freebsd-skq/sys/arm/allwinner/axp209.c
manu 9d3514c51b Add support for AXP221 Power Management Unit.
AXP221 is used on board with A31/A31S and is mostly compatible with AXP209.
Regulators, GPIO and Sensors are supported.

MFC after:	2 weeks
2016-11-04 20:02:52 +00:00

1455 lines
34 KiB
C

/*-
* Copyright (c) 2015-2016 Emmanuel Vadot <manu@freebsd.org>
* Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* X-Power AXP209/AXP211 PMU for Allwinner SoCs
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/clock.h>
#include <sys/time.h>
#include <sys/bus.h>
#include <sys/proc.h>
#include <sys/gpio.h>
#include <sys/reboot.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <dev/iicbus/iicbus.h>
#include <dev/iicbus/iiconf.h>
#include <dev/gpio/gpiobusvar.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/extres/regulator/regulator.h>
#include <arm/allwinner/axp209reg.h>
#include "iicbus_if.h"
#include "gpio_if.h"
#include "regdev_if.h"
MALLOC_DEFINE(M_AXP2XX_REG, "Axp2XX regulator", "Axp2XX power regulator");
struct axp2xx_regdef {
intptr_t id;
char *name;
uint8_t enable_reg;
uint8_t enable_mask;
uint8_t voltage_reg;
uint8_t voltage_mask;
uint8_t voltage_shift;
int voltage_min;
int voltage_max;
int voltage_step;
int voltage_nstep;
};
static struct axp2xx_regdef axp209_regdefs[] = {
{
.id = AXP209_REG_ID_DCDC2,
.name = "dcdc2",
.enable_reg = AXP209_POWERCTL,
.enable_mask = AXP209_POWERCTL_DCDC2,
.voltage_reg = AXP209_REG_DCDC2_VOLTAGE,
.voltage_mask = 0x3f,
.voltage_min = 700,
.voltage_max = 2275,
.voltage_step = 25,
.voltage_nstep = 64,
},
{
.id = AXP209_REG_ID_DCDC3,
.name = "dcdc3",
.enable_reg = AXP209_POWERCTL,
.enable_mask = AXP209_POWERCTL_DCDC3,
.voltage_reg = AXP209_REG_DCDC3_VOLTAGE,
.voltage_mask = 0x7f,
.voltage_min = 700,
.voltage_max = 3500,
.voltage_step = 25,
.voltage_nstep = 128,
},
{
.id = AXP209_REG_ID_LDO2,
.name = "ldo2",
.enable_reg = AXP209_POWERCTL,
.enable_mask = AXP209_POWERCTL_LDO2,
.voltage_reg = AXP209_REG_LDO24_VOLTAGE,
.voltage_mask = 0xf0,
.voltage_shift = 4,
.voltage_min = 1800,
.voltage_max = 3300,
.voltage_step = 100,
.voltage_nstep = 16,
},
{
.id = AXP209_REG_ID_LDO3,
.name = "ldo3",
.enable_reg = AXP209_POWERCTL,
.enable_mask = AXP209_POWERCTL_LDO3,
.voltage_reg = AXP209_REG_LDO3_VOLTAGE,
.voltage_mask = 0x7f,
.voltage_min = 700,
.voltage_max = 2275,
.voltage_step = 25,
.voltage_nstep = 128,
},
};
static struct axp2xx_regdef axp221_regdefs[] = {
{
.id = AXP221_REG_ID_DLDO1,
.name = "dldo1",
.enable_reg = AXP221_POWERCTL_2,
.enable_mask = AXP221_POWERCTL2_DLDO1,
.voltage_reg = AXP221_REG_DLDO1_VOLTAGE,
.voltage_mask = 0x1f,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step = 100,
.voltage_nstep = 26,
},
{
.id = AXP221_REG_ID_DLDO2,
.name = "dldo2",
.enable_reg = AXP221_POWERCTL_2,
.enable_mask = AXP221_POWERCTL2_DLDO2,
.voltage_reg = AXP221_REG_DLDO2_VOLTAGE,
.voltage_mask = 0x1f,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step = 100,
.voltage_nstep = 26,
},
{
.id = AXP221_REG_ID_DLDO3,
.name = "dldo3",
.enable_reg = AXP221_POWERCTL_2,
.enable_mask = AXP221_POWERCTL2_DLDO3,
.voltage_reg = AXP221_REG_DLDO3_VOLTAGE,
.voltage_mask = 0x1f,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step = 100,
.voltage_nstep = 26,
},
{
.id = AXP221_REG_ID_DLDO4,
.name = "dldo4",
.enable_reg = AXP221_POWERCTL_2,
.enable_mask = AXP221_POWERCTL2_DLDO4,
.voltage_reg = AXP221_REG_DLDO4_VOLTAGE,
.voltage_mask = 0x1f,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step = 100,
.voltage_nstep = 26,
},
{
.id = AXP221_REG_ID_ELDO1,
.name = "eldo1",
.enable_reg = AXP221_POWERCTL_2,
.enable_mask = AXP221_POWERCTL2_ELDO1,
.voltage_reg = AXP221_REG_ELDO1_VOLTAGE,
.voltage_mask = 0x1f,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step = 100,
.voltage_nstep = 26,
},
{
.id = AXP221_REG_ID_ELDO2,
.name = "eldo2",
.enable_reg = AXP221_POWERCTL_2,
.enable_mask = AXP221_POWERCTL2_ELDO2,
.voltage_reg = AXP221_REG_ELDO2_VOLTAGE,
.voltage_mask = 0x1f,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step = 100,
.voltage_nstep = 26,
},
{
.id = AXP221_REG_ID_ELDO3,
.name = "eldo3",
.enable_reg = AXP221_POWERCTL_2,
.enable_mask = AXP221_POWERCTL2_ELDO3,
.voltage_reg = AXP221_REG_ELDO3_VOLTAGE,
.voltage_mask = 0x1f,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step = 100,
.voltage_nstep = 26,
},
{
.id = AXP221_REG_ID_DC5LDO,
.name = "dc5ldo",
.enable_reg = AXP221_POWERCTL_1,
.enable_mask = AXP221_POWERCTL1_DC5LDO,
.voltage_reg = AXP221_REG_DC5LDO_VOLTAGE,
.voltage_mask = 0x3,
.voltage_min = 700,
.voltage_max = 1400,
.voltage_step = 100,
.voltage_nstep = 7,
},
{
.id = AXP221_REG_ID_DCDC1,
.name = "dcdc1",
.enable_reg = AXP221_POWERCTL_1,
.enable_mask = AXP221_POWERCTL1_DCDC1,
.voltage_reg = AXP221_REG_DCDC1_VOLTAGE,
.voltage_mask = 0x1f,
.voltage_min = 1600,
.voltage_max = 3400,
.voltage_step = 100,
.voltage_nstep = 18,
},
{
.id = AXP221_REG_ID_DCDC2,
.name = "dcdc2",
.enable_reg = AXP221_POWERCTL_1,
.enable_mask = AXP221_POWERCTL1_DCDC2,
.voltage_reg = AXP221_REG_DCDC2_VOLTAGE,
.voltage_mask = 0x3f,
.voltage_min = 600,
.voltage_max = 1540,
.voltage_step = 20,
.voltage_nstep = 47,
},
{
.id = AXP221_REG_ID_DCDC3,
.name = "dcdc3",
.enable_reg = AXP221_POWERCTL_1,
.enable_mask = AXP221_POWERCTL1_DCDC3,
.voltage_reg = AXP221_REG_DCDC3_VOLTAGE,
.voltage_mask = 0x3f,
.voltage_min = 600,
.voltage_max = 1860,
.voltage_step = 20,
.voltage_nstep = 63,
},
{
.id = AXP221_REG_ID_DCDC4,
.name = "dcdc4",
.enable_reg = AXP221_POWERCTL_1,
.enable_mask = AXP221_POWERCTL1_DCDC4,
.voltage_reg = AXP221_REG_DCDC4_VOLTAGE,
.voltage_mask = 0x3f,
.voltage_min = 600,
.voltage_max = 1540,
.voltage_step = 20,
.voltage_nstep = 47,
},
{
.id = AXP221_REG_ID_DCDC5,
.name = "dcdc5",
.enable_reg = AXP221_POWERCTL_1,
.enable_mask = AXP221_POWERCTL1_DCDC5,
.voltage_reg = AXP221_REG_DCDC5_VOLTAGE,
.voltage_mask = 0x1f,
.voltage_min = 1000,
.voltage_max = 2550,
.voltage_step = 50,
.voltage_nstep = 31,
},
{
.id = AXP221_REG_ID_ALDO1,
.name = "aldo1",
.enable_reg = AXP221_POWERCTL_1,
.enable_mask = AXP221_POWERCTL1_ALDO1,
.voltage_reg = AXP221_REG_ALDO1_VOLTAGE,
.voltage_mask = 0x1f,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step = 100,
.voltage_nstep = 26,
},
{
.id = AXP221_REG_ID_ALDO2,
.name = "aldo2",
.enable_reg = AXP221_POWERCTL_1,
.enable_mask = AXP221_POWERCTL1_ALDO2,
.voltage_reg = AXP221_REG_ALDO2_VOLTAGE,
.voltage_mask = 0x1f,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step = 100,
.voltage_nstep = 26,
},
{
.id = AXP221_REG_ID_ALDO3,
.name = "aldo3",
.enable_reg = AXP221_POWERCTL_3,
.enable_mask = AXP221_POWERCTL3_ALDO3,
.voltage_reg = AXP221_REG_ALDO3_VOLTAGE,
.voltage_mask = 0x1f,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step = 100,
.voltage_nstep = 26,
},
{
.id = AXP221_REG_ID_DC1SW,
.name = "dc1sw",
.enable_reg = AXP221_POWERCTL_2,
.enable_mask = AXP221_POWERCTL2_DC1SW,
},
};
struct axp2xx_reg_sc {
struct regnode *regnode;
device_t base_dev;
struct axp2xx_regdef *def;
phandle_t xref;
struct regnode_std_param *param;
};
struct axp2xx_pins {
const char *name;
uint8_t ctrl_reg;
uint8_t status_reg;
uint8_t status_mask;
uint8_t status_shift;
};
/* GPIO3 is different, don't expose it for now */
static const struct axp2xx_pins axp209_pins[] = {
{
.name = "GPIO0",
.ctrl_reg = AXP2XX_GPIO0_CTRL,
.status_reg = AXP2XX_GPIO_STATUS,
.status_mask = 0x10,
.status_shift = 4,
},
{
.name = "GPIO1",
.ctrl_reg = AXP2XX_GPIO1_CTRL,
.status_reg = AXP2XX_GPIO_STATUS,
.status_mask = 0x20,
.status_shift = 5,
},
{
.name = "GPIO2",
.ctrl_reg = AXP209_GPIO2_CTRL,
.status_reg = AXP2XX_GPIO_STATUS,
.status_mask = 0x40,
.status_shift = 6,
},
};
static const struct axp2xx_pins axp221_pins[] = {
{
.name = "GPIO0",
.ctrl_reg = AXP2XX_GPIO0_CTRL,
.status_reg = AXP2XX_GPIO_STATUS,
.status_mask = 0x1,
.status_shift = 0x0,
},
{
.name = "GPIO1",
.ctrl_reg = AXP2XX_GPIO0_CTRL,
.status_reg = AXP2XX_GPIO_STATUS,
.status_mask = 0x2,
.status_shift = 0x1,
},
};
struct axp2xx_sensors {
int id;
const char *name;
const char *desc;
const char *format;
uint8_t enable_reg;
uint8_t enable_mask;
uint8_t value_reg;
uint8_t value_size;
uint8_t h_value_mask;
uint8_t h_value_shift;
uint8_t l_value_mask;
uint8_t l_value_shift;
int value_step;
int value_convert;
};
static const struct axp2xx_sensors axp209_sensors[] = {
{
.id = AXP209_ACVOLT,
.name = "acvolt",
.desc = "AC Voltage (microvolt)",
.format = "I",
.enable_reg = AXP2XX_ADC_ENABLE1,
.enable_mask = AXP209_ADC1_ACVOLT,
.value_reg = AXP209_ACIN_VOLTAGE,
.value_size = 2,
.h_value_mask = 0xff,
.h_value_shift = 4,
.l_value_mask = 0xf,
.l_value_shift = 0,
.value_step = AXP209_VOLT_STEP,
},
{
.id = AXP209_ACCURRENT,
.name = "accurrent",
.desc = "AC Current (microAmpere)",
.format = "I",
.enable_reg = AXP2XX_ADC_ENABLE1,
.enable_mask = AXP209_ADC1_ACCURRENT,
.value_reg = AXP209_ACIN_CURRENT,
.value_size = 2,
.h_value_mask = 0xff,
.h_value_shift = 4,
.l_value_mask = 0xf,
.l_value_shift = 0,
.value_step = AXP209_ACCURRENT_STEP,
},
{
.id = AXP209_VBUSVOLT,
.name = "vbusvolt",
.desc = "VBUS Voltage (microVolt)",
.format = "I",
.enable_reg = AXP2XX_ADC_ENABLE1,
.enable_mask = AXP209_ADC1_VBUSVOLT,
.value_reg = AXP209_VBUS_VOLTAGE,
.value_size = 2,
.h_value_mask = 0xff,
.h_value_shift = 4,
.l_value_mask = 0xf,
.l_value_shift = 0,
.value_step = AXP209_VOLT_STEP,
},
{
.id = AXP209_VBUSCURRENT,
.name = "vbuscurrent",
.desc = "VBUS Current (microAmpere)",
.format = "I",
.enable_reg = AXP2XX_ADC_ENABLE1,
.enable_mask = AXP209_ADC1_VBUSCURRENT,
.value_reg = AXP209_VBUS_CURRENT,
.value_size = 2,
.h_value_mask = 0xff,
.h_value_shift = 4,
.l_value_mask = 0xf,
.l_value_shift = 0,
.value_step = AXP209_VBUSCURRENT_STEP,
},
{
.id = AXP2XX_BATVOLT,
.name = "batvolt",
.desc = "Battery Voltage (microVolt)",
.format = "I",
.enable_reg = AXP2XX_ADC_ENABLE1,
.enable_mask = AXP2XX_ADC1_BATVOLT,
.value_reg = AXP2XX_BAT_VOLTAGE,
.value_size = 2,
.h_value_mask = 0xff,
.h_value_shift = 4,
.l_value_mask = 0xf,
.l_value_shift = 0,
.value_step = AXP2XX_BATVOLT_STEP,
},
{
.id = AXP2XX_BATCHARGECURRENT,
.name = "batchargecurrent",
.desc = "Battery Charging Current (microAmpere)",
.format = "I",
.enable_reg = AXP2XX_ADC_ENABLE1,
.enable_mask = AXP2XX_ADC1_BATCURRENT,
.value_reg = AXP2XX_BAT_CHARGE_CURRENT,
.value_size = 2,
.h_value_mask = 0xff,
.h_value_shift = 5,
.l_value_mask = 0x1f,
.l_value_shift = 0,
.value_step = AXP2XX_BATCURRENT_STEP,
},
{
.id = AXP2XX_BATDISCHARGECURRENT,
.name = "batdischargecurrent",
.desc = "Battery Discharging Current (microAmpere)",
.format = "I",
.enable_reg = AXP2XX_ADC_ENABLE1,
.enable_mask = AXP2XX_ADC1_BATCURRENT,
.value_reg = AXP2XX_BAT_DISCHARGE_CURRENT,
.value_size = 2,
.h_value_mask = 0xff,
.h_value_shift = 5,
.l_value_mask = 0x1f,
.l_value_shift = 0,
.value_step = AXP2XX_BATCURRENT_STEP,
},
{
.id = AXP2XX_TEMP,
.name = "temp",
.desc = "Internal Temperature",
.format = "IK",
.enable_reg = AXP209_ADC_ENABLE2,
.enable_mask = AXP209_ADC2_TEMP,
.value_reg = AXP209_TEMPMON,
.value_size = 2,
.h_value_mask = 0xff,
.h_value_shift = 4,
.l_value_mask = 0xf,
.l_value_shift = 0,
.value_step = 1,
.value_convert = -(AXP209_TEMPMON_MIN - AXP209_0C_TO_K),
},
};
static const struct axp2xx_sensors axp221_sensors[] = {
{
.id = AXP2XX_BATVOLT,
.name = "batvolt",
.desc = "Battery Voltage (microVolt)",
.format = "I",
.enable_reg = AXP2XX_ADC_ENABLE1,
.enable_mask = AXP2XX_ADC1_BATVOLT,
.value_reg = AXP2XX_BAT_VOLTAGE,
.value_size = 2,
.h_value_mask = 0xff,
.h_value_shift = 4,
.l_value_mask = 0xf,
.l_value_shift = 0,
.value_step = AXP2XX_BATVOLT_STEP,
},
{
.id = AXP2XX_BATCHARGECURRENT,
.name = "batchargecurrent",
.desc = "Battery Charging Current (microAmpere)",
.format = "I",
.enable_reg = AXP2XX_ADC_ENABLE1,
.enable_mask = AXP2XX_ADC1_BATCURRENT,
.value_reg = AXP2XX_BAT_CHARGE_CURRENT,
.value_size = 2,
.h_value_mask = 0xff,
.h_value_shift = 5,
.l_value_mask = 0x1f,
.l_value_shift = 0,
.value_step = AXP2XX_BATCURRENT_STEP,
},
{
.id = AXP2XX_BATDISCHARGECURRENT,
.name = "batdischargecurrent",
.desc = "Battery Discharging Current (microAmpere)",
.format = "I",
.enable_reg = AXP2XX_ADC_ENABLE1,
.enable_mask = AXP2XX_ADC1_BATCURRENT,
.value_reg = AXP2XX_BAT_DISCHARGE_CURRENT,
.value_size = 2,
.h_value_mask = 0xff,
.h_value_shift = 5,
.l_value_mask = 0x1f,
.l_value_shift = 0,
.value_step = AXP2XX_BATCURRENT_STEP,
},
{
.id = AXP2XX_TEMP,
.name = "temp",
.desc = "Internal Temperature",
.format = "IK",
.enable_reg = AXP2XX_ADC_ENABLE1,
.enable_mask = AXP221_ADC1_TEMP,
.value_reg = AXP221_TEMPMON,
.value_size = 2,
.h_value_mask = 0xff,
.h_value_shift = 4,
.l_value_mask = 0xf,
.l_value_shift = 0,
.value_step = 1,
.value_convert = -(AXP221_TEMPMON_MIN - AXP209_0C_TO_K),
},
};
enum AXP2XX_TYPE {
AXP209 = 1,
AXP221,
};
struct axp2xx_softc {
device_t dev;
uint32_t addr;
struct resource * res[1];
void * intrcookie;
struct intr_config_hook intr_hook;
struct mtx mtx;
uint8_t type;
/* GPIO */
device_t gpiodev;
int npins;
const struct axp2xx_pins *pins;
/* Sensors */
const struct axp2xx_sensors *sensors;
int nsensors;
/* Regulators */
struct axp2xx_reg_sc **regs;
int nregs;
struct axp2xx_regdef *regdefs;
};
static struct ofw_compat_data compat_data[] = {
{ "x-powers,axp209", AXP209 },
{ "x-powers,axp221", AXP221 },
{ NULL, 0 }
};
static struct resource_spec axp_res_spec[] = {
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0, 0 }
};
#define AXP_LOCK(sc) mtx_lock(&(sc)->mtx)
#define AXP_UNLOCK(sc) mtx_unlock(&(sc)->mtx)
static int
axp2xx_read(device_t dev, uint8_t reg, uint8_t *data, uint8_t size)
{
struct axp2xx_softc *sc = device_get_softc(dev);
struct iic_msg msg[2];
msg[0].slave = sc->addr;
msg[0].flags = IIC_M_WR;
msg[0].len = 1;
msg[0].buf = &reg;
msg[1].slave = sc->addr;
msg[1].flags = IIC_M_RD;
msg[1].len = size;
msg[1].buf = data;
return (iicbus_transfer(dev, msg, 2));
}
static int
axp2xx_write(device_t dev, uint8_t reg, uint8_t data)
{
uint8_t buffer[2];
struct axp2xx_softc *sc = device_get_softc(dev);
struct iic_msg msg[2];
int nmsgs = 0;
if (sc->type == AXP209) {
buffer[0] = reg;
buffer[1] = data;
msg[0].slave = sc->addr;
msg[0].flags = IIC_M_WR;
msg[0].len = 2;
msg[0].buf = buffer;
nmsgs = 1;
}
else if (sc->type == AXP221) {
msg[0].slave = sc->addr;
msg[0].flags = IIC_M_WR;
msg[0].len = 1;
msg[0].buf = &reg;
msg[1].slave = sc->addr;
msg[1].flags = IIC_M_WR;
msg[1].len = 1;
msg[1].buf = &data;
nmsgs = 2;
}
else
return (EINVAL);
return (iicbus_transfer(dev, msg, nmsgs));
}
static int
axp2xx_regnode_init(struct regnode *regnode)
{
return (0);
}
static int
axp2xx_regnode_enable(struct regnode *regnode, bool enable, int *udelay)
{
struct axp2xx_reg_sc *sc;
uint8_t val;
sc = regnode_get_softc(regnode);
axp2xx_read(sc->base_dev, sc->def->enable_reg, &val, 1);
if (enable)
val |= sc->def->enable_mask;
else
val &= ~sc->def->enable_mask;
axp2xx_write(sc->base_dev, sc->def->enable_reg, val);
*udelay = 0;
return (0);
}
static void
axp2xx_regnode_reg_to_voltage(struct axp2xx_reg_sc *sc, uint8_t val, int *uv)
{
if (val < sc->def->voltage_nstep)
*uv = sc->def->voltage_min + val * sc->def->voltage_step;
else
*uv = sc->def->voltage_min +
(sc->def->voltage_nstep * sc->def->voltage_step);
*uv *= 1000;
}
static int
axp2xx_regnode_voltage_to_reg(struct axp2xx_reg_sc *sc, int min_uvolt,
int max_uvolt, uint8_t *val)
{
uint8_t nval;
int nstep, uvolt;
nval = 0;
uvolt = sc->def->voltage_min * 1000;
for (nstep = 0; nstep < sc->def->voltage_nstep && uvolt < min_uvolt;
nstep++) {
++nval;
uvolt += (sc->def->voltage_step * 1000);
}
if (uvolt > max_uvolt)
return (EINVAL);
*val = nval;
return (0);
}
static int
axp2xx_regnode_set_voltage(struct regnode *regnode, int min_uvolt,
int max_uvolt, int *udelay)
{
struct axp2xx_reg_sc *sc;
uint8_t val;
sc = regnode_get_softc(regnode);
if (!sc->def->voltage_step)
return (ENXIO);
if (axp2xx_regnode_voltage_to_reg(sc, min_uvolt, max_uvolt, &val) != 0)
return (ERANGE);
axp2xx_write(sc->base_dev, sc->def->voltage_reg, val);
*udelay = 0;
return (0);
}
static int
axp2xx_regnode_get_voltage(struct regnode *regnode, int *uvolt)
{
struct axp2xx_reg_sc *sc;
uint8_t val;
sc = regnode_get_softc(regnode);
if (!sc->def->voltage_step)
return (ENXIO);
axp2xx_read(sc->base_dev, sc->def->voltage_reg, &val, 1);
axp2xx_regnode_reg_to_voltage(sc, val & sc->def->voltage_mask, uvolt);
return (0);
}
static regnode_method_t axp2xx_regnode_methods[] = {
/* Regulator interface */
REGNODEMETHOD(regnode_init, axp2xx_regnode_init),
REGNODEMETHOD(regnode_enable, axp2xx_regnode_enable),
REGNODEMETHOD(regnode_set_voltage, axp2xx_regnode_set_voltage),
REGNODEMETHOD(regnode_get_voltage, axp2xx_regnode_get_voltage),
REGNODEMETHOD_END
};
DEFINE_CLASS_1(axp2xx_regnode, axp2xx_regnode_class, axp2xx_regnode_methods,
sizeof(struct axp2xx_reg_sc), regnode_class);
static int
axp2xx_sysctl(SYSCTL_HANDLER_ARGS)
{
struct axp2xx_softc *sc;
device_t dev = arg1;
enum axp2xx_sensor sensor = arg2;
uint8_t data[2];
int val, error, i, found;
sc = device_get_softc(dev);
for (found = 0, i = 0; i < sc->nsensors; i++) {
if (sc->sensors[i].id == sensor) {
found = 1;
break;
}
}
if (found == 0)
return (ENOENT);
error = axp2xx_read(dev, sc->sensors[i].value_reg, data, 2);
if (error != 0)
return (error);
val = ((data[0] & sc->sensors[i].h_value_mask) <<
sc->sensors[i].h_value_shift);
val |= ((data[1] & sc->sensors[i].l_value_mask) <<
sc->sensors[i].l_value_shift);
val *= sc->sensors[i].value_step;
val += sc->sensors[i].value_convert;
return sysctl_handle_opaque(oidp, &val, sizeof(val), req);
}
static void
axp2xx_shutdown(void *devp, int howto)
{
device_t dev;
if (!(howto & RB_POWEROFF))
return;
dev = (device_t)devp;
if (bootverbose)
device_printf(dev, "Shutdown AXP2xx\n");
axp2xx_write(dev, AXP2XX_SHUTBAT, AXP2XX_SHUTBAT_SHUTDOWN);
}
static void
axp2xx_intr(void *arg)
{
struct axp2xx_softc *sc;
uint8_t reg;
sc = arg;
axp2xx_read(sc->dev, AXP2XX_IRQ1_STATUS, &reg, 1);
if (reg) {
if (reg & AXP2XX_IRQ1_AC_OVERVOLT)
devctl_notify("PMU", "AC", "overvoltage", NULL);
if (reg & AXP2XX_IRQ1_VBUS_OVERVOLT)
devctl_notify("PMU", "USB", "overvoltage", NULL);
if (reg & AXP2XX_IRQ1_VBUS_LOW)
devctl_notify("PMU", "USB", "undervoltage", NULL);
if (reg & AXP2XX_IRQ1_AC_CONN)
devctl_notify("PMU", "AC", "plugged", NULL);
if (reg & AXP2XX_IRQ1_AC_DISCONN)
devctl_notify("PMU", "AC", "unplugged", NULL);
if (reg & AXP2XX_IRQ1_VBUS_CONN)
devctl_notify("PMU", "USB", "plugged", NULL);
if (reg & AXP2XX_IRQ1_VBUS_DISCONN)
devctl_notify("PMU", "USB", "unplugged", NULL);
axp2xx_write(sc->dev, AXP2XX_IRQ1_STATUS, AXP2XX_IRQ_ACK);
}
axp2xx_read(sc->dev, AXP2XX_IRQ2_STATUS, &reg, 1);
if (reg) {
if (reg & AXP2XX_IRQ2_BATT_CHARGED)
devctl_notify("PMU", "Battery", "charged", NULL);
if (reg & AXP2XX_IRQ2_BATT_CHARGING)
devctl_notify("PMU", "Battery", "charging", NULL);
if (reg & AXP2XX_IRQ2_BATT_CONN)
devctl_notify("PMU", "Battery", "connected", NULL);
if (reg & AXP2XX_IRQ2_BATT_DISCONN)
devctl_notify("PMU", "Battery", "disconnected", NULL);
if (reg & AXP2XX_IRQ2_BATT_TEMP_LOW)
devctl_notify("PMU", "Battery", "low temp", NULL);
if (reg & AXP2XX_IRQ2_BATT_TEMP_OVER)
devctl_notify("PMU", "Battery", "high temp", NULL);
axp2xx_write(sc->dev, AXP2XX_IRQ2_STATUS, AXP2XX_IRQ_ACK);
}
axp2xx_read(sc->dev, AXP2XX_IRQ3_STATUS, &reg, 1);
if (reg) {
if (reg & AXP2XX_IRQ3_PEK_SHORT)
shutdown_nice(RB_POWEROFF);
axp2xx_write(sc->dev, AXP2XX_IRQ3_STATUS, AXP2XX_IRQ_ACK);
}
axp2xx_read(sc->dev, AXP2XX_IRQ4_STATUS, &reg, 1);
if (reg) {
axp2xx_write(sc->dev, AXP2XX_IRQ4_STATUS, AXP2XX_IRQ_ACK);
}
axp2xx_read(sc->dev, AXP2XX_IRQ5_STATUS, &reg, 1);
if (reg) {
axp2xx_write(sc->dev, AXP2XX_IRQ5_STATUS, AXP2XX_IRQ_ACK);
}
}
static device_t
axp2xx_gpio_get_bus(device_t dev)
{
struct axp2xx_softc *sc;
sc = device_get_softc(dev);
return (sc->gpiodev);
}
static int
axp2xx_gpio_pin_max(device_t dev, int *maxpin)
{
struct axp2xx_softc *sc;
sc = device_get_softc(dev);
*maxpin = sc->npins - 1;
return (0);
}
static int
axp2xx_gpio_pin_getname(device_t dev, uint32_t pin, char *name)
{
struct axp2xx_softc *sc;
sc = device_get_softc(dev);
if (pin >= sc->npins)
return (EINVAL);
snprintf(name, GPIOMAXNAME, "%s", axp209_pins[pin].name);
return (0);
}
static int
axp2xx_gpio_pin_getcaps(device_t dev, uint32_t pin, uint32_t *caps)
{
struct axp2xx_softc *sc;
sc = device_get_softc(dev);
if (pin >= sc->npins)
return (EINVAL);
*caps = GPIO_PIN_INPUT | GPIO_PIN_OUTPUT;
return (0);
}
static int
axp2xx_gpio_pin_getflags(device_t dev, uint32_t pin, uint32_t *flags)
{
struct axp2xx_softc *sc;
uint8_t data, func;
int error;
sc = device_get_softc(dev);
if (pin >= sc->npins)
return (EINVAL);
AXP_LOCK(sc);
error = axp2xx_read(dev, sc->pins[pin].ctrl_reg, &data, 1);
if (error == 0) {
func = data & AXP2XX_GPIO_FUNC_MASK;
if (func == AXP2XX_GPIO_FUNC_INPUT)
*flags = GPIO_PIN_INPUT;
else if (func == AXP2XX_GPIO_FUNC_DRVLO ||
func == AXP2XX_GPIO_FUNC_DRVHI)
*flags = GPIO_PIN_OUTPUT;
else
*flags = 0;
}
AXP_UNLOCK(sc);
return (error);
}
static int
axp2xx_gpio_pin_setflags(device_t dev, uint32_t pin, uint32_t flags)
{
struct axp2xx_softc *sc;
uint8_t data;
int error;
sc = device_get_softc(dev);
if (pin >= sc->npins)
return (EINVAL);
AXP_LOCK(sc);
error = axp2xx_read(dev, sc->pins[pin].ctrl_reg, &data, 1);
if (error == 0) {
data &= ~AXP2XX_GPIO_FUNC_MASK;
if ((flags & (GPIO_PIN_INPUT|GPIO_PIN_OUTPUT)) != 0) {
if ((flags & GPIO_PIN_OUTPUT) == 0)
data |= AXP2XX_GPIO_FUNC_INPUT;
}
error = axp2xx_write(dev, sc->pins[pin].ctrl_reg, data);
}
AXP_UNLOCK(sc);
return (error);
}
static int
axp2xx_gpio_pin_get(device_t dev, uint32_t pin, unsigned int *val)
{
struct axp2xx_softc *sc;
uint8_t data, func;
int error;
sc = device_get_softc(dev);
if (pin >= sc->npins)
return (EINVAL);
AXP_LOCK(sc);
error = axp2xx_read(dev, sc->pins[pin].ctrl_reg, &data, 1);
if (error == 0) {
func = data & AXP2XX_GPIO_FUNC_MASK;
switch (func) {
case AXP2XX_GPIO_FUNC_DRVLO:
*val = 0;
break;
case AXP2XX_GPIO_FUNC_DRVHI:
*val = 1;
break;
case AXP2XX_GPIO_FUNC_INPUT:
error = axp2xx_read(dev, sc->pins[pin].status_reg,
&data, 1);
if (error == 0) {
*val = (data & sc->pins[pin].status_mask);
*val >>= sc->pins[pin].status_shift;
}
break;
default:
error = EIO;
break;
}
}
AXP_UNLOCK(sc);
return (error);
}
static int
axp2xx_gpio_pin_set(device_t dev, uint32_t pin, unsigned int val)
{
struct axp2xx_softc *sc;
uint8_t data, func;
int error;
sc = device_get_softc(dev);
if (pin >= sc->npins)
return (EINVAL);
AXP_LOCK(sc);
error = axp2xx_read(dev, sc->pins[pin].ctrl_reg, &data, 1);
if (error == 0) {
func = data & AXP2XX_GPIO_FUNC_MASK;
switch (func) {
case AXP2XX_GPIO_FUNC_DRVLO:
case AXP2XX_GPIO_FUNC_DRVHI:
/* GPIO2 can't be set to 1 */
if (pin == 2 && val == 1) {
error = EINVAL;
break;
}
data &= ~AXP2XX_GPIO_FUNC_MASK;
data |= val;
break;
default:
error = EIO;
break;
}
}
if (error == 0)
error = axp2xx_write(dev, sc->pins[pin].ctrl_reg, data);
AXP_UNLOCK(sc);
return (error);
}
static int
axp2xx_gpio_pin_toggle(device_t dev, uint32_t pin)
{
struct axp2xx_softc *sc;
uint8_t data, func;
int error;
sc = device_get_softc(dev);
if (pin >= sc->npins)
return (EINVAL);
AXP_LOCK(sc);
error = axp2xx_read(dev, sc->pins[pin].ctrl_reg, &data, 1);
if (error == 0) {
func = data & AXP2XX_GPIO_FUNC_MASK;
switch (func) {
case AXP2XX_GPIO_FUNC_DRVLO:
/* Pin 2 can't be set to 1*/
if (pin == 2) {
error = EINVAL;
break;
}
data &= ~AXP2XX_GPIO_FUNC_MASK;
data |= AXP2XX_GPIO_FUNC_DRVHI;
break;
case AXP2XX_GPIO_FUNC_DRVHI:
data &= ~AXP2XX_GPIO_FUNC_MASK;
data |= AXP2XX_GPIO_FUNC_DRVLO;
break;
default:
error = EIO;
break;
}
}
if (error == 0)
error = axp2xx_write(dev, sc->pins[pin].ctrl_reg, data);
AXP_UNLOCK(sc);
return (error);
}
static int
axp2xx_gpio_map_gpios(device_t bus, phandle_t dev, phandle_t gparent,
int gcells, pcell_t *gpios, uint32_t *pin, uint32_t *flags)
{
struct axp2xx_softc *sc;
sc = device_get_softc(bus);
if (gpios[0] >= sc->npins)
return (EINVAL);
*pin = gpios[0];
*flags = gpios[1];
return (0);
}
static phandle_t
axp2xx_get_node(device_t dev, device_t bus)
{
return (ofw_bus_get_node(dev));
}
static struct axp2xx_reg_sc *
axp2xx_reg_attach(device_t dev, phandle_t node,
struct axp2xx_regdef *def)
{
struct axp2xx_reg_sc *reg_sc;
struct regnode_init_def initdef;
struct regnode *regnode;
memset(&initdef, 0, sizeof(initdef));
if (regulator_parse_ofw_stdparam(dev, node, &initdef) != 0) {
device_printf(dev, "cannot create regulator\n");
return (NULL);
}
if (initdef.std_param.min_uvolt == 0)
initdef.std_param.min_uvolt = def->voltage_min * 1000;
if (initdef.std_param.max_uvolt == 0)
initdef.std_param.max_uvolt = def->voltage_max * 1000;
initdef.id = def->id;
initdef.ofw_node = node;
regnode = regnode_create(dev, &axp2xx_regnode_class, &initdef);
if (regnode == NULL) {
device_printf(dev, "cannot create regulator\n");
return (NULL);
}
reg_sc = regnode_get_softc(regnode);
reg_sc->regnode = regnode;
reg_sc->base_dev = dev;
reg_sc->def = def;
reg_sc->xref = OF_xref_from_node(node);
reg_sc->param = regnode_get_stdparam(regnode);
regnode_register(regnode);
return (reg_sc);
}
static int
axp2xx_regdev_map(device_t dev, phandle_t xref, int ncells, pcell_t *cells,
intptr_t *num)
{
struct axp2xx_softc *sc;
int i;
sc = device_get_softc(dev);
for (i = 0; i < sc->nregs; i++) {
if (sc->regs[i] == NULL)
continue;
if (sc->regs[i]->xref == xref) {
*num = sc->regs[i]->def->id;
return (0);
}
}
return (ENXIO);
}
static void
axp2xx_start(void *pdev)
{
device_t dev;
struct axp2xx_softc *sc;
const char *pwr_name[] = {"Battery", "AC", "USB", "AC and USB"};
int i;
uint8_t reg, data;
uint8_t pwr_src;
dev = pdev;
sc = device_get_softc(dev);
sc->addr = iicbus_get_addr(dev);
sc->dev = dev;
if (bootverbose) {
/*
* Read the Power State register.
* Shift the AC presence into bit 0.
* Shift the Battery presence into bit 1.
*/
axp2xx_read(dev, AXP2XX_PSR, &data, 1);
pwr_src = ((data & AXP2XX_PSR_ACIN) >> AXP2XX_PSR_ACIN_SHIFT) |
((data & AXP2XX_PSR_VBUS) >> (AXP2XX_PSR_VBUS_SHIFT - 1));
device_printf(dev, "Powered by %s\n",
pwr_name[pwr_src]);
}
/* Only enable interrupts that we are interested in */
axp2xx_write(dev, AXP2XX_IRQ1_ENABLE,
AXP2XX_IRQ1_AC_OVERVOLT |
AXP2XX_IRQ1_AC_DISCONN |
AXP2XX_IRQ1_AC_CONN |
AXP2XX_IRQ1_VBUS_OVERVOLT |
AXP2XX_IRQ1_VBUS_DISCONN |
AXP2XX_IRQ1_VBUS_CONN);
axp2xx_write(dev, AXP2XX_IRQ2_ENABLE,
AXP2XX_IRQ2_BATT_CONN |
AXP2XX_IRQ2_BATT_DISCONN |
AXP2XX_IRQ2_BATT_CHARGE_ACCT_ON |
AXP2XX_IRQ2_BATT_CHARGE_ACCT_OFF |
AXP2XX_IRQ2_BATT_CHARGING |
AXP2XX_IRQ2_BATT_CHARGED |
AXP2XX_IRQ2_BATT_TEMP_OVER |
AXP2XX_IRQ2_BATT_TEMP_LOW);
axp2xx_write(dev, AXP2XX_IRQ3_ENABLE,
AXP2XX_IRQ3_PEK_SHORT | AXP2XX_IRQ3_PEK_LONG);
axp2xx_write(dev, AXP2XX_IRQ4_ENABLE, AXP2XX_IRQ4_APS_LOW_2);
axp2xx_write(dev, AXP2XX_IRQ5_ENABLE, 0x0);
EVENTHANDLER_REGISTER(shutdown_final, axp2xx_shutdown, dev,
SHUTDOWN_PRI_LAST);
/* Enable ADC sensors */
for (i = 0; i < sc->nsensors; i++) {
if (axp2xx_read(dev, sc->sensors[i].enable_reg, &reg, 1) == -1) {
device_printf(dev, "Cannot enable sensor '%s'\n",
sc->sensors[i].name);
continue;
}
reg |= sc->sensors[i].enable_mask;
if (axp2xx_write(dev, sc->sensors[i].enable_reg, reg) == -1) {
device_printf(dev, "Cannot enable sensor '%s'\n",
sc->sensors[i].name);
continue;
}
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, sc->sensors[i].name,
CTLTYPE_INT | CTLFLAG_RD,
dev, sc->sensors[i].id, axp2xx_sysctl,
sc->sensors[i].format,
sc->sensors[i].desc);
}
if ((bus_setup_intr(dev, sc->res[0], INTR_TYPE_MISC | INTR_MPSAFE,
NULL, axp2xx_intr, sc, &sc->intrcookie)))
device_printf(dev, "unable to register interrupt handler\n");
config_intrhook_disestablish(&sc->intr_hook);
}
static int
axp2xx_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data)
{
case AXP209:
device_set_desc(dev, "X-Powers AXP209 Power Management Unit");
break;
case AXP221:
device_set_desc(dev, "X-Powers AXP221 Power Management Unit");
break;
default:
return (ENXIO);
}
return (BUS_PROBE_DEFAULT);
}
static int
axp2xx_attach(device_t dev)
{
struct axp2xx_softc *sc;
struct axp2xx_reg_sc *reg;
struct axp2xx_regdef *regdefs;
phandle_t rnode, child;
int i;
sc = device_get_softc(dev);
mtx_init(&sc->mtx, device_get_nameunit(dev), NULL, MTX_DEF);
if (bus_alloc_resources(dev, axp_res_spec, sc->res) != 0) {
device_printf(dev, "can't allocate device resources\n");
return (ENXIO);
}
sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
switch (sc->type) {
case AXP209:
sc->pins = axp209_pins;
sc->npins = nitems(axp209_pins);
sc->gpiodev = gpiobus_attach_bus(dev);
sc->sensors = axp209_sensors;
sc->nsensors = nitems(axp209_sensors);
regdefs = axp209_regdefs;
sc->nregs = nitems(axp209_regdefs);
break;
case AXP221:
sc->pins = axp221_pins;
sc->npins = nitems(axp221_pins);
sc->gpiodev = gpiobus_attach_bus(dev);
sc->sensors = axp221_sensors;
sc->nsensors = nitems(axp221_sensors);
regdefs = axp221_regdefs;
sc->nregs = nitems(axp221_regdefs);
break;
}
sc->regs = malloc(sizeof(struct axp2xx_reg_sc *) * sc->nregs,
M_AXP2XX_REG, M_WAITOK | M_ZERO);
sc->intr_hook.ich_func = axp2xx_start;
sc->intr_hook.ich_arg = dev;
if (config_intrhook_establish(&sc->intr_hook) != 0)
return (ENOMEM);
/* Attach known regulators that exist in the DT */
rnode = ofw_bus_find_child(ofw_bus_get_node(dev), "regulators");
if (rnode > 0) {
for (i = 0; i < sc->nregs; i++) {
child = ofw_bus_find_child(rnode,
regdefs[i].name);
if (child == 0)
continue;
reg = axp2xx_reg_attach(dev, child, &regdefs[i]);
if (reg == NULL) {
device_printf(dev,
"cannot attach regulator %s\n",
regdefs[i].name);
continue;
}
sc->regs[i] = reg;
if (bootverbose)
device_printf(dev, "Regulator %s attached\n",
regdefs[i].name);
}
}
return (0);
}
static device_method_t axp2xx_methods[] = {
DEVMETHOD(device_probe, axp2xx_probe),
DEVMETHOD(device_attach, axp2xx_attach),
/* GPIO interface */
DEVMETHOD(gpio_get_bus, axp2xx_gpio_get_bus),
DEVMETHOD(gpio_pin_max, axp2xx_gpio_pin_max),
DEVMETHOD(gpio_pin_getname, axp2xx_gpio_pin_getname),
DEVMETHOD(gpio_pin_getcaps, axp2xx_gpio_pin_getcaps),
DEVMETHOD(gpio_pin_getflags, axp2xx_gpio_pin_getflags),
DEVMETHOD(gpio_pin_setflags, axp2xx_gpio_pin_setflags),
DEVMETHOD(gpio_pin_get, axp2xx_gpio_pin_get),
DEVMETHOD(gpio_pin_set, axp2xx_gpio_pin_set),
DEVMETHOD(gpio_pin_toggle, axp2xx_gpio_pin_toggle),
DEVMETHOD(gpio_map_gpios, axp2xx_gpio_map_gpios),
/* Regdev interface */
DEVMETHOD(regdev_map, axp2xx_regdev_map),
/* OFW bus interface */
DEVMETHOD(ofw_bus_get_node, axp2xx_get_node),
DEVMETHOD_END
};
static driver_t axp2xx_driver = {
"axp2xx_pmu",
axp2xx_methods,
sizeof(struct axp2xx_softc),
};
static devclass_t axp2xx_devclass;
extern devclass_t ofwgpiobus_devclass, gpioc_devclass;
extern driver_t ofw_gpiobus_driver, gpioc_driver;
EARLY_DRIVER_MODULE(axp2xx, iicbus, axp2xx_driver, axp2xx_devclass,
0, 0, BUS_PASS_INTERRUPT + BUS_PASS_ORDER_LATE);
EARLY_DRIVER_MODULE(ofw_gpiobus, axp2xx_pmu, ofw_gpiobus_driver,
ofwgpiobus_devclass, 0, 0, BUS_PASS_INTERRUPT + BUS_PASS_ORDER_LATE);
DRIVER_MODULE(gpioc, axp2xx_pmu, gpioc_driver, gpioc_devclass,
0, 0);
MODULE_VERSION(axp2xx, 1);
MODULE_DEPEND(axp2xx, iicbus, 1, 1, 1);