freebsd-skq/sys/dev/sn/if_sn.c

1486 lines
33 KiB
C

/*
* Copyright (c) 1996 Gardner Buchanan <gbuchanan@shl.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Gardner Buchanan.
* 4. The name of Gardner Buchanan may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* This is a driver for SMC's 9000 series of Ethernet adapters.
*
* This FreeBSD driver is derived from the smc9194 Linux driver by
* Erik Stahlman and is Copyright (C) 1996 by Erik Stahlman.
* This driver also shamelessly borrows from the FreeBSD ep driver
* which is Copyright (C) 1994 Herb Peyerl <hpeyerl@novatel.ca>
* All rights reserved.
*
* It is set up for my SMC91C92 equipped Ampro LittleBoard embedded
* PC. It is adapted from Erik Stahlman's Linux driver which worked
* with his EFA Info*Express SVC VLB adaptor. According to SMC's databook,
* it will work for the entire SMC 9xxx series. (Ha Ha)
*
* "Features" of the SMC chip:
* 4608 byte packet memory. (for the 91C92. Others have more)
* EEPROM for configuration
* AUI/TP selection
*
* Authors:
* Erik Stahlman erik@vt.edu
* Herb Peyerl hpeyerl@novatel.ca
* Andres Vega Garcia avega@sophia.inria.fr
* Serge Babkin babkin@hq.icb.chel.su
* Gardner Buchanan gbuchanan@shl.com
*
* Sources:
* o SMC databook
* o "smc9194.c:v0.10(FIXED) 02/15/96 by Erik Stahlman (erik@vt.edu)"
* o "if_ep.c,v 1.19 1995/01/24 20:53:45 davidg Exp"
*
* Known Bugs:
* o The hardware multicast filter isn't used yet.
* o Setting of the hardware address isn't supported.
* o Hardware padding isn't used.
*/
/*
* Modifications for Megahertz X-Jack Ethernet Card (XJ-10BT)
*
* Copyright (c) 1996 by Tatsumi Hosokawa <hosokawa@jp.FreeBSD.org>
* BSD-nomads, Tokyo, Japan.
*/
/*
* Multicast support by Kei TANAKA <kei@pal.xerox.com>
* Special thanks to itojun@itojun.org
*/
#define SN_DEBUG
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_mib.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#include <net/bpf.h>
#include <net/bpfdesc.h>
#include <dev/sn/if_snreg.h>
#include <dev/sn/if_snvar.h>
/* Exported variables */
devclass_t sn_devclass;
static int snioctl(struct ifnet * ifp, u_long, caddr_t);
static void snresume(struct ifnet *);
void sninit(void *);
void snread(struct ifnet *);
void snreset(struct sn_softc *);
void snstart(struct ifnet *);
void snstop(struct sn_softc *);
void snwatchdog(struct ifnet *);
static void sn_setmcast(struct sn_softc *);
static int sn_getmcf(struct arpcom *ac, u_char *mcf);
static u_int smc_crc(u_char *);
/* I (GB) have been unlucky getting the hardware padding
* to work properly.
*/
#define SW_PAD
static const char *chip_ids[15] = {
NULL, NULL, NULL,
/* 3 */ "SMC91C90/91C92",
/* 4 */ "SMC91C94",
/* 5 */ "SMC91C95",
NULL,
/* 7 */ "SMC91C100",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL
};
int
sn_attach(device_t dev)
{
struct sn_softc *sc = device_get_softc(dev);
struct ifnet *ifp = &sc->arpcom.ac_if;
u_short i;
u_char *p;
struct ifaddr *ifa;
struct sockaddr_dl *sdl;
int rev;
u_short address;
int j;
sn_activate(dev);
snstop(sc);
sc->dev = dev;
sc->pages_wanted = -1;
device_printf(dev, " ");
SMC_SELECT_BANK(3);
rev = inw(BASE + REVISION_REG_W);
if (chip_ids[(rev >> 4) & 0xF])
printf("%s ", chip_ids[(rev >> 4) & 0xF]);
SMC_SELECT_BANK(1);
i = inw(BASE + CONFIG_REG_W);
printf(i & CR_AUI_SELECT ? "AUI" : "UTP");
if (sc->pccard_enaddr)
for (j = 0; j < 3; j++) {
u_short w;
w = (u_short)sc->arpcom.ac_enaddr[j * 2] |
(((u_short)sc->arpcom.ac_enaddr[j * 2 + 1]) << 8);
outw(BASE + IAR_ADDR0_REG_W + j * 2, w);
}
/*
* Read the station address from the chip. The MAC address is bank 1,
* regs 4 - 9
*/
SMC_SELECT_BANK(1);
p = (u_char *) & sc->arpcom.ac_enaddr;
for (i = 0; i < 6; i += 2) {
address = inw(BASE + IAR_ADDR0_REG_W + i);
p[i + 1] = address >> 8;
p[i] = address & 0xFF;
}
printf(" MAC address %6D\n", sc->arpcom.ac_enaddr, ":");
ifp->if_softc = sc;
ifp->if_unit = device_get_unit(dev);
ifp->if_name = "sn";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_output = ether_output;
ifp->if_start = snstart;
ifp->if_ioctl = snioctl;
ifp->if_watchdog = snwatchdog;
ifp->if_init = sninit;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
ifp->if_timer = 0;
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
/*
* Fill the hardware address into ifa_addr if we find an AF_LINK
* entry. We need to do this so bpf's can get the hardware addr of
* this card. netstat likes this too!
*/
ifa = TAILQ_FIRST(&ifp->if_addrhead);
while ((ifa != 0) && (ifa->ifa_addr != 0) &&
(ifa->ifa_addr->sa_family != AF_LINK))
ifa = TAILQ_NEXT(ifa, ifa_link);
if ((ifa != 0) && (ifa->ifa_addr != 0)) {
sdl = (struct sockaddr_dl *) ifa->ifa_addr;
sdl->sdl_type = IFT_ETHER;
sdl->sdl_alen = ETHER_ADDR_LEN;
sdl->sdl_slen = 0;
bcopy(sc->arpcom.ac_enaddr, LLADDR(sdl), ETHER_ADDR_LEN);
}
return 0;
}
/*
* Reset and initialize the chip
*/
void
sninit(void *xsc)
{
register struct sn_softc *sc = xsc;
register struct ifnet *ifp = &sc->arpcom.ac_if;
int s;
int flags;
int mask;
s = splimp();
/*
* This resets the registers mostly to defaults, but doesn't affect
* EEPROM. After the reset cycle, we pause briefly for the chip to
* be happy.
*/
SMC_SELECT_BANK(0);
outw(BASE + RECV_CONTROL_REG_W, RCR_SOFTRESET);
SMC_DELAY();
outw(BASE + RECV_CONTROL_REG_W, 0x0000);
SMC_DELAY();
SMC_DELAY();
outw(BASE + TXMIT_CONTROL_REG_W, 0x0000);
/*
* Set the control register to automatically release succesfully
* transmitted packets (making the best use out of our limited
* memory) and to enable the EPH interrupt on certain TX errors.
*/
SMC_SELECT_BANK(1);
outw(BASE + CONTROL_REG_W, (CTR_AUTO_RELEASE | CTR_TE_ENABLE |
CTR_CR_ENABLE | CTR_LE_ENABLE));
/* Set squelch level to 240mV (default 480mV) */
flags = inw(BASE + CONFIG_REG_W);
flags |= CR_SET_SQLCH;
outw(BASE + CONFIG_REG_W, flags);
/*
* Reset the MMU and wait for it to be un-busy.
*/
SMC_SELECT_BANK(2);
outw(BASE + MMU_CMD_REG_W, MMUCR_RESET);
while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY) /* NOTHING */
;
/*
* Disable all interrupts
*/
outb(BASE + INTR_MASK_REG_B, 0x00);
sn_setmcast(sc);
/*
* Set the transmitter control. We want it enabled.
*/
flags = TCR_ENABLE;
#ifndef SW_PAD
/*
* I (GB) have been unlucky getting this to work.
*/
flags |= TCR_PAD_ENABLE;
#endif /* SW_PAD */
outw(BASE + TXMIT_CONTROL_REG_W, flags);
/*
* Now, enable interrupts
*/
SMC_SELECT_BANK(2);
mask = IM_EPH_INT |
IM_RX_OVRN_INT |
IM_RCV_INT |
IM_TX_INT;
outb(BASE + INTR_MASK_REG_B, mask);
sc->intr_mask = mask;
sc->pages_wanted = -1;
/*
* Mark the interface running but not active.
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Attempt to push out any waiting packets.
*/
snstart(ifp);
splx(s);
}
void
snstart(struct ifnet *ifp)
{
register struct sn_softc *sc = ifp->if_softc;
register u_int len;
register struct mbuf *m;
struct mbuf *top;
int s, pad;
int mask;
u_short length;
u_short numPages;
u_char packet_no;
int time_out;
int junk = 0;
s = splimp();
if (sc->arpcom.ac_if.if_flags & IFF_OACTIVE) {
splx(s);
return;
}
if (sc->pages_wanted != -1) {
splx(s);
printf("sn%d: snstart() while memory allocation pending\n",
ifp->if_unit);
return;
}
startagain:
/*
* Sneak a peek at the next packet
*/
m = sc->arpcom.ac_if.if_snd.ifq_head;
if (m == 0) {
splx(s);
return;
}
/*
* Compute the frame length and set pad to give an overall even
* number of bytes. Below we assume that the packet length is even.
*/
for (len = 0, top = m; m; m = m->m_next)
len += m->m_len;
pad = (len & 1);
/*
* We drop packets that are too large. Perhaps we should truncate
* them instead?
*/
if (len + pad > ETHER_MAX_LEN - ETHER_CRC_LEN) {
printf("sn%d: large packet discarded (A)\n", ifp->if_unit);
++sc->arpcom.ac_if.if_oerrors;
IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
m_freem(m);
goto readcheck;
}
#ifdef SW_PAD
/*
* If HW padding is not turned on, then pad to ETHER_MIN_LEN.
*/
if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len;
#endif /* SW_PAD */
length = pad + len;
/*
* The MMU wants the number of pages to be the number of 256 byte
* 'pages', minus 1 (A packet can't ever have 0 pages. We also
* include space for the status word, byte count and control bytes in
* the allocation request.
*/
numPages = (length + 6) >> 8;
/*
* Now, try to allocate the memory
*/
SMC_SELECT_BANK(2);
outw(BASE + MMU_CMD_REG_W, MMUCR_ALLOC | numPages);
/*
* Wait a short amount of time to see if the allocation request
* completes. Otherwise, I enable the interrupt and wait for
* completion asyncronously.
*/
time_out = MEMORY_WAIT_TIME;
do {
if (inb(BASE + INTR_STAT_REG_B) & IM_ALLOC_INT)
break;
} while (--time_out);
if (!time_out || junk > 10) {
/*
* No memory now. Oh well, wait until the chip finds memory
* later. Remember how many pages we were asking for and
* enable the allocation completion interrupt. Also set a
* watchdog in case we miss the interrupt. We mark the
* interface active since there is no point in attempting an
* snstart() until after the memory is available.
*/
mask = inb(BASE + INTR_MASK_REG_B) | IM_ALLOC_INT;
outb(BASE + INTR_MASK_REG_B, mask);
sc->intr_mask = mask;
sc->arpcom.ac_if.if_timer = 1;
sc->arpcom.ac_if.if_flags |= IFF_OACTIVE;
sc->pages_wanted = numPages;
splx(s);
return;
}
/*
* The memory allocation completed. Check the results.
*/
packet_no = inb(BASE + ALLOC_RESULT_REG_B);
if (packet_no & ARR_FAILED) {
if (junk++ > 10)
printf("sn%d: Memory allocation failed\n", ifp->if_unit);
goto startagain;
}
/*
* We have a packet number, so tell the card to use it.
*/
outb(BASE + PACKET_NUM_REG_B, packet_no);
/*
* Point to the beginning of the packet
*/
outw(BASE + POINTER_REG_W, PTR_AUTOINC | 0x0000);
/*
* Send the packet length (+6 for status, length and control byte)
* and the status word (set to zeros)
*/
outw(BASE + DATA_REG_W, 0);
outb(BASE + DATA_REG_B, (length + 6) & 0xFF);
outb(BASE + DATA_REG_B, (length + 6) >> 8);
/*
* Get the packet from the kernel. This will include the Ethernet
* frame header, MAC Addresses etc.
*/
IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
/*
* Push out the data to the card.
*/
for (top = m; m != 0; m = m->m_next) {
/*
* Push out words.
*/
outsw(BASE + DATA_REG_W, mtod(m, caddr_t), m->m_len / 2);
/*
* Push out remaining byte.
*/
if (m->m_len & 1)
outb(BASE + DATA_REG_B, *(mtod(m, caddr_t) + m->m_len - 1));
}
/*
* Push out padding.
*/
while (pad > 1) {
outw(BASE + DATA_REG_W, 0);
pad -= 2;
}
if (pad)
outb(BASE + DATA_REG_B, 0);
/*
* Push out control byte and unused packet byte The control byte is 0
* meaning the packet is even lengthed and no special CRC handling is
* desired.
*/
outw(BASE + DATA_REG_W, 0);
/*
* Enable the interrupts and let the chipset deal with it Also set a
* watchdog in case we miss the interrupt.
*/
mask = inb(BASE + INTR_MASK_REG_B) | (IM_TX_INT | IM_TX_EMPTY_INT);
outb(BASE + INTR_MASK_REG_B, mask);
sc->intr_mask = mask;
outw(BASE + MMU_CMD_REG_W, MMUCR_ENQUEUE);
sc->arpcom.ac_if.if_flags |= IFF_OACTIVE;
sc->arpcom.ac_if.if_timer = 1;
if (ifp->if_bpf) {
bpf_mtap(ifp, top);
}
sc->arpcom.ac_if.if_opackets++;
m_freem(top);
readcheck:
/*
* Is another packet coming in? We don't want to overflow the tiny
* RX FIFO. If nothing has arrived then attempt to queue another
* transmit packet.
*/
if (inw(BASE + FIFO_PORTS_REG_W) & FIFO_REMPTY)
goto startagain;
splx(s);
return;
}
/* Resume a packet transmit operation after a memory allocation
* has completed.
*
* This is basically a hacked up copy of snstart() which handles
* a completed memory allocation the same way snstart() does.
* It then passes control to snstart to handle any other queued
* packets.
*/
static void
snresume(struct ifnet *ifp)
{
register struct sn_softc *sc = ifp->if_softc;
register u_int len;
register struct mbuf *m;
struct mbuf *top;
int pad;
int mask;
u_short length;
u_short numPages;
u_short pages_wanted;
u_char packet_no;
if (sc->pages_wanted < 0)
return;
pages_wanted = sc->pages_wanted;
sc->pages_wanted = -1;
/*
* Sneak a peek at the next packet
*/
m = sc->arpcom.ac_if.if_snd.ifq_head;
if (m == 0) {
printf("sn%d: snresume() with nothing to send\n", ifp->if_unit);
return;
}
/*
* Compute the frame length and set pad to give an overall even
* number of bytes. Below we assume that the packet length is even.
*/
for (len = 0, top = m; m; m = m->m_next)
len += m->m_len;
pad = (len & 1);
/*
* We drop packets that are too large. Perhaps we should truncate
* them instead?
*/
if (len + pad > ETHER_MAX_LEN - ETHER_CRC_LEN) {
printf("sn%d: large packet discarded (B)\n", ifp->if_unit);
++sc->arpcom.ac_if.if_oerrors;
IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
m_freem(m);
return;
}
#ifdef SW_PAD
/*
* If HW padding is not turned on, then pad to ETHER_MIN_LEN.
*/
if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len;
#endif /* SW_PAD */
length = pad + len;
/*
* The MMU wants the number of pages to be the number of 256 byte
* 'pages', minus 1 (A packet can't ever have 0 pages. We also
* include space for the status word, byte count and control bytes in
* the allocation request.
*/
numPages = (length + 6) >> 8;
SMC_SELECT_BANK(2);
/*
* The memory allocation completed. Check the results. If it failed,
* we simply set a watchdog timer and hope for the best.
*/
packet_no = inb(BASE + ALLOC_RESULT_REG_B);
if (packet_no & ARR_FAILED) {
printf("sn%d: Memory allocation failed. Weird.\n", ifp->if_unit);
sc->arpcom.ac_if.if_timer = 1;
goto try_start;
}
/*
* We have a packet number, so tell the card to use it.
*/
outb(BASE + PACKET_NUM_REG_B, packet_no);
/*
* Now, numPages should match the pages_wanted recorded when the
* memory allocation was initiated.
*/
if (pages_wanted != numPages) {
printf("sn%d: memory allocation wrong size. Weird.\n", ifp->if_unit);
/*
* If the allocation was the wrong size we simply release the
* memory once it is granted. Wait for the MMU to be un-busy.
*/
while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY) /* NOTHING */
;
outw(BASE + MMU_CMD_REG_W, MMUCR_FREEPKT);
return;
}
/*
* Point to the beginning of the packet
*/
outw(BASE + POINTER_REG_W, PTR_AUTOINC | 0x0000);
/*
* Send the packet length (+6 for status, length and control byte)
* and the status word (set to zeros)
*/
outw(BASE + DATA_REG_W, 0);
outb(BASE + DATA_REG_B, (length + 6) & 0xFF);
outb(BASE + DATA_REG_B, (length + 6) >> 8);
/*
* Get the packet from the kernel. This will include the Ethernet
* frame header, MAC Addresses etc.
*/
IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
/*
* Push out the data to the card.
*/
for (top = m; m != 0; m = m->m_next) {
/*
* Push out words.
*/
outsw(BASE + DATA_REG_W, mtod(m, caddr_t), m->m_len / 2);
/*
* Push out remaining byte.
*/
if (m->m_len & 1)
outb(BASE + DATA_REG_B, *(mtod(m, caddr_t) + m->m_len - 1));
}
/*
* Push out padding.
*/
while (pad > 1) {
outw(BASE + DATA_REG_W, 0);
pad -= 2;
}
if (pad)
outb(BASE + DATA_REG_B, 0);
/*
* Push out control byte and unused packet byte The control byte is 0
* meaning the packet is even lengthed and no special CRC handling is
* desired.
*/
outw(BASE + DATA_REG_W, 0);
/*
* Enable the interrupts and let the chipset deal with it Also set a
* watchdog in case we miss the interrupt.
*/
mask = inb(BASE + INTR_MASK_REG_B) | (IM_TX_INT | IM_TX_EMPTY_INT);
outb(BASE + INTR_MASK_REG_B, mask);
sc->intr_mask = mask;
outw(BASE + MMU_CMD_REG_W, MMUCR_ENQUEUE);
if (ifp->if_bpf) {
bpf_mtap(ifp, top);
}
sc->arpcom.ac_if.if_opackets++;
m_freem(top);
try_start:
/*
* Now pass control to snstart() to queue any additional packets
*/
sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
snstart(ifp);
/*
* We've sent something, so we're active. Set a watchdog in case the
* TX_EMPTY interrupt is lost.
*/
sc->arpcom.ac_if.if_flags |= IFF_OACTIVE;
sc->arpcom.ac_if.if_timer = 1;
return;
}
void
sn_intr(void *arg)
{
int status, interrupts;
register struct sn_softc *sc = (struct sn_softc *) arg;
struct ifnet *ifp = &sc->arpcom.ac_if;
int x;
/*
* Chip state registers
*/
u_char mask;
u_char packet_no;
u_short tx_status;
u_short card_stats;
/*
* if_ep.c did this, so I do too. Yet if_ed.c doesn't. I wonder...
*/
x = splbio();
/*
* Clear the watchdog.
*/
ifp->if_timer = 0;
SMC_SELECT_BANK(2);
/*
* Obtain the current interrupt mask and clear the hardware mask
* while servicing interrupts.
*/
mask = inb(BASE + INTR_MASK_REG_B);
outb(BASE + INTR_MASK_REG_B, 0x00);
/*
* Get the set of interrupts which occurred and eliminate any which
* are masked.
*/
interrupts = inb(BASE + INTR_STAT_REG_B);
status = interrupts & mask;
/*
* Now, process each of the interrupt types.
*/
/*
* Receive Overrun.
*/
if (status & IM_RX_OVRN_INT) {
/*
* Acknowlege Interrupt
*/
SMC_SELECT_BANK(2);
outb(BASE + INTR_ACK_REG_B, IM_RX_OVRN_INT);
++sc->arpcom.ac_if.if_ierrors;
}
/*
* Got a packet.
*/
if (status & IM_RCV_INT) {
#if 1
int packet_number;
SMC_SELECT_BANK(2);
packet_number = inw(BASE + FIFO_PORTS_REG_W);
if (packet_number & FIFO_REMPTY) {
/*
* we got called , but nothing was on the FIFO
*/
printf("sn: Receive interrupt with nothing on FIFO\n");
goto out;
}
#endif
snread(ifp);
}
/*
* An on-card memory allocation came through.
*/
if (status & IM_ALLOC_INT) {
/*
* Disable this interrupt.
*/
mask &= ~IM_ALLOC_INT;
sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
snresume(&sc->arpcom.ac_if);
}
/*
* TX Completion. Handle a transmit error message. This will only be
* called when there is an error, because of the AUTO_RELEASE mode.
*/
if (status & IM_TX_INT) {
/*
* Acknowlege Interrupt
*/
SMC_SELECT_BANK(2);
outb(BASE + INTR_ACK_REG_B, IM_TX_INT);
packet_no = inw(BASE + FIFO_PORTS_REG_W);
packet_no &= FIFO_TX_MASK;
/*
* select this as the packet to read from
*/
outb(BASE + PACKET_NUM_REG_B, packet_no);
/*
* Position the pointer to the first word from this packet
*/
outw(BASE + POINTER_REG_W, PTR_AUTOINC | PTR_READ | 0x0000);
/*
* Fetch the TX status word. The value found here will be a
* copy of the EPH_STATUS_REG_W at the time the transmit
* failed.
*/
tx_status = inw(BASE + DATA_REG_W);
if (tx_status & EPHSR_TX_SUC) {
device_printf(sc->dev,
"Successful packet caused interrupt\n");
} else {
++sc->arpcom.ac_if.if_oerrors;
}
if (tx_status & EPHSR_LATCOL)
++sc->arpcom.ac_if.if_collisions;
/*
* Some of these errors will have disabled transmit.
* Re-enable transmit now.
*/
SMC_SELECT_BANK(0);
#ifdef SW_PAD
outw(BASE + TXMIT_CONTROL_REG_W, TCR_ENABLE);
#else
outw(BASE + TXMIT_CONTROL_REG_W, TCR_ENABLE | TCR_PAD_ENABLE);
#endif /* SW_PAD */
/*
* kill the failed packet. Wait for the MMU to be un-busy.
*/
SMC_SELECT_BANK(2);
while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY) /* NOTHING */
;
outw(BASE + MMU_CMD_REG_W, MMUCR_FREEPKT);
/*
* Attempt to queue more transmits.
*/
sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
snstart(&sc->arpcom.ac_if);
}
/*
* Transmit underrun. We use this opportunity to update transmit
* statistics from the card.
*/
if (status & IM_TX_EMPTY_INT) {
/*
* Acknowlege Interrupt
*/
SMC_SELECT_BANK(2);
outb(BASE + INTR_ACK_REG_B, IM_TX_EMPTY_INT);
/*
* Disable this interrupt.
*/
mask &= ~IM_TX_EMPTY_INT;
SMC_SELECT_BANK(0);
card_stats = inw(BASE + COUNTER_REG_W);
/*
* Single collisions
*/
sc->arpcom.ac_if.if_collisions += card_stats & ECR_COLN_MASK;
/*
* Multiple collisions
*/
sc->arpcom.ac_if.if_collisions += (card_stats & ECR_MCOLN_MASK) >> 4;
SMC_SELECT_BANK(2);
/*
* Attempt to enqueue some more stuff.
*/
sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
snstart(&sc->arpcom.ac_if);
}
/*
* Some other error. Try to fix it by resetting the adapter.
*/
if (status & IM_EPH_INT) {
snstop(sc);
sninit(sc);
}
out:
/*
* Handled all interrupt sources.
*/
SMC_SELECT_BANK(2);
/*
* Reestablish interrupts from mask which have not been deselected
* during this interrupt. Note that the hardware mask, which was set
* to 0x00 at the start of this service routine, may have been
* updated by one or more of the interrupt handers and we must let
* those new interrupts stay enabled here.
*/
mask |= inb(BASE + INTR_MASK_REG_B);
outb(BASE + INTR_MASK_REG_B, mask);
sc->intr_mask = mask;
splx(x);
}
void
snread(register struct ifnet *ifp)
{
struct sn_softc *sc = ifp->if_softc;
struct ether_header *eh;
struct mbuf *m;
short status;
int packet_number;
u_short packet_length;
u_char *data;
SMC_SELECT_BANK(2);
#if 0
packet_number = inw(BASE + FIFO_PORTS_REG_W);
if (packet_number & FIFO_REMPTY) {
/*
* we got called , but nothing was on the FIFO
*/
printf("sn: Receive interrupt with nothing on FIFO\n");
return;
}
#endif
read_another:
/*
* Start reading from the start of the packet. Since PTR_RCV is set,
* packet number is found in FIFO_PORTS_REG_W, FIFO_RX_MASK.
*/
outw(BASE + POINTER_REG_W, PTR_READ | PTR_RCV | PTR_AUTOINC | 0x0000);
/*
* First two words are status and packet_length
*/
status = inw(BASE + DATA_REG_W);
packet_length = inw(BASE + DATA_REG_W) & RLEN_MASK;
/*
* The packet length contains 3 extra words: status, length, and a
* extra word with the control byte.
*/
packet_length -= 6;
/*
* Account for receive errors and discard.
*/
if (status & RS_ERRORS) {
++sc->arpcom.ac_if.if_ierrors;
goto out;
}
/*
* A packet is received.
*/
/*
* Adjust for odd-length packet.
*/
if (status & RS_ODDFRAME)
packet_length++;
/*
* Allocate a header mbuf from the kernel.
*/
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
goto out;
m->m_pkthdr.rcvif = &sc->arpcom.ac_if;
m->m_pkthdr.len = m->m_len = packet_length;
/*
* Attach an mbuf cluster
*/
MCLGET(m, M_DONTWAIT);
/*
* Insist on getting a cluster
*/
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
++sc->arpcom.ac_if.if_ierrors;
printf("sn: snread() kernel memory allocation problem\n");
goto out;
}
eh = mtod(m, struct ether_header *);
/*
* Get packet, including link layer address, from interface.
*/
data = (u_char *) eh;
insw(BASE + DATA_REG_W, data, packet_length >> 1);
if (packet_length & 1) {
data += packet_length & ~1;
*data = inb(BASE + DATA_REG_B);
}
++sc->arpcom.ac_if.if_ipackets;
/*
* Remove link layer addresses and whatnot.
*/
m->m_pkthdr.len = m->m_len = packet_length - sizeof(struct ether_header);
m->m_data += sizeof(struct ether_header);
ether_input(&sc->arpcom.ac_if, eh, m);
out:
/*
* Error or good, tell the card to get rid of this packet Wait for
* the MMU to be un-busy.
*/
SMC_SELECT_BANK(2);
while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY) /* NOTHING */
;
outw(BASE + MMU_CMD_REG_W, MMUCR_RELEASE);
/*
* Check whether another packet is ready
*/
packet_number = inw(BASE + FIFO_PORTS_REG_W);
if (packet_number & FIFO_REMPTY) {
return;
}
goto read_another;
}
/*
* Handle IOCTLS. This function is completely stolen from if_ep.c
* As with its progenitor, it does not handle hardware address
* changes.
*/
static int
snioctl(register struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct sn_softc *sc = ifp->if_softc;
int s, error = 0;
s = splimp();
switch (cmd) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, cmd, data);
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 && ifp->if_flags & IFF_RUNNING) {
ifp->if_flags &= ~IFF_RUNNING;
snstop(sc);
break;
} else {
/* reinitialize card on any parameter change */
sninit(sc);
break;
}
break;
#ifdef notdef
case SIOCGHWADDR:
bcopy((caddr_t) sc->sc_addr, (caddr_t) & ifr->ifr_data,
sizeof(sc->sc_addr));
break;
#endif
case SIOCADDMULTI:
/* update multicast filter list. */
sn_setmcast(sc);
error = 0;
break;
case SIOCDELMULTI:
/* update multicast filter list. */
sn_setmcast(sc);
error = 0;
break;
default:
error = EINVAL;
}
splx(s);
return (error);
}
void
snreset(struct sn_softc *sc)
{
int s;
s = splimp();
snstop(sc);
sninit(sc);
splx(s);
}
void
snwatchdog(struct ifnet *ifp)
{
int s;
s = splimp();
sn_intr(ifp->if_softc);
splx(s);
}
/* 1. zero the interrupt mask
* 2. clear the enable receive flag
* 3. clear the enable xmit flags
*/
void
snstop(struct sn_softc *sc)
{
struct ifnet *ifp = &sc->arpcom.ac_if;
/*
* Clear interrupt mask; disable all interrupts.
*/
SMC_SELECT_BANK(2);
outb(BASE + INTR_MASK_REG_B, 0x00);
/*
* Disable transmitter and Receiver
*/
SMC_SELECT_BANK(0);
outw(BASE + RECV_CONTROL_REG_W, 0x0000);
outw(BASE + TXMIT_CONTROL_REG_W, 0x0000);
/*
* Cancel watchdog.
*/
ifp->if_timer = 0;
}
int
sn_activate(device_t dev)
{
struct sn_softc *sc = device_get_softc(dev);
int err;
sc->port_rid = 0;
sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid,
0, ~0, SMC_IO_EXTENT, RF_ACTIVE);
if (!sc->port_res) {
if (bootverbose)
device_printf(dev, "Cannot allocate ioport\n");
return ENOMEM;
}
sc->irq_rid = 0;
sc->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_rid,
0, ~0, 1, RF_ACTIVE);
if (!sc->irq_res) {
if (bootverbose)
device_printf(dev, "Cannot allocate irq\n");
sn_deactivate(dev);
return ENOMEM;
}
if ((err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET, sn_intr, sc,
&sc->intrhand)) != 0) {
sn_deactivate(dev);
return err;
}
sc->sn_io_addr = rman_get_start(sc->port_res);
return (0);
}
void
sn_deactivate(device_t dev)
{
struct sn_softc *sc = device_get_softc(dev);
if (sc->intrhand)
bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
sc->intrhand = 0;
if (sc->port_res)
bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid,
sc->port_res);
sc->port_res = 0;
if (sc->irq_res)
bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid,
sc->irq_res);
sc->irq_res = 0;
return;
}
/*
* Function: sn_probe( device_t dev, int pccard )
*
* Purpose:
* Tests to see if a given ioaddr points to an SMC9xxx chip.
* Tries to cause as little damage as possible if it's not a SMC chip.
* Returns a 0 on success
*
* Algorithm:
* (1) see if the high byte of BANK_SELECT is 0x33
* (2) compare the ioaddr with the base register's address
* (3) see if I recognize the chip ID in the appropriate register
*
*
*/
int
sn_probe(device_t dev, int pccard)
{
struct sn_softc *sc = device_get_softc(dev);
u_int bank;
u_short revision_register;
u_short base_address_register;
u_short ioaddr;
int err;
if ((err = sn_activate(dev)) != 0)
return err;
ioaddr = sc->sn_io_addr;
#ifdef SN_DEBUG
device_printf(dev, "ioaddr is 0x%x\n", ioaddr);
#endif
/*
* First, see if the high byte is 0x33
*/
bank = inw(ioaddr + BANK_SELECT_REG_W);
if ((bank & BSR_DETECT_MASK) != BSR_DETECT_VALUE) {
#ifdef SN_DEBUG
device_printf(dev, "test1 failed\n");
#endif
goto error;
}
/*
* The above MIGHT indicate a device, but I need to write to further
* test this. Go to bank 0, then test that the register still
* reports the high byte is 0x33.
*/
outw(ioaddr + BANK_SELECT_REG_W, 0x0000);
bank = inw(ioaddr + BANK_SELECT_REG_W);
if ((bank & BSR_DETECT_MASK) != BSR_DETECT_VALUE) {
#ifdef SN_DEBUG
device_printf(dev, "test2 failed\n");
#endif
goto error;
}
/*
* well, we've already written once, so hopefully another time won't
* hurt. This time, I need to switch the bank register to bank 1, so
* I can access the base address register. The contents of the
* BASE_ADDR_REG_W register, after some jiggery pokery, is expected
* to match the I/O port address where the adapter is being probed.
*/
outw(ioaddr + BANK_SELECT_REG_W, 0x0001);
base_address_register = inw(ioaddr + BASE_ADDR_REG_W);
/*
* This test is nonsence on PC-card architecture, so if
* pccard == 1, skip this test. (hosokawa)
*/
if (!pccard && (ioaddr != (base_address_register >> 3 & 0x3E0))) {
/*
* Well, the base address register didn't match. Must not
* have been a SMC chip after all.
*/
#ifdef SN_DEBUG
device_printf(dev, "test3 failed ioaddr = 0x%x, "
"base_address_register = 0x%x\n", ioaddr,
base_address_register >> 3 & 0x3E0);
#endif
goto error;
}
/*
* Check if the revision register is something that I recognize.
* These might need to be added to later, as future revisions could
* be added.
*/
outw(ioaddr + BANK_SELECT_REG_W, 0x3);
revision_register = inw(ioaddr + REVISION_REG_W);
if (!chip_ids[(revision_register >> 4) & 0xF]) {
/*
* I don't regonize this chip, so...
*/
#ifdef SN_DEBUG
device_printf(dev, "test4 failed\n");
#endif
goto error;
}
/*
* at this point I'll assume that the chip is an SMC9xxx. It might be
* prudent to check a listing of MAC addresses against the hardware
* address, or do some other tests.
*/
sn_deactivate(dev);
return 0;
error:
sn_deactivate(dev);
return ENXIO;
}
#define MCFSZ 8
static void
sn_setmcast(struct sn_softc *sc)
{
struct ifnet *ifp = (struct ifnet *)sc;
int flags;
/*
* Set the receiver filter. We want receive enabled and auto strip
* of CRC from received packet. If we are promiscuous then set that
* bit too.
*/
flags = RCR_ENABLE | RCR_STRIP_CRC;
if (ifp->if_flags & IFF_PROMISC) {
flags |= RCR_PROMISC | RCR_ALMUL;
} else if (ifp->if_flags & IFF_ALLMULTI) {
flags |= RCR_ALMUL;
} else {
u_char mcf[MCFSZ];
if (sn_getmcf(&sc->arpcom, mcf)) {
/* set filter */
SMC_SELECT_BANK(3);
outw(BASE + MULTICAST1_REG_W,
((u_short)mcf[1] << 8) | mcf[0]);
outw(BASE + MULTICAST2_REG_W,
((u_short)mcf[3] << 8) | mcf[2]);
outw(BASE + MULTICAST3_REG_W,
((u_short)mcf[5] << 8) | mcf[4]);
outw(BASE + MULTICAST4_REG_W,
((u_short)mcf[7] << 8) | mcf[6]);
} else {
flags |= RCR_ALMUL;
}
}
SMC_SELECT_BANK(0);
outw(BASE + RECV_CONTROL_REG_W, flags);
}
static int
sn_getmcf(struct arpcom *ac, u_char *mcf)
{
int i;
register u_int index, index2;
register u_char *af = (u_char *) mcf;
struct ifmultiaddr *ifma;
bzero(mcf, MCFSZ);
for (ifma = ac->ac_if.if_multiaddrs.lh_first; ifma;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
return 0;
index = smc_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)) & 0x3f;
index2 = 0;
for (i = 0; i < 6; i++) {
index2 <<= 1;
index2 |= (index & 0x01);
index >>= 1;
}
af[index2 >> 3] |= 1 << (index2 & 7);
}
return 1; /* use multicast filter */
}
static u_int
smc_crc(u_char *s)
{
int perByte;
int perBit;
const u_int poly = 0xedb88320;
u_int v = 0xffffffff;
u_char c;
for (perByte = 0; perByte < ETHER_ADDR_LEN; perByte++) {
c = s[perByte];
for (perBit = 0; perBit < 8; perBit++) {
v = (v >> 1)^(((v ^ c) & 0x01) ? poly : 0);
c >>= 1;
}
}
return v;
}