, descsize;
|
|
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc = ring->desc64;
|
|
descsize = sizeof (struct nfe_desc64);
|
|
} else {
|
|
desc = ring->desc32;
|
|
descsize = sizeof (struct nfe_desc32);
|
|
}
|
|
|
|
ring->cur = ring->next = 0;
|
|
|
|
error = bus_dma_tag_create(sc->nfe_parent_tag,
|
|
NFE_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
NFE_RX_RING_COUNT * descsize, 1, /* maxsize, nsegments */
|
|
NFE_RX_RING_COUNT * descsize, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&ring->rx_desc_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* allocate memory to desc */
|
|
error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev, "could not create desc DMA map\n");
|
|
goto fail;
|
|
}
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR)
|
|
ring->desc64 = desc;
|
|
else
|
|
ring->desc32 = desc;
|
|
|
|
/* map desc to device visible address space */
|
|
ctx.nfe_busaddr = 0;
|
|
error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc,
|
|
NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev, "could not load desc DMA map\n");
|
|
goto fail;
|
|
}
|
|
ring->physaddr = ctx.nfe_busaddr;
|
|
|
|
error = bus_dma_tag_create(sc->nfe_parent_tag,
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, 1, /* maxsize, nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&ring->rx_data_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev, "could not create Rx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev,
|
|
"could not create Rx DMA spare map\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Pre-allocate Rx buffers and populate Rx ring.
|
|
*/
|
|
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
|
|
data = &sc->rxq.data[i];
|
|
data->rx_data_map = NULL;
|
|
data->m = NULL;
|
|
error = bus_dmamap_create(ring->rx_data_tag, 0,
|
|
&data->rx_data_map);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev,
|
|
"could not create Rx DMA map\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
|
|
{
|
|
struct nfe_dmamap_arg ctx;
|
|
struct nfe_rx_data *data;
|
|
void *desc;
|
|
int i, error, descsize;
|
|
|
|
if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
|
|
return;
|
|
if (jumbo_disable != 0) {
|
|
device_printf(sc->nfe_dev, "disabling jumbo frame support\n");
|
|
sc->nfe_jumbo_disable = 1;
|
|
return;
|
|
}
|
|
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc = ring->jdesc64;
|
|
descsize = sizeof (struct nfe_desc64);
|
|
} else {
|
|
desc = ring->jdesc32;
|
|
descsize = sizeof (struct nfe_desc32);
|
|
}
|
|
|
|
ring->jcur = ring->jnext = 0;
|
|
|
|
/* Create DMA tag for jumbo Rx ring. */
|
|
error = bus_dma_tag_create(sc->nfe_parent_tag,
|
|
NFE_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
NFE_JUMBO_RX_RING_COUNT * descsize, /* maxsize */
|
|
1, /* nsegments */
|
|
NFE_JUMBO_RX_RING_COUNT * descsize, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&ring->jrx_desc_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev,
|
|
"could not create jumbo ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create DMA tag for jumbo Rx buffers. */
|
|
error = bus_dma_tag_create(sc->nfe_parent_tag,
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MJUM9BYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MJUM9BYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&ring->jrx_data_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev,
|
|
"could not create jumbo Rx buffer DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
|
|
error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev,
|
|
"could not allocate DMA'able memory for jumbo Rx ring\n");
|
|
goto fail;
|
|
}
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR)
|
|
ring->jdesc64 = desc;
|
|
else
|
|
ring->jdesc32 = desc;
|
|
|
|
ctx.nfe_busaddr = 0;
|
|
error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc,
|
|
NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev,
|
|
"could not load DMA'able memory for jumbo Rx ring\n");
|
|
goto fail;
|
|
}
|
|
ring->jphysaddr = ctx.nfe_busaddr;
|
|
|
|
/* Create DMA maps for jumbo Rx buffers. */
|
|
error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev,
|
|
"could not create jumbo Rx DMA spare map\n");
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
|
|
data = &sc->jrxq.jdata[i];
|
|
data->rx_data_map = NULL;
|
|
data->m = NULL;
|
|
error = bus_dmamap_create(ring->jrx_data_tag, 0,
|
|
&data->rx_data_map);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev,
|
|
"could not create jumbo Rx DMA map\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return;
|
|
|
|
fail:
|
|
/*
|
|
* Running without jumbo frame support is ok for most cases
|
|
* so don't fail on creating dma tag/map for jumbo frame.
|
|
*/
|
|
nfe_free_jrx_ring(sc, ring);
|
|
device_printf(sc->nfe_dev, "disabling jumbo frame support due to "
|
|
"resource shortage\n");
|
|
sc->nfe_jumbo_disable = 1;
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
|
|
{
|
|
void *desc;
|
|
size_t descsize;
|
|
int i;
|
|
|
|
ring->cur = ring->next = 0;
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc = ring->desc64;
|
|
descsize = sizeof (struct nfe_desc64);
|
|
} else {
|
|
desc = ring->desc32;
|
|
descsize = sizeof (struct nfe_desc32);
|
|
}
|
|
bzero(desc, descsize * NFE_RX_RING_COUNT);
|
|
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
|
|
if (nfe_newbuf(sc, i) != 0)
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
|
|
{
|
|
void *desc;
|
|
size_t descsize;
|
|
int i;
|
|
|
|
ring->jcur = ring->jnext = 0;
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc = ring->jdesc64;
|
|
descsize = sizeof (struct nfe_desc64);
|
|
} else {
|
|
desc = ring->jdesc32;
|
|
descsize = sizeof (struct nfe_desc32);
|
|
}
|
|
bzero(desc, descsize * NFE_JUMBO_RX_RING_COUNT);
|
|
for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
|
|
if (nfe_jnewbuf(sc, i) != 0)
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
|
|
{
|
|
struct nfe_rx_data *data;
|
|
void *desc;
|
|
int i;
|
|
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR)
|
|
desc = ring->desc64;
|
|
else
|
|
desc = ring->desc32;
|
|
|
|
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
|
|
data = &ring->data[i];
|
|
if (data->rx_data_map != NULL) {
|
|
bus_dmamap_destroy(ring->rx_data_tag,
|
|
data->rx_data_map);
|
|
data->rx_data_map = NULL;
|
|
}
|
|
if (data->m != NULL) {
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
}
|
|
if (ring->rx_data_tag != NULL) {
|
|
if (ring->rx_spare_map != NULL) {
|
|
bus_dmamap_destroy(ring->rx_data_tag,
|
|
ring->rx_spare_map);
|
|
ring->rx_spare_map = NULL;
|
|
}
|
|
bus_dma_tag_destroy(ring->rx_data_tag);
|
|
ring->rx_data_tag = NULL;
|
|
}
|
|
|
|
if (desc != NULL) {
|
|
bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map);
|
|
bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map);
|
|
ring->desc64 = NULL;
|
|
ring->desc32 = NULL;
|
|
}
|
|
if (ring->rx_desc_tag != NULL) {
|
|
bus_dma_tag_destroy(ring->rx_desc_tag);
|
|
ring->rx_desc_tag = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
|
|
{
|
|
struct nfe_rx_data *data;
|
|
void *desc;
|
|
int i, descsize;
|
|
|
|
if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
|
|
return;
|
|
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc = ring->jdesc64;
|
|
descsize = sizeof (struct nfe_desc64);
|
|
} else {
|
|
desc = ring->jdesc32;
|
|
descsize = sizeof (struct nfe_desc32);
|
|
}
|
|
|
|
for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
|
|
data = &ring->jdata[i];
|
|
if (data->rx_data_map != NULL) {
|
|
bus_dmamap_destroy(ring->jrx_data_tag,
|
|
data->rx_data_map);
|
|
data->rx_data_map = NULL;
|
|
}
|
|
if (data->m != NULL) {
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
}
|
|
if (ring->jrx_data_tag != NULL) {
|
|
if (ring->jrx_spare_map != NULL) {
|
|
bus_dmamap_destroy(ring->jrx_data_tag,
|
|
ring->jrx_spare_map);
|
|
ring->jrx_spare_map = NULL;
|
|
}
|
|
bus_dma_tag_destroy(ring->jrx_data_tag);
|
|
ring->jrx_data_tag = NULL;
|
|
}
|
|
|
|
if (desc != NULL) {
|
|
bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map);
|
|
bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map);
|
|
ring->jdesc64 = NULL;
|
|
ring->jdesc32 = NULL;
|
|
}
|
|
|
|
if (ring->jrx_desc_tag != NULL) {
|
|
bus_dma_tag_destroy(ring->jrx_desc_tag);
|
|
ring->jrx_desc_tag = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
|
|
{
|
|
struct nfe_dmamap_arg ctx;
|
|
int i, error;
|
|
void *desc;
|
|
int descsize;
|
|
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc = ring->desc64;
|
|
descsize = sizeof (struct nfe_desc64);
|
|
} else {
|
|
desc = ring->desc32;
|
|
descsize = sizeof (struct nfe_desc32);
|
|
}
|
|
|
|
ring->queued = 0;
|
|
ring->cur = ring->next = 0;
|
|
|
|
error = bus_dma_tag_create(sc->nfe_parent_tag,
|
|
NFE_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
NFE_TX_RING_COUNT * descsize, 1, /* maxsize, nsegments */
|
|
NFE_TX_RING_COUNT * descsize, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&ring->tx_desc_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev, "could not create desc DMA map\n");
|
|
goto fail;
|
|
}
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR)
|
|
ring->desc64 = desc;
|
|
else
|
|
ring->desc32 = desc;
|
|
|
|
ctx.nfe_busaddr = 0;
|
|
error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc,
|
|
NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev, "could not load desc DMA map\n");
|
|
goto fail;
|
|
}
|
|
ring->physaddr = ctx.nfe_busaddr;
|
|
|
|
error = bus_dma_tag_create(sc->nfe_parent_tag,
|
|
1, 0,
|
|
BUS_SPACE_MAXADDR,
|
|
BUS_SPACE_MAXADDR,
|
|
NULL, NULL,
|
|
NFE_TSO_MAXSIZE,
|
|
NFE_MAX_SCATTER,
|
|
NFE_TSO_MAXSGSIZE,
|
|
0,
|
|
NULL, NULL,
|
|
&ring->tx_data_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev, "could not create Tx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
|
|
error = bus_dmamap_create(ring->tx_data_tag, 0,
|
|
&ring->data[i].tx_data_map);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev,
|
|
"could not create Tx DMA map\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
|
|
{
|
|
void *desc;
|
|
size_t descsize;
|
|
|
|
sc->nfe_force_tx = 0;
|
|
ring->queued = 0;
|
|
ring->cur = ring->next = 0;
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc = ring->desc64;
|
|
descsize = sizeof (struct nfe_desc64);
|
|
} else {
|
|
desc = ring->desc32;
|
|
descsize = sizeof (struct nfe_desc32);
|
|
}
|
|
bzero(desc, descsize * NFE_TX_RING_COUNT);
|
|
|
|
bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
|
|
{
|
|
struct nfe_tx_data *data;
|
|
void *desc;
|
|
int i, descsize;
|
|
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc = ring->desc64;
|
|
descsize = sizeof (struct nfe_desc64);
|
|
} else {
|
|
desc = ring->desc32;
|
|
descsize = sizeof (struct nfe_desc32);
|
|
}
|
|
|
|
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
|
|
data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
if (data->tx_data_map != NULL) {
|
|
bus_dmamap_destroy(ring->tx_data_tag,
|
|
data->tx_data_map);
|
|
data->tx_data_map = NULL;
|
|
}
|
|
}
|
|
|
|
if (ring->tx_data_tag != NULL) {
|
|
bus_dma_tag_destroy(ring->tx_data_tag);
|
|
ring->tx_data_tag = NULL;
|
|
}
|
|
|
|
if (desc != NULL) {
|
|
bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map);
|
|
bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map);
|
|
ring->desc64 = NULL;
|
|
ring->desc32 = NULL;
|
|
bus_dma_tag_destroy(ring->tx_desc_tag);
|
|
ring->tx_desc_tag = NULL;
|
|
}
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static poll_handler_t nfe_poll;
|
|
|
|
|
|
static int
|
|
nfe_poll(if_t ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct nfe_softc *sc = if_getsoftc(ifp);
|
|
uint32_t r;
|
|
int rx_npkts = 0;
|
|
|
|
NFE_LOCK(sc);
|
|
|
|
if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
|
|
NFE_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
|
|
if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
|
|
rx_npkts = nfe_jrxeof(sc, count, &rx_npkts);
|
|
else
|
|
rx_npkts = nfe_rxeof(sc, count, &rx_npkts);
|
|
nfe_txeof(sc);
|
|
if (!if_sendq_empty(ifp))
|
|
nfe_start_locked(ifp);
|
|
|
|
if (cmd == POLL_AND_CHECK_STATUS) {
|
|
if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
|
|
NFE_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
NFE_WRITE(sc, sc->nfe_irq_status, r);
|
|
|
|
if (r & NFE_IRQ_LINK) {
|
|
NFE_READ(sc, NFE_PHY_STATUS);
|
|
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
|
|
DPRINTF(sc, "link state changed\n");
|
|
}
|
|
}
|
|
NFE_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
static void
|
|
nfe_set_intr(struct nfe_softc *sc)
|
|
{
|
|
|
|
if (sc->nfe_msi != 0)
|
|
NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
|
|
}
|
|
|
|
|
|
/* In MSIX, a write to mask reegisters behaves as XOR. */
|
|
static __inline void
|
|
nfe_enable_intr(struct nfe_softc *sc)
|
|
{
|
|
|
|
if (sc->nfe_msix != 0) {
|
|
/* XXX Should have a better way to enable interrupts! */
|
|
if (NFE_READ(sc, sc->nfe_irq_mask) == 0)
|
|
NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
|
|
} else
|
|
NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
|
|
}
|
|
|
|
|
|
static __inline void
|
|
nfe_disable_intr(struct nfe_softc *sc)
|
|
{
|
|
|
|
if (sc->nfe_msix != 0) {
|
|
/* XXX Should have a better way to disable interrupts! */
|
|
if (NFE_READ(sc, sc->nfe_irq_mask) != 0)
|
|
NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
|
|
} else
|
|
NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_ioctl(if_t ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct nfe_softc *sc;
|
|
struct ifreq *ifr;
|
|
struct mii_data *mii;
|
|
int error, init, mask;
|
|
|
|
sc = if_getsoftc(ifp);
|
|
ifr = (struct ifreq *) data;
|
|
error = 0;
|
|
init = 0;
|
|
switch (cmd) {
|
|
case SIOCSIFMTU:
|
|
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU)
|
|
error = EINVAL;
|
|
else if (if_getmtu(ifp) != ifr->ifr_mtu) {
|
|
if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) ||
|
|
(sc->nfe_jumbo_disable != 0)) &&
|
|
ifr->ifr_mtu > ETHERMTU)
|
|
error = EINVAL;
|
|
else {
|
|
NFE_LOCK(sc);
|
|
if_setmtu(ifp, ifr->ifr_mtu);
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
|
|
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
|
|
nfe_init_locked(sc);
|
|
}
|
|
NFE_UNLOCK(sc);
|
|
}
|
|
}
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
NFE_LOCK(sc);
|
|
if (if_getflags(ifp) & IFF_UP) {
|
|
/*
|
|
* If only the PROMISC or ALLMULTI flag changes, then
|
|
* don't do a full re-init of the chip, just update
|
|
* the Rx filter.
|
|
*/
|
|
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) &&
|
|
((if_getflags(ifp) ^ sc->nfe_if_flags) &
|
|
(IFF_ALLMULTI | IFF_PROMISC)) != 0)
|
|
nfe_setmulti(sc);
|
|
else
|
|
nfe_init_locked(sc);
|
|
} else {
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
|
|
nfe_stop(ifp);
|
|
}
|
|
sc->nfe_if_flags = if_getflags(ifp);
|
|
NFE_UNLOCK(sc);
|
|
error = 0;
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
|
|
NFE_LOCK(sc);
|
|
nfe_setmulti(sc);
|
|
NFE_UNLOCK(sc);
|
|
error = 0;
|
|
}
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
mii = device_get_softc(sc->nfe_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
|
|
#ifdef DEVICE_POLLING
|
|
if ((mask & IFCAP_POLLING) != 0) {
|
|
if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
|
|
error = ether_poll_register(nfe_poll, ifp);
|
|
if (error)
|
|
break;
|
|
NFE_LOCK(sc);
|
|
nfe_disable_intr(sc);
|
|
if_setcapenablebit(ifp, IFCAP_POLLING, 0);
|
|
NFE_UNLOCK(sc);
|
|
} else {
|
|
error = ether_poll_deregister(ifp);
|
|
/* Enable interrupt even in error case */
|
|
NFE_LOCK(sc);
|
|
nfe_enable_intr(sc);
|
|
if_setcapenablebit(ifp, 0, IFCAP_POLLING);
|
|
NFE_UNLOCK(sc);
|
|
}
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
|
|
(if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
|
|
if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
|
|
if ((mask & IFCAP_TXCSUM) != 0 &&
|
|
(if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
|
|
if_togglecapenable(ifp, IFCAP_TXCSUM);
|
|
if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
|
|
if_sethwassistbits(ifp, NFE_CSUM_FEATURES, 0);
|
|
else
|
|
if_sethwassistbits(ifp, 0, NFE_CSUM_FEATURES);
|
|
}
|
|
if ((mask & IFCAP_RXCSUM) != 0 &&
|
|
(if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
|
|
if_togglecapenable(ifp, IFCAP_RXCSUM);
|
|
init++;
|
|
}
|
|
if ((mask & IFCAP_TSO4) != 0 &&
|
|
(if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
|
|
if_togglecapenable(ifp, IFCAP_TSO4);
|
|
if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
|
|
if_sethwassistbits(ifp, CSUM_TSO, 0);
|
|
else
|
|
if_sethwassistbits(ifp, 0, CSUM_TSO);
|
|
}
|
|
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
|
|
(if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
|
|
if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
|
|
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
|
|
(if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
|
|
if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
|
|
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
|
|
if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
|
|
init++;
|
|
}
|
|
/*
|
|
* XXX
|
|
* It seems that VLAN stripping requires Rx checksum offload.
|
|
* Unfortunately FreeBSD has no way to disable only Rx side
|
|
* VLAN stripping. So when we know Rx checksum offload is
|
|
* disabled turn entire hardware VLAN assist off.
|
|
*/
|
|
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) == 0) {
|
|
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
|
|
init++;
|
|
if_setcapenablebit(ifp, 0,
|
|
(IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO));
|
|
}
|
|
if (init > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
|
|
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
|
|
nfe_init(sc);
|
|
}
|
|
if_vlancap(ifp);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_intr(void *arg)
|
|
{
|
|
struct nfe_softc *sc;
|
|
uint32_t status;
|
|
|
|
sc = (struct nfe_softc *)arg;
|
|
|
|
status = NFE_READ(sc, sc->nfe_irq_status);
|
|
if (status == 0 || status == 0xffffffff)
|
|
return (FILTER_STRAY);
|
|
nfe_disable_intr(sc);
|
|
taskqueue_enqueue(sc->nfe_tq, &sc->nfe_int_task);
|
|
|
|
return (FILTER_HANDLED);
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_int_task(void *arg, int pending)
|
|
{
|
|
struct nfe_softc *sc = arg;
|
|
if_t ifp = sc->nfe_ifp;
|
|
uint32_t r;
|
|
int domore;
|
|
|
|
NFE_LOCK(sc);
|
|
|
|
if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
|
|
nfe_enable_intr(sc);
|
|
NFE_UNLOCK(sc);
|
|
return; /* not for us */
|
|
}
|
|
NFE_WRITE(sc, sc->nfe_irq_status, r);
|
|
|
|
DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (if_getcapenable(ifp) & IFCAP_POLLING) {
|
|
NFE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (r & NFE_IRQ_LINK) {
|
|
NFE_READ(sc, NFE_PHY_STATUS);
|
|
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
|
|
DPRINTF(sc, "link state changed\n");
|
|
}
|
|
|
|
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
|
|
NFE_UNLOCK(sc);
|
|
nfe_disable_intr(sc);
|
|
return;
|
|
}
|
|
|
|
domore = 0;
|
|
/* check Rx ring */
|
|
if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
|
|
domore = nfe_jrxeof(sc, sc->nfe_process_limit, NULL);
|
|
else
|
|
domore = nfe_rxeof(sc, sc->nfe_process_limit, NULL);
|
|
/* check Tx ring */
|
|
nfe_txeof(sc);
|
|
|
|
if (!if_sendq_empty(ifp))
|
|
nfe_start_locked(ifp);
|
|
|
|
NFE_UNLOCK(sc);
|
|
|
|
if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) {
|
|
taskqueue_enqueue(sc->nfe_tq, &sc->nfe_int_task);
|
|
return;
|
|
}
|
|
|
|
/* Reenable interrupts. */
|
|
nfe_enable_intr(sc);
|
|
}
|
|
|
|
|
|
static __inline void
|
|
nfe_discard_rxbuf(struct nfe_softc *sc, int idx)
|
|
{
|
|
struct nfe_desc32 *desc32;
|
|
struct nfe_desc64 *desc64;
|
|
struct nfe_rx_data *data;
|
|
struct mbuf *m;
|
|
|
|
data = &sc->rxq.data[idx];
|
|
m = data->m;
|
|
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc64 = &sc->rxq.desc64[idx];
|
|
/* VLAN packet may have overwritten it. */
|
|
desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
|
|
desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
|
|
desc64->length = htole16(m->m_len);
|
|
desc64->flags = htole16(NFE_RX_READY);
|
|
} else {
|
|
desc32 = &sc->rxq.desc32[idx];
|
|
desc32->length = htole16(m->m_len);
|
|
desc32->flags = htole16(NFE_RX_READY);
|
|
}
|
|
}
|
|
|
|
|
|
static __inline void
|
|
nfe_discard_jrxbuf(struct nfe_softc *sc, int idx)
|
|
{
|
|
struct nfe_desc32 *desc32;
|
|
struct nfe_desc64 *desc64;
|
|
struct nfe_rx_data *data;
|
|
struct mbuf *m;
|
|
|
|
data = &sc->jrxq.jdata[idx];
|
|
m = data->m;
|
|
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc64 = &sc->jrxq.jdesc64[idx];
|
|
/* VLAN packet may have overwritten it. */
|
|
desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
|
|
desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
|
|
desc64->length = htole16(m->m_len);
|
|
desc64->flags = htole16(NFE_RX_READY);
|
|
} else {
|
|
desc32 = &sc->jrxq.jdesc32[idx];
|
|
desc32->length = htole16(m->m_len);
|
|
desc32->flags = htole16(NFE_RX_READY);
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_newbuf(struct nfe_softc *sc, int idx)
|
|
{
|
|
struct nfe_rx_data *data;
|
|
struct nfe_desc32 *desc32;
|
|
struct nfe_desc64 *desc64;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map,
|
|
m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
data = &sc->rxq.data[idx];
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map);
|
|
}
|
|
map = data->rx_data_map;
|
|
data->rx_data_map = sc->rxq.rx_spare_map;
|
|
sc->rxq.rx_spare_map = map;
|
|
bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
|
|
BUS_DMASYNC_PREREAD);
|
|
data->paddr = segs[0].ds_addr;
|
|
data->m = m;
|
|
/* update mapping address in h/w descriptor */
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc64 = &sc->rxq.desc64[idx];
|
|
desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
|
|
desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
|
|
desc64->length = htole16(segs[0].ds_len);
|
|
desc64->flags = htole16(NFE_RX_READY);
|
|
} else {
|
|
desc32 = &sc->rxq.desc32[idx];
|
|
desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
|
|
desc32->length = htole16(segs[0].ds_len);
|
|
desc32->flags = htole16(NFE_RX_READY);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_jnewbuf(struct nfe_softc *sc, int idx)
|
|
{
|
|
struct nfe_rx_data *data;
|
|
struct nfe_desc32 *desc32;
|
|
struct nfe_desc64 *desc64;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
|
|
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_pkthdr.len = m->m_len = MJUM9BYTES;
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag,
|
|
sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
data = &sc->jrxq.jdata[idx];
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map);
|
|
}
|
|
map = data->rx_data_map;
|
|
data->rx_data_map = sc->jrxq.jrx_spare_map;
|
|
sc->jrxq.jrx_spare_map = map;
|
|
bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
|
|
BUS_DMASYNC_PREREAD);
|
|
data->paddr = segs[0].ds_addr;
|
|
data->m = m;
|
|
/* update mapping address in h/w descriptor */
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc64 = &sc->jrxq.jdesc64[idx];
|
|
desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
|
|
desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
|
|
desc64->length = htole16(segs[0].ds_len);
|
|
desc64->flags = htole16(NFE_RX_READY);
|
|
} else {
|
|
desc32 = &sc->jrxq.jdesc32[idx];
|
|
desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
|
|
desc32->length = htole16(segs[0].ds_len);
|
|
desc32->flags = htole16(NFE_RX_READY);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_rxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
|
|
{
|
|
if_t ifp = sc->nfe_ifp;
|
|
struct nfe_desc32 *desc32;
|
|
struct nfe_desc64 *desc64;
|
|
struct nfe_rx_data *data;
|
|
struct mbuf *m;
|
|
uint16_t flags;
|
|
int len, prog, rx_npkts;
|
|
uint32_t vtag = 0;
|
|
|
|
rx_npkts = 0;
|
|
NFE_LOCK_ASSERT(sc);
|
|
|
|
bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) {
|
|
if (count <= 0)
|
|
break;
|
|
count--;
|
|
|
|
data = &sc->rxq.data[sc->rxq.cur];
|
|
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc64 = &sc->rxq.desc64[sc->rxq.cur];
|
|
vtag = le32toh(desc64->physaddr[1]);
|
|
flags = le16toh(desc64->flags);
|
|
len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
|
|
} else {
|
|
desc32 = &sc->rxq.desc32[sc->rxq.cur];
|
|
flags = le16toh(desc32->flags);
|
|
len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
|
|
}
|
|
|
|
if (flags & NFE_RX_READY)
|
|
break;
|
|
prog++;
|
|
if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
|
|
if (!(flags & NFE_RX_VALID_V1)) {
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
|
|
nfe_discard_rxbuf(sc, sc->rxq.cur);
|
|
continue;
|
|
}
|
|
if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
|
|
flags &= ~NFE_RX_ERROR;
|
|
len--; /* fix buffer length */
|
|
}
|
|
} else {
|
|
if (!(flags & NFE_RX_VALID_V2)) {
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
|
|
nfe_discard_rxbuf(sc, sc->rxq.cur);
|
|
continue;
|
|
}
|
|
|
|
if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
|
|
flags &= ~NFE_RX_ERROR;
|
|
len--; /* fix buffer length */
|
|
}
|
|
}
|
|
|
|
if (flags & NFE_RX_ERROR) {
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
|
|
nfe_discard_rxbuf(sc, sc->rxq.cur);
|
|
continue;
|
|
}
|
|
|
|
m = data->m;
|
|
if (nfe_newbuf(sc, sc->rxq.cur) != 0) {
|
|
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
|
|
nfe_discard_rxbuf(sc, sc->rxq.cur);
|
|
continue;
|
|
}
|
|
|
|
if ((vtag & NFE_RX_VTAG) != 0 &&
|
|
(if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
|
|
m->m_pkthdr.ether_vtag = vtag & 0xffff;
|
|
m->m_flags |= M_VLANTAG;
|
|
}
|
|
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
|
|
if ((flags & NFE_RX_IP_CSUMOK) != 0) {
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
|
|
(flags & NFE_RX_UDP_CSUMOK) != 0) {
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
}
|
|
}
|
|
|
|
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
|
|
|
|
NFE_UNLOCK(sc);
|
|
if_input(ifp, m);
|
|
NFE_LOCK(sc);
|
|
rx_npkts++;
|
|
}
|
|
|
|
if (prog > 0)
|
|
bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
if (rx_npktsp != NULL)
|
|
*rx_npktsp = rx_npkts;
|
|
return (count > 0 ? 0 : EAGAIN);
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_jrxeof(struct nfe_softc *sc, int count, int *rx_npktsp)
|
|
{
|
|
if_t ifp = sc->nfe_ifp;
|
|
struct nfe_desc32 *desc32;
|
|
struct nfe_desc64 *desc64;
|
|
struct nfe_rx_data *data;
|
|
struct mbuf *m;
|
|
uint16_t flags;
|
|
int len, prog, rx_npkts;
|
|
uint32_t vtag = 0;
|
|
|
|
rx_npkts = 0;
|
|
NFE_LOCK_ASSERT(sc);
|
|
|
|
bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT),
|
|
vtag = 0) {
|
|
if (count <= 0)
|
|
break;
|
|
count--;
|
|
|
|
data = &sc->jrxq.jdata[sc->jrxq.jcur];
|
|
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur];
|
|
vtag = le32toh(desc64->physaddr[1]);
|
|
flags = le16toh(desc64->flags);
|
|
len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
|
|
} else {
|
|
desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur];
|
|
flags = le16toh(desc32->flags);
|
|
len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
|
|
}
|
|
|
|
if (flags & NFE_RX_READY)
|
|
break;
|
|
prog++;
|
|
if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
|
|
if (!(flags & NFE_RX_VALID_V1)) {
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
|
|
nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
|
|
continue;
|
|
}
|
|
if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
|
|
flags &= ~NFE_RX_ERROR;
|
|
len--; /* fix buffer length */
|
|
}
|
|
} else {
|
|
if (!(flags & NFE_RX_VALID_V2)) {
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
|
|
nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
|
|
continue;
|
|
}
|
|
|
|
if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
|
|
flags &= ~NFE_RX_ERROR;
|
|
len--; /* fix buffer length */
|
|
}
|
|
}
|
|
|
|
if (flags & NFE_RX_ERROR) {
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
|
|
nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
|
|
continue;
|
|
}
|
|
|
|
m = data->m;
|
|
if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) {
|
|
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
|
|
nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
|
|
continue;
|
|
}
|
|
|
|
if ((vtag & NFE_RX_VTAG) != 0 &&
|
|
(if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
|
|
m->m_pkthdr.ether_vtag = vtag & 0xffff;
|
|
m->m_flags |= M_VLANTAG;
|
|
}
|
|
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
|
|
if ((flags & NFE_RX_IP_CSUMOK) != 0) {
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
|
|
(flags & NFE_RX_UDP_CSUMOK) != 0) {
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
}
|
|
}
|
|
|
|
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
|
|
|
|
NFE_UNLOCK(sc);
|
|
if_input(ifp, m);
|
|
NFE_LOCK(sc);
|
|
rx_npkts++;
|
|
}
|
|
|
|
if (prog > 0)
|
|
bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
if (rx_npktsp != NULL)
|
|
*rx_npktsp = rx_npkts;
|
|
return (count > 0 ? 0 : EAGAIN);
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_txeof(struct nfe_softc *sc)
|
|
{
|
|
if_t ifp = sc->nfe_ifp;
|
|
struct nfe_desc32 *desc32;
|
|
struct nfe_desc64 *desc64;
|
|
struct nfe_tx_data *data = NULL;
|
|
uint16_t flags;
|
|
int cons, prog;
|
|
|
|
NFE_LOCK_ASSERT(sc);
|
|
|
|
bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
prog = 0;
|
|
for (cons = sc->txq.next; cons != sc->txq.cur;
|
|
NFE_INC(cons, NFE_TX_RING_COUNT)) {
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc64 = &sc->txq.desc64[cons];
|
|
flags = le16toh(desc64->flags);
|
|
} else {
|
|
desc32 = &sc->txq.desc32[cons];
|
|
flags = le16toh(desc32->flags);
|
|
}
|
|
|
|
if (flags & NFE_TX_VALID)
|
|
break;
|
|
|
|
prog++;
|
|
sc->txq.queued--;
|
|
data = &sc->txq.data[cons];
|
|
|
|
if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
|
|
if ((flags & NFE_TX_LASTFRAG_V1) == 0)
|
|
continue;
|
|
if ((flags & NFE_TX_ERROR_V1) != 0) {
|
|
device_printf(sc->nfe_dev,
|
|
"tx v1 error 0x%4b\n", flags, NFE_V1_TXERR);
|
|
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
} else
|
|
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
|
|
} else {
|
|
if ((flags & NFE_TX_LASTFRAG_V2) == 0)
|
|
continue;
|
|
if ((flags & NFE_TX_ERROR_V2) != 0) {
|
|
device_printf(sc->nfe_dev,
|
|
"tx v2 error 0x%4b\n", flags, NFE_V2_TXERR);
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
} else
|
|
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
|
|
}
|
|
|
|
/* last fragment of the mbuf chain transmitted */
|
|
KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__));
|
|
bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
|
|
if (prog > 0) {
|
|
sc->nfe_force_tx = 0;
|
|
sc->txq.next = cons;
|
|
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
|
|
if (sc->txq.queued == 0)
|
|
sc->nfe_watchdog_timer = 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
nfe_encap(struct nfe_softc *sc, struct mbuf **m_head)
|
|
{
|
|
struct nfe_desc32 *desc32 = NULL;
|
|
struct nfe_desc64 *desc64 = NULL;
|
|
bus_dmamap_t map;
|
|
bus_dma_segment_t segs[NFE_MAX_SCATTER];
|
|
int error, i, nsegs, prod, si;
|
|
uint32_t tsosegsz;
|
|
uint16_t cflags, flags;
|
|
struct mbuf *m;
|
|
|
|
prod = si = sc->txq.cur;
|
|
map = sc->txq.data[prod].tx_data_map;
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs,
|
|
&nsegs, BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
m = m_collapse(*m_head, M_NOWAIT, NFE_MAX_SCATTER);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map,
|
|
*m_head, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
if (nsegs == 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (EIO);
|
|
}
|
|
|
|
if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) {
|
|
bus_dmamap_unload(sc->txq.tx_data_tag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
m = *m_head;
|
|
cflags = flags = 0;
|
|
tsosegsz = 0;
|
|
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
|
|
tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
|
|
NFE_TX_TSO_SHIFT;
|
|
cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM);
|
|
cflags |= NFE_TX_TSO;
|
|
} else if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) {
|
|
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
|
|
cflags |= NFE_TX_IP_CSUM;
|
|
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
|
|
cflags |= NFE_TX_TCP_UDP_CSUM;
|
|
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
|
|
cflags |= NFE_TX_TCP_UDP_CSUM;
|
|
}
|
|
|
|
for (i = 0; i < nsegs; i++) {
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc64 = &sc->txq.desc64[prod];
|
|
desc64->physaddr[0] =
|
|
htole32(NFE_ADDR_HI(segs[i].ds_addr));
|
|
desc64->physaddr[1] =
|
|
htole32(NFE_ADDR_LO(segs[i].ds_addr));
|
|
desc64->vtag = 0;
|
|
desc64->length = htole16(segs[i].ds_len - 1);
|
|
desc64->flags = htole16(flags);
|
|
} else {
|
|
desc32 = &sc->txq.desc32[prod];
|
|
desc32->physaddr =
|
|
htole32(NFE_ADDR_LO(segs[i].ds_addr));
|
|
desc32->length = htole16(segs[i].ds_len - 1);
|
|
desc32->flags = htole16(flags);
|
|
}
|
|
|
|
/*
|
|
* Setting of the valid bit in the first descriptor is
|
|
* deferred until the whole chain is fully setup.
|
|
*/
|
|
flags |= NFE_TX_VALID;
|
|
|
|
sc->txq.queued++;
|
|
NFE_INC(prod, NFE_TX_RING_COUNT);
|
|
}
|
|
|
|
/*
|
|
* the whole mbuf chain has been DMA mapped, fix last/first descriptor.
|
|
* csum flags, vtag and TSO belong to the first fragment only.
|
|
*/
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR) {
|
|
desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
|
|
desc64 = &sc->txq.desc64[si];
|
|
if ((m->m_flags & M_VLANTAG) != 0)
|
|
desc64->vtag = htole32(NFE_TX_VTAG |
|
|
m->m_pkthdr.ether_vtag);
|
|
if (tsosegsz != 0) {
|
|
/*
|
|
* XXX
|
|
* The following indicates the descriptor element
|
|
* is a 32bit quantity.
|
|
*/
|
|
desc64->length |= htole16((uint16_t)tsosegsz);
|
|
desc64->flags |= htole16(tsosegsz >> 16);
|
|
}
|
|
/*
|
|
* finally, set the valid/checksum/TSO bit in the first
|
|
* descriptor.
|
|
*/
|
|
desc64->flags |= htole16(NFE_TX_VALID | cflags);
|
|
} else {
|
|
if (sc->nfe_flags & NFE_JUMBO_SUP)
|
|
desc32->flags |= htole16(NFE_TX_LASTFRAG_V2);
|
|
else
|
|
desc32->flags |= htole16(NFE_TX_LASTFRAG_V1);
|
|
desc32 = &sc->txq.desc32[si];
|
|
if (tsosegsz != 0) {
|
|
/*
|
|
* XXX
|
|
* The following indicates the descriptor element
|
|
* is a 32bit quantity.
|
|
*/
|
|
desc32->length |= htole16((uint16_t)tsosegsz);
|
|
desc32->flags |= htole16(tsosegsz >> 16);
|
|
}
|
|
/*
|
|
* finally, set the valid/checksum/TSO bit in the first
|
|
* descriptor.
|
|
*/
|
|
desc32->flags |= htole16(NFE_TX_VALID | cflags);
|
|
}
|
|
|
|
sc->txq.cur = prod;
|
|
prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT;
|
|
sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map;
|
|
sc->txq.data[prod].tx_data_map = map;
|
|
sc->txq.data[prod].m = m;
|
|
|
|
bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_setmulti(struct nfe_softc *sc)
|
|
{
|
|
if_t ifp = sc->nfe_ifp;
|
|
int i, mc_count, mcnt;
|
|
uint32_t filter;
|
|
uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
|
|
uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
|
|
};
|
|
uint8_t *mta;
|
|
|
|
NFE_LOCK_ASSERT(sc);
|
|
|
|
if ((if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
|
|
bzero(addr, ETHER_ADDR_LEN);
|
|
bzero(mask, ETHER_ADDR_LEN);
|
|
goto done;
|
|
}
|
|
|
|
bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
|
|
bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
|
|
|
|
mc_count = if_multiaddr_count(ifp, -1);
|
|
mta = malloc(sizeof(uint8_t) * ETHER_ADDR_LEN * mc_count, M_DEVBUF,
|
|
M_NOWAIT);
|
|
|
|
/* Unable to get memory - process without filtering */
|
|
if (mta == NULL) {
|
|
device_printf(sc->nfe_dev, "nfe_setmulti: failed to allocate"
|
|
"temp multicast buffer!\n");
|
|
|
|
bzero(addr, ETHER_ADDR_LEN);
|
|
bzero(mask, ETHER_ADDR_LEN);
|
|
goto done;
|
|
}
|
|
|
|
if_multiaddr_array(ifp, mta, &mcnt, mc_count);
|
|
|
|
for (i = 0; i < mcnt; i++) {
|
|
uint8_t *addrp;
|
|
int j;
|
|
|
|
addrp = mta + (i * ETHER_ADDR_LEN);
|
|
for (j = 0; j < ETHER_ADDR_LEN; j++) {
|
|
u_int8_t mcaddr = addrp[j];
|
|
addr[j] &= mcaddr;
|
|
mask[j] &= ~mcaddr;
|
|
}
|
|
}
|
|
|
|
free(mta, M_DEVBUF);
|
|
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++) {
|
|
mask[i] |= addr[i];
|
|
}
|
|
|
|
done:
|
|
addr[0] |= 0x01; /* make sure multicast bit is set */
|
|
|
|
NFE_WRITE(sc, NFE_MULTIADDR_HI,
|
|
addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
|
|
NFE_WRITE(sc, NFE_MULTIADDR_LO,
|
|
addr[5] << 8 | addr[4]);
|
|
NFE_WRITE(sc, NFE_MULTIMASK_HI,
|
|
mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
|
|
NFE_WRITE(sc, NFE_MULTIMASK_LO,
|
|
mask[5] << 8 | mask[4]);
|
|
|
|
filter = NFE_READ(sc, NFE_RXFILTER);
|
|
filter &= NFE_PFF_RX_PAUSE;
|
|
filter |= NFE_RXFILTER_MAGIC;
|
|
filter |= (if_getflags(ifp) & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M;
|
|
NFE_WRITE(sc, NFE_RXFILTER, filter);
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_start(if_t ifp)
|
|
{
|
|
struct nfe_softc *sc = if_getsoftc(ifp);
|
|
|
|
NFE_LOCK(sc);
|
|
nfe_start_locked(ifp);
|
|
NFE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
nfe_start_locked(if_t ifp)
|
|
{
|
|
struct nfe_softc *sc = if_getsoftc(ifp);
|
|
struct mbuf *m0;
|
|
int enq = 0;
|
|
|
|
NFE_LOCK_ASSERT(sc);
|
|
|
|
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING || sc->nfe_link == 0)
|
|
return;
|
|
|
|
while (!if_sendq_empty(ifp)) {
|
|
m0 = if_dequeue(ifp);
|
|
|
|
if (m0 == NULL)
|
|
break;
|
|
|
|
if (nfe_encap(sc, &m0) != 0) {
|
|
if (m0 == NULL)
|
|
break;
|
|
if_sendq_prepend(ifp, m0);
|
|
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
|
|
break;
|
|
}
|
|
enq++;
|
|
if_etherbpfmtap(ifp, m0);
|
|
}
|
|
|
|
if (enq > 0) {
|
|
bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/* kick Tx */
|
|
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
sc->nfe_watchdog_timer = 5;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_watchdog(if_t ifp)
|
|
{
|
|
struct nfe_softc *sc = if_getsoftc(ifp);
|
|
|
|
if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer)
|
|
return;
|
|
|
|
/* Check if we've lost Tx completion interrupt. */
|
|
nfe_txeof(sc);
|
|
if (sc->txq.queued == 0) {
|
|
if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
|
|
"-- recovering\n");
|
|
if (!if_sendq_empty(ifp))
|
|
nfe_start_locked(ifp);
|
|
return;
|
|
}
|
|
/* Check if we've lost start Tx command. */
|
|
sc->nfe_force_tx++;
|
|
if (sc->nfe_force_tx <= 3) {
|
|
/*
|
|
* If this is the case for watchdog timeout, the following
|
|
* code should go to nfe_txeof().
|
|
*/
|
|
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
|
|
return;
|
|
}
|
|
sc->nfe_force_tx = 0;
|
|
|
|
if_printf(ifp, "watchdog timeout\n");
|
|
|
|
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
nfe_init_locked(sc);
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_init(void *xsc)
|
|
{
|
|
struct nfe_softc *sc = xsc;
|
|
|
|
NFE_LOCK(sc);
|
|
nfe_init_locked(sc);
|
|
NFE_UNLOCK(sc);
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_init_locked(void *xsc)
|
|
{
|
|
struct nfe_softc *sc = xsc;
|
|
if_t ifp = sc->nfe_ifp;
|
|
struct mii_data *mii;
|
|
uint32_t val;
|
|
int error;
|
|
|
|
NFE_LOCK_ASSERT(sc);
|
|
|
|
mii = device_get_softc(sc->nfe_miibus);
|
|
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
|
|
return;
|
|
|
|
nfe_stop(ifp);
|
|
|
|
sc->nfe_framesize = if_getmtu(ifp) + NFE_RX_HEADERS;
|
|
|
|
nfe_init_tx_ring(sc, &sc->txq);
|
|
if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN))
|
|
error = nfe_init_jrx_ring(sc, &sc->jrxq);
|
|
else
|
|
error = nfe_init_rx_ring(sc, &sc->rxq);
|
|
if (error != 0) {
|
|
device_printf(sc->nfe_dev,
|
|
"initialization failed: no memory for rx buffers\n");
|
|
nfe_stop(ifp);
|
|
return;
|
|
}
|
|
|
|
val = 0;
|
|
if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0)
|
|
val |= NFE_MAC_ADDR_INORDER;
|
|
NFE_WRITE(sc, NFE_TX_UNK, val);
|
|
NFE_WRITE(sc, NFE_STATUS, 0);
|
|
|
|
if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0)
|
|
NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE);
|
|
|
|
sc->rxtxctl = NFE_RXTX_BIT2;
|
|
if (sc->nfe_flags & NFE_40BIT_ADDR)
|
|
sc->rxtxctl |= NFE_RXTX_V3MAGIC;
|
|
else if (sc->nfe_flags & NFE_JUMBO_SUP)
|
|
sc->rxtxctl |= NFE_RXTX_V2MAGIC;
|
|
|
|
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
|
|
sc->rxtxctl |= NFE_RXTX_RXCSUM;
|
|
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
|
|
sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP;
|
|
|
|
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
|
|
DELAY(10);
|
|
NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
|
|
|
|
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
|
|
NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
|
|
else
|
|
NFE_WRITE(sc, NFE_VTAG_CTL, 0);
|
|
|
|
NFE_WRITE(sc, NFE_SETUP_R6, 0);
|
|
|
|
/* set MAC address */
|
|
nfe_set_macaddr(sc, if_getlladdr(ifp));
|
|
|
|
/* tell MAC where rings are in memory */
|
|
if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) {
|
|
NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
|
|
NFE_ADDR_HI(sc->jrxq.jphysaddr));
|
|
NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
|
|
NFE_ADDR_LO(sc->jrxq.jphysaddr));
|
|
} else {
|
|
NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
|
|
NFE_ADDR_HI(sc->rxq.physaddr));
|
|
NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
|
|
NFE_ADDR_LO(sc->rxq.physaddr));
|
|
}
|
|
NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr));
|
|
NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
|
|
|
|
NFE_WRITE(sc, NFE_RING_SIZE,
|
|
(NFE_RX_RING_COUNT - 1) << 16 |
|
|
(NFE_TX_RING_COUNT - 1));
|
|
|
|
NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize);
|
|
|
|
/* force MAC to wakeup */
|
|
val = NFE_READ(sc, NFE_PWR_STATE);
|
|
if ((val & NFE_PWR_WAKEUP) == 0)
|
|
NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP);
|
|
DELAY(10);
|
|
val = NFE_READ(sc, NFE_PWR_STATE);
|
|
NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID);
|
|
|
|
#if 1
|
|
/* configure interrupts coalescing/mitigation */
|
|
NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
|
|
#else
|
|
/* no interrupt mitigation: one interrupt per packet */
|
|
NFE_WRITE(sc, NFE_IMTIMER, 970);
|
|
#endif
|
|
|
|
NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100);
|
|
NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
|
|
NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
|
|
|
|
/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
|
|
NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
|
|
|
|
NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
|
|
/* Disable WOL. */
|
|
NFE_WRITE(sc, NFE_WOL_CTL, 0);
|
|
|
|
sc->rxtxctl &= ~NFE_RXTX_BIT2;
|
|
NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
|
|
DELAY(10);
|
|
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
|
|
|
|
/* set Rx filter */
|
|
nfe_setmulti(sc);
|
|
|
|
/* enable Rx */
|
|
NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
|
|
|
|
/* enable Tx */
|
|
NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
|
|
|
|
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
|
|
|
|
/* Clear hardware stats. */
|
|
nfe_stats_clear(sc);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (if_getcapenable(ifp) & IFCAP_POLLING)
|
|
nfe_disable_intr(sc);
|
|
else
|
|
#endif
|
|
nfe_set_intr(sc);
|
|
nfe_enable_intr(sc); /* enable interrupts */
|
|
|
|
if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
|
|
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
|
|
|
|
sc->nfe_link = 0;
|
|
mii_mediachg(mii);
|
|
|
|
callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_stop(if_t ifp)
|
|
{
|
|
struct nfe_softc *sc = if_getsoftc(ifp);
|
|
struct nfe_rx_ring *rx_ring;
|
|
struct nfe_jrx_ring *jrx_ring;
|
|
struct nfe_tx_ring *tx_ring;
|
|
struct nfe_rx_data *rdata;
|
|
struct nfe_tx_data *tdata;
|
|
int i;
|
|
|
|
NFE_LOCK_ASSERT(sc);
|
|
|
|
sc->nfe_watchdog_timer = 0;
|
|
if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
|
|
|
|
callout_stop(&sc->nfe_stat_ch);
|
|
|
|
/* abort Tx */
|
|
NFE_WRITE(sc, NFE_TX_CTL, 0);
|
|
|
|
/* disable Rx */
|
|
NFE_WRITE(sc, NFE_RX_CTL, 0);
|
|
|
|
/* disable interrupts */
|
|
nfe_disable_intr(sc);
|
|
|
|
sc->nfe_link = 0;
|
|
|
|
/* free Rx and Tx mbufs still in the queues. */
|
|
rx_ring = &sc->rxq;
|
|
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
|
|
rdata = &rx_ring->data[i];
|
|
if (rdata->m != NULL) {
|
|
bus_dmamap_sync(rx_ring->rx_data_tag,
|
|
rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rx_ring->rx_data_tag,
|
|
rdata->rx_data_map);
|
|
m_freem(rdata->m);
|
|
rdata->m = NULL;
|
|
}
|
|
}
|
|
|
|
if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) {
|
|
jrx_ring = &sc->jrxq;
|
|
for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
|
|
rdata = &jrx_ring->jdata[i];
|
|
if (rdata->m != NULL) {
|
|
bus_dmamap_sync(jrx_ring->jrx_data_tag,
|
|
rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(jrx_ring->jrx_data_tag,
|
|
rdata->rx_data_map);
|
|
m_freem(rdata->m);
|
|
rdata->m = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
tx_ring = &sc->txq;
|
|
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
|
|
tdata = &tx_ring->data[i];
|
|
if (tdata->m != NULL) {
|
|
bus_dmamap_sync(tx_ring->tx_data_tag,
|
|
tdata->tx_data_map, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(tx_ring->tx_data_tag,
|
|
tdata->tx_data_map);
|
|
m_freem(tdata->m);
|
|
tdata->m = NULL;
|
|
}
|
|
}
|
|
/* Update hardware stats. */
|
|
nfe_stats_update(sc);
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_ifmedia_upd(if_t ifp)
|
|
{
|
|
struct nfe_softc *sc = if_getsoftc(ifp);
|
|
struct mii_data *mii;
|
|
|
|
NFE_LOCK(sc);
|
|
mii = device_get_softc(sc->nfe_miibus);
|
|
mii_mediachg(mii);
|
|
NFE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct nfe_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = if_getsoftc(ifp);
|
|
|
|
NFE_LOCK(sc);
|
|
mii = device_get_softc(sc->nfe_miibus);
|
|
mii_pollstat(mii);
|
|
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
NFE_UNLOCK(sc);
|
|
}
|
|
|
|
|
|
void
|
|
nfe_tick(void *xsc)
|
|
{
|
|
struct nfe_softc *sc;
|
|
struct mii_data *mii;
|
|
if_t ifp;
|
|
|
|
sc = (struct nfe_softc *)xsc;
|
|
|
|
NFE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->nfe_ifp;
|
|
|
|
mii = device_get_softc(sc->nfe_miibus);
|
|
mii_tick(mii);
|
|
nfe_stats_update(sc);
|
|
nfe_watchdog(ifp);
|
|
callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
|
|
}
|
|
|
|
|
|
static int
|
|
nfe_shutdown(device_t dev)
|
|
{
|
|
|
|
return (nfe_suspend(dev));
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
|
|
{
|
|
uint32_t val;
|
|
|
|
if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
|
|
val = NFE_READ(sc, NFE_MACADDR_LO);
|
|
addr[0] = (val >> 8) & 0xff;
|
|
addr[1] = (val & 0xff);
|
|
|
|
val = NFE_READ(sc, NFE_MACADDR_HI);
|
|
addr[2] = (val >> 24) & 0xff;
|
|
addr[3] = (val >> 16) & 0xff;
|
|
addr[4] = (val >> 8) & 0xff;
|
|
addr[5] = (val & 0xff);
|
|
} else {
|
|
val = NFE_READ(sc, NFE_MACADDR_LO);
|
|
addr[5] = (val >> 8) & 0xff;
|
|
addr[4] = (val & 0xff);
|
|
|
|
val = NFE_READ(sc, NFE_MACADDR_HI);
|
|
addr[3] = (val >> 24) & 0xff;
|
|
addr[2] = (val >> 16) & 0xff;
|
|
addr[1] = (val >> 8) & 0xff;
|
|
addr[0] = (val & 0xff);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr)
|
|
{
|
|
|
|
NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] << 8 | addr[4]);
|
|
NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 |
|
|
addr[1] << 8 | addr[0]);
|
|
}
|
|
|
|
|
|
/*
|
|
* Map a single buffer address.
|
|
*/
|
|
|
|
static void
|
|
nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct nfe_dmamap_arg *ctx;
|
|
|
|
if (error != 0)
|
|
return;
|
|
|
|
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
|
|
|
|
ctx = (struct nfe_dmamap_arg *)arg;
|
|
ctx->nfe_busaddr = segs[0].ds_addr;
|
|
}
|
|
|
|
|
|
static int
|
|
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
|
|
{
|
|
int error, value;
|
|
|
|
if (!arg1)
|
|
return (EINVAL);
|
|
value = *(int *)arg1;
|
|
error = sysctl_handle_int(oidp, &value, 0, req);
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
if (value < low || value > high)
|
|
return (EINVAL);
|
|
*(int *)arg1 = value;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int
|
|
sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
|
|
return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN,
|
|
NFE_PROC_MAX));
|
|
}
|
|
|
|
|
|
#define NFE_SYSCTL_STAT_ADD32(c, h, n, p, d) \
|
|
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
|
|
#define NFE_SYSCTL_STAT_ADD64(c, h, n, p, d) \
|
|
SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
|
|
|
|
static void
|
|
nfe_sysctl_node(struct nfe_softc *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid_list *child, *parent;
|
|
struct sysctl_oid *tree;
|
|
struct nfe_hw_stats *stats;
|
|
int error;
|
|
|
|
stats = &sc->nfe_stats;
|
|
ctx = device_get_sysctl_ctx(sc->nfe_dev);
|
|
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nfe_dev));
|
|
SYSCTL_ADD_PROC(ctx, child,
|
|
OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
|
|
&sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I",
|
|
"max number of Rx events to process");
|
|
|
|
sc->nfe_process_limit = NFE_PROC_DEFAULT;
|
|
error = resource_int_value(device_get_name(sc->nfe_dev),
|
|
device_get_unit(sc->nfe_dev), "process_limit",
|
|
&sc->nfe_process_limit);
|
|
if (error == 0) {
|
|
if (sc->nfe_process_limit < NFE_PROC_MIN ||
|
|
sc->nfe_process_limit > NFE_PROC_MAX) {
|
|
device_printf(sc->nfe_dev,
|
|
"process_limit value out of range; "
|
|
"using default: %d\n", NFE_PROC_DEFAULT);
|
|
sc->nfe_process_limit = NFE_PROC_DEFAULT;
|
|
}
|
|
}
|
|
|
|
if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
|
|
return;
|
|
|
|
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
|
|
NULL, "NFE statistics");
|
|
parent = SYSCTL_CHILDREN(tree);
|
|
|
|
/* Rx statistics. */
|
|
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
|
|
NULL, "Rx MAC statistics");
|
|
child = SYSCTL_CHILDREN(tree);
|
|
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "frame_errors",
|
|
&stats->rx_frame_errors, "Framing Errors");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "extra_bytes",
|
|
&stats->rx_extra_bytes, "Extra Bytes");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
|
|
&stats->rx_late_cols, "Late Collisions");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "runts",
|
|
&stats->rx_runts, "Runts");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "jumbos",
|
|
&stats->rx_jumbos, "Jumbos");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_overuns",
|
|
&stats->rx_fifo_overuns, "FIFO Overruns");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "crc_errors",
|
|
&stats->rx_crc_errors, "CRC Errors");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "fae",
|
|
&stats->rx_fae, "Frame Alignment Errors");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "len_errors",
|
|
&stats->rx_len_errors, "Length Errors");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
|
|
&stats->rx_unicast, "Unicast Frames");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
|
|
&stats->rx_multicast, "Multicast Frames");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
|
|
&stats->rx_broadcast, "Broadcast Frames");
|
|
if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
|
|
NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
|
|
&stats->rx_octets, "Octets");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
|
|
&stats->rx_pause, "Pause frames");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "drops",
|
|
&stats->rx_drops, "Drop frames");
|
|
}
|
|
|
|
/* Tx statistics. */
|
|
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
|
|
NULL, "Tx MAC statistics");
|
|
child = SYSCTL_CHILDREN(tree);
|
|
NFE_SYSCTL_STAT_ADD64(ctx, child, "octets",
|
|
&stats->tx_octets, "Octets");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "zero_rexmits",
|
|
&stats->tx_zero_rexmits, "Zero Retransmits");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "one_rexmits",
|
|
&stats->tx_one_rexmits, "One Retransmits");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "multi_rexmits",
|
|
&stats->tx_multi_rexmits, "Multiple Retransmits");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols",
|
|
&stats->tx_late_cols, "Late Collisions");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_underuns",
|
|
&stats->tx_fifo_underuns, "FIFO Underruns");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "carrier_losts",
|
|
&stats->tx_carrier_losts, "Carrier Losts");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "excess_deferrals",
|
|
&stats->tx_excess_deferals, "Excess Deferrals");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "retry_errors",
|
|
&stats->tx_retry_errors, "Retry Errors");
|
|
if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "deferrals",
|
|
&stats->tx_deferals, "Deferrals");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "frames",
|
|
&stats->tx_frames, "Frames");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "pause",
|
|
&stats->tx_pause, "Pause Frames");
|
|
}
|
|
if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast",
|
|
&stats->tx_deferals, "Unicast Frames");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast",
|
|
&stats->tx_frames, "Multicast Frames");
|
|
NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast",
|
|
&stats->tx_pause, "Broadcast Frames");
|
|
}
|
|
}
|
|
|
|
#undef NFE_SYSCTL_STAT_ADD32
|
|
#undef NFE_SYSCTL_STAT_ADD64
|
|
|
|
static void
|
|
nfe_stats_clear(struct nfe_softc *sc)
|
|
{
|
|
int i, mib_cnt;
|
|
|
|
if ((sc->nfe_flags & NFE_MIB_V1) != 0)
|
|
mib_cnt = NFE_NUM_MIB_STATV1;
|
|
else if ((sc->nfe_flags & (NFE_MIB_V2 | NFE_MIB_V3)) != 0)
|
|
mib_cnt = NFE_NUM_MIB_STATV2;
|
|
else
|
|
return;
|
|
|
|
for (i = 0; i < mib_cnt; i++)
|
|
NFE_READ(sc, NFE_TX_OCTET + i * sizeof(uint32_t));
|
|
|
|
if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
|
|
NFE_READ(sc, NFE_TX_UNICAST);
|
|
NFE_READ(sc, NFE_TX_MULTICAST);
|
|
NFE_READ(sc, NFE_TX_BROADCAST);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nfe_stats_update(struct nfe_softc *sc)
|
|
{
|
|
struct nfe_hw_stats *stats;
|
|
|
|
NFE_LOCK_ASSERT(sc);
|
|
|
|
if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0)
|
|
return;
|
|
|
|
stats = &sc->nfe_stats;
|
|
stats->tx_octets += NFE_READ(sc, NFE_TX_OCTET);
|
|
stats->tx_zero_rexmits += NFE_READ(sc, NFE_TX_ZERO_REXMIT);
|
|
stats->tx_one_rexmits += NFE_READ(sc, NFE_TX_ONE_REXMIT);
|
|
stats->tx_multi_rexmits += NFE_READ(sc, NFE_TX_MULTI_REXMIT);
|
|
stats->tx_late_cols += NFE_READ(sc, NFE_TX_LATE_COL);
|
|
stats->tx_fifo_underuns += NFE_READ(sc, NFE_TX_FIFO_UNDERUN);
|
|
stats->tx_carrier_losts += NFE_READ(sc, NFE_TX_CARRIER_LOST);
|
|
stats->tx_excess_deferals += NFE_READ(sc, NFE_TX_EXCESS_DEFERRAL);
|
|
stats->tx_retry_errors += NFE_READ(sc, NFE_TX_RETRY_ERROR);
|
|
stats->rx_frame_errors += NFE_READ(sc, NFE_RX_FRAME_ERROR);
|
|
stats->rx_extra_bytes += NFE_READ(sc, NFE_RX_EXTRA_BYTES);
|
|
stats->rx_late_cols += NFE_READ(sc, NFE_RX_LATE_COL);
|
|
stats->rx_runts += NFE_READ(sc, NFE_RX_RUNT);
|
|
stats->rx_jumbos += NFE_READ(sc, NFE_RX_JUMBO);
|
|
stats->rx_fifo_overuns += NFE_READ(sc, NFE_RX_FIFO_OVERUN);
|
|
stats->rx_crc_errors += NFE_READ(sc, NFE_RX_CRC_ERROR);
|
|
stats->rx_fae += NFE_READ(sc, NFE_RX_FAE);
|
|
stats->rx_len_errors += NFE_READ(sc, NFE_RX_LEN_ERROR);
|
|
stats->rx_unicast += NFE_READ(sc, NFE_RX_UNICAST);
|
|
stats->rx_multicast += NFE_READ(sc, NFE_RX_MULTICAST);
|
|
stats->rx_broadcast += NFE_READ(sc, NFE_RX_BROADCAST);
|
|
|
|
if ((sc->nfe_flags & NFE_MIB_V2) != 0) {
|
|
stats->tx_deferals += NFE_READ(sc, NFE_TX_DEFERAL);
|
|
stats->tx_frames += NFE_READ(sc, NFE_TX_FRAME);
|
|
stats->rx_octets += NFE_READ(sc, NFE_RX_OCTET);
|
|
stats->tx_pause += NFE_READ(sc, NFE_TX_PAUSE);
|
|
stats->rx_pause += NFE_READ(sc, NFE_RX_PAUSE);
|
|
stats->rx_drops += NFE_READ(sc, NFE_RX_DROP);
|
|
}
|
|
|
|
if ((sc->nfe_flags & NFE_MIB_V3) != 0) {
|
|
stats->tx_unicast += NFE_READ(sc, NFE_TX_UNICAST);
|
|
stats->tx_multicast += NFE_READ(sc, NFE_TX_MULTICAST);
|
|
stats->tx_broadcast += NFE_READ(sc, NFE_TX_BROADCAST);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_set_linkspeed(struct nfe_softc *sc)
|
|
{
|
|
struct mii_softc *miisc;
|
|
struct mii_data *mii;
|
|
int aneg, i, phyno;
|
|
|
|
NFE_LOCK_ASSERT(sc);
|
|
|
|
mii = device_get_softc(sc->nfe_miibus);
|
|
mii_pollstat(mii);
|
|
aneg = 0;
|
|
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
|
|
(IFM_ACTIVE | IFM_AVALID)) {
|
|
switch IFM_SUBTYPE(mii->mii_media_active) {
|
|
case IFM_10_T:
|
|
case IFM_100_TX:
|
|
return;
|
|
case IFM_1000_T:
|
|
aneg++;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
miisc = LIST_FIRST(&mii->mii_phys);
|
|
phyno = miisc->mii_phy;
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
PHY_RESET(miisc);
|
|
nfe_miibus_writereg(sc->nfe_dev, phyno, MII_100T2CR, 0);
|
|
nfe_miibus_writereg(sc->nfe_dev, phyno,
|
|
MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
|
|
nfe_miibus_writereg(sc->nfe_dev, phyno,
|
|
MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
|
|
DELAY(1000);
|
|
if (aneg != 0) {
|
|
/*
|
|
* Poll link state until nfe(4) get a 10/100Mbps link.
|
|
*/
|
|
for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
|
|
mii_pollstat(mii);
|
|
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
|
|
== (IFM_ACTIVE | IFM_AVALID)) {
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_10_T:
|
|
case IFM_100_TX:
|
|
nfe_mac_config(sc, mii);
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
NFE_UNLOCK(sc);
|
|
pause("nfelnk", hz);
|
|
NFE_LOCK(sc);
|
|
}
|
|
if (i == MII_ANEGTICKS_GIGE)
|
|
device_printf(sc->nfe_dev,
|
|
"establishing a link failed, WOL may not work!");
|
|
}
|
|
/*
|
|
* No link, force MAC to have 100Mbps, full-duplex link.
|
|
* This is the last resort and may/may not work.
|
|
*/
|
|
mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
|
|
mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
|
|
nfe_mac_config(sc, mii);
|
|
}
|
|
|
|
|
|
static void
|
|
nfe_set_wol(struct nfe_softc *sc)
|
|
{
|
|
if_t ifp;
|
|
uint32_t wolctl;
|
|
int pmc;
|
|
uint16_t pmstat;
|
|
|
|
NFE_LOCK_ASSERT(sc);
|
|
|
|
if (pci_find_cap(sc->nfe_dev, PCIY_PMG, &pmc) != 0)
|
|
return;
|
|
ifp = sc->nfe_ifp;
|
|
if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
|
|
wolctl = NFE_WOL_MAGIC;
|
|
else
|
|
wolctl = 0;
|
|
NFE_WRITE(sc, NFE_WOL_CTL, wolctl);
|
|
if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
|
|
nfe_set_linkspeed(sc);
|
|
if ((sc->nfe_flags & NFE_PWR_MGMT) != 0)
|
|
NFE_WRITE(sc, NFE_PWR2_CTL,
|
|
NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_GATE_CLOCKS);
|
|
/* Enable RX. */
|
|
NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 0);
|
|
NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 0);
|
|
NFE_WRITE(sc, NFE_RX_CTL, NFE_READ(sc, NFE_RX_CTL) |
|
|
NFE_RX_START);
|
|
}
|
|
/* Request PME if WOL is requested. */
|
|
pmstat = pci_read_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, 2);
|
|
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
|
|
if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
|
|
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
|
|
pci_write_config(sc->nfe_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
|
|
}
|