65145c7f50
The hypervisor hides the MONITOR/MWAIT capability by unconditionally setting CPUID.01H:ECX[3] to 0 so the guest should not expect these instructions to be present anyways. Discussed with: grehan
2324 lines
52 KiB
C
2324 lines
52 KiB
C
/*-
|
|
* Copyright (c) 2011 NetApp, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_param.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/vm.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/smp.h>
|
|
#include <x86/psl.h>
|
|
#include <x86/apicreg.h>
|
|
#include <machine/vmparam.h>
|
|
|
|
#include <machine/vmm.h>
|
|
#include <machine/vmm_dev.h>
|
|
#include <machine/vmm_instruction_emul.h>
|
|
|
|
#include "vmm_ioport.h"
|
|
#include "vmm_ktr.h"
|
|
#include "vmm_host.h"
|
|
#include "vmm_mem.h"
|
|
#include "vmm_util.h"
|
|
#include "vatpic.h"
|
|
#include "vatpit.h"
|
|
#include "vhpet.h"
|
|
#include "vioapic.h"
|
|
#include "vlapic.h"
|
|
#include "vmm_ipi.h"
|
|
#include "vmm_stat.h"
|
|
#include "vmm_lapic.h"
|
|
|
|
#include "io/ppt.h"
|
|
#include "io/iommu.h"
|
|
|
|
struct vlapic;
|
|
|
|
/*
|
|
* Initialization:
|
|
* (a) allocated when vcpu is created
|
|
* (i) initialized when vcpu is created and when it is reinitialized
|
|
* (o) initialized the first time the vcpu is created
|
|
* (x) initialized before use
|
|
*/
|
|
struct vcpu {
|
|
struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */
|
|
enum vcpu_state state; /* (o) vcpu state */
|
|
int hostcpu; /* (o) vcpu's host cpu */
|
|
struct vlapic *vlapic; /* (i) APIC device model */
|
|
enum x2apic_state x2apic_state; /* (i) APIC mode */
|
|
uint64_t exitintinfo; /* (i) events pending at VM exit */
|
|
int nmi_pending; /* (i) NMI pending */
|
|
int extint_pending; /* (i) INTR pending */
|
|
struct vm_exception exception; /* (x) exception collateral */
|
|
int exception_pending; /* (i) exception pending */
|
|
struct savefpu *guestfpu; /* (a,i) guest fpu state */
|
|
uint64_t guest_xcr0; /* (i) guest %xcr0 register */
|
|
void *stats; /* (a,i) statistics */
|
|
struct vm_exit exitinfo; /* (x) exit reason and collateral */
|
|
};
|
|
|
|
#define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
|
|
#define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
|
|
#define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
|
|
#define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
|
|
#define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
|
|
|
|
struct mem_seg {
|
|
vm_paddr_t gpa;
|
|
size_t len;
|
|
boolean_t wired;
|
|
vm_object_t object;
|
|
};
|
|
#define VM_MAX_MEMORY_SEGMENTS 2
|
|
|
|
/*
|
|
* Initialization:
|
|
* (o) initialized the first time the VM is created
|
|
* (i) initialized when VM is created and when it is reinitialized
|
|
* (x) initialized before use
|
|
*/
|
|
struct vm {
|
|
void *cookie; /* (i) cpu-specific data */
|
|
void *iommu; /* (x) iommu-specific data */
|
|
struct vhpet *vhpet; /* (i) virtual HPET */
|
|
struct vioapic *vioapic; /* (i) virtual ioapic */
|
|
struct vatpic *vatpic; /* (i) virtual atpic */
|
|
struct vatpit *vatpit; /* (i) virtual atpit */
|
|
volatile cpuset_t active_cpus; /* (i) active vcpus */
|
|
int suspend; /* (i) stop VM execution */
|
|
volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */
|
|
volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
|
|
cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */
|
|
cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */
|
|
void *rendezvous_arg; /* (x) rendezvous func/arg */
|
|
vm_rendezvous_func_t rendezvous_func;
|
|
struct mtx rendezvous_mtx; /* (o) rendezvous lock */
|
|
int num_mem_segs; /* (o) guest memory segments */
|
|
struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS];
|
|
struct vmspace *vmspace; /* (o) guest's address space */
|
|
char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */
|
|
struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */
|
|
};
|
|
|
|
static int vmm_initialized;
|
|
|
|
static struct vmm_ops *ops;
|
|
#define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0)
|
|
#define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0)
|
|
#define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0)
|
|
|
|
#define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
|
|
#define VMRUN(vmi, vcpu, rip, pmap, rptr, sptr) \
|
|
(ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, rptr, sptr) : ENXIO)
|
|
#define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
|
|
#define VMSPACE_ALLOC(min, max) \
|
|
(ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
|
|
#define VMSPACE_FREE(vmspace) \
|
|
(ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
|
|
#define VMGETREG(vmi, vcpu, num, retval) \
|
|
(ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
|
|
#define VMSETREG(vmi, vcpu, num, val) \
|
|
(ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
|
|
#define VMGETDESC(vmi, vcpu, num, desc) \
|
|
(ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
|
|
#define VMSETDESC(vmi, vcpu, num, desc) \
|
|
(ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
|
|
#define VMGETCAP(vmi, vcpu, num, retval) \
|
|
(ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
|
|
#define VMSETCAP(vmi, vcpu, num, val) \
|
|
(ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
|
|
#define VLAPIC_INIT(vmi, vcpu) \
|
|
(ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL)
|
|
#define VLAPIC_CLEANUP(vmi, vlapic) \
|
|
(ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL)
|
|
|
|
#define fpu_start_emulating() load_cr0(rcr0() | CR0_TS)
|
|
#define fpu_stop_emulating() clts()
|
|
|
|
static MALLOC_DEFINE(M_VM, "vm", "vm");
|
|
|
|
/* statistics */
|
|
static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
|
|
|
|
SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
|
|
|
|
/*
|
|
* Halt the guest if all vcpus are executing a HLT instruction with
|
|
* interrupts disabled.
|
|
*/
|
|
static int halt_detection_enabled = 1;
|
|
SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
|
|
&halt_detection_enabled, 0,
|
|
"Halt VM if all vcpus execute HLT with interrupts disabled");
|
|
|
|
static int vmm_ipinum;
|
|
SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
|
|
"IPI vector used for vcpu notifications");
|
|
|
|
static void
|
|
vcpu_cleanup(struct vm *vm, int i, bool destroy)
|
|
{
|
|
struct vcpu *vcpu = &vm->vcpu[i];
|
|
|
|
VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
|
|
if (destroy) {
|
|
vmm_stat_free(vcpu->stats);
|
|
fpu_save_area_free(vcpu->guestfpu);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vcpu_init(struct vm *vm, int vcpu_id, bool create)
|
|
{
|
|
struct vcpu *vcpu;
|
|
|
|
KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU,
|
|
("vcpu_init: invalid vcpu %d", vcpu_id));
|
|
|
|
vcpu = &vm->vcpu[vcpu_id];
|
|
|
|
if (create) {
|
|
KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already "
|
|
"initialized", vcpu_id));
|
|
vcpu_lock_init(vcpu);
|
|
vcpu->state = VCPU_IDLE;
|
|
vcpu->hostcpu = NOCPU;
|
|
vcpu->guestfpu = fpu_save_area_alloc();
|
|
vcpu->stats = vmm_stat_alloc();
|
|
}
|
|
|
|
vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
|
|
vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
|
|
vcpu->exitintinfo = 0;
|
|
vcpu->nmi_pending = 0;
|
|
vcpu->extint_pending = 0;
|
|
vcpu->exception_pending = 0;
|
|
vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
|
|
fpu_save_area_reset(vcpu->guestfpu);
|
|
vmm_stat_init(vcpu->stats);
|
|
}
|
|
|
|
struct vm_exit *
|
|
vm_exitinfo(struct vm *vm, int cpuid)
|
|
{
|
|
struct vcpu *vcpu;
|
|
|
|
if (cpuid < 0 || cpuid >= VM_MAXCPU)
|
|
panic("vm_exitinfo: invalid cpuid %d", cpuid);
|
|
|
|
vcpu = &vm->vcpu[cpuid];
|
|
|
|
return (&vcpu->exitinfo);
|
|
}
|
|
|
|
static void
|
|
vmm_resume(void)
|
|
{
|
|
VMM_RESUME();
|
|
}
|
|
|
|
static int
|
|
vmm_init(void)
|
|
{
|
|
int error;
|
|
|
|
vmm_host_state_init();
|
|
|
|
vmm_ipinum = vmm_ipi_alloc();
|
|
if (vmm_ipinum == 0)
|
|
vmm_ipinum = IPI_AST;
|
|
|
|
error = vmm_mem_init();
|
|
if (error)
|
|
return (error);
|
|
|
|
if (vmm_is_intel())
|
|
ops = &vmm_ops_intel;
|
|
else if (vmm_is_amd())
|
|
ops = &vmm_ops_amd;
|
|
else
|
|
return (ENXIO);
|
|
|
|
vmm_resume_p = vmm_resume;
|
|
|
|
return (VMM_INIT(vmm_ipinum));
|
|
}
|
|
|
|
static int
|
|
vmm_handler(module_t mod, int what, void *arg)
|
|
{
|
|
int error;
|
|
|
|
switch (what) {
|
|
case MOD_LOAD:
|
|
vmmdev_init();
|
|
if (ppt_avail_devices() > 0)
|
|
iommu_init();
|
|
error = vmm_init();
|
|
if (error == 0)
|
|
vmm_initialized = 1;
|
|
break;
|
|
case MOD_UNLOAD:
|
|
error = vmmdev_cleanup();
|
|
if (error == 0) {
|
|
vmm_resume_p = NULL;
|
|
iommu_cleanup();
|
|
if (vmm_ipinum != IPI_AST)
|
|
vmm_ipi_free(vmm_ipinum);
|
|
error = VMM_CLEANUP();
|
|
/*
|
|
* Something bad happened - prevent new
|
|
* VMs from being created
|
|
*/
|
|
if (error)
|
|
vmm_initialized = 0;
|
|
}
|
|
break;
|
|
default:
|
|
error = 0;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static moduledata_t vmm_kmod = {
|
|
"vmm",
|
|
vmm_handler,
|
|
NULL
|
|
};
|
|
|
|
/*
|
|
* vmm initialization has the following dependencies:
|
|
*
|
|
* - iommu initialization must happen after the pci passthru driver has had
|
|
* a chance to attach to any passthru devices (after SI_SUB_CONFIGURE).
|
|
*
|
|
* - VT-x initialization requires smp_rendezvous() and therefore must happen
|
|
* after SMP is fully functional (after SI_SUB_SMP).
|
|
*/
|
|
DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
|
|
MODULE_VERSION(vmm, 1);
|
|
|
|
static void
|
|
vm_init(struct vm *vm, bool create)
|
|
{
|
|
int i;
|
|
|
|
vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace));
|
|
vm->iommu = NULL;
|
|
vm->vioapic = vioapic_init(vm);
|
|
vm->vhpet = vhpet_init(vm);
|
|
vm->vatpic = vatpic_init(vm);
|
|
vm->vatpit = vatpit_init(vm);
|
|
|
|
CPU_ZERO(&vm->active_cpus);
|
|
|
|
vm->suspend = 0;
|
|
CPU_ZERO(&vm->suspended_cpus);
|
|
|
|
for (i = 0; i < VM_MAXCPU; i++)
|
|
vcpu_init(vm, i, create);
|
|
}
|
|
|
|
int
|
|
vm_create(const char *name, struct vm **retvm)
|
|
{
|
|
struct vm *vm;
|
|
struct vmspace *vmspace;
|
|
|
|
/*
|
|
* If vmm.ko could not be successfully initialized then don't attempt
|
|
* to create the virtual machine.
|
|
*/
|
|
if (!vmm_initialized)
|
|
return (ENXIO);
|
|
|
|
if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
|
|
return (EINVAL);
|
|
|
|
vmspace = VMSPACE_ALLOC(VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
|
|
if (vmspace == NULL)
|
|
return (ENOMEM);
|
|
|
|
vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
|
|
strcpy(vm->name, name);
|
|
vm->num_mem_segs = 0;
|
|
vm->vmspace = vmspace;
|
|
mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
|
|
|
|
vm_init(vm, true);
|
|
|
|
*retvm = vm;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vm_free_mem_seg(struct vm *vm, struct mem_seg *seg)
|
|
{
|
|
|
|
if (seg->object != NULL)
|
|
vmm_mem_free(vm->vmspace, seg->gpa, seg->len);
|
|
|
|
bzero(seg, sizeof(*seg));
|
|
}
|
|
|
|
static void
|
|
vm_cleanup(struct vm *vm, bool destroy)
|
|
{
|
|
int i;
|
|
|
|
ppt_unassign_all(vm);
|
|
|
|
if (vm->iommu != NULL)
|
|
iommu_destroy_domain(vm->iommu);
|
|
|
|
vatpit_cleanup(vm->vatpit);
|
|
vhpet_cleanup(vm->vhpet);
|
|
vatpic_cleanup(vm->vatpic);
|
|
vioapic_cleanup(vm->vioapic);
|
|
|
|
for (i = 0; i < VM_MAXCPU; i++)
|
|
vcpu_cleanup(vm, i, destroy);
|
|
|
|
VMCLEANUP(vm->cookie);
|
|
|
|
if (destroy) {
|
|
for (i = 0; i < vm->num_mem_segs; i++)
|
|
vm_free_mem_seg(vm, &vm->mem_segs[i]);
|
|
|
|
vm->num_mem_segs = 0;
|
|
|
|
VMSPACE_FREE(vm->vmspace);
|
|
vm->vmspace = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
vm_destroy(struct vm *vm)
|
|
{
|
|
vm_cleanup(vm, true);
|
|
free(vm, M_VM);
|
|
}
|
|
|
|
int
|
|
vm_reinit(struct vm *vm)
|
|
{
|
|
int error;
|
|
|
|
/*
|
|
* A virtual machine can be reset only if all vcpus are suspended.
|
|
*/
|
|
if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
|
|
vm_cleanup(vm, false);
|
|
vm_init(vm, false);
|
|
error = 0;
|
|
} else {
|
|
error = EBUSY;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
const char *
|
|
vm_name(struct vm *vm)
|
|
{
|
|
return (vm->name);
|
|
}
|
|
|
|
int
|
|
vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
|
|
{
|
|
vm_object_t obj;
|
|
|
|
if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
|
|
return (ENOMEM);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
|
|
{
|
|
|
|
vmm_mmio_free(vm->vmspace, gpa, len);
|
|
return (0);
|
|
}
|
|
|
|
boolean_t
|
|
vm_mem_allocated(struct vm *vm, vm_paddr_t gpa)
|
|
{
|
|
int i;
|
|
vm_paddr_t gpabase, gpalimit;
|
|
|
|
for (i = 0; i < vm->num_mem_segs; i++) {
|
|
gpabase = vm->mem_segs[i].gpa;
|
|
gpalimit = gpabase + vm->mem_segs[i].len;
|
|
if (gpa >= gpabase && gpa < gpalimit)
|
|
return (TRUE); /* 'gpa' is regular memory */
|
|
}
|
|
|
|
if (ppt_is_mmio(vm, gpa))
|
|
return (TRUE); /* 'gpa' is pci passthru mmio */
|
|
|
|
return (FALSE);
|
|
}
|
|
|
|
int
|
|
vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len)
|
|
{
|
|
int available, allocated;
|
|
struct mem_seg *seg;
|
|
vm_object_t object;
|
|
vm_paddr_t g;
|
|
|
|
if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0)
|
|
return (EINVAL);
|
|
|
|
available = allocated = 0;
|
|
g = gpa;
|
|
while (g < gpa + len) {
|
|
if (vm_mem_allocated(vm, g))
|
|
allocated++;
|
|
else
|
|
available++;
|
|
|
|
g += PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* If there are some allocated and some available pages in the address
|
|
* range then it is an error.
|
|
*/
|
|
if (allocated && available)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* If the entire address range being requested has already been
|
|
* allocated then there isn't anything more to do.
|
|
*/
|
|
if (allocated && available == 0)
|
|
return (0);
|
|
|
|
if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS)
|
|
return (E2BIG);
|
|
|
|
seg = &vm->mem_segs[vm->num_mem_segs];
|
|
|
|
if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL)
|
|
return (ENOMEM);
|
|
|
|
seg->gpa = gpa;
|
|
seg->len = len;
|
|
seg->object = object;
|
|
seg->wired = FALSE;
|
|
|
|
vm->num_mem_segs++;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static vm_paddr_t
|
|
vm_maxmem(struct vm *vm)
|
|
{
|
|
int i;
|
|
vm_paddr_t gpa, maxmem;
|
|
|
|
maxmem = 0;
|
|
for (i = 0; i < vm->num_mem_segs; i++) {
|
|
gpa = vm->mem_segs[i].gpa + vm->mem_segs[i].len;
|
|
if (gpa > maxmem)
|
|
maxmem = gpa;
|
|
}
|
|
return (maxmem);
|
|
}
|
|
|
|
static void
|
|
vm_gpa_unwire(struct vm *vm)
|
|
{
|
|
int i, rv;
|
|
struct mem_seg *seg;
|
|
|
|
for (i = 0; i < vm->num_mem_segs; i++) {
|
|
seg = &vm->mem_segs[i];
|
|
if (!seg->wired)
|
|
continue;
|
|
|
|
rv = vm_map_unwire(&vm->vmspace->vm_map,
|
|
seg->gpa, seg->gpa + seg->len,
|
|
VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
|
|
KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment "
|
|
"%#lx/%ld could not be unwired: %d",
|
|
vm_name(vm), seg->gpa, seg->len, rv));
|
|
|
|
seg->wired = FALSE;
|
|
}
|
|
}
|
|
|
|
static int
|
|
vm_gpa_wire(struct vm *vm)
|
|
{
|
|
int i, rv;
|
|
struct mem_seg *seg;
|
|
|
|
for (i = 0; i < vm->num_mem_segs; i++) {
|
|
seg = &vm->mem_segs[i];
|
|
if (seg->wired)
|
|
continue;
|
|
|
|
/* XXX rlimits? */
|
|
rv = vm_map_wire(&vm->vmspace->vm_map,
|
|
seg->gpa, seg->gpa + seg->len,
|
|
VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
|
|
if (rv != KERN_SUCCESS)
|
|
break;
|
|
|
|
seg->wired = TRUE;
|
|
}
|
|
|
|
if (i < vm->num_mem_segs) {
|
|
/*
|
|
* Undo the wiring before returning an error.
|
|
*/
|
|
vm_gpa_unwire(vm);
|
|
return (EAGAIN);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vm_iommu_modify(struct vm *vm, boolean_t map)
|
|
{
|
|
int i, sz;
|
|
vm_paddr_t gpa, hpa;
|
|
struct mem_seg *seg;
|
|
void *vp, *cookie, *host_domain;
|
|
|
|
sz = PAGE_SIZE;
|
|
host_domain = iommu_host_domain();
|
|
|
|
for (i = 0; i < vm->num_mem_segs; i++) {
|
|
seg = &vm->mem_segs[i];
|
|
KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired",
|
|
vm_name(vm), seg->gpa, seg->len));
|
|
|
|
gpa = seg->gpa;
|
|
while (gpa < seg->gpa + seg->len) {
|
|
vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE,
|
|
&cookie);
|
|
KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
|
|
vm_name(vm), gpa));
|
|
|
|
vm_gpa_release(cookie);
|
|
|
|
hpa = DMAP_TO_PHYS((uintptr_t)vp);
|
|
if (map) {
|
|
iommu_create_mapping(vm->iommu, gpa, hpa, sz);
|
|
iommu_remove_mapping(host_domain, hpa, sz);
|
|
} else {
|
|
iommu_remove_mapping(vm->iommu, gpa, sz);
|
|
iommu_create_mapping(host_domain, hpa, hpa, sz);
|
|
}
|
|
|
|
gpa += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invalidate the cached translations associated with the domain
|
|
* from which pages were removed.
|
|
*/
|
|
if (map)
|
|
iommu_invalidate_tlb(host_domain);
|
|
else
|
|
iommu_invalidate_tlb(vm->iommu);
|
|
}
|
|
|
|
#define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE)
|
|
#define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE)
|
|
|
|
int
|
|
vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
|
|
{
|
|
int error;
|
|
|
|
error = ppt_unassign_device(vm, bus, slot, func);
|
|
if (error)
|
|
return (error);
|
|
|
|
if (ppt_assigned_devices(vm) == 0) {
|
|
vm_iommu_unmap(vm);
|
|
vm_gpa_unwire(vm);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
|
|
{
|
|
int error;
|
|
vm_paddr_t maxaddr;
|
|
|
|
/*
|
|
* Virtual machines with pci passthru devices get special treatment:
|
|
* - the guest physical memory is wired
|
|
* - the iommu is programmed to do the 'gpa' to 'hpa' translation
|
|
*
|
|
* We need to do this before the first pci passthru device is attached.
|
|
*/
|
|
if (ppt_assigned_devices(vm) == 0) {
|
|
KASSERT(vm->iommu == NULL,
|
|
("vm_assign_pptdev: iommu must be NULL"));
|
|
maxaddr = vm_maxmem(vm);
|
|
vm->iommu = iommu_create_domain(maxaddr);
|
|
|
|
error = vm_gpa_wire(vm);
|
|
if (error)
|
|
return (error);
|
|
|
|
vm_iommu_map(vm);
|
|
}
|
|
|
|
error = ppt_assign_device(vm, bus, slot, func);
|
|
return (error);
|
|
}
|
|
|
|
void *
|
|
vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot,
|
|
void **cookie)
|
|
{
|
|
int count, pageoff;
|
|
vm_page_t m;
|
|
|
|
pageoff = gpa & PAGE_MASK;
|
|
if (len > PAGE_SIZE - pageoff)
|
|
panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
|
|
|
|
count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
|
|
trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
|
|
|
|
if (count == 1) {
|
|
*cookie = m;
|
|
return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
|
|
} else {
|
|
*cookie = NULL;
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
void
|
|
vm_gpa_release(void *cookie)
|
|
{
|
|
vm_page_t m = cookie;
|
|
|
|
vm_page_lock(m);
|
|
vm_page_unhold(m);
|
|
vm_page_unlock(m);
|
|
}
|
|
|
|
int
|
|
vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase,
|
|
struct vm_memory_segment *seg)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < vm->num_mem_segs; i++) {
|
|
if (gpabase == vm->mem_segs[i].gpa) {
|
|
seg->gpa = vm->mem_segs[i].gpa;
|
|
seg->len = vm->mem_segs[i].len;
|
|
seg->wired = vm->mem_segs[i].wired;
|
|
return (0);
|
|
}
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
int
|
|
vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len,
|
|
vm_offset_t *offset, struct vm_object **object)
|
|
{
|
|
int i;
|
|
size_t seg_len;
|
|
vm_paddr_t seg_gpa;
|
|
vm_object_t seg_obj;
|
|
|
|
for (i = 0; i < vm->num_mem_segs; i++) {
|
|
if ((seg_obj = vm->mem_segs[i].object) == NULL)
|
|
continue;
|
|
|
|
seg_gpa = vm->mem_segs[i].gpa;
|
|
seg_len = vm->mem_segs[i].len;
|
|
|
|
if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) {
|
|
*offset = gpa - seg_gpa;
|
|
*object = seg_obj;
|
|
vm_object_reference(seg_obj);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
return (EINVAL);
|
|
}
|
|
|
|
int
|
|
vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
|
|
{
|
|
|
|
if (vcpu < 0 || vcpu >= VM_MAXCPU)
|
|
return (EINVAL);
|
|
|
|
if (reg >= VM_REG_LAST)
|
|
return (EINVAL);
|
|
|
|
return (VMGETREG(vm->cookie, vcpu, reg, retval));
|
|
}
|
|
|
|
int
|
|
vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val)
|
|
{
|
|
|
|
if (vcpu < 0 || vcpu >= VM_MAXCPU)
|
|
return (EINVAL);
|
|
|
|
if (reg >= VM_REG_LAST)
|
|
return (EINVAL);
|
|
|
|
return (VMSETREG(vm->cookie, vcpu, reg, val));
|
|
}
|
|
|
|
static boolean_t
|
|
is_descriptor_table(int reg)
|
|
{
|
|
|
|
switch (reg) {
|
|
case VM_REG_GUEST_IDTR:
|
|
case VM_REG_GUEST_GDTR:
|
|
return (TRUE);
|
|
default:
|
|
return (FALSE);
|
|
}
|
|
}
|
|
|
|
static boolean_t
|
|
is_segment_register(int reg)
|
|
{
|
|
|
|
switch (reg) {
|
|
case VM_REG_GUEST_ES:
|
|
case VM_REG_GUEST_CS:
|
|
case VM_REG_GUEST_SS:
|
|
case VM_REG_GUEST_DS:
|
|
case VM_REG_GUEST_FS:
|
|
case VM_REG_GUEST_GS:
|
|
case VM_REG_GUEST_TR:
|
|
case VM_REG_GUEST_LDTR:
|
|
return (TRUE);
|
|
default:
|
|
return (FALSE);
|
|
}
|
|
}
|
|
|
|
int
|
|
vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
|
|
struct seg_desc *desc)
|
|
{
|
|
|
|
if (vcpu < 0 || vcpu >= VM_MAXCPU)
|
|
return (EINVAL);
|
|
|
|
if (!is_segment_register(reg) && !is_descriptor_table(reg))
|
|
return (EINVAL);
|
|
|
|
return (VMGETDESC(vm->cookie, vcpu, reg, desc));
|
|
}
|
|
|
|
int
|
|
vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
|
|
struct seg_desc *desc)
|
|
{
|
|
if (vcpu < 0 || vcpu >= VM_MAXCPU)
|
|
return (EINVAL);
|
|
|
|
if (!is_segment_register(reg) && !is_descriptor_table(reg))
|
|
return (EINVAL);
|
|
|
|
return (VMSETDESC(vm->cookie, vcpu, reg, desc));
|
|
}
|
|
|
|
static void
|
|
restore_guest_fpustate(struct vcpu *vcpu)
|
|
{
|
|
|
|
/* flush host state to the pcb */
|
|
fpuexit(curthread);
|
|
|
|
/* restore guest FPU state */
|
|
fpu_stop_emulating();
|
|
fpurestore(vcpu->guestfpu);
|
|
|
|
/* restore guest XCR0 if XSAVE is enabled in the host */
|
|
if (rcr4() & CR4_XSAVE)
|
|
load_xcr(0, vcpu->guest_xcr0);
|
|
|
|
/*
|
|
* The FPU is now "dirty" with the guest's state so turn on emulation
|
|
* to trap any access to the FPU by the host.
|
|
*/
|
|
fpu_start_emulating();
|
|
}
|
|
|
|
static void
|
|
save_guest_fpustate(struct vcpu *vcpu)
|
|
{
|
|
|
|
if ((rcr0() & CR0_TS) == 0)
|
|
panic("fpu emulation not enabled in host!");
|
|
|
|
/* save guest XCR0 and restore host XCR0 */
|
|
if (rcr4() & CR4_XSAVE) {
|
|
vcpu->guest_xcr0 = rxcr(0);
|
|
load_xcr(0, vmm_get_host_xcr0());
|
|
}
|
|
|
|
/* save guest FPU state */
|
|
fpu_stop_emulating();
|
|
fpusave(vcpu->guestfpu);
|
|
fpu_start_emulating();
|
|
}
|
|
|
|
static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
|
|
|
|
static int
|
|
vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
|
|
bool from_idle)
|
|
{
|
|
int error;
|
|
|
|
vcpu_assert_locked(vcpu);
|
|
|
|
/*
|
|
* State transitions from the vmmdev_ioctl() must always begin from
|
|
* the VCPU_IDLE state. This guarantees that there is only a single
|
|
* ioctl() operating on a vcpu at any point.
|
|
*/
|
|
if (from_idle) {
|
|
while (vcpu->state != VCPU_IDLE)
|
|
msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
|
|
} else {
|
|
KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
|
|
"vcpu idle state"));
|
|
}
|
|
|
|
if (vcpu->state == VCPU_RUNNING) {
|
|
KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
|
|
"mismatch for running vcpu", curcpu, vcpu->hostcpu));
|
|
} else {
|
|
KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
|
|
"vcpu that is not running", vcpu->hostcpu));
|
|
}
|
|
|
|
/*
|
|
* The following state transitions are allowed:
|
|
* IDLE -> FROZEN -> IDLE
|
|
* FROZEN -> RUNNING -> FROZEN
|
|
* FROZEN -> SLEEPING -> FROZEN
|
|
*/
|
|
switch (vcpu->state) {
|
|
case VCPU_IDLE:
|
|
case VCPU_RUNNING:
|
|
case VCPU_SLEEPING:
|
|
error = (newstate != VCPU_FROZEN);
|
|
break;
|
|
case VCPU_FROZEN:
|
|
error = (newstate == VCPU_FROZEN);
|
|
break;
|
|
default:
|
|
error = 1;
|
|
break;
|
|
}
|
|
|
|
if (error)
|
|
return (EBUSY);
|
|
|
|
vcpu->state = newstate;
|
|
if (newstate == VCPU_RUNNING)
|
|
vcpu->hostcpu = curcpu;
|
|
else
|
|
vcpu->hostcpu = NOCPU;
|
|
|
|
if (newstate == VCPU_IDLE)
|
|
wakeup(&vcpu->state);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
|
|
{
|
|
int error;
|
|
|
|
if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
|
|
panic("Error %d setting state to %d\n", error, newstate);
|
|
}
|
|
|
|
static void
|
|
vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
|
|
{
|
|
int error;
|
|
|
|
if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
|
|
panic("Error %d setting state to %d", error, newstate);
|
|
}
|
|
|
|
static void
|
|
vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func)
|
|
{
|
|
|
|
KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked"));
|
|
|
|
/*
|
|
* Update 'rendezvous_func' and execute a write memory barrier to
|
|
* ensure that it is visible across all host cpus. This is not needed
|
|
* for correctness but it does ensure that all the vcpus will notice
|
|
* that the rendezvous is requested immediately.
|
|
*/
|
|
vm->rendezvous_func = func;
|
|
wmb();
|
|
}
|
|
|
|
#define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \
|
|
do { \
|
|
if (vcpuid >= 0) \
|
|
VCPU_CTR0(vm, vcpuid, fmt); \
|
|
else \
|
|
VM_CTR0(vm, fmt); \
|
|
} while (0)
|
|
|
|
static void
|
|
vm_handle_rendezvous(struct vm *vm, int vcpuid)
|
|
{
|
|
|
|
KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
|
|
("vm_handle_rendezvous: invalid vcpuid %d", vcpuid));
|
|
|
|
mtx_lock(&vm->rendezvous_mtx);
|
|
while (vm->rendezvous_func != NULL) {
|
|
/* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
|
|
CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus);
|
|
|
|
if (vcpuid != -1 &&
|
|
CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
|
|
!CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
|
|
VCPU_CTR0(vm, vcpuid, "Calling rendezvous func");
|
|
(*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg);
|
|
CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
|
|
}
|
|
if (CPU_CMP(&vm->rendezvous_req_cpus,
|
|
&vm->rendezvous_done_cpus) == 0) {
|
|
VCPU_CTR0(vm, vcpuid, "Rendezvous completed");
|
|
vm_set_rendezvous_func(vm, NULL);
|
|
wakeup(&vm->rendezvous_func);
|
|
break;
|
|
}
|
|
RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion");
|
|
mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
|
|
"vmrndv", 0);
|
|
}
|
|
mtx_unlock(&vm->rendezvous_mtx);
|
|
}
|
|
|
|
/*
|
|
* Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
|
|
*/
|
|
static int
|
|
vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu)
|
|
{
|
|
struct vcpu *vcpu;
|
|
const char *wmesg;
|
|
int error, t, vcpu_halted, vm_halted;
|
|
|
|
KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
vcpu_halted = 0;
|
|
vm_halted = 0;
|
|
|
|
/*
|
|
* The typical way to halt a cpu is to execute: "sti; hlt"
|
|
*
|
|
* STI sets RFLAGS.IF to enable interrupts. However, the processor
|
|
* remains in an "interrupt shadow" for an additional instruction
|
|
* following the STI. This guarantees that "sti; hlt" sequence is
|
|
* atomic and a pending interrupt will be recognized after the HLT.
|
|
*
|
|
* After the HLT emulation is done the vcpu is no longer in an
|
|
* interrupt shadow and a pending interrupt can be injected on
|
|
* the next entry into the guest.
|
|
*/
|
|
error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0);
|
|
KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
|
|
__func__, error));
|
|
|
|
vcpu_lock(vcpu);
|
|
while (1) {
|
|
/*
|
|
* Do a final check for pending NMI or interrupts before
|
|
* really putting this thread to sleep. Also check for
|
|
* software events that would cause this vcpu to wakeup.
|
|
*
|
|
* These interrupts/events could have happened after the
|
|
* vcpu returned from VMRUN() and before it acquired the
|
|
* vcpu lock above.
|
|
*/
|
|
if (vm->rendezvous_func != NULL || vm->suspend)
|
|
break;
|
|
if (vm_nmi_pending(vm, vcpuid))
|
|
break;
|
|
if (!intr_disabled) {
|
|
if (vm_extint_pending(vm, vcpuid) ||
|
|
vlapic_pending_intr(vcpu->vlapic, NULL)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Don't go to sleep if the vcpu thread needs to yield */
|
|
if (vcpu_should_yield(vm, vcpuid))
|
|
break;
|
|
|
|
/*
|
|
* Some Linux guests implement "halt" by having all vcpus
|
|
* execute HLT with interrupts disabled. 'halted_cpus' keeps
|
|
* track of the vcpus that have entered this state. When all
|
|
* vcpus enter the halted state the virtual machine is halted.
|
|
*/
|
|
if (intr_disabled) {
|
|
wmesg = "vmhalt";
|
|
VCPU_CTR0(vm, vcpuid, "Halted");
|
|
if (!vcpu_halted && halt_detection_enabled) {
|
|
vcpu_halted = 1;
|
|
CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
|
|
}
|
|
if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
|
|
vm_halted = 1;
|
|
break;
|
|
}
|
|
} else {
|
|
wmesg = "vmidle";
|
|
}
|
|
|
|
t = ticks;
|
|
vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
|
|
/*
|
|
* XXX msleep_spin() cannot be interrupted by signals so
|
|
* wake up periodically to check pending signals.
|
|
*/
|
|
msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
|
|
vcpu_require_state_locked(vcpu, VCPU_FROZEN);
|
|
vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
|
|
}
|
|
|
|
if (vcpu_halted)
|
|
CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
|
|
|
|
vcpu_unlock(vcpu);
|
|
|
|
if (vm_halted)
|
|
vm_suspend(vm, VM_SUSPEND_HALT);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vm_handle_paging(struct vm *vm, int vcpuid, bool *retu)
|
|
{
|
|
int rv, ftype;
|
|
struct vm_map *map;
|
|
struct vcpu *vcpu;
|
|
struct vm_exit *vme;
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
vme = &vcpu->exitinfo;
|
|
|
|
ftype = vme->u.paging.fault_type;
|
|
KASSERT(ftype == VM_PROT_READ ||
|
|
ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
|
|
("vm_handle_paging: invalid fault_type %d", ftype));
|
|
|
|
if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
|
|
rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
|
|
vme->u.paging.gpa, ftype);
|
|
if (rv == 0) {
|
|
VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx",
|
|
ftype == VM_PROT_READ ? "accessed" : "dirty",
|
|
vme->u.paging.gpa);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
map = &vm->vmspace->vm_map;
|
|
rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL);
|
|
|
|
VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
|
|
"ftype = %d", rv, vme->u.paging.gpa, ftype);
|
|
|
|
if (rv != KERN_SUCCESS)
|
|
return (EFAULT);
|
|
done:
|
|
/* restart execution at the faulting instruction */
|
|
vme->inst_length = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu)
|
|
{
|
|
struct vie *vie;
|
|
struct vcpu *vcpu;
|
|
struct vm_exit *vme;
|
|
uint64_t gla, gpa;
|
|
struct vm_guest_paging *paging;
|
|
mem_region_read_t mread;
|
|
mem_region_write_t mwrite;
|
|
enum vm_cpu_mode cpu_mode;
|
|
int cs_d, error;
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
vme = &vcpu->exitinfo;
|
|
|
|
gla = vme->u.inst_emul.gla;
|
|
gpa = vme->u.inst_emul.gpa;
|
|
cs_d = vme->u.inst_emul.cs_d;
|
|
vie = &vme->u.inst_emul.vie;
|
|
paging = &vme->u.inst_emul.paging;
|
|
cpu_mode = paging->cpu_mode;
|
|
|
|
VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa);
|
|
|
|
vie_init(vie);
|
|
|
|
/* Fetch, decode and emulate the faulting instruction */
|
|
error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip,
|
|
vme->inst_length, vie);
|
|
if (error == 1)
|
|
return (0); /* Resume guest to handle page fault */
|
|
else if (error == -1)
|
|
return (EFAULT);
|
|
else if (error != 0)
|
|
panic("%s: vmm_fetch_instruction error %d", __func__, error);
|
|
|
|
if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0)
|
|
return (EFAULT);
|
|
|
|
/* return to userland unless this is an in-kernel emulated device */
|
|
if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
|
|
mread = lapic_mmio_read;
|
|
mwrite = lapic_mmio_write;
|
|
} else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
|
|
mread = vioapic_mmio_read;
|
|
mwrite = vioapic_mmio_write;
|
|
} else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
|
|
mread = vhpet_mmio_read;
|
|
mwrite = vhpet_mmio_write;
|
|
} else {
|
|
*retu = true;
|
|
return (0);
|
|
}
|
|
|
|
error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging,
|
|
mread, mwrite, retu);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu)
|
|
{
|
|
int i, done;
|
|
struct vcpu *vcpu;
|
|
|
|
done = 0;
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
|
|
CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus);
|
|
|
|
/*
|
|
* Wait until all 'active_cpus' have suspended themselves.
|
|
*
|
|
* Since a VM may be suspended at any time including when one or
|
|
* more vcpus are doing a rendezvous we need to call the rendezvous
|
|
* handler while we are waiting to prevent a deadlock.
|
|
*/
|
|
vcpu_lock(vcpu);
|
|
while (1) {
|
|
if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
|
|
VCPU_CTR0(vm, vcpuid, "All vcpus suspended");
|
|
break;
|
|
}
|
|
|
|
if (vm->rendezvous_func == NULL) {
|
|
VCPU_CTR0(vm, vcpuid, "Sleeping during suspend");
|
|
vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
|
|
msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
|
|
vcpu_require_state_locked(vcpu, VCPU_FROZEN);
|
|
} else {
|
|
VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend");
|
|
vcpu_unlock(vcpu);
|
|
vm_handle_rendezvous(vm, vcpuid);
|
|
vcpu_lock(vcpu);
|
|
}
|
|
}
|
|
vcpu_unlock(vcpu);
|
|
|
|
/*
|
|
* Wakeup the other sleeping vcpus and return to userspace.
|
|
*/
|
|
for (i = 0; i < VM_MAXCPU; i++) {
|
|
if (CPU_ISSET(i, &vm->suspended_cpus)) {
|
|
vcpu_notify_event(vm, i, false);
|
|
}
|
|
}
|
|
|
|
*retu = true;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vm_suspend(struct vm *vm, enum vm_suspend_how how)
|
|
{
|
|
int i;
|
|
|
|
if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
|
|
return (EINVAL);
|
|
|
|
if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
|
|
VM_CTR2(vm, "virtual machine already suspended %d/%d",
|
|
vm->suspend, how);
|
|
return (EALREADY);
|
|
}
|
|
|
|
VM_CTR1(vm, "virtual machine successfully suspended %d", how);
|
|
|
|
/*
|
|
* Notify all active vcpus that they are now suspended.
|
|
*/
|
|
for (i = 0; i < VM_MAXCPU; i++) {
|
|
if (CPU_ISSET(i, &vm->active_cpus))
|
|
vcpu_notify_event(vm, i, false);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip)
|
|
{
|
|
struct vm_exit *vmexit;
|
|
|
|
KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
|
|
("vm_exit_suspended: invalid suspend type %d", vm->suspend));
|
|
|
|
vmexit = vm_exitinfo(vm, vcpuid);
|
|
vmexit->rip = rip;
|
|
vmexit->inst_length = 0;
|
|
vmexit->exitcode = VM_EXITCODE_SUSPENDED;
|
|
vmexit->u.suspended.how = vm->suspend;
|
|
}
|
|
|
|
void
|
|
vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip)
|
|
{
|
|
struct vm_exit *vmexit;
|
|
|
|
KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress"));
|
|
|
|
vmexit = vm_exitinfo(vm, vcpuid);
|
|
vmexit->rip = rip;
|
|
vmexit->inst_length = 0;
|
|
vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
|
|
vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1);
|
|
}
|
|
|
|
void
|
|
vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip)
|
|
{
|
|
struct vm_exit *vmexit;
|
|
|
|
vmexit = vm_exitinfo(vm, vcpuid);
|
|
vmexit->rip = rip;
|
|
vmexit->inst_length = 0;
|
|
vmexit->exitcode = VM_EXITCODE_BOGUS;
|
|
vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1);
|
|
}
|
|
|
|
int
|
|
vm_run(struct vm *vm, struct vm_run *vmrun)
|
|
{
|
|
int error, vcpuid;
|
|
struct vcpu *vcpu;
|
|
struct pcb *pcb;
|
|
uint64_t tscval, rip;
|
|
struct vm_exit *vme;
|
|
bool retu, intr_disabled;
|
|
pmap_t pmap;
|
|
void *rptr, *sptr;
|
|
|
|
vcpuid = vmrun->cpuid;
|
|
|
|
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
|
|
return (EINVAL);
|
|
|
|
if (!CPU_ISSET(vcpuid, &vm->active_cpus))
|
|
return (EINVAL);
|
|
|
|
if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
|
|
return (EINVAL);
|
|
|
|
rptr = &vm->rendezvous_func;
|
|
sptr = &vm->suspend;
|
|
pmap = vmspace_pmap(vm->vmspace);
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
vme = &vcpu->exitinfo;
|
|
rip = vmrun->rip;
|
|
restart:
|
|
critical_enter();
|
|
|
|
KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
|
|
("vm_run: absurd pm_active"));
|
|
|
|
tscval = rdtsc();
|
|
|
|
pcb = PCPU_GET(curpcb);
|
|
set_pcb_flags(pcb, PCB_FULL_IRET);
|
|
|
|
restore_guest_fpustate(vcpu);
|
|
|
|
vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
|
|
error = VMRUN(vm->cookie, vcpuid, rip, pmap, rptr, sptr);
|
|
vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
|
|
|
|
save_guest_fpustate(vcpu);
|
|
|
|
vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
|
|
|
|
critical_exit();
|
|
|
|
if (error == 0) {
|
|
retu = false;
|
|
switch (vme->exitcode) {
|
|
case VM_EXITCODE_SUSPENDED:
|
|
error = vm_handle_suspend(vm, vcpuid, &retu);
|
|
break;
|
|
case VM_EXITCODE_IOAPIC_EOI:
|
|
vioapic_process_eoi(vm, vcpuid,
|
|
vme->u.ioapic_eoi.vector);
|
|
break;
|
|
case VM_EXITCODE_RENDEZVOUS:
|
|
vm_handle_rendezvous(vm, vcpuid);
|
|
error = 0;
|
|
break;
|
|
case VM_EXITCODE_HLT:
|
|
intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
|
|
error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu);
|
|
break;
|
|
case VM_EXITCODE_PAGING:
|
|
error = vm_handle_paging(vm, vcpuid, &retu);
|
|
break;
|
|
case VM_EXITCODE_INST_EMUL:
|
|
error = vm_handle_inst_emul(vm, vcpuid, &retu);
|
|
break;
|
|
case VM_EXITCODE_INOUT:
|
|
case VM_EXITCODE_INOUT_STR:
|
|
error = vm_handle_inout(vm, vcpuid, vme, &retu);
|
|
break;
|
|
case VM_EXITCODE_MONITOR:
|
|
case VM_EXITCODE_MWAIT:
|
|
vm_inject_ud(vm, vcpuid);
|
|
break;
|
|
default:
|
|
retu = true; /* handled in userland */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (error == 0 && retu == false) {
|
|
rip = vme->rip + vme->inst_length;
|
|
goto restart;
|
|
}
|
|
|
|
/* copy the exit information */
|
|
bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info)
|
|
{
|
|
struct vcpu *vcpu;
|
|
int type, vector;
|
|
|
|
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
|
|
return (EINVAL);
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
|
|
if (info & VM_INTINFO_VALID) {
|
|
type = info & VM_INTINFO_TYPE;
|
|
vector = info & 0xff;
|
|
if (type == VM_INTINFO_NMI && vector != IDT_NMI)
|
|
return (EINVAL);
|
|
if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
|
|
return (EINVAL);
|
|
if (info & VM_INTINFO_RSVD)
|
|
return (EINVAL);
|
|
} else {
|
|
info = 0;
|
|
}
|
|
VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info);
|
|
vcpu->exitintinfo = info;
|
|
return (0);
|
|
}
|
|
|
|
enum exc_class {
|
|
EXC_BENIGN,
|
|
EXC_CONTRIBUTORY,
|
|
EXC_PAGEFAULT
|
|
};
|
|
|
|
#define IDT_VE 20 /* Virtualization Exception (Intel specific) */
|
|
|
|
static enum exc_class
|
|
exception_class(uint64_t info)
|
|
{
|
|
int type, vector;
|
|
|
|
KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
|
|
type = info & VM_INTINFO_TYPE;
|
|
vector = info & 0xff;
|
|
|
|
/* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
|
|
switch (type) {
|
|
case VM_INTINFO_HWINTR:
|
|
case VM_INTINFO_SWINTR:
|
|
case VM_INTINFO_NMI:
|
|
return (EXC_BENIGN);
|
|
default:
|
|
/*
|
|
* Hardware exception.
|
|
*
|
|
* SVM and VT-x use identical type values to represent NMI,
|
|
* hardware interrupt and software interrupt.
|
|
*
|
|
* SVM uses type '3' for all exceptions. VT-x uses type '3'
|
|
* for exceptions except #BP and #OF. #BP and #OF use a type
|
|
* value of '5' or '6'. Therefore we don't check for explicit
|
|
* values of 'type' to classify 'intinfo' into a hardware
|
|
* exception.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
switch (vector) {
|
|
case IDT_PF:
|
|
case IDT_VE:
|
|
return (EXC_PAGEFAULT);
|
|
case IDT_DE:
|
|
case IDT_TS:
|
|
case IDT_NP:
|
|
case IDT_SS:
|
|
case IDT_GP:
|
|
return (EXC_CONTRIBUTORY);
|
|
default:
|
|
return (EXC_BENIGN);
|
|
}
|
|
}
|
|
|
|
static int
|
|
nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2,
|
|
uint64_t *retinfo)
|
|
{
|
|
enum exc_class exc1, exc2;
|
|
int type1, vector1;
|
|
|
|
KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
|
|
KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
|
|
|
|
/*
|
|
* If an exception occurs while attempting to call the double-fault
|
|
* handler the processor enters shutdown mode (aka triple fault).
|
|
*/
|
|
type1 = info1 & VM_INTINFO_TYPE;
|
|
vector1 = info1 & 0xff;
|
|
if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
|
|
VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)",
|
|
info1, info2);
|
|
vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT);
|
|
*retinfo = 0;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
|
|
*/
|
|
exc1 = exception_class(info1);
|
|
exc2 = exception_class(info2);
|
|
if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
|
|
(exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
|
|
/* Convert nested fault into a double fault. */
|
|
*retinfo = IDT_DF;
|
|
*retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
|
|
*retinfo |= VM_INTINFO_DEL_ERRCODE;
|
|
} else {
|
|
/* Handle exceptions serially */
|
|
*retinfo = info2;
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
static uint64_t
|
|
vcpu_exception_intinfo(struct vcpu *vcpu)
|
|
{
|
|
uint64_t info = 0;
|
|
|
|
if (vcpu->exception_pending) {
|
|
info = vcpu->exception.vector & 0xff;
|
|
info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
|
|
if (vcpu->exception.error_code_valid) {
|
|
info |= VM_INTINFO_DEL_ERRCODE;
|
|
info |= (uint64_t)vcpu->exception.error_code << 32;
|
|
}
|
|
}
|
|
return (info);
|
|
}
|
|
|
|
int
|
|
vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo)
|
|
{
|
|
struct vcpu *vcpu;
|
|
uint64_t info1, info2;
|
|
int valid;
|
|
|
|
KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid));
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
|
|
info1 = vcpu->exitintinfo;
|
|
vcpu->exitintinfo = 0;
|
|
|
|
info2 = 0;
|
|
if (vcpu->exception_pending) {
|
|
info2 = vcpu_exception_intinfo(vcpu);
|
|
vcpu->exception_pending = 0;
|
|
VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx",
|
|
vcpu->exception.vector, info2);
|
|
}
|
|
|
|
if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
|
|
valid = nested_fault(vm, vcpuid, info1, info2, retinfo);
|
|
} else if (info1 & VM_INTINFO_VALID) {
|
|
*retinfo = info1;
|
|
valid = 1;
|
|
} else if (info2 & VM_INTINFO_VALID) {
|
|
*retinfo = info2;
|
|
valid = 1;
|
|
} else {
|
|
valid = 0;
|
|
}
|
|
|
|
if (valid) {
|
|
VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), "
|
|
"retinfo(%#lx)", __func__, info1, info2, *retinfo);
|
|
}
|
|
|
|
return (valid);
|
|
}
|
|
|
|
int
|
|
vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2)
|
|
{
|
|
struct vcpu *vcpu;
|
|
|
|
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
|
|
return (EINVAL);
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
*info1 = vcpu->exitintinfo;
|
|
*info2 = vcpu_exception_intinfo(vcpu);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vm_inject_exception(struct vm *vm, int vcpuid, struct vm_exception *exception)
|
|
{
|
|
struct vcpu *vcpu;
|
|
|
|
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
|
|
return (EINVAL);
|
|
|
|
if (exception->vector < 0 || exception->vector >= 32)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* A double fault exception should never be injected directly into
|
|
* the guest. It is a derived exception that results from specific
|
|
* combinations of nested faults.
|
|
*/
|
|
if (exception->vector == IDT_DF)
|
|
return (EINVAL);
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
|
|
if (vcpu->exception_pending) {
|
|
VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to "
|
|
"pending exception %d", exception->vector,
|
|
vcpu->exception.vector);
|
|
return (EBUSY);
|
|
}
|
|
|
|
vcpu->exception_pending = 1;
|
|
vcpu->exception = *exception;
|
|
VCPU_CTR1(vm, vcpuid, "Exception %d pending", exception->vector);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid,
|
|
int errcode)
|
|
{
|
|
struct vm_exception exception;
|
|
struct vm_exit *vmexit;
|
|
struct vm *vm;
|
|
int error;
|
|
|
|
vm = vmarg;
|
|
|
|
exception.vector = vector;
|
|
exception.error_code = errcode;
|
|
exception.error_code_valid = errcode_valid;
|
|
error = vm_inject_exception(vm, vcpuid, &exception);
|
|
KASSERT(error == 0, ("vm_inject_exception error %d", error));
|
|
|
|
/*
|
|
* A fault-like exception allows the instruction to be restarted
|
|
* after the exception handler returns.
|
|
*
|
|
* By setting the inst_length to 0 we ensure that the instruction
|
|
* pointer remains at the faulting instruction.
|
|
*/
|
|
vmexit = vm_exitinfo(vm, vcpuid);
|
|
vmexit->inst_length = 0;
|
|
}
|
|
|
|
void
|
|
vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2)
|
|
{
|
|
struct vm *vm;
|
|
int error;
|
|
|
|
vm = vmarg;
|
|
VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx",
|
|
error_code, cr2);
|
|
|
|
error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2);
|
|
KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
|
|
|
|
vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code);
|
|
}
|
|
|
|
static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
|
|
|
|
int
|
|
vm_inject_nmi(struct vm *vm, int vcpuid)
|
|
{
|
|
struct vcpu *vcpu;
|
|
|
|
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
|
|
return (EINVAL);
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
|
|
vcpu->nmi_pending = 1;
|
|
vcpu_notify_event(vm, vcpuid, false);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vm_nmi_pending(struct vm *vm, int vcpuid)
|
|
{
|
|
struct vcpu *vcpu;
|
|
|
|
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
|
|
panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
|
|
return (vcpu->nmi_pending);
|
|
}
|
|
|
|
void
|
|
vm_nmi_clear(struct vm *vm, int vcpuid)
|
|
{
|
|
struct vcpu *vcpu;
|
|
|
|
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
|
|
panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
|
|
if (vcpu->nmi_pending == 0)
|
|
panic("vm_nmi_clear: inconsistent nmi_pending state");
|
|
|
|
vcpu->nmi_pending = 0;
|
|
vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
|
|
}
|
|
|
|
static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
|
|
|
|
int
|
|
vm_inject_extint(struct vm *vm, int vcpuid)
|
|
{
|
|
struct vcpu *vcpu;
|
|
|
|
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
|
|
return (EINVAL);
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
|
|
vcpu->extint_pending = 1;
|
|
vcpu_notify_event(vm, vcpuid, false);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vm_extint_pending(struct vm *vm, int vcpuid)
|
|
{
|
|
struct vcpu *vcpu;
|
|
|
|
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
|
|
panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
|
|
return (vcpu->extint_pending);
|
|
}
|
|
|
|
void
|
|
vm_extint_clear(struct vm *vm, int vcpuid)
|
|
{
|
|
struct vcpu *vcpu;
|
|
|
|
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
|
|
panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
|
|
if (vcpu->extint_pending == 0)
|
|
panic("vm_extint_clear: inconsistent extint_pending state");
|
|
|
|
vcpu->extint_pending = 0;
|
|
vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
|
|
}
|
|
|
|
int
|
|
vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
|
|
{
|
|
if (vcpu < 0 || vcpu >= VM_MAXCPU)
|
|
return (EINVAL);
|
|
|
|
if (type < 0 || type >= VM_CAP_MAX)
|
|
return (EINVAL);
|
|
|
|
return (VMGETCAP(vm->cookie, vcpu, type, retval));
|
|
}
|
|
|
|
int
|
|
vm_set_capability(struct vm *vm, int vcpu, int type, int val)
|
|
{
|
|
if (vcpu < 0 || vcpu >= VM_MAXCPU)
|
|
return (EINVAL);
|
|
|
|
if (type < 0 || type >= VM_CAP_MAX)
|
|
return (EINVAL);
|
|
|
|
return (VMSETCAP(vm->cookie, vcpu, type, val));
|
|
}
|
|
|
|
struct vlapic *
|
|
vm_lapic(struct vm *vm, int cpu)
|
|
{
|
|
return (vm->vcpu[cpu].vlapic);
|
|
}
|
|
|
|
struct vioapic *
|
|
vm_ioapic(struct vm *vm)
|
|
{
|
|
|
|
return (vm->vioapic);
|
|
}
|
|
|
|
struct vhpet *
|
|
vm_hpet(struct vm *vm)
|
|
{
|
|
|
|
return (vm->vhpet);
|
|
}
|
|
|
|
boolean_t
|
|
vmm_is_pptdev(int bus, int slot, int func)
|
|
{
|
|
int found, i, n;
|
|
int b, s, f;
|
|
char *val, *cp, *cp2;
|
|
|
|
/*
|
|
* XXX
|
|
* The length of an environment variable is limited to 128 bytes which
|
|
* puts an upper limit on the number of passthru devices that may be
|
|
* specified using a single environment variable.
|
|
*
|
|
* Work around this by scanning multiple environment variable
|
|
* names instead of a single one - yuck!
|
|
*/
|
|
const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
|
|
|
|
/* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
|
|
found = 0;
|
|
for (i = 0; names[i] != NULL && !found; i++) {
|
|
cp = val = getenv(names[i]);
|
|
while (cp != NULL && *cp != '\0') {
|
|
if ((cp2 = strchr(cp, ' ')) != NULL)
|
|
*cp2 = '\0';
|
|
|
|
n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
|
|
if (n == 3 && bus == b && slot == s && func == f) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
|
|
if (cp2 != NULL)
|
|
*cp2++ = ' ';
|
|
|
|
cp = cp2;
|
|
}
|
|
freeenv(val);
|
|
}
|
|
return (found);
|
|
}
|
|
|
|
void *
|
|
vm_iommu_domain(struct vm *vm)
|
|
{
|
|
|
|
return (vm->iommu);
|
|
}
|
|
|
|
int
|
|
vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
|
|
bool from_idle)
|
|
{
|
|
int error;
|
|
struct vcpu *vcpu;
|
|
|
|
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
|
|
panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
|
|
vcpu_lock(vcpu);
|
|
error = vcpu_set_state_locked(vcpu, newstate, from_idle);
|
|
vcpu_unlock(vcpu);
|
|
|
|
return (error);
|
|
}
|
|
|
|
enum vcpu_state
|
|
vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
|
|
{
|
|
struct vcpu *vcpu;
|
|
enum vcpu_state state;
|
|
|
|
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
|
|
panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
|
|
vcpu_lock(vcpu);
|
|
state = vcpu->state;
|
|
if (hostcpu != NULL)
|
|
*hostcpu = vcpu->hostcpu;
|
|
vcpu_unlock(vcpu);
|
|
|
|
return (state);
|
|
}
|
|
|
|
int
|
|
vm_activate_cpu(struct vm *vm, int vcpuid)
|
|
{
|
|
|
|
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
|
|
return (EINVAL);
|
|
|
|
if (CPU_ISSET(vcpuid, &vm->active_cpus))
|
|
return (EBUSY);
|
|
|
|
VCPU_CTR0(vm, vcpuid, "activated");
|
|
CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
|
|
return (0);
|
|
}
|
|
|
|
cpuset_t
|
|
vm_active_cpus(struct vm *vm)
|
|
{
|
|
|
|
return (vm->active_cpus);
|
|
}
|
|
|
|
cpuset_t
|
|
vm_suspended_cpus(struct vm *vm)
|
|
{
|
|
|
|
return (vm->suspended_cpus);
|
|
}
|
|
|
|
void *
|
|
vcpu_stats(struct vm *vm, int vcpuid)
|
|
{
|
|
|
|
return (vm->vcpu[vcpuid].stats);
|
|
}
|
|
|
|
int
|
|
vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
|
|
{
|
|
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
|
|
return (EINVAL);
|
|
|
|
*state = vm->vcpu[vcpuid].x2apic_state;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
|
|
{
|
|
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
|
|
return (EINVAL);
|
|
|
|
if (state >= X2APIC_STATE_LAST)
|
|
return (EINVAL);
|
|
|
|
vm->vcpu[vcpuid].x2apic_state = state;
|
|
|
|
vlapic_set_x2apic_state(vm, vcpuid, state);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This function is called to ensure that a vcpu "sees" a pending event
|
|
* as soon as possible:
|
|
* - If the vcpu thread is sleeping then it is woken up.
|
|
* - If the vcpu is running on a different host_cpu then an IPI will be directed
|
|
* to the host_cpu to cause the vcpu to trap into the hypervisor.
|
|
*/
|
|
void
|
|
vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr)
|
|
{
|
|
int hostcpu;
|
|
struct vcpu *vcpu;
|
|
|
|
vcpu = &vm->vcpu[vcpuid];
|
|
|
|
vcpu_lock(vcpu);
|
|
hostcpu = vcpu->hostcpu;
|
|
if (vcpu->state == VCPU_RUNNING) {
|
|
KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
|
|
if (hostcpu != curcpu) {
|
|
if (lapic_intr) {
|
|
vlapic_post_intr(vcpu->vlapic, hostcpu,
|
|
vmm_ipinum);
|
|
} else {
|
|
ipi_cpu(hostcpu, vmm_ipinum);
|
|
}
|
|
} else {
|
|
/*
|
|
* If the 'vcpu' is running on 'curcpu' then it must
|
|
* be sending a notification to itself (e.g. SELF_IPI).
|
|
* The pending event will be picked up when the vcpu
|
|
* transitions back to guest context.
|
|
*/
|
|
}
|
|
} else {
|
|
KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
|
|
"with hostcpu %d", vcpu->state, hostcpu));
|
|
if (vcpu->state == VCPU_SLEEPING)
|
|
wakeup_one(vcpu);
|
|
}
|
|
vcpu_unlock(vcpu);
|
|
}
|
|
|
|
struct vmspace *
|
|
vm_get_vmspace(struct vm *vm)
|
|
{
|
|
|
|
return (vm->vmspace);
|
|
}
|
|
|
|
int
|
|
vm_apicid2vcpuid(struct vm *vm, int apicid)
|
|
{
|
|
/*
|
|
* XXX apic id is assumed to be numerically identical to vcpu id
|
|
*/
|
|
return (apicid);
|
|
}
|
|
|
|
void
|
|
vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest,
|
|
vm_rendezvous_func_t func, void *arg)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Enforce that this function is called without any locks
|
|
*/
|
|
WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
|
|
KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
|
|
("vm_smp_rendezvous: invalid vcpuid %d", vcpuid));
|
|
|
|
restart:
|
|
mtx_lock(&vm->rendezvous_mtx);
|
|
if (vm->rendezvous_func != NULL) {
|
|
/*
|
|
* If a rendezvous is already in progress then we need to
|
|
* call the rendezvous handler in case this 'vcpuid' is one
|
|
* of the targets of the rendezvous.
|
|
*/
|
|
RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress");
|
|
mtx_unlock(&vm->rendezvous_mtx);
|
|
vm_handle_rendezvous(vm, vcpuid);
|
|
goto restart;
|
|
}
|
|
KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
|
|
"rendezvous is still in progress"));
|
|
|
|
RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous");
|
|
vm->rendezvous_req_cpus = dest;
|
|
CPU_ZERO(&vm->rendezvous_done_cpus);
|
|
vm->rendezvous_arg = arg;
|
|
vm_set_rendezvous_func(vm, func);
|
|
mtx_unlock(&vm->rendezvous_mtx);
|
|
|
|
/*
|
|
* Wake up any sleeping vcpus and trigger a VM-exit in any running
|
|
* vcpus so they handle the rendezvous as soon as possible.
|
|
*/
|
|
for (i = 0; i < VM_MAXCPU; i++) {
|
|
if (CPU_ISSET(i, &dest))
|
|
vcpu_notify_event(vm, i, false);
|
|
}
|
|
|
|
vm_handle_rendezvous(vm, vcpuid);
|
|
}
|
|
|
|
struct vatpic *
|
|
vm_atpic(struct vm *vm)
|
|
{
|
|
return (vm->vatpic);
|
|
}
|
|
|
|
struct vatpit *
|
|
vm_atpit(struct vm *vm)
|
|
{
|
|
return (vm->vatpit);
|
|
}
|
|
|
|
enum vm_reg_name
|
|
vm_segment_name(int seg)
|
|
{
|
|
static enum vm_reg_name seg_names[] = {
|
|
VM_REG_GUEST_ES,
|
|
VM_REG_GUEST_CS,
|
|
VM_REG_GUEST_SS,
|
|
VM_REG_GUEST_DS,
|
|
VM_REG_GUEST_FS,
|
|
VM_REG_GUEST_GS
|
|
};
|
|
|
|
KASSERT(seg >= 0 && seg < nitems(seg_names),
|
|
("%s: invalid segment encoding %d", __func__, seg));
|
|
return (seg_names[seg]);
|
|
}
|
|
|
|
void
|
|
vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
|
|
int num_copyinfo)
|
|
{
|
|
int idx;
|
|
|
|
for (idx = 0; idx < num_copyinfo; idx++) {
|
|
if (copyinfo[idx].cookie != NULL)
|
|
vm_gpa_release(copyinfo[idx].cookie);
|
|
}
|
|
bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
|
|
}
|
|
|
|
int
|
|
vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
|
|
uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
|
|
int num_copyinfo)
|
|
{
|
|
int error, idx, nused;
|
|
size_t n, off, remaining;
|
|
void *hva, *cookie;
|
|
uint64_t gpa;
|
|
|
|
bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
|
|
|
|
nused = 0;
|
|
remaining = len;
|
|
while (remaining > 0) {
|
|
KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));
|
|
error = vmm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa);
|
|
if (error)
|
|
return (error);
|
|
off = gpa & PAGE_MASK;
|
|
n = min(remaining, PAGE_SIZE - off);
|
|
copyinfo[nused].gpa = gpa;
|
|
copyinfo[nused].len = n;
|
|
remaining -= n;
|
|
gla += n;
|
|
nused++;
|
|
}
|
|
|
|
for (idx = 0; idx < nused; idx++) {
|
|
hva = vm_gpa_hold(vm, copyinfo[idx].gpa, copyinfo[idx].len,
|
|
prot, &cookie);
|
|
if (hva == NULL)
|
|
break;
|
|
copyinfo[idx].hva = hva;
|
|
copyinfo[idx].cookie = cookie;
|
|
}
|
|
|
|
if (idx != nused) {
|
|
vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo);
|
|
return (-1);
|
|
} else {
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
void
|
|
vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr,
|
|
size_t len)
|
|
{
|
|
char *dst;
|
|
int idx;
|
|
|
|
dst = kaddr;
|
|
idx = 0;
|
|
while (len > 0) {
|
|
bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
|
|
len -= copyinfo[idx].len;
|
|
dst += copyinfo[idx].len;
|
|
idx++;
|
|
}
|
|
}
|
|
|
|
void
|
|
vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
|
|
struct vm_copyinfo *copyinfo, size_t len)
|
|
{
|
|
const char *src;
|
|
int idx;
|
|
|
|
src = kaddr;
|
|
idx = 0;
|
|
while (len > 0) {
|
|
bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
|
|
len -= copyinfo[idx].len;
|
|
src += copyinfo[idx].len;
|
|
idx++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the amount of in-use and wired memory for the VM. Since
|
|
* these are global stats, only return the values with for vCPU 0
|
|
*/
|
|
VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
|
|
VMM_STAT_DECLARE(VMM_MEM_WIRED);
|
|
|
|
static void
|
|
vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
|
|
{
|
|
|
|
if (vcpu == 0) {
|
|
vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT,
|
|
PAGE_SIZE * vmspace_resident_count(vm->vmspace));
|
|
}
|
|
}
|
|
|
|
static void
|
|
vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
|
|
{
|
|
|
|
if (vcpu == 0) {
|
|
vmm_stat_set(vm, vcpu, VMM_MEM_WIRED,
|
|
PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace)));
|
|
}
|
|
}
|
|
|
|
VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
|
|
VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
|