674baa3c4f
changes. MFC after: 2 weeks X-MFC-With: r361677
907 lines
27 KiB
C
907 lines
27 KiB
C
/* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed with
|
|
* this work for additional information regarding copyright ownership.
|
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
|
* (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "apr.h"
|
|
#include "apr_lib.h"
|
|
#include "apu.h"
|
|
#include "apu_errno.h"
|
|
|
|
#include <ctype.h>
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "apr_strings.h"
|
|
#include "apr_time.h"
|
|
#include "apr_buckets.h"
|
|
#include "apr_random.h"
|
|
|
|
#include "apr_crypto_internal.h"
|
|
|
|
#if APU_HAVE_CRYPTO
|
|
|
|
#include <CommonCrypto/CommonCrypto.h>
|
|
|
|
#define LOG_PREFIX "apr_crypto_commoncrypto: "
|
|
|
|
struct apr_crypto_t
|
|
{
|
|
apr_pool_t *pool;
|
|
const apr_crypto_driver_t *provider;
|
|
apu_err_t *result;
|
|
apr_hash_t *types;
|
|
apr_hash_t *modes;
|
|
apr_random_t *rng;
|
|
};
|
|
|
|
struct apr_crypto_key_t
|
|
{
|
|
apr_pool_t *pool;
|
|
const apr_crypto_driver_t *provider;
|
|
const apr_crypto_t *f;
|
|
CCAlgorithm algorithm;
|
|
CCOptions options;
|
|
unsigned char *key;
|
|
int keyLen;
|
|
int ivSize;
|
|
apr_size_t blockSize;
|
|
};
|
|
|
|
struct apr_crypto_block_t
|
|
{
|
|
apr_pool_t *pool;
|
|
const apr_crypto_driver_t *provider;
|
|
const apr_crypto_t *f;
|
|
const apr_crypto_key_t *key;
|
|
CCCryptorRef ref;
|
|
};
|
|
|
|
static struct apr_crypto_block_key_type_t key_types[] =
|
|
{
|
|
{ APR_KEY_3DES_192, 24, 8, 8 },
|
|
{ APR_KEY_AES_128, 16, 16, 16 },
|
|
{ APR_KEY_AES_192, 24, 16, 16 },
|
|
{ APR_KEY_AES_256, 32, 16, 16 } };
|
|
|
|
static struct apr_crypto_block_key_mode_t key_modes[] =
|
|
{
|
|
{ APR_MODE_ECB },
|
|
{ APR_MODE_CBC } };
|
|
|
|
/**
|
|
* Fetch the most recent error from this driver.
|
|
*/
|
|
static apr_status_t crypto_error(const apu_err_t **result,
|
|
const apr_crypto_t *f)
|
|
{
|
|
*result = f->result;
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* Shutdown the crypto library and release resources.
|
|
*/
|
|
static apr_status_t crypto_shutdown(void)
|
|
{
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
static apr_status_t crypto_shutdown_helper(void *data)
|
|
{
|
|
return crypto_shutdown();
|
|
}
|
|
|
|
/**
|
|
* Initialise the crypto library and perform one time initialisation.
|
|
*/
|
|
static apr_status_t crypto_init(apr_pool_t *pool, const char *params,
|
|
const apu_err_t **result)
|
|
{
|
|
|
|
apr_pool_cleanup_register(pool, pool, crypto_shutdown_helper,
|
|
apr_pool_cleanup_null);
|
|
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* @brief Clean encryption / decryption context.
|
|
* @note After cleanup, a context is free to be reused if necessary.
|
|
* @param ctx The block context to use.
|
|
* @return Returns APR_ENOTIMPL if not supported.
|
|
*/
|
|
static apr_status_t crypto_block_cleanup(apr_crypto_block_t *ctx)
|
|
{
|
|
|
|
if (ctx->ref) {
|
|
CCCryptorRelease(ctx->ref);
|
|
ctx->ref = NULL;
|
|
}
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
static apr_status_t crypto_block_cleanup_helper(void *data)
|
|
{
|
|
apr_crypto_block_t *block = (apr_crypto_block_t *) data;
|
|
return crypto_block_cleanup(block);
|
|
}
|
|
|
|
/**
|
|
* @brief Clean encryption / decryption context.
|
|
* @note After cleanup, a context is free to be reused if necessary.
|
|
* @param f The context to use.
|
|
* @return Returns APR_ENOTIMPL if not supported.
|
|
*/
|
|
static apr_status_t crypto_cleanup(apr_crypto_t *f)
|
|
{
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
static apr_status_t crypto_cleanup_helper(void *data)
|
|
{
|
|
apr_crypto_t *f = (apr_crypto_t *) data;
|
|
return crypto_cleanup(f);
|
|
}
|
|
|
|
/**
|
|
* @brief Create a context for supporting encryption. Keys, certificates,
|
|
* algorithms and other parameters will be set per context. More than
|
|
* one context can be created at one time. A cleanup will be automatically
|
|
* registered with the given pool to guarantee a graceful shutdown.
|
|
* @param f - context pointer will be written here
|
|
* @param provider - provider to use
|
|
* @param params - array of key parameters
|
|
* @param pool - process pool
|
|
* @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE
|
|
* if the engine cannot be initialised.
|
|
*/
|
|
static apr_status_t crypto_make(apr_crypto_t **ff,
|
|
const apr_crypto_driver_t *provider, const char *params,
|
|
apr_pool_t *pool)
|
|
{
|
|
apr_crypto_t *f = apr_pcalloc(pool, sizeof(apr_crypto_t));
|
|
apr_status_t rv;
|
|
|
|
if (!f) {
|
|
return APR_ENOMEM;
|
|
}
|
|
*ff = f;
|
|
f->pool = pool;
|
|
f->provider = provider;
|
|
|
|
/* seed the secure random number generator */
|
|
f->rng = apr_random_standard_new(pool);
|
|
if (!f->rng) {
|
|
return APR_ENOMEM;
|
|
}
|
|
do {
|
|
unsigned char seed[8];
|
|
rv = apr_generate_random_bytes(seed, sizeof(seed));
|
|
if (rv != APR_SUCCESS) {
|
|
return rv;
|
|
}
|
|
apr_random_add_entropy(f->rng, seed, sizeof(seed));
|
|
rv = apr_random_secure_ready(f->rng);
|
|
} while (rv == APR_ENOTENOUGHENTROPY);
|
|
|
|
f->result = apr_pcalloc(pool, sizeof(apu_err_t));
|
|
if (!f->result) {
|
|
return APR_ENOMEM;
|
|
}
|
|
|
|
f->types = apr_hash_make(pool);
|
|
if (!f->types) {
|
|
return APR_ENOMEM;
|
|
}
|
|
apr_hash_set(f->types, "3des192", APR_HASH_KEY_STRING, &(key_types[0]));
|
|
apr_hash_set(f->types, "aes128", APR_HASH_KEY_STRING, &(key_types[1]));
|
|
apr_hash_set(f->types, "aes192", APR_HASH_KEY_STRING, &(key_types[2]));
|
|
apr_hash_set(f->types, "aes256", APR_HASH_KEY_STRING, &(key_types[3]));
|
|
|
|
f->modes = apr_hash_make(pool);
|
|
if (!f->modes) {
|
|
return APR_ENOMEM;
|
|
}
|
|
apr_hash_set(f->modes, "ecb", APR_HASH_KEY_STRING, &(key_modes[0]));
|
|
apr_hash_set(f->modes, "cbc", APR_HASH_KEY_STRING, &(key_modes[1]));
|
|
|
|
apr_pool_cleanup_register(pool, f, crypto_cleanup_helper,
|
|
apr_pool_cleanup_null);
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Get a hash table of key types, keyed by the name of the type against
|
|
* a pointer to apr_crypto_block_key_type_t.
|
|
*
|
|
* @param types - hashtable of key types keyed to constants.
|
|
* @param f - encryption context
|
|
* @return APR_SUCCESS for success
|
|
*/
|
|
static apr_status_t crypto_get_block_key_types(apr_hash_t **types,
|
|
const apr_crypto_t *f)
|
|
{
|
|
*types = f->types;
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* @brief Get a hash table of key modes, keyed by the name of the mode against
|
|
* a pointer to apr_crypto_block_key_mode_t.
|
|
*
|
|
* @param modes - hashtable of key modes keyed to constants.
|
|
* @param f - encryption context
|
|
* @return APR_SUCCESS for success
|
|
*/
|
|
static apr_status_t crypto_get_block_key_modes(apr_hash_t **modes,
|
|
const apr_crypto_t *f)
|
|
{
|
|
*modes = f->modes;
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Work out which mechanism to use.
|
|
*/
|
|
static apr_status_t crypto_cipher_mechanism(apr_crypto_key_t *key,
|
|
const apr_crypto_block_key_type_e type,
|
|
const apr_crypto_block_key_mode_e mode, const int doPad, apr_pool_t *p)
|
|
{
|
|
/* handle padding */
|
|
key->options = doPad ? kCCOptionPKCS7Padding : 0;
|
|
|
|
/* determine the algorithm to be used */
|
|
switch (type) {
|
|
|
|
case (APR_KEY_3DES_192):
|
|
|
|
/* A 3DES key */
|
|
if (mode == APR_MODE_CBC) {
|
|
key->algorithm = kCCAlgorithm3DES;
|
|
key->keyLen = kCCKeySize3DES;
|
|
key->ivSize = kCCBlockSize3DES;
|
|
key->blockSize = kCCBlockSize3DES;
|
|
}
|
|
else {
|
|
key->algorithm = kCCAlgorithm3DES;
|
|
key->options += kCCOptionECBMode;
|
|
key->keyLen = kCCKeySize3DES;
|
|
key->ivSize = 0;
|
|
key->blockSize = kCCBlockSize3DES;
|
|
}
|
|
break;
|
|
|
|
case (APR_KEY_AES_128):
|
|
|
|
if (mode == APR_MODE_CBC) {
|
|
key->algorithm = kCCAlgorithmAES128;
|
|
key->keyLen = kCCKeySizeAES128;
|
|
key->ivSize = kCCBlockSizeAES128;
|
|
key->blockSize = kCCBlockSizeAES128;
|
|
}
|
|
else {
|
|
key->algorithm = kCCAlgorithmAES128;
|
|
key->options += kCCOptionECBMode;
|
|
key->keyLen = kCCKeySizeAES128;
|
|
key->ivSize = 0;
|
|
key->blockSize = kCCBlockSizeAES128;
|
|
}
|
|
break;
|
|
|
|
case (APR_KEY_AES_192):
|
|
|
|
if (mode == APR_MODE_CBC) {
|
|
key->algorithm = kCCAlgorithmAES128;
|
|
key->keyLen = kCCKeySizeAES192;
|
|
key->ivSize = kCCBlockSizeAES128;
|
|
key->blockSize = kCCBlockSizeAES128;
|
|
}
|
|
else {
|
|
key->algorithm = kCCAlgorithmAES128;
|
|
key->options += kCCOptionECBMode;
|
|
key->keyLen = kCCKeySizeAES192;
|
|
key->ivSize = 0;
|
|
key->blockSize = kCCBlockSizeAES128;
|
|
}
|
|
break;
|
|
|
|
case (APR_KEY_AES_256):
|
|
|
|
if (mode == APR_MODE_CBC) {
|
|
key->algorithm = kCCAlgorithmAES128;
|
|
key->keyLen = kCCKeySizeAES256;
|
|
key->ivSize = kCCBlockSizeAES128;
|
|
key->blockSize = kCCBlockSizeAES128;
|
|
}
|
|
else {
|
|
key->algorithm = kCCAlgorithmAES128;
|
|
key->options += kCCOptionECBMode;
|
|
key->keyLen = kCCKeySizeAES256;
|
|
key->ivSize = 0;
|
|
key->blockSize = kCCBlockSizeAES128;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
|
|
/* TODO: Support CAST, Blowfish */
|
|
|
|
/* unknown key type, give up */
|
|
return APR_EKEYTYPE;
|
|
|
|
}
|
|
|
|
/* make space for the key */
|
|
key->key = apr_palloc(p, key->keyLen);
|
|
if (!key->key) {
|
|
return APR_ENOMEM;
|
|
}
|
|
apr_crypto_clear(p, key->key, key->keyLen);
|
|
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* @brief Create a key from the provided secret or passphrase. The key is cleaned
|
|
* up when the context is cleaned, and may be reused with multiple encryption
|
|
* or decryption operations.
|
|
* @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
|
|
* *key is not NULL, *key must point at a previously created structure.
|
|
* @param key The key returned, see note.
|
|
* @param rec The key record, from which the key will be derived.
|
|
* @param f The context to use.
|
|
* @param p The pool to use.
|
|
* @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
|
|
* error occurred while generating the key. APR_ENOCIPHER if the type or mode
|
|
* is not supported by the particular backend. APR_EKEYTYPE if the key type is
|
|
* not known. APR_EPADDING if padding was requested but is not supported.
|
|
* APR_ENOTIMPL if not implemented.
|
|
*/
|
|
static apr_status_t crypto_key(apr_crypto_key_t **k,
|
|
const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p)
|
|
{
|
|
apr_status_t rv;
|
|
apr_crypto_key_t *key = *k;
|
|
|
|
if (!key) {
|
|
*k = key = apr_pcalloc(p, sizeof *key);
|
|
}
|
|
if (!key) {
|
|
return APR_ENOMEM;
|
|
}
|
|
|
|
key->f = f;
|
|
key->provider = f->provider;
|
|
|
|
/* decide on what cipher mechanism we will be using */
|
|
rv = crypto_cipher_mechanism(key, rec->type, rec->mode, rec->pad, p);
|
|
if (APR_SUCCESS != rv) {
|
|
return rv;
|
|
}
|
|
|
|
switch (rec->ktype) {
|
|
|
|
case APR_CRYPTO_KTYPE_PASSPHRASE: {
|
|
|
|
/* generate the key */
|
|
if ((f->result->rc = CCKeyDerivationPBKDF(kCCPBKDF2,
|
|
rec->k.passphrase.pass, rec->k.passphrase.passLen,
|
|
rec->k.passphrase.salt, rec->k.passphrase.saltLen,
|
|
kCCPRFHmacAlgSHA1, rec->k.passphrase.iterations, key->key,
|
|
key->keyLen)) == kCCParamError) {
|
|
return APR_ENOKEY;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case APR_CRYPTO_KTYPE_SECRET: {
|
|
|
|
/* sanity check - key correct size? */
|
|
if (rec->k.secret.secretLen != key->keyLen) {
|
|
return APR_EKEYLENGTH;
|
|
}
|
|
|
|
/* copy the key */
|
|
memcpy(key->key, rec->k.secret.secret, rec->k.secret.secretLen);
|
|
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
|
|
return APR_ENOKEY;
|
|
|
|
}
|
|
}
|
|
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* @brief Create a key from the given passphrase. By default, the PBKDF2
|
|
* algorithm is used to generate the key from the passphrase. It is expected
|
|
* that the same pass phrase will generate the same key, regardless of the
|
|
* backend crypto platform used. The key is cleaned up when the context
|
|
* is cleaned, and may be reused with multiple encryption or decryption
|
|
* operations.
|
|
* @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
|
|
* *key is not NULL, *key must point at a previously created structure.
|
|
* @param key The key returned, see note.
|
|
* @param ivSize The size of the initialisation vector will be returned, based
|
|
* on whether an IV is relevant for this type of crypto.
|
|
* @param pass The passphrase to use.
|
|
* @param passLen The passphrase length in bytes
|
|
* @param salt The salt to use.
|
|
* @param saltLen The salt length in bytes
|
|
* @param type 3DES_192, AES_128, AES_192, AES_256.
|
|
* @param mode Electronic Code Book / Cipher Block Chaining.
|
|
* @param doPad Pad if necessary.
|
|
* @param iterations Iteration count
|
|
* @param f The context to use.
|
|
* @param p The pool to use.
|
|
* @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
|
|
* error occurred while generating the key. APR_ENOCIPHER if the type or mode
|
|
* is not supported by the particular backend. APR_EKEYTYPE if the key type is
|
|
* not known. APR_EPADDING if padding was requested but is not supported.
|
|
* APR_ENOTIMPL if not implemented.
|
|
*/
|
|
static apr_status_t crypto_passphrase(apr_crypto_key_t **k, apr_size_t *ivSize,
|
|
const char *pass, apr_size_t passLen, const unsigned char * salt,
|
|
apr_size_t saltLen, const apr_crypto_block_key_type_e type,
|
|
const apr_crypto_block_key_mode_e mode, const int doPad,
|
|
const int iterations, const apr_crypto_t *f, apr_pool_t *p)
|
|
{
|
|
apr_status_t rv;
|
|
apr_crypto_key_t *key = *k;
|
|
|
|
if (!key) {
|
|
*k = key = apr_pcalloc(p, sizeof *key);
|
|
if (!key) {
|
|
return APR_ENOMEM;
|
|
}
|
|
}
|
|
|
|
key->f = f;
|
|
key->provider = f->provider;
|
|
|
|
/* decide on what cipher mechanism we will be using */
|
|
rv = crypto_cipher_mechanism(key, type, mode, doPad, p);
|
|
if (APR_SUCCESS != rv) {
|
|
return rv;
|
|
}
|
|
|
|
/* generate the key */
|
|
if ((f->result->rc = CCKeyDerivationPBKDF(kCCPBKDF2, pass, passLen, salt,
|
|
saltLen, kCCPRFHmacAlgSHA1, iterations, key->key, key->keyLen))
|
|
== kCCParamError) {
|
|
return APR_ENOKEY;
|
|
}
|
|
|
|
if (ivSize) {
|
|
*ivSize = key->ivSize;
|
|
}
|
|
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* @brief Initialise a context for encrypting arbitrary data using the given key.
|
|
* @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
|
|
* *ctx is not NULL, *ctx must point at a previously created structure.
|
|
* @param ctx The block context returned, see note.
|
|
* @param iv Optional initialisation vector. If the buffer pointed to is NULL,
|
|
* an IV will be created at random, in space allocated from the pool.
|
|
* If the buffer pointed to is not NULL, the IV in the buffer will be
|
|
* used.
|
|
* @param key The key structure.
|
|
* @param blockSize The block size of the cipher.
|
|
* @param p The pool to use.
|
|
* @return Returns APR_ENOIV if an initialisation vector is required but not specified.
|
|
* Returns APR_EINIT if the backend failed to initialise the context. Returns
|
|
* APR_ENOTIMPL if not implemented.
|
|
*/
|
|
static apr_status_t crypto_block_encrypt_init(apr_crypto_block_t **ctx,
|
|
const unsigned char **iv, const apr_crypto_key_t *key,
|
|
apr_size_t *blockSize, apr_pool_t *p)
|
|
{
|
|
unsigned char *usedIv;
|
|
apr_crypto_block_t *block = *ctx;
|
|
if (!block) {
|
|
*ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t));
|
|
}
|
|
if (!block) {
|
|
return APR_ENOMEM;
|
|
}
|
|
block->f = key->f;
|
|
block->pool = p;
|
|
block->provider = key->provider;
|
|
block->key = key;
|
|
|
|
apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper,
|
|
apr_pool_cleanup_null);
|
|
|
|
/* generate an IV, if necessary */
|
|
usedIv = NULL;
|
|
if (key->ivSize) {
|
|
if (iv == NULL) {
|
|
return APR_ENOIV;
|
|
}
|
|
if (*iv == NULL) {
|
|
apr_status_t status;
|
|
usedIv = apr_pcalloc(p, key->ivSize);
|
|
if (!usedIv) {
|
|
return APR_ENOMEM;
|
|
}
|
|
apr_crypto_clear(p, usedIv, key->ivSize);
|
|
status = apr_random_secure_bytes(block->f->rng, usedIv,
|
|
key->ivSize);
|
|
if (APR_SUCCESS != status) {
|
|
return status;
|
|
}
|
|
*iv = usedIv;
|
|
}
|
|
else {
|
|
usedIv = (unsigned char *) *iv;
|
|
}
|
|
}
|
|
|
|
/* create a new context for encryption */
|
|
switch ((block->f->result->rc = CCCryptorCreate(kCCEncrypt, key->algorithm,
|
|
key->options, key->key, key->keyLen, usedIv, &block->ref))) {
|
|
case kCCSuccess: {
|
|
break;
|
|
}
|
|
case kCCParamError: {
|
|
return APR_EINIT;
|
|
}
|
|
case kCCMemoryFailure: {
|
|
return APR_ENOMEM;
|
|
}
|
|
case kCCAlignmentError: {
|
|
return APR_EPADDING;
|
|
}
|
|
case kCCUnimplemented: {
|
|
return APR_ENOTIMPL;
|
|
}
|
|
default: {
|
|
return APR_EINIT;
|
|
}
|
|
}
|
|
|
|
if (blockSize) {
|
|
*blockSize = key->blockSize;
|
|
}
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Encrypt data provided by in, write it to out.
|
|
* @note The number of bytes written will be written to outlen. If
|
|
* out is NULL, outlen will contain the maximum size of the
|
|
* buffer needed to hold the data, including any data
|
|
* generated by apr_crypto_block_encrypt_finish below. If *out points
|
|
* to NULL, a buffer sufficiently large will be created from
|
|
* the pool provided. If *out points to a not-NULL value, this
|
|
* value will be used as a buffer instead.
|
|
* @param out Address of a buffer to which data will be written,
|
|
* see note.
|
|
* @param outlen Length of the output will be written here.
|
|
* @param in Address of the buffer to read.
|
|
* @param inlen Length of the buffer to read.
|
|
* @param ctx The block context to use.
|
|
* @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
|
|
* not implemented.
|
|
*/
|
|
static apr_status_t crypto_block_encrypt(unsigned char **out,
|
|
apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
|
|
apr_crypto_block_t *ctx)
|
|
{
|
|
apr_size_t outl = *outlen;
|
|
unsigned char *buffer;
|
|
|
|
/* are we after the maximum size of the out buffer? */
|
|
if (!out) {
|
|
*outlen = CCCryptorGetOutputLength(ctx->ref, inlen, 1);
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/* must we allocate the output buffer from a pool? */
|
|
if (!*out) {
|
|
outl = CCCryptorGetOutputLength(ctx->ref, inlen, 1);
|
|
buffer = apr_palloc(ctx->pool, outl);
|
|
if (!buffer) {
|
|
return APR_ENOMEM;
|
|
}
|
|
apr_crypto_clear(ctx->pool, buffer, outl);
|
|
*out = buffer;
|
|
}
|
|
|
|
switch ((ctx->f->result->rc = CCCryptorUpdate(ctx->ref, in, inlen, (*out),
|
|
outl, &outl))) {
|
|
case kCCSuccess: {
|
|
break;
|
|
}
|
|
case kCCBufferTooSmall: {
|
|
return APR_ENOSPACE;
|
|
}
|
|
default: {
|
|
return APR_ECRYPT;
|
|
}
|
|
}
|
|
*outlen = outl;
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Encrypt final data block, write it to out.
|
|
* @note If necessary the final block will be written out after being
|
|
* padded. Typically the final block will be written to the
|
|
* same buffer used by apr_crypto_block_encrypt, offset by the
|
|
* number of bytes returned as actually written by the
|
|
* apr_crypto_block_encrypt() call. After this call, the context
|
|
* is cleaned and can be reused by apr_crypto_block_encrypt_init().
|
|
* @param out Address of a buffer to which data will be written. This
|
|
* buffer must already exist, and is usually the same
|
|
* buffer used by apr_evp_crypt(). See note.
|
|
* @param outlen Length of the output will be written here.
|
|
* @param ctx The block context to use.
|
|
* @return APR_ECRYPT if an error occurred.
|
|
* @return APR_EPADDING if padding was enabled and the block was incorrectly
|
|
* formatted.
|
|
* @return APR_ENOTIMPL if not implemented.
|
|
*/
|
|
static apr_status_t crypto_block_encrypt_finish(unsigned char *out,
|
|
apr_size_t *outlen, apr_crypto_block_t *ctx)
|
|
{
|
|
apr_size_t len = *outlen;
|
|
|
|
ctx->f->result->rc = CCCryptorFinal(ctx->ref, out,
|
|
CCCryptorGetOutputLength(ctx->ref, 0, 1), &len);
|
|
|
|
/* always clean up */
|
|
crypto_block_cleanup(ctx);
|
|
|
|
switch (ctx->f->result->rc) {
|
|
case kCCSuccess: {
|
|
break;
|
|
}
|
|
case kCCBufferTooSmall: {
|
|
return APR_ENOSPACE;
|
|
}
|
|
case kCCAlignmentError: {
|
|
return APR_EPADDING;
|
|
}
|
|
case kCCDecodeError: {
|
|
return APR_ECRYPT;
|
|
}
|
|
default: {
|
|
return APR_ECRYPT;
|
|
}
|
|
}
|
|
*outlen = len;
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Initialise a context for decrypting arbitrary data using the given key.
|
|
* @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
|
|
* *ctx is not NULL, *ctx must point at a previously created structure.
|
|
* @param ctx The block context returned, see note.
|
|
* @param blockSize The block size of the cipher.
|
|
* @param iv Optional initialisation vector. If the buffer pointed to is NULL,
|
|
* an IV will be created at random, in space allocated from the pool.
|
|
* If the buffer is not NULL, the IV in the buffer will be used.
|
|
* @param key The key structure.
|
|
* @param p The pool to use.
|
|
* @return Returns APR_ENOIV if an initialisation vector is required but not specified.
|
|
* Returns APR_EINIT if the backend failed to initialise the context. Returns
|
|
* APR_ENOTIMPL if not implemented.
|
|
*/
|
|
static apr_status_t crypto_block_decrypt_init(apr_crypto_block_t **ctx,
|
|
apr_size_t *blockSize, const unsigned char *iv,
|
|
const apr_crypto_key_t *key, apr_pool_t *p)
|
|
{
|
|
apr_crypto_block_t *block = *ctx;
|
|
if (!block) {
|
|
*ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t));
|
|
}
|
|
if (!block) {
|
|
return APR_ENOMEM;
|
|
}
|
|
block->f = key->f;
|
|
block->pool = p;
|
|
block->provider = key->provider;
|
|
|
|
apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper,
|
|
apr_pool_cleanup_null);
|
|
|
|
/* generate an IV, if necessary */
|
|
if (key->ivSize) {
|
|
if (iv == NULL) {
|
|
return APR_ENOIV;
|
|
}
|
|
}
|
|
|
|
/* create a new context for decryption */
|
|
switch ((block->f->result->rc = CCCryptorCreate(kCCDecrypt, key->algorithm,
|
|
key->options, key->key, key->keyLen, iv, &block->ref))) {
|
|
case kCCSuccess: {
|
|
break;
|
|
}
|
|
case kCCParamError: {
|
|
return APR_EINIT;
|
|
}
|
|
case kCCMemoryFailure: {
|
|
return APR_ENOMEM;
|
|
}
|
|
case kCCAlignmentError: {
|
|
return APR_EPADDING;
|
|
}
|
|
case kCCUnimplemented: {
|
|
return APR_ENOTIMPL;
|
|
}
|
|
default: {
|
|
return APR_EINIT;
|
|
}
|
|
}
|
|
|
|
if (blockSize) {
|
|
*blockSize = key->blockSize;
|
|
}
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Decrypt data provided by in, write it to out.
|
|
* @note The number of bytes written will be written to outlen. If
|
|
* out is NULL, outlen will contain the maximum size of the
|
|
* buffer needed to hold the data, including any data
|
|
* generated by apr_crypto_block_decrypt_finish below. If *out points
|
|
* to NULL, a buffer sufficiently large will be created from
|
|
* the pool provided. If *out points to a not-NULL value, this
|
|
* value will be used as a buffer instead.
|
|
* @param out Address of a buffer to which data will be written,
|
|
* see note.
|
|
* @param outlen Length of the output will be written here.
|
|
* @param in Address of the buffer to read.
|
|
* @param inlen Length of the buffer to read.
|
|
* @param ctx The block context to use.
|
|
* @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
|
|
* not implemented.
|
|
*/
|
|
static apr_status_t crypto_block_decrypt(unsigned char **out,
|
|
apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
|
|
apr_crypto_block_t *ctx)
|
|
{
|
|
apr_size_t outl = *outlen;
|
|
unsigned char *buffer;
|
|
|
|
/* are we after the maximum size of the out buffer? */
|
|
if (!out) {
|
|
*outlen = CCCryptorGetOutputLength(ctx->ref, inlen, 1);
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/* must we allocate the output buffer from a pool? */
|
|
if (!*out) {
|
|
outl = CCCryptorGetOutputLength(ctx->ref, inlen, 1);
|
|
buffer = apr_palloc(ctx->pool, outl);
|
|
if (!buffer) {
|
|
return APR_ENOMEM;
|
|
}
|
|
apr_crypto_clear(ctx->pool, buffer, outl);
|
|
*out = buffer;
|
|
}
|
|
|
|
switch ((ctx->f->result->rc = CCCryptorUpdate(ctx->ref, in, inlen, (*out),
|
|
outl, &outl))) {
|
|
case kCCSuccess: {
|
|
break;
|
|
}
|
|
case kCCBufferTooSmall: {
|
|
return APR_ENOSPACE;
|
|
}
|
|
default: {
|
|
return APR_ECRYPT;
|
|
}
|
|
}
|
|
*outlen = outl;
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Decrypt final data block, write it to out.
|
|
* @note If necessary the final block will be written out after being
|
|
* padded. Typically the final block will be written to the
|
|
* same buffer used by apr_crypto_block_decrypt, offset by the
|
|
* number of bytes returned as actually written by the
|
|
* apr_crypto_block_decrypt() call. After this call, the context
|
|
* is cleaned and can be reused by apr_crypto_block_decrypt_init().
|
|
* @param out Address of a buffer to which data will be written. This
|
|
* buffer must already exist, and is usually the same
|
|
* buffer used by apr_evp_crypt(). See note.
|
|
* @param outlen Length of the output will be written here.
|
|
* @param ctx The block context to use.
|
|
* @return APR_ECRYPT if an error occurred.
|
|
* @return APR_EPADDING if padding was enabled and the block was incorrectly
|
|
* formatted.
|
|
* @return APR_ENOTIMPL if not implemented.
|
|
*/
|
|
static apr_status_t crypto_block_decrypt_finish(unsigned char *out,
|
|
apr_size_t *outlen, apr_crypto_block_t *ctx)
|
|
{
|
|
apr_size_t len = *outlen;
|
|
|
|
ctx->f->result->rc = CCCryptorFinal(ctx->ref, out,
|
|
CCCryptorGetOutputLength(ctx->ref, 0, 1), &len);
|
|
|
|
/* always clean up */
|
|
crypto_block_cleanup(ctx);
|
|
|
|
switch (ctx->f->result->rc) {
|
|
case kCCSuccess: {
|
|
break;
|
|
}
|
|
case kCCBufferTooSmall: {
|
|
return APR_ENOSPACE;
|
|
}
|
|
case kCCAlignmentError: {
|
|
return APR_EPADDING;
|
|
}
|
|
case kCCDecodeError: {
|
|
return APR_ECRYPT;
|
|
}
|
|
default: {
|
|
return APR_ECRYPT;
|
|
}
|
|
}
|
|
*outlen = len;
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
/**
|
|
* OSX Common Crypto module.
|
|
*/
|
|
APU_MODULE_DECLARE_DATA const apr_crypto_driver_t apr_crypto_commoncrypto_driver =
|
|
{
|
|
"commoncrypto", crypto_init, crypto_make, crypto_get_block_key_types,
|
|
crypto_get_block_key_modes, crypto_passphrase,
|
|
crypto_block_encrypt_init, crypto_block_encrypt,
|
|
crypto_block_encrypt_finish, crypto_block_decrypt_init,
|
|
crypto_block_decrypt, crypto_block_decrypt_finish, crypto_block_cleanup,
|
|
crypto_cleanup, crypto_shutdown, crypto_error, crypto_key
|
|
};
|
|
|
|
#endif
|